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Preprint no.: 83 2011





Geometry of the set of mixed quantum states: An apophatic approach

Ingemar Bengtsson1, Stephan Weis2 and Karol Życzkowski3,4
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The set of quantum states consists of density matrices of order N , which are hermitian, positive
and normalized by the trace condition. We analyze the structure of this set in the framework of
the Euclidean geometry naturally arising in the space of hermitian matrices. For N = 2 this set is
the Bloch ball, embedded in R3. For N ≥ 3 this set of dimensionality N2 − 1 has a much richer
structure. We study its properties and at first advocate an apophatic approach, which concentrates
on characteristics not possessed by this set. We also apply more constructive techniques and analyze
two dimensional cross-sections and projections of the set of quantum states. They are dual to each
other. At the end we make some remarks on certain dimension dependent properties.

Dedicated to prof. Bogdan Mielnik on the occasion of
his 75-th birthday

I. INTRODUCTION

Quantum information processing differs significantly
from processing of classical information. This is due to
the fact that the space of all states allowed in the quan-
tum theory is much richer than the space of classical
states [1–6]. Thus an author of a quantum algorithm,
writing a screenplay designed specially for the quantum
scene, can rely on states and transformations not admit-
ted by the classical theory.

For instance, in the theory of classical information the
standard operation of inversion of a bit, called the NOT
gate, cannot be represented as a concatenation of two
identical operations on a bit. But the quantum theory
allows one to construct the gate called

√
NOT, which

performed twice is equivalent to the flip of a qubit.
This simple example can be explained by comparing

the geometries of classical and quantum state spaces.
Consider a system containing N perfectly distinguish-
able states. In the classical case the set of classical states,
equivalent to N–point probability distributions, forms a
regular simplex ∆N−1 in N − 1 dimensions. Hence the
set of pure classical states consists of N isolated points.
In a quantum set-up the set of states QN , consisting of
hermitian, positive and normalized density matrices, has
N2 − 1 real dimensions. Furthermore, the set of pure
quantum states is connected, and for any two pure states
there exist transformations that take us along a continu-
ous path joining the two quantum pure states. This fact
is one of the key differences between the classical and the
quantum theories [7].

The main goal of the present work is to provide an
easy-to-read description of similarities and differences be-
tween the sets of classical and quantum states. Already
when N = 3 the geometric structure of the eight dimen-
sional set Q3 is not easy to analyse nor to describe [8, 9].

Therefore we are going to use an apophatic approach, in
which one tries to describe the properties of a given ob-
ject by specifying simple features it does not have. Then
we use a more conventional [10–12] constructive approach
and investigate two-dimensional cross-sections and pro-
jections of the set Q3 [13–15]. Thereby a cross-section is
defined as the intersection of a given set with an affine
space. We happily recommend a very recent work for a
more exhaustive discussion of the cross-sections [16].

II. CLASSICAL AND QUANTUM STATES

A classical state is a probability vector ~p =
(p1, p2, . . . , pN ), such that

∑
i pi = 1 and pi ≥ 0 for

i = 1, . . . N . Assuming that a pure quantum state |ψ〉
belongs to an N–dimensional Hilbert space HN , a gen-
eral quantum state is a density matrix ρ of size N , which
is hermitian, ρ = ρ†, with positive eigenvalues, ρ ≥ 0,
and normalized, Trρ = 1. Note that any density matrix
can be diagonalised, and then it has a probability vec-
tor along its diagonal. But clearly the space of all quan-
tum states QN is significantly larger than the space of all
classical states—there are N − 1 free parameters in the
probability vector, but there are N2 − 1 free parameters
in the density matrix.

The space of states, classical or quantum, is always
a convex set. By definition a convex set is a subset of
Euclidean space, such that given any two points in the
subset the line segment between the two points also be-
longs to that subset. The points in the interior of the line
segment are said to be mixtures of the original points.
Points that cannot be written as mixtures of two distinct
points are called extremal or pure. Taking all mixtures
of three pure points we get a triangle ∆2, mixtures of
four pure points form a tetrahedron ∆3, etc.

