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This article studies exponential families E on finite sets such that the in-
formation divergence D(P‖E) of an arbitrary probability distribution from
E is bounded by some constant D > 0. A particular class of low-dimensional
exponential families that have low values of D can be obtained from parti-
tions of the state space. The main results concern optimality properties of
these partition exponential families. Exponential families where D = log(2)
are studied in detail. This case is special, because if D < log(2), then E
contains all probability measures with full support.

1 Introduction

Let X be a finite set of cardinality N , and denote by P(X ) the set of probability
distributions on X . The information divergence D(P‖Q) is a natural distance measure
on P(X ). For any exponential family E on X (as defined in Section 2) and any P ∈ P(X )
write DE(P ) = infQ∈E D(P‖Q). This article discusses the following question:

• Let D > 0, and choose a partial order on the exponential families. Which exponen-
tial families are minimal among all exponential families E satisfying maxDE ≤ D?
What is the answer to this question under further constraints on E?

This question is related to finding the maximizers of the information divergence from
an exponential family, a problem which was first formulated by Nihat Ay in [1]. See [14]
for an overview and further references. The present work builds on recent progress in [15]
and [12].
There are at least two partial orders of interest:

(i) The partial order induced by the dimensions of the exponential families.

(ii) The partial order by inclusion.

1



The partial order (i) is particularly important for applications, since the dimension
of an exponential family is one of the most important invariants that determine the
complexity of all computations. The partial order (ii) can be seen as a “local relaxation”:
A candidate exponential family E is only compared to “similar” exponential families,
contained in E .

Definition 1. Let H be a set of exponential families. An exponential family E ∈ H
is called inclusion D-optimal among H for some D ≥ maxDE if every E ′ ∈ H strictly
contained in E satisfies maxDE ≤ D < maxDE ′. An exponential family E ∈ H is called
dimension D-optimal among H if every exponential family E ′ ∈ H of smaller dimension
satisfies maxDE ≤ D < maxDE ′ . Exponential families that are inclusion or dimension
D-optimal amongH for some D are also called inclusion or dimension optimal among H,
without reference to D. If H equals the set of all exponential families, then the reference
to H may be omitted in all definitions. Let

DN,k(H) = min {maxDE : E ∈ H is an exponential family of dimension k on [N ]} .

As an example, the set H may be the set of hierarchical models, the set of graphical
models or the set H1 of exponential families containing the uniform distribution. Obvi-
ously, any dimension optimal model is also inclusion optimal. The converse statement
does not hold, see Example 27 below.
A D-optimal exponential family E can approximate arbitrary probability measures

well, up to a maximal divergence of D. Yaroslav Bulatov proposed to use such exponen-
tial families in machine learning (personal communication), for example when using the
minimax algorithm [17] by Zhu, Wu and Mumford or the feature induction algorithm [5]
by Della Pietra, Della Pietra and Lafferty. Both algorithms inductively construct an
exponential family by adding functions (“features”) to the tangent space in order to
approximate a given distribution. Applications of the results of the present paper to
machine learning will not be discussed in here, but in a future work.
One motivation to restrict the class H of exponential families is that the learning

system may not be able to represent arbitrary exponential families. Another motivation
is given by Jaynes’ principle of maximum entropy [8], which suggests to use the class
H1 of exponential families with uniform reference measure.
This paper also introduces the class of partition models (see Section 3): A probability

measure P belongs to the partition model associated to a partition X ′ = (X 1, . . . ,XN ′

)
if the restriction of P to each block X i is uniform. Conjecture 29 relates partition models
to the above question:

Conjecture 29. DN,k = log⌈ N
k+1

⌉, and the dimension DN,k-optimal exponential families
containing the uniform distribution are partition models.

The results in Section 4 show that the conjecture is true if ⌈ N
k+1

⌉ ≤ 2, and Theorem 28
proves the conjecture if k + 1 divides N .
This paper is organized as follows: Section 2 collects the necessary preliminaries about

exponential families and the information divergence. Section 3 introduces partition
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models and studies their basic properties. log(2)-optimal exponential families E are
studied in Section 4. Section 5 presents results on D-optimal exponential families for
arbitrary D.

2 Preliminaries

This section collects known facts that are needed in later sections. It starts with some
notions from matroid theory before defining exponential families, the information diver-
gence and hierarchical models. The last part discusses the function DE , which arises
naturally when studying the maximizers of DE .

2.1 Circuits

This section recalls some elementary notions from the theory of matroids. Only repre-
sentable matroids will play a role, but nevertheless the language of abstract matroids is
useful. See [13] for an introduction.

Definition 2. Let N be a linear subspace of RX . The support of u ∈ N is defined as
supp(u) := {x ∈ X : u(x) 6= 0}. A vector v ∈ N \ {0} is called a circuit vector if and
only if for any u ∈ N satisfying supp(u) ⊆ supp(v) there exists α ∈ R such that u = αv.
In other words, circuit vectors are vectors with minimal support. The support supp(u)
of a circuit vector u is called a circuit. A finite set C ⊆ N is a circuit basis if and only
if the map u ∈ C 7→ supp(u) is injective and maps onto the set of circuits.

Lemma 3. For every nonzero vector u ∈ N and any x ∈ X such that u(x) 6= 0 there
exists a circuit vector c ∈ N such that supp(c) ⊆ supp(u) and c(x) 6= 0.

Proof. Let c be a vector with inclusion-minimal support that satisfies supp(c) ⊆ supp(u)
and c(x) 6= 0. If c is not a circuit vector, then there exists a circuit vector c′ with
supp(c′) ⊂ supp(c). A suitable linear combination c + αc′, α ∈ R gives a contradiction
to the minimality of c.

It follows that any circuit basis of N contains a spanning set.

2.2 Exponential families and the information divergence

In this work only exponential families on a finite set X are studied, for the information
divergence from a finite-dimensional exponential family on an infinite set is usually
unbounded, cf. Theorem 28. See [2] and [3] for an introduction to exponential families
and the information divergence.
Let T̃ be a linear subspace of RX containing the constant function, and let ν be a

strictly positive measure on X . The set E = Eν,T̃ of all probability measures on X of the
form

Pϑ(x) =
ν(x)

Zϑ

eϑ(x) (1)
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is called an exponential family. ν is a reference measure, and T̃ will be called the extended
tangent space of E . The extended tangent space carries its name since its image modulo
the constant functions is isomorphic to the tangent space of the manifold E at any point.
The orthogonal complement N := T̃ ⊥ will be called the normal space of E . The normal
space is orthogonal to the tangent space of E at any point P ∈ E with respect to the
Fisher metric at P . The topological closure of E will be denoted by E .
The exponential family Eν,T̃ can be parametrized as follows: If a1, . . . , ah ∈ R

X form

a spanning set of T̃ , then E consists of all probability distributions of the form

Pθ(x) =
ν(x)

Zθ
exp

(

h
∑

i=1

θiai(x)

)

. (2)

In this formula θ ∈ R
h is a vector of parameters and Zθ ensures normalization. The

matrix A = (ai(x))i,x ∈ R
h×X is called a sufficient statistics of E . The linear map

corresponding to A is called the moment map, denoted by πA. The columns of A will be
denoted by Ax, x ∈ X . The normal space of E equals N = {u ∈ kerA :

∑

x u(x) = 0}.
The convex hull of {Ax : x ∈ X} is a polytope called the convex support MA of E . This
polytope is independent of the choice of A up to an affine transformation.
Any function u ∈ R

X can be decomposed uniquely as a difference u = u+ − u−

of non-negative functions such that supp(u+) ∩ supp(u−) = ∅. The following implicit
description of an exponential family is useful in many contexts.

Theorem 4. Let E be an exponential family with normal space N and reference mea-
sure ν, and let C be a circuit basis of N . A probability measure P on X belongs to E if
and only if P satisfies

∏

x∈X

(

P (x)

ν(x)

)u+(x)

=
∏

x∈X

(

P (x)

ν(x)

)u−(x)

, for all u = u+ − u− ∈ C. (3)

Proof. See [16, Theorem 10].

Let E1, . . . , Ec ⊆ P(X ). The mixture of E1, . . . , Ec is the set of probability measures

{

P =

c
∑

i=1

λiPi : P1 ∈ E1, . . . , Pc ∈ Ec and λ ∈ R
c
≥,

c
∑

i=1

λi = 1

}

.

Corollary 5. Let E be an exponential family with normal space N . Let Y ⊂ X . If
every circuit vector c ∈ N satisfies supp(c) ⊆ Y or supp(c) ⊆ X \ Y, then E equals the
mixture of E ∩P(Y) and E ∩P(X \ Y).

Proof. For any probability measure P and subset Y ⊆ X define the truncation P Y as
follows: If P (Y) > 0, then

P Y(x) =

{

1
P (Y)

P (x), if x ∈ Y ,

0, else;
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otherwise let P Y be an arbitrary probability distribution on Y . By Theorem 4, a prob-
ability measure P ∈ P(X ) with full support lies in E if and only if its truncations P Y

and PX\Y lie in E ∩P(Y) and E ∩P(X \ Y), respectively.

The corollary can be reformulated as follows, using terminology from matroid theory:
If X1, . . . ,Xc are the connected components of the matroid of N , then E equals the
mixture of E1, . . . , Ec, where Ei = E ∩ P(Xi)

◦ is an exponential family on Xi for i =
1, . . . , c.

The information divergence (also known as the Kullback-Leibler divergence or relative
entropy) of positive measures P , Q is defined as

D(P‖Q) =
∑

x∈X

P (x) log

(

P (x)

Q(x)

)

. (4)

with the convention that 0 log 0 = 0 log(0/0) = 0. It is finite unless supp(P ) is not
contained in supp(Q). If ν equals the counting measure on X (i.e. νx = 1 for all x), then
D(P‖ν) equals minus the Shannon entropy H(P ). If P and Q are probability measures,
then D(P‖Q) is strictly positive unless P = Q.
Let E be an exponential family. For any probability measure P on X there is a unique

probability distribution PE ∈ E such that D(P‖PE) = infQ∈E D(P‖Q), see [4]. The
measure PE is called the (generalized) rI-projection of P to E or the (generalized) MLE. It
can also be characterized as the unique probability measure PE ∈ E such that P−PE ∈ N .
Alternatively, PE minimizes the function D(Q‖ν) on {Q ∈ P(X ) : P − Q ∈ N}. In
particular, if ν is the counting measure, then PE maximizes the entropy.