The individuality of a convex set is expressed on its
boundary. Each point on the boundary belongs to a face,
which is in itself a convex subset. To qualify as a face
this convex subset must also be such that for all possible
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ways of decomposing any of its points into pure states,
these pure states themselves belong to the subset. We
will see that the boundary of QN is quite different from
the boundary of the set of classical states.

A. Classical case: the probability simplex

The simplest convex body one can think of is a simplex
∆N−1 with N pure states at its corners. The set of all
classical states forms such a simplex, with the probabili-
ties pi telling us how much of the ith pure state that has
been mixed in. The simplex is the only convex set which
is such that a given point can be written as a mixture of
pure states in one and only one way.

The number r of non–zero components of the vector
~p is called the rank of the state. A state of rank one
is pure and corresponds to a corner of the simplex. Any
point inside the simplex ∆N−1 has full rank, r = N . The
boundary of the set of classical states is formed by states
with rank smaller than N . Each face is itself a simplex
∆r−1. Corners and edges are special cases of faces. A
face of dimension one less than that of the set itself is
called a facet.

It is natural to think of the simplex as a regular sim-
plex, with all its edges having length one. This can al-
ways be achieved, by defining the distance between two
probability vectors ~p and ~q as

D[~p, ~q] =

√√√√1
2

N∑
i=1

(pi − qi)2 . (1)

The geometry is that of Euclid. With this geometry in
place we can ask for the outsphere, the smallest sphere
that surrounds the simplex, and the insphere, the largest
sphere inscribed in it. Let the radius of the outsphere
be RN and that of the insphere be rN . One finds that
RN/rN = N − 1.

B. The Bloch ball

Another simple example of a convex set is a three di-
mensional ball. The pure states sit on its surface, and
each such point is a zero dimensional face. There are no
higher dimensional faces (unless we count the entire ball
as a face). Given a point that is not pure it is now possi-
ble to decompose it in infinitely many ways as a mixture
of pure states.

Remarkably this ball is the space of states Q2 of a sin-
gle qubit, the simplest quantum mechanical state space.
For concreteness introduce the Pauli matrices σ1 =

(
0 1
1 0

)
,

σ2 =
(
0−i
i 0

)
, σ3 =

(
1 0
0−1

)
. These three matrices form an

orthonormal basis for the set of traceless Hermitian ma-
trices of size two, or in other words for the Lie algebra of

SU(2). If we add the identity matrix σ0 = 1 =
(
1 0
0 1

)
, we

can expand an arbitrary state ρ in this basis as

ρ =
1
2
1+

3∑
i=1

τiσi , (2)

where the expansion coefficients are τi = Trρσi/2. These
three numbers are real since the matrix ρ is Hermitian.
The three dimensional vector ~τ = (τ1, τ2, τ3) is called the
Bloch vector (or coherence vector). If ~τ = 0 we have the
maximally mixed state. Pure states are represented by
projectors, ρ = ρ2.

FIG. 1: The set of mixed states of a qubit forms the Bloch ball
with pure states at the boundary and the maximally mixed
state ρ∗ = 1

2
1 at its center: The Hilbert–Schmidt distance

between any two states is the length of the difference between
their Bloch vectors, ||~τa − ~τb||.

Since the Pauli matrices are traceless the coefficient
1
2 standing in front of the identity matrix assures that
Trρ = 1, but we must also ensure that all eigenvalues are
non-negative. By computing the determinant we find
that this is so if and only if the length of the Bloch vec-
tor is bounded, ||~τ ||2 ≤ 1. Hence Q2 is indeed a solid
ball, with the pure states forming its surface—the Bloch
sphere.