2.3 Hierarchical loglinear models

Let X1, . . . ,Xn be finite sets of cardinality |Xi| = Ni, and let X = X1 × · · · × Xn. For
any subset S ⊆ [n] let XS = ×i∈SXi. The restrictions Xi : X → Xi to the subsystems
can be viewed as random variables, and hierarchical models can be used to study the
relationship of these discrete random variables. This section summarizes the main facts
which are needed in the following. See [10] and [6] for further information.

Definition 6. For any family ∆ of subsets of [n] let E ′
∆ be the set of all probability

measures P ∈ P(X )◦ that can be written in the form

P (x) =
∏

S∈∆

fS(x), (5)

where each fS is a non-negative function on X that depends only on those components of
x lying in S. In other words, fS(x) = fS(y) for all x = (xi)

n
i=1, y = (yi)

n
i=1 ∈ X satisfying

xi = yi for all i ∈ S. The hierarchical exponential family E∆ of ∆ with parameters N1,
N2, . . . , Nn is defined as E ′

∆ ∩ P(X )◦. The closure of E∆ (which equals the closure of
E ′
∆) is called the hierarchical model of ∆ with parameters N1, N2, . . . , Nn.
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At first sight one might think that E ′
∆ = E∆. Unfortunately, this is not true, see [7].

For certain applications, when the factorizability probability is important, one might
want to call E ′

∆ a hierarchical model. When studying optimization problems it is more
important that the models are closed.
For any S ⊆ {1, . . . , n} the subset of RX of functions that only depend on the S-

components can be naturally identified with R
XS . The projection X → XS induces a

natural injection R
XS → R

X .
It is easy to see that hierarchical exponential families are indeed exponential families:

Namely, (5) implies that E∆ consists of all P ∈ P(X )◦ that satisfy

(log(P (x)))x∈X ∈
∑

S∈∆

R
XS ⊆ R

X .

Therefore, E∆ is an exponential family with uniform reference measure and extended
tangent space T̃ =

∑

S∈∆R
XS . This vector space sum is not direct, since every summand

contains 1. There is a natural sufficient statistics: The marginalization maps πS : RX 7→
R

XS defined for S ⊆ {1, . . . , n} via

πS(v)(x) =
∑

y∈X :yi=xi for all i∈S

v(y)

induce the moment map

π∆ : v ∈ R
X 7→ (πS(v))S∈∆ ∈

⊕

S∈∆

R
XS ,

where ⊕ denotes the (external) direct sum of vector spaces.

Lemma 7. Let ∆ be a collection of subsets of [n], and let K = ∪J∈∆J . The marginal
polytope of ∆ is (affinely equivalent to) a 0-1-polytope with

∏

i∈K Ni vertices.

Proof. The moment map π∆ corresponds to a sufficient statistics A∆ that only has entries
0 and 1, so MA is a 0-1-polytope. The set of vertices of MA is a subset of {Ax : x ∈ X}.
Let x = (xi)

n
i=1, y = (yi)

n
i=1 ∈ X . If xi = yi for all i ∈ K, then Ax = Ay, so MA has at

most
∏

i∈K Ni vertices. If xi 6= yi for some i ∈ K, then Ax 6= Ay, so the set {Ax : x ∈ X}
has cardinality

∏

i∈K Ni. Since this set consists of 0-1-vectors and since no 0-1-vector
is a convex combination of other 0-1-vectors, it follows that the set of vertices of MA

equals {Ax : x ∈ X} and has cardinality
∏

i∈K Ni.

2.4 The function DE

The function DE is related to the function

DE(u) =
∑

x∈X

u(x) log
|u(x)|

νx

defined on N [15]. The function DE satisfies DE(αu) = αDE for all α ∈ R and u ∈ N .
It will mostly be considered on a subset ∂UN of N , defined as follows:
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Definition 8. For any v ∈ R
X and Z ⊆ X write v(Z) :=

∑

x∈Z v(x). Let

∂UN :=
{

u ∈ N : u+(X ) = u−(X ) = 1
}

.

The map Ψ+ : u 7→ u+ maps ∂UN to a subset of P(X ). A probability distribution in
the image of Ψ+ is called a kernel distribution.
In the other direction there is the natural map ΨE : P(X ) \ E → N , defined via

ΨE(P ) =
P − PE

(P − PE)+(X )
.

The denominator makes sure that the image of ΨE lies in ∂UN . Since P = PE if and
only if P ∈ E , the map is well-defined on P(X ) \ E .

Theorem 9. Let E be an exponential family with normal space N 6= 0. The map ΨE

restricts to a bijection from the set of local maximizers of DE to the set of local maximizers
of DE . An inverse is given by the restriction of the map Ψ+ : u 7→ u+. If P ∈ P(X )
and u ∈ ∂UN are local maximizers of DE and DE , respectively, then

DE(P ) = log(1 + exp(DE(ΨE(P )))) and DE(u
+) = log(1 + exp(DE(u))).

Proof. See [12, Theorem 1].

See [12] and [14] for further relations between the functions DE and DE .

Corollary 10. Let E be an exponential family. If E 6= P(X ), then maxDE ≥ log(2).

Proof. Let u ∈ ∂UN be a global maximizer ofDE . SinceDE(−u) = −DE(u) the maximal
value DE(u) is non-negative. Hence DE(u

+) = log(1 + exp(DE(u))) ≥ log(2).

It is straightforward to compute the first-order criticality conditions of DE :

Proposition 11. Let E be an exponential family with normal space N , let u ∈ ∂UN be
a local maximizer of DE , and let Y = supp(u). The following statements hold:

(i) v(Y) = 0 for all v ∈ N .