A simple but important point is that the set of classi-
cal states ∆1, which is just a line segment in this case,
sits inside the Bloch ball as one of its diameters. This
goes for any diameter, since we are free to regard any
two commuting projectors as our classical bit. Two com-
muting projectors sit at antipodal points on the Bloch
sphere. To ensure that the distance between any pair of
antipodal equals one we define the distance between two
density matrices ρA and ρB to be

DHS(ρA, ρB) =

√
1
2

Tr[(ρA − ρB)2] . (3)

This is known as the Hilbert-Schmidt distance. Let us
express this in the Cartesian coordinate system provided
by the Bloch vector,
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DHS[ρA, ρB ] =

√√√√ 3∑
i=1

(τA
i − τB

i )2 = ||~τA − ~τB || . (4)

This is the Euclidean notion of distance.

C. Quantum case: QN

When N > 2 the quantum state space is no longer a
solid ball. It is always a convex set however. Given two
density matrices, that is to say two positive hermitian
matrices ρ, σ ∈ QN . It is then easy to see that any convex
combination of these two states, aρ+(1−a)σ ∈ QN where
a ∈ [0, 1], must be a positive matrix too, and hence it be-
longs to QN . This shows that the set of quantum states
is convex. For all N the face structure of the boundary
can be discussed in a unified way. Moreover it remains
true that QN is swept out by rotating a classical proba-
bility simplex ∆N−1 in RN2−1, but for N > 2 there are
restrictions on the allowed rotations.

To make these properties explicit we start with the
observation that any density matrix can be represented
as a convex combination of pure states

ρ =
k∑

i=1

pi |φi〉〈φi|, (5)

where ~p = (p1, p2, . . . , pk) is a probability vector. In con-
trast to the classical case there exist infinitely many de-
compositions of any mixed state ρ 6= ρ2. The number k
can be arbitrarily large, and many different choices can
be made for the pure states |φi〉. But there does exist a
distinguished decomposition. Diagonalising the density
matrix we find its eigenvalues λi ≥ 0 and eigenvectors
|ψi〉. This allows us to write the eigendecomposition of a
state,

ρ =
N∑

j=1

λj |ψj〉〈ψj | . (6)

The number r of non-zero components of the probability
vector ~λ is called the rank of the state ρ, and does not
exceed N . This is the usual definition of the rank of a
matrix, and by happy accident it agrees with the defini-
tion of rank in convex set theory: the rank of a point in a
convex set is the smallest number of pure points needed
to form the given point as a mixture.

Consider now a general convex set in d dimensions.
Any point belonging to it can be represented by a convex
combination of not more than d+ 1 extremal states. In-
terestingly, QN has a peculiar geometric structure since
any given density operator ρ can be represented by a
combination of not more than N pure states, which is
much smaller than d + 1 = N2. In Hilbert space these
N pure states are the orthogonal eigenvectors of ρ. If

FIG. 2: The set Q3 of quantum states of a qutrit contains pos-
itive semi-definite matrices with spectrum from the simplex
∆2 of classical states. The corners of the triangle become the
4D set of pure states, the edges lead to the 7D boundary ∂Q3,
while interior of the triangle gives the interior of the 8D con-
vex body. The set Q3 is inscribed inside a 7–sphere of radius
R3 =

p
2/3 and it contains an 8–ball of radius r3 = 1/

√
6.

we adopt the Hilbert-Schmidt definition of distance (3)
they form a copy of the classical state space, the regular
simplex ∆N−1.

Conversely, every density matrix can be reached from
a diagonal density matrix by means of an SU(N) trans-
formation. Such transformations form a subgroup of the
rotation group SO(N2 − 1). Therefore any density ma-
trix can be obtained by rotating a classical probability
simplex around the maximally mixed state, which is left
invariant by rotations. However, when N > 2 SU(N)
is a proper subgroup of SO(N2 − 1), which is why QN

forms a solid ball only if N = 2. The relative sizes
of the outsphere and the insphere are still related by
RN/rN = N − 1.

The boundary of the set QN shows some similarities
with that of its classical cousin. It consists of all matri-
ces whose rank is smaller than N . There will be faces of
rank 1 (the pure states), of rank 2 (in themselves they are
copies of Q2), and so on up to faces of rank N−1 (copies
of QN−1). Note that there are no hard edges: the mini-
mal non-extremal faces are solid three dimensional balls.
The largest faces have a dimension much smaller than
the dimension of the boundary of QN . As in the classi-
cal case, any face can be described as the intersection of
the convex set with a bounding hyperplane in the con-
tainer space. In technical language one says that all faces
are exposed. Note also that every point on the boundary
belongs to a face that is tangent to the insphere. This
has the interesting consequence that the area A of the
boundary is related to the volume V of the body by

rA

V
= d , (7)
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where r is the radius of the insphere and d is the dimen-
sion of the body (in this case d = N2 − 1) [17]. Inciden-
tally the volume of QN is known explicitly [18].

There are differences too. A typical state on the
boundary has rank N − 1, and any two such states can
be connected with a curve of states such that all states
on the curve have the same rank. In this sense QN is
more like an egg than a polytope [19].

We can regard the set of N by N matrices as a vector
space (called Hilbert-Schmidt space), endowed with the
scalar product

〈A|B〉HS =
1
2

TrA†B . (8)

The set of hermitian matrices with unit trace is not a
vector space as it stands, but it can be made into one by
separating out the traceless part. Thus we can represent
a density matrix as

ρ =
1
N
1+ u , (9)

where u is traceless. The set of traceless matrices is an
Euclidean subspace of Hilbert-Schmidt space, and the
Hilbert-Schmidt distance (3) arises from this scalar prod-
uct. In close analogy to eq. (2) we can introduce a basis
for the set of traceless matrices, and write the density
matrix in the generalized Bloch vector representation,

ρ =
1
N
1+

N2−1∑
i=1

uiγi . (10)

Here γi are hermitian basis vectors. The components ui

must be chosen such that ρ is a positive definite matrix.

D. Dual and self-dual convex sets

Both the classical and the quantum state spaces have
the remarkable property that they are self-dual. But the
word duality has many meanings. In projective geometry
the dual of a point is a plane. If the point is represented
by a vector ~x, we can define the dual plane as the set of
vectors ~y such that

~x · ~y = −1 . (11)

The dual of a line is the intersection of a one-parameter
family of planes dual to the points on the line. This is
in itself a line. The dual of a plane is a point, while the
dual of a curved surface is another curved surface—the
envelope of the planes that are dual to the points on the
original surface. To define the dual of a convex body with
a given boundary we change the definition slightly, and
include all points on one side of the dual planes in the
dual. Thus the dual X∗ of a convex body X is defined
to be

X∗ = {~x | 1 + ~x · ~y ≥ 0 ∀~y ∈ X} . (12)

The dual of a convex body including the origin is the
intersection of half-spaces {~x | 1 +~x · ~y ≥ 0} for extremal
points ~y of X [20]. If we enlarge a convex body the
conditions on the dual become more stringent, and hence
the dual shrinks. The dual of a sphere centred at the
origin is again a sphere, so a sphere (of suitable radius) is
self-dual. The dual of a cube is an octahedron. The dual
of a regular tetrahedron is another copy of the original
tetrahedron, possibly of a different size. Hence this is a
self-dual body. Convex subsets F ⊂ X are mapped to
subsets of X∗ by

F 7→ F̂ := {~x ∈ X∗ | 1 + ~x · ~y = 0∀~y ∈ F} . (13)

Geometrically, F̂ equals X∗ intersected with the dual
affine space (11) of the affine span of F . If the origin
lies in the interior of the convex body X then F 7→ F̂ is
a one-to-one inclusion-reversing correspondence between
the exposed faces of X and of X∗ [21]. If X is a tetrahe-
dron, then vertices and faces are exchanged, while edges
go to edges.