(ii) Let PE be the rI-projection of u+ and u−, and let v ∈ N . Then

∑

x∈X\Y

v(x) log
|v(x)|

νx
≤ v+(Z ′)DE(v0). (6)

Proof. See [12] or [14, Proposition 3.21].
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3 Partition models

Partition exponential families are convex exponential families. The information diver-
gence from convex exponential families has been studied in [11]. Apart from this, parti-
tion exponential families do not seem to have been studied before, despite their peculiar
properties. In other contexts the name “partition model” is used for other mathematical
objects, but there seems to be little danger of confusion.

Definition 12. A partition X ′ of X is a family X ′ =
{

X 1,X 2, . . . ,XN ′
}

of nonempty

subsets X i ⊂ X such that X = X 1∪X 2∪· · ·∪XN ′

and X i∩X j = ∅ for all 1 ≤ i < j ≤ N ′.
The subsets X i ⊆ X are called the blocks of the partition X ′. For any x ∈ X the block
X i containing x is denoted X x.
The coarseness c(X ′) of a partition X ′ is the cardinality of the largest block of X ′. A

partition X ′ is called homogeneous if all blocks of X ′ have the same cardinality c(X ′).
Partitions are in bijection with equivalence relations, the blocks of a partition corre-
sponding to the equivalence classes. The equivalence relation induced by the partition
X ′ is denoted ∼X ′ . In other words x, y ∈ X satisfy x ∼X ′ y if and only if x and y lie in
the same block of X ′.

Definition 13. Let X ′ be a partition of X . Denote R
X ′

the set of functions ϑ : X → R

such that x ∼X ′ y implies ϑ(x) = ϑ(y). The exponential family EX ′ with uniform
reference measure and extended tangent space R

X ′

is called the partition exponential
family of X ′, and EX ′ is the partition model of X ′.

Partition models are, in fact, also linear families: EX ′ equals the intersection of P(X )
with the linear space R

X ′

. In particular, partition exponential families are convex ex-
ponential families. Convex exponential families have been studied by Ay and Matúš
in [11], which contains more detailed arguments for the following calculations. It fol-
lows from [11, Proposition 1] that a convex exponential family is a partition exponential
family if and only if it contains the uniform distribution.

Remark 14. Partition models can be used to model symmetries. This was first noted by
Juŕıček, who used this idea to compute the global maximizers of DE for the multinomial
models [9]. If a symmetry group G acts on X , then it induces a partition XG of X
into orbits X 1, . . . ,XN ′

. The action of G extends naturally to an action on R
X . Any

exponential family that consists of G-invariant probability measures is a subfamily of
EXG (such exponential families are called G-exchangeable in [9]). Conversely, an arbitrary
partition model EX ′ arises in this way from the group of all permutations g of X such
that g(X i) = X i for all X i ∈ X ′.

Lemma 15. An exponential family with uniform reference measure and sufficient statis-
tics A ∈ R

h×X is a partition exponential family if and only if its convex support is a
simplex with vertex set {Ax : x ∈ X}.

Proof. A sufficient statistics of EX ′ is given by the characteristic functions ai = 1X i of
the blocks of X ′. Any column of A = (ai(x))i,x is a unit vector, and therefore the convex
support is a simplex.
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In the other direction define an equivalence relation ∼ on X via x ∼ y if and only
if Ax = Ay. Then E agrees with the partition exponential family of this equivalence
relation.

For partition models the mapping P 7→ PE is easy to compute: The equation AP =
APE translates into P (X i) = PE(X

i) for i = 1, . . . , N ′. Therefore,

PE(x) = PXx

E (x)P (X x), for all x ∈ X , (7)

where PXx

E denotes the truncation of PE to X x. Since PE maximizes the entropy subject
to (7), it follows that PXx

E = 1
|Xx|1Xx is the uniform distribution on X x. Hence the

rI-projection map P 7→ PE averages over the blocks of the partition. It follows that

DE(P ) =
N ′

∑

i=1

P (X i)D(PX i

‖
1

|X i|
1X i) =

N ′

∑

i=1

P (X i)
(

log |X i| −H(PX i

)
)

.

As a consequence:

Lemma 16. If E is a partition model of a partition X 1, . . . ,XN ′

of coarseness c, then
maxDE = log(c). A probability measure P ∈ P(X ) maximizes DE if and only if the
following two conditions are satisfied:

(i) P (X i) > 0 only if |X i| = c.

(ii) PX i

is a point measure for all i such that |X i| = c and P (X i) > 0.

Corollary 17. Let E be the partition model of a partition X ′ of coarseness c, and let
Z be the union of the blocks of X ′ of cardinality c. Then any Q ∈ E with support
contained in Z is the rI-projection of some global maximizer of DE . In particular, if X ′

is homogeneous, then any Q ∈ E is the rI-projection of some global maximizer of DE .

Proof. For any X i ∈ X ′ of cardinality c choose a representative xi ∈ X i. Define P ∈
P(X ) by P (X i) = Q(X i) and PX i

= δxi
for all i such that |X i| = c. Then PE = Q, so

the statement follows from Lemma 16.