What we need in order to prove the self-duality of QN

is the key fact that a hermitian and unit trace matrix σ
is a density matrix if and only if

Trσρ ≥ 0 (14)

for all density matrices ρ. It will be convenient to think
of a density matrix ρ as represented by a “vector” u, as
in eq. (9). As a direct consequence of eq. (14) the set of
quantum states QN is self-dual in the precise sense that

QN − 1l/N = {u | 1/N + Tr(uv) ≥ 0∀v ∈ QN − 1l/N}.
(15)

In this equation the trace is to be interpreted as a scalar
product in a vector space. Duality (13) exchanges faces
of rank r (copies of Qr) and faces of rank N − r (copies
of QN−r).

Self-duality is a key property of state spaces [22, 23],
and we will use it extensively when we discuss projections
and cross-sections of QN . This notion is often introduced
in the larger vector space consisting of all hermitian ma-
trices, with the origin at the zero matrix. The set of pos-
itive semi-definite matrices forms a cone in this space,
with its apex at the origin. It is a cone because any pos-
itive semi-definite matrix remains positive semi-definite
if multiplied by a positive real number. This defines the
rays of the cone, and each ray intersects the set of unit
trace matrices exactly once. The dual of this cone is the
set of all matrices a such that Trab ≥ 0 for all matrices
b within the cone—and indeed the dual cone is equal to
the original, so it is self-dual.
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III. AN APOPHATIC APPROACH TO THE
QUTRIT

For N = 3 we are dealing with the states of the qutrit.
The Gell-Mann matrices are a standard choice [16] for the
eight matrices γi, and the expansion coefficients are τi =
1
2Trργi. Unfortunately, although the sufficient conditions
for ~τ to represent a state are known [9, 24, 25], they do
not improve much our understanding of the geometry of
Q3.

We know that the set of pure states has 4 real dimen-
sions, and that the faces of Q3 are copies of the 3D Bloch
ball, filling out the 7 dimensional boundary. The centres
of these balls touch the largest inscribed sphere of Q3.
But what does it all really look like?

We try to answer this question by presenting some 3D
objects, and explaining why they cannot serve as models
of Q3. Apart from the fact that our objects are not eight
dimensional, all of them lack some other features of the
set of quantum states.

Fig. 3 presents a hairy set which is nice but not convex.
Fig. 4 shows a ball, and we know that Q3 is not a ball. It
is not a polytope either, so the polytope shown in Fig. 5
cannot model the set of quantum states.

FIG. 3: Apophatic approach: this object is not a good model
of the set Q3 as it is not a convex set.

Let us have a look at the cylinder shown in Fig. 6, and
locate the extremal points of the convex body shown.
This subset consists of the two circles surrounding both
bases. This is a disconnected set, in contrast to the con-
nected set of pure quantum states. However, if one splits
the cylinder into two halves and rotates one half by π/2
as shown in Fig. 7, one obtains a body with a connected
set of pure states. A similar model can be obtained by
taking the convex hull of the seam of a tennis ball: the
one dimensional seam contains the extremal points of this
set and forms a connected set.

Thus the seam of the tennis ball (look again at Fig.
4) corresponds to the 4D connected set of pure states

FIG. 4: The set Q3 is not a ball...

FIG. 5: The set Q3 is not a polytope...

FIG. 6: The set of pure states in Q3 is connected, but for the
cylinder the pure states form two circles.
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FIG. 7: This is now the convex hull of a single space curve,
but one cannot inscribe copies of the classical set ∆2 in it.

of N = 3 quantum system. The convex hull of the seam
forms a 3D object which is easy to visualize, and serves as
our first rough model of the solid 8D body Q3 of qutrit
states. However, a characteristic feature of the latter
is that each one of its points belongs to a cross-section
which is an equilateral triangle ∆2. (This is the eigenvec-
tor decomposition.) The convex set determined by the
seam of the tennis ball, and the set shown in Fig. 7, do
not have this property.