Remark 18. Composite systems have natural homogeneous partitions, which lead to
hierarchical models as defined in Section 2: Suppose that X = X1 × · · · × Xn and let
K ⊆ {1, . . . , n}. Then K induces an equivalence ∼K on X via x ∼K y if and only if
xi = yi for all i ∈ K. The equivalence classes of ∼K form a homogeneous partition XK

of X of coarseness
∏

i:i/∈K Ni. The corresponding partition model EK consists of those
probability distributions P satisfying P (x) = P (y) whenever x ∼K y. Therefore, EK
equals the hierarchical exponential family E{K}. Conversely, any homogeneous partition
X ′ can be used to find a bijection of X with a composite system X1×X2, where X1 = X ′

and X2 ∈ X ′. Then the partition X ′ arises from ∼K , where K = {1}.
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4 Exponential families with maxDE = log(2)

By Corollary 10 the maximal value of DE is at least log(2) unless E = P(X ). This
section studies exponential families E where maxDE = log(2). For such an exponential
family, any kernel distribution is a local maximizer of DE . Furthermore, DE(u) = 0 for
all u ∈ N (even if u /∈ ∂UN ). The main results are:

Theorem 19. Let E be an exponential family on a finite set X of cardinality N . If
maxDE = log(2), then the dimension of E is at least ⌈N

2
⌉ − 1.

Theorem 20. Let X be a finite set of cardinality N , and let E be an exponential family
on X of dimension ⌈N

2
⌉ − 1 satisfying maxDE = log(2). If N is even, then E is a

partition model. If N is odd, then there is a set Z ⊆ X of cardinality three, a partition
model EX\Z on X \ Z and a one-dimensional exponential family EZ on Z such that
maxD(·‖EX\Z) = log(2) = maxD(·‖EZ), and the closure E equals the mixture of EX\Z

and EZ . If E contains the uniform distribution, then E is a partition model.

Proposition 21. Let X = {1, 2, 3}. For any u ∈ R
X such that u1 + u2 + u3 = 0

there exists a unique exponential family E on X with normal space N = Ru such that
maxDE = log(2).

The proofs of the three results will be given below after a series of preliminary lemmas.
Under the additional assumptions that N is even Theorem 20 has a simpler proof, see
Theorem 28.
Let E be an exponential family with sufficient statistics A and normal space N .

Lemma 22. For any v0, v1, . . . , vs ∈ N let Z = supp(v0) \ ∪s
j=1 supp(vj). Suppose that

maxDE = log(2). Then

∑

x∈Z

v(x) log
|v(x)|

νx
= 0 and

∑

x∈Z

v(x) = 0 for all v ∈ N .

Proof. The proof is by induction on s. Let s = 0. Any v0 ∈ N satisfies DE(v0) = 0
and is a local maximizer of DE . The equality v(Z) = 0 for all v ∈ N follows from
Proposition 11 (i). Let Z ′ = X \ Z. Proposition 11 (ii) implies that

∑

x∈Z′

v(x) log
|v(x)|

νx
≤ v+(Z ′)DE(v0) = 0

for all v ∈ N . Together with the same inequality with v replaced by −v it follows that
∑

x∈Z′ v(x) log
|v(x)|
νx

= 0. Hence
∑

x∈Z v(x) log |v(x)|
νx

= DE(v)−
∑

x∈Z′ v(x) log
|v(x)|
νx

= 0.
If s ≥ 1, then let Y = X \ supp(vs). Let E ′ be the exponential family on Y with

reference measure the restriction ν|Y of ν to Y and normal space N ′ = {v|Y : v ∈ N}.

The case s = 0 implies DE ′(w) = DE(v)−
∑

x∈supp(vs)
v(x) log |v(x)|

νx
= 0 for all w = v|Y ∈

N ′. Therefore, the statement follows from induction.
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Let X = {x ∈ X : v(x) 6= 0 for some v ∈ N}. Define a relation ∼ on X via

x ∼ y ⇐⇒ v(y) 6= 0 for all v ∈ N such that v(x) 6= 0.

It is easy to see that ∼ is an equivalence relation: If there exist v, w ∈ N such that
v(y) 6= 0 = v(x) and w(x) 6= 0 6= w(y), then u := v(y)w − w(y)v ∈ N satisfies
u(y) = 0 6= u(x), and so ∼ is symmetric. Transitivity can be shown similarly. In the
language of matroid theory the equivalence classes are the coparallel classes.

Lemma 23. A subset Z ⊆ X is an equivalence class of ∼ if and only if there exist
circuits σ0, σ1, . . . , σs of N such that

Z = σ0 \ ∪
s
j=1σj ,

and such that Z \ σ ∈ {∅,Z} for all circuits σ of N .

Proof. If x 6∼ y for some y ∈ X , then there exists a v ∈ N such that v(x) 6= 0 and
v(y) = 0. By Lemma 3 there exists a circuit with the same property. Conversely, if
y ∼ x, then y ∈ σ for any circuit σ such that x ∈ σ.

Let C ∈ R
c×X be a matrix such that the rows c1, . . . , cc of C form a circuit basis of N .

Since each circuit basis contains a basis, the rank of C equals the dimension of N . The
columns of C are denoted by {Cx}x∈X .

Lemma 24. Let Z be an equivalence class of ∼. The rank of the submatrix C|Z con-
sisting of those columns Cx indexed by Z is one.

Proof. Let Z ⊆ X . If the rank of C|Z is larger than one, then there exist two circuit
vectors c1, c2 such that c1|Z and c2|Z are linearly independent and have support Z. Let
x ∈ Z. Let v = c2(x)c1 − c1(x)c2 ∈ N . Then v|Z 6= 0 and supp(v|Z) ⊆ Z \ {x}.
Therefore, Z is not an equivalence class of ∼.

The main argument of the last proof can be reformulated in terms of the elimination
axiom of oriented matroid theory, cf. [13]. In the language of matroid theory Lemma 24
states that the coparallel classes of a matroid have corank one.

Proof of Theorem 19. Suppose maxDE = log(2). By Lemma 24, the rank of C is
bounded from above by the number of equivalence classes of ∼. Let Z be an equiv-
alence class of ∼. By definition, the submatrix C|Z ∈ R

c×Z is not the zero matrix. By
Lemmas 22 and 23 the rows ci|Z of C|Z satisfy

∑

x∈Z ci(x) = 0. Hence each equivalence
class must contain at least two elements. Therefore, the rank of C, which equals the
codimension of E , is bounded from above by ⌊N

2
⌋, and so the dimension of E is bounded

from below by N − 1− ⌊N
2
⌋ = ⌈N

2
⌉ − 1.

Lemma 25. If the dimension of N equals the number of equivalence classes of ∼,
then the equivalence classes are the circuits of N . In other words, the circuit vectors
c1, . . . , cc of a circuit basis are in bijection with the equivalence classes Z1, . . . ,Zc, such
that Zi = supp(ci). Hence E is the mixture of E1, . . . , Ec, where Ec is the exponential
family E ∩P(Zi)

◦.
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Proof. Let Z1, . . . ,Zc′ be the set of equivalence classes of ∼. Reorder X such that the
equivalence classes are given by consecutive numbers. Let C̃ be the matrix obtained
from C by doing a Gauss elimination through row operations. By assumption C̃ has
dimN = c′ nonzero rows. By Lemma 24, the ith row c̃i of C̃ has support contained in
Zi ∪ · · · ∪ Zc′ . In particular, supp(c̃c′) = Zc′. Therefore, c̃c′ is a circuit vector. If v ∈ N

has v(x) 6= 0 for some x ∈ Zc′ , then ṽ = v− v(x)
c̃c′(x)

c̃c′(x) satisfies supp(ṽ) = supp(v) \Zc′.

Hence no other circuit intersects Zc′. By induction, supp(ci) equals an equivalence class
of ∼ for each i. The first statement follows from supp(ci) 6= supp(cj) for 1 ≤ i < j ≤ c.
The last statement is a consequence of Corollary 5.

Proof of Theorem 20. Assume that the dimension of E equals ⌈N
2
⌉ − 1. By the proof of

Theorem 19 there must be m := ⌊N
2
⌋ equivalence classes of ∼. If N is even, then each

equivalence class has cardinality two. If N is odd, then there may be one equivalence
class Z of cardinality three. In this case, reorder X such that Z = {N−2, N−1, N}. By
Lemma 25 there exists a circuit vector c ∈ N such that supp(c) = Z. Assume without
loss of generality that cN−2 and cN−1 are positive and that cN = −(cN−1 + cN−2) = −1.
Then

N
∑

i=N−2

ci log |ci| = −h(cN−1, cN−2) 6= 0,

where h(p, q) is the entropy of a binary random variable with probabilities p, q. There-
fore, if N is even or if 1 is a reference measure of E , then all equivalence classes of ∼
have cardinality two.
By Lemma 25 there are exponential families E1, . . . , Ec such that Ei ⊆ P(Zi)

◦ for
i = 1, . . . , c and such that E is the mixture of E1, . . . , Ec. For i = 1, . . . , c there is a
unique circuit vector with support Zi, hence Ei 6= P(Zi)

◦, so Ei has dimension |Zi| − 1.
If |Zi| = 2, then Ei consists of the uniform distribution 1

2
1Zi

on Zi, so Ei is a partition

model, and also the mixture of Ei for those i satisfying |Zi| = 2 is a partition model.

Proof of Proposition 21. Let E be a one-dimensional exponential family with normal
space Ru. Without loss of generality assume that u+ and u− are probability measures.
By Theorem 9 the set of local maximizers of DE consists of u+ and u−, and both are
projection points. E satisfies maxDE = log(2) if and only if (u+)E = (u−)E = 1

2
(u++u−),

which happens if and only if u+ + u− is a reference measure of E , proving existence and
uniqueness of E .

5 Optimal exponential families

Corollary 10 says that maxDE ≥ log(2) for all exponential families E 6= P(X )◦. There-
fore D-optimality is only interesting for D ≥ log(2). The case D = log(2) was studied
in Section 4, where it was shown that DN,k = log(2) if and only if ⌈N

2
⌉ − 1 ≤ k < N .

This condition is equivalent to ⌈ N
k+1

⌉ = 2. Many log(2)-dimension optimal exponential
families are partition exponential families.

12



Example 26. Any zero-dimensional exponential family E = {ν} is dimension-optimal.
The function P 7→ D(P‖ν) is convex on the probability simplex P(X ) and attains its
maximum at a vertex of P(X ), which corresponds to a point distribution. Therefore,

maxDE = max{− log(νx) : x ∈ X} ≥ log |X |.

Hence DN,1 = log(N), and E is D-optimal if and only if νx ≥ e−D for all x ∈ X . Zero-
dimensional exponential families are the dimension D-optimal exponential families for
D ≥ log |X |. In general, they are not the only inclusion D-optimal exponential families,
see Example 27.