As we have seen Q3 can be obtained if we take an
equilateral triangle ∆2 and subject it to SU(3) rotations
in eight dimensions. We can try to do something similar
in three dimensions. If we rotate a triangle along one
of its bisections we obtain a cone, for which the set of
extremal states consists of a circle and an apex (see Fig.
10 b)), a disconnected set. We obtain a better model if
we consider the space curve

~x(t) =
(
cos(t) cos(3t), cos(t) sin(3t), − sin(t)

)T
. (16)

Note that the curve is closed, ~x(t) = ~x(t + 2π), and be-
longs to the unit sphere, ||~x(t)|| = 1. Moreover

||~x(t)− ~x(t+ 1
32π)|| =

√
3 (17)

for every value of t. Hence every point ~x(t) belongs to
an equilateral triangle with vertices at

~x(t), ~x(t+ 1
32π), and ~x(t+ 2

32π) .

They span a plane including the z-axis for all times t.
During the time ∆t = 2π

3 this plane makes a full turn
about the z-axis, while the triangle rotates by the angle
2π/3 within the plane—so the triangle has returned to a
congruent position. The curve ~x(t) is shown in Fig. 8 a)
together with exemplary positions of the rotating trian-
gle, and Fig. 8 b) shows its convex hull C. This convex
hull is symmetric under reflections in the (x-y) and (x-z)
planes. Since the set of pure states is connected this is
our best model so far of the set of quantum pure states,
although the likeness is not perfect.

It is interesting to think a bit more about the boundary
of C. There are three flat faces, two triangular ones and

FIG. 8: a) The space curve ~x(t) modelling pure quantum
states is obtained by rotating an equilateral triangle according
to Eq. (16) —three positions of the triangle are shown); b)
The convex hull C of the curve models the set of all quantum
states.

one rectangular. The remaining part of the boundary
consists of ruled surfaces: they are curved, but contain
one dimensional faces (straight lines). The boundary of
the set shown in Fig. 7 has similar properties. The ruled
surfaces of C have an analogue in the boundary of the
set of quantum states Q3, we have already noted that a
generic point in the boundary of Q3 belongs to a copy of
Q2 (the Bloch ball), arising as the intersection of Q3 with
a hyperplane. The flat pieces of C have no analogues in
the boundary of Q3, apart from Bloch balls (rank two)
and pure states (rank one) no other faces exist.

Still this model is not perfect: Its set of pure states
has self-intersections. Although it is created by rotating
a triangle, the triangles are not cross-sections of C. It
is not true that every point on the boundary belongs
to a face that touches the largest inscribed sphere, as
it happens for the set of quantum states [17]. Indeed its
boundary is not quite what we want it to be, in particular
it has non-exposed faces—a point to which we will return.
Above all this is not a self-dual body.
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IV. A CONSTRUCTIVE APPROACH

The properties of the eight-dimensional convex set Q3

might conflict if we try to realize them in dimension three.
Instead of looking for an ideal three dimensional model
we shall thus use a complementary approach. To re-
duce the dimensionality of the problem we investigate
cross-sections of the 8D set Q3 with a plane of dimen-
sion two or three, as well as its orthogonal projections
on these planes—the shadows cast by the body on the
planes, when illuminated by a very distant light source.
Clearly the cross-sections will always be contained in the
projections, but in exceptional cases they may coincide.

What kind of cross-sections arise? In the classical case
it is known that every convex polytope arises as a cross-
section of a simplex ∆N−1 of sufficiently high dimension
[21]. It is also true that every convex polytope arises
as the projection of a simplex. But what are the cross-
sections and the projections of QN? There has been con-
siderable progress on this question recently. The convex
set is said to be a spectrahedron if it is a cross-section of a
cone of semi-positive definite matrices of some given size.
In the branch of mathematics known as convex algebraic
geometry one asks what kind of convex bodies that can
be obtained as projections of spectrahedra. Surprisingly,
the convex hull of any trigonometric space curve in three
dimensions can be so obtained [26]. This includes our
set C, which can be shown to be a projection of an 8-
dimensional cross-section of the 35D set Q6 of quantum
states of size N = 6. We do so in Appendix A.

A. The duality between projections and
cross-sections

In the vector space of traceless hermitian matrices we
choose a linear subspace U . The intersection of the
convex body QN of quantum states with the subspace
U + 1l/N through the maximally mixed state 1l/N is the
cross-section SU , and the orthogonal projection of QN

down to U is the projection PU . There exists a beautiful
relation between projections and cross-sections, holding
for self-dual convex bodies such as the classical and the
quantum state spaces [14]. For them cross-sections and
projections are dual to each other, in the sense that

SU − 1l/N = {u | 1/N + Tr(uv) ≥ 0 ∀v ∈ PU} (18)

and

PU = {u | 1/N + Tr(uv) ≥ 0 ∀v ∈ SU − 1l/N} . (19)

This is best explained in a picture (namely Fig. 9). A
special case of these dualities is the self-duality of the full
state-space, eq. (15).

Let us look at two examples for Q3, choosing the vector
space U to be three dimensional. In Fig.10 a) we show
the cross-section containing all states of the form

FIG. 9: The triangle is self-dual. We intersect it with a one-
dimensional subspace through the centre, U , and obtain a
cross-section extending from a to b. The dual of this line in
the plane is a 2-dimensional strip, and when we project this
onto U we obtain a projection extending from A to B, which
is dual to the cross-section within U .

ρ =

 1/3 x y
x 1/3 z
y z 1/3

 , ρ ≥ 0 . (20)

They form an overfilled tetrapak cartoon [8], also known
as an elliptope [27] and an obese tetrahedron [16]. Like
the tetrahedron it has six straight edges. Its boundary is
known as Cayley’s cubic surface, and it is smooth every-
where except at the four vertices. In the picture it is sur-
rounded by its dual projection, which is the convex hull
of a quartic surface known as Steiner’s Roman surface.
To understand the shape of the dual, start with a pair
of dual tetrahedra (one of them larger than the other).
Then we “inflate” the small tetrahedron a little, so that
its facets turn into curved surfaces. It grows larger, so
its dual must shrink—the vertices of the dual become
smooth, while the facets of the dual will be contained
within the original triangles. What we see in Fig.10 a)
is a “critical” case, in which the facets of the dual have
shrunk to four circular disks that just touch each other
in six special points.

In Fig.10 b) we see the cross-section containing all
states (positive matrices) of the form

ρ =

 1/3 + z/
√

3 x− iy 0
x+ iy 1/3 + z/

√
3 0

0 0 1/3− 2z/
√

3

 . (21)

This cross-section is a self-dual set, meaning that the
projection to this 3-dimensional plane coincides with the
cross-section. In itself it is the state space of a real
subalgebra of the qutrit obervables. There exist also
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FIG. 10: a) The cross-section SU − 1l/3 defined in (20) of the
qutrit quantum states Q3 is drawn inside the projection PU

of Q3. b) The cone is self-dual, it is a cross-section and a
projection of Q3 with SU − 1l/3 = PU .

two-dimensional self-dual cross-sections, which are sim-
ply copies of the classical simplex ∆2—the state space of
the subalgebra of diagonal matrices.

B. Two-dimensional projections and cross-sections

To appreciate what we see in cross-sections and pro-
jections we will concentrate on 2-dimensional screens.