Example 27. Let X = {1, 2, 3}. Any zero-dimensional exponential family E = {ν}
satisfies maxDE ≥ log(3). Therefore, if log(2) ≤ D < log(3), then the dimension
D-optimal exponential families are one-dimensional. The normal space N of any one-
dimensional exponential family E is spanned by a single element u, which can be taken
to be normalized, such that ∂UN = {±u}. By Theorem 9 the set of local maximizers
of DE equals {u+, u−}. Let PE = (u+)E = (u−)E , then PE = µu+ + (1 − µ)u− for some
0 < µ < 1. Hence DE(u

+) = − log µ and DE(u
−) = − log(1 − µ). It follows that E is

dimension D-optimal if and only e−D ≤ µ ≤ 1 − e−D. Alternatively, using Theorem 9,
E is dimension D-optimal if and only if − log(eD − 1) ≤ DE(u) ≤ log(eD − 1).
If D ≥ log(3), then the dimension D-optimal exponential families are zero-dimen-

sional, consisting of a single point {ν} such that min{ν1, ν2, ν3} ≥ e−D. There are also
one-dimensional inclusion D-optimal exponential families: Consider, for example, the
exponential family E with sufficient statistics A = (0, 1, 2) and reference measure ν =
(1, 4, 1). The two local maximizers are u+ = δ2 and u− = 1

2
(δ1+ δ3). Their rI-projection

is PE = 1
6
ν. Hence DE(u

+) = log 3
2
and DE(u

−) = log 3, and so maxDE = log 3. The
monomial parametrization of E is

Pξ =
1

Zξ
(1, 4ξ, ξ2),

where ξ ∈ R≥ and Zξ = 1 + 4ξ + ξ2. Consequently, E does not contain the uniform
distribution. Therefore, any point P ∈ E satisfies maxD(·‖P ) > maxDE .

The following theorem generalizes the special case of Theorem 20 when N is even.

Theorem 28. Let X be a finite set of cardinality N . Then DN,k ≥ log(N/(k + 1))
for all 0 ≤ k < N . If E is a k-dimensional exponential family that satisfies maxDE =
log(N/(k + 1)), then E is a partition model of a homogeneous partition of coarseness
N/(k + 1). In particular, if N is divisible by (k + 1), then DN,k = log(N/(k + 1)), and
the dimension DN,k-optimal models are partition models.

Proof. First assume that E ∈ H1. Let A be a sufficient statistics of E . The moment map
πA maps the uniform distribution Q = 1

N
1 to a point in the relative interior of MA. By

Carathéodory’s theorem there are k+1 vertices Ax0
, . . . , Axk

of MA and λ0, . . . , λk ∈ R≥

such that πA(Q) =
∑k

i=0 λiAxi
and

∑k
i=0 λi = 1. Let P =

∑k
i=0 λiδxi

, then Q = PE . By
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the Pythagorean theorem, maxDE ≥ DE(P ) = H(Q) − H(P ) ≥ log(N) − log(k + 1),
proving the first assertion.
If equality holds, then λ0 = · · · = λk = 1

k+1
. Let x ∈ X \ {x0, . . . , xk}. For

i ∈ {0, . . . , k} let Ci be the convex hull of Ax0
, . . . , Axi−1

, Axi−1
, . . . , Axk

and Ax. By
Carathéodory’s theorem the sets Ci cover the convex hull of Ax0

, . . . , Axk
and Ax.

In particular, πA(Q) ∈ Cj for some j ∈ {0, . . . , k}, so πA(Q) =
∑

i 6=j λ
′
iAxi

+ λ′
jAx.

By the same argument as above it follows that λ′
0 = · · · = λ′

k = 1
k+1

. Therefore,
Ax = (k + 1)πA(Q)−

∑

i 6=j Axi
= Axj

.
Let ∼ be the equivalence relation on X defined by x ∼ y if and only if Ax = Ay, and

let X ′ = (X 1, . . . ,XN ′

) be the corresponding partition into equivalence classes. Then
N ′ ≤ k + 1 by what was shown until now. From dim(E) = dim(MA) one concludes
N ′ = k + 1, and MA is a simplex of dimension k. By Lemma 15, E equals the partition
model of X ′. Lemma 16 implies that the coarseness of X ′ equals N

k+1
, which must be an

integer. Furthermore, X ′ is homogeneous.
It remains to prove maxDE > log(N/(k + 1)) in the case E /∈ H1. Let PE be the rI-

projection of the uniform distribution, and let N1 be the set of probability distributions
that rI-project to PE . The function DE is convex on N1, hence DE is maximal at the
vertices ofN1. Let P be a vertex ofN1. Assume that v ∈ N satisfies supp(v) ⊆ supp(P ).
Then there exists ǫ > 0 such that P ± ǫv ∈ N1 and P = 1

2
(P + ǫv) + 1

2
(P − ǫv). Hence

v = 0. Therefore, the set {Ax : P (x) > 0} is linearly independent. In particular
| supp(P )| ≤ dim(X ) + 1.
Denote by E1 the exponential family with uniform reference measure and with the

same normal space as E . On N1 the difference

δ(P ) := DE(P )−DE1(P ) = −
∑

x∈X

P (x) logPE(x)− logN

is an affine function that is positive at the uniform distribution. Hence there is a vertex P
ofN1 such that δ(P ) > 0, and soDE(P ) > DE1(P ) = logN−H(P ) ≥ log(N/(k+1)).

The value of DN,k is unknown when k+ 1 does not divide N . The situation is known
for N = 3, see Example 27: If 1 ≤ k < 3, then DN,k = log(2), and all dimension DN,1-
optimal exponential families that contain the uniform distribution are partition models.
The following conjecture generalizes this example and Theorems 20 and 28:

Conjecture 29. DN,k = log⌈ N
k+1

⌉, and the dimension DN,k-optimal exponential families
containing the uniform distribution are partition models.

The following weaker statement holds:

Lemma 30. Let X ′ =
{

X 1, . . . ,XN ′
}

be a partition of coarseness c < N such that X 1

has cardinality l ≤ c and all other components X i for i > 1 have cardinality c. Then the
partition model E of X ′ is log(c)-inclusion optimal.

Proof. The fact that maxDE = log(c) follows from Lemma 16. It remains to prove the
optimality. Let E ′ ⊆ E be an exponential family contained in E . Let Z be the union
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of all blocks of X ′ of cardinality c. Assume that there exists a probability measure
Q ∈ E \ E ′ with support contained in Z. By Corollary 17 there exists P ∈ P(Z) such
that Q = PE and D(P‖Q) = log(c). Let Q′ = PE ′ ∈ E . Then D(P‖Q′) = D(P‖Q) +
D(Q‖Q′) > log(c) by the Pythagorean identity. Otherwise, if E ∩ P(Z) = E ′ ∩ P(Z),

then dim(E) = dim(E ∩P(Y)) + 1 = dim(E
′
∩P(Y)) + 1 ≤ dim(E ′), so E = E ′.

Theorem 28 can be applied to the hierarchical models EK for K ⊆ [n] introduced
in Remark 18. By Theorem 28 the hierarchical model EK is dimension optimal with
maxD(·‖EK) =

∑

i∈[n]\K log(Ni). If Nn = 2, then the choice K = {1, . . . , n − 1} yields

an exponential family of dimension less than |X |/2 such that maxD(·‖EK) = log(2), and
Theorem 19 implies that EK is dimension optimal. The following proposition says that
the exponential families EK are the unique dimension D-optimal hierarchical models for
many values of D.

Proposition 31. Let X = X1 × · · · × Xn, where Ni = |Xi| < ∞. For any K ⊆ [n] let
DK =

∑

i/∈K log(Ni). The hierarchical model EK is dimension DK-optimal.
Let l be any divisor of N := |X | =

∏n
i=1Ni. If E is any hierarchical model that is

dimension log(N/l)-optimal, then there is a subset K ⊆ [n] such that E = EK.

The proposition implies that if l is not of the form
∏

i∈K Ni for some subset K ⊆ [n],
then there exists no hierarchical model that is dimension log(N/l)-optimal.

Proof. It only remains to prove the last statement. If E satisfies the assumptions, then E
is a partition model by Theorem 28. Therefore, it suffices to prove that any hierarchical
model that is also a partition model is of the form EK .
Let ∆ be a simplicial complex on [n] such that E = E∆, and let K = ∪J∈∆J . Then E is

a submodel of EK. Let A be a sufficient statistics of E . By Lemma 7 the convex supports
of E and EK have the same number of vertices. By Lemma 15 both are simplices, hence
they have the same dimension, so E = EK .

6 Discussion

Conjecture 29 would imply that the partition models of Lemma 30 are dimension optimal
among all exponential families. If the conjecture were true, then it would suggest the
following interpretation: In many cases the information divergence D(P‖Q) can be
interpreted as the information which is lost when P is the true probability distribution,
but computations are carried out with Q. For example, in the case of the independence
model E1 of two variables, DE1 equals the mutual information and measures the amount
of information that one variable carries about the other variable. If a probability measure
is replaced by its rI-projection, then this information is lost.
For the exponential families EK the loss equals DK =

∑

i/∈K log(Ni), which is precisely
the maximal information that the random variables that are not in K can carry. Assum-
ing that the conjecture is true, if the model is smaller than EK , then, in general, more
information can be lost. In this interpretation the fact that maxDE ≥ log(2) unless
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E = P(X )◦ means that for any exponential family E 6= P(X )◦ in general at least one bit
is necessary to compensate the approximation of arbitrary probability measures.
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[12] Matúš, F., and Rauh, J., “Maximization of the information divergence from
an exponential family and criticality,” in 2011 IEEE International Symposium on
Information Theory Proceedings (ISIT2011), 2011.

[13] Oxley, J., Matroid Theory, 1st ed. New York: Oxford University Press, 1992.

[14] Rauh, J., “Finding the maximizers of the information divergence from an expo-
nential family,” Ph.D. dissertation, Universität Leipzig, 2011.

[15] ——, “Finding the maximizers of the information divergence from an exponential
family,” IEEE Transactions on Information Theory, vol. 57, no. 6, pp. 3236–3247,
2011.

[16] Rauh, J., Kahle, T., and Ay, N., “Support sets of exponential families and
oriented matroids,” International Journal of Approximate Reasoning, vol. 52, no. 5,
pp. 613–626, 2011.

[17] Zhu, S. C., Wu, Y. N., and Mumford, D., “Minimax entropy principle and
its application to texture modeling,” Neural Computation, vol. 9, pp. 1627–1660,
November 1997.

17