We can compute 2D projections using the fact that
they are dual to a cross-section. But we can also use the
notion of the numerical range W of a given operator A,
a subset of the complex plane [28–30]

W (A) = {z ∈ C : z = TrρA, ρ ∈ QN} . (22)

If the matrix A is hermitian its numerical range reduces
to a line segment, otherwise it is a convex region of the
complex plane. To see the connection to projections, ob-
serve that changing the trace of A gives rise to a trans-
lation of the whole set, so we may as well fix the trace to
equal unity. Then we can write for some λ ∈ C

A = λ1+ u+ iv , (23)

where u and v are traceless hermitian matrices. It fol-
lows that the set of all possible numerical ranges W (A)
of arbitrary matrices A of order N is affinely equivalent
to the set of orthogonal projections of QN on a 2-plane
[15, 31]. Thus to understand the structure of projec-
tions of QN onto a plane it is sufficient to analyze the
geometry of numerical ranges of any operator of size N .
For instance, in the simplest case of a matrix A of order
N = 2, its numerical range forms an elliptical disk, which
may reduce to an interval. These are just possible (not
necessarily orthogonal) projections of the Bloch ball Q2

onto a plane.
In the case of a matrix A of order N = 3 the shape of

its numerical range was characterized algebraically in [32,
33]. Regrouping this classification we divide the possible
shapes into four cases according to the number of flat
boundary parts: The set W is compact and its boundary
∂W

FIG. 11: The drawings are dual pairs of planar cross-sections
SU − 1l/3 (dark) and projections PU (bright) of the convex
body of qutrit quantum states Q3. Drawing a is obtained
from the 3D dual pair in Fig. 10 a) and b)–d) are derived
from the self-dual cone in Fig. 10 b). The cross-sections in b)–
d) have an elliptic, parabolic and hyperbolic boundary piece,
respectively.

1. has no flat parts. Then W is strictly convex, it is
bounded by an ellipse or equals the convex hull of
a (irreducible) sextic space curve;

2. has one flat part, then W is the convex hull of a
quartic space curve – e.g. W is the convex hull of
a trigonometric curve known as the cardioid;

3. has two flat parts, then W is the convex hull of an
ellipse and a point outside it;

4. has three flat parts, then W is a triangle with cor-
ners at eigenvalues of A.

In case 4 the matrix A is normal, AA† = A†A, and the
numerical range is a projection of the simplex ∆2 onto
a plane. Looking at the planar projections of Q3 shown
in Fig.11 we recognize cases 2 and 3. All four cases are
obtained as projections of the Roman surface in Fig. 10
a) or the cone shown in Fig. 10 b). A rotund shape and
one with two flats are obtained as a projection of both
3D bodies. A triangle is obtained from the cone and a
shape with one flat from the Roman surface.

In order to actually calculate a 2D projection P :=
{(Truρ,Trvρ)T ∈ R2 | ρ ∈ Q3} of the set Q3 determined
by two traceless hermitian matrices u and v one may pro-
ceed as follows [28]. For every non-zero matrix F in the
real span of u and v we calculate the maximal eigenvalue
λ and the corresponding normalized eigenvector |ψ〉 with
F |ψ〉 = λ|ψ〉. Then (〈ψ|u|ψ〉, 〈ψ|v|ψ〉)T belongs to the
projection P , and these points cover all exposed points
of P .
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Exemplary sets disk a) drop b)
truncated

disk c)
truncated
drop d)

non-exposed points (∗) no yes no yes

non-polyhedral
corners (o)

no no yes yes

set is self-dual yes no no yes

FIG. 12: Exemplary convex sets and their duals. Sym-
bols: non-exposed point (∗), polyhedral corners (+) and non-
polyhedral corners (o). Sets a) and d) are self-dual, while b)
and c) is a dual pair. Sets a) and c) have properties like 2D
cross-sections of QN , while sets a) and b) could be obtained
from QN by projection.

C. Exposed and non-exposed faces

An exposed face of a convex set X is the intersection
of X with an affine hyperplane H such that X \ H is
convex, i.e. H intersects X only at the boundary. Ex-
amples in the plane are the boundary points of the disk
in Fig. 12 a) or the boundary segments in panels b) and
d). A non-exposed face of X is a face of X that is not
an exposed face. In dimension two non-exposed faces are
non-exposed points, they are the endpoints of boundary
segment of X which are not exposed faces by themselves.
Examples are the lower endpoints of the boundary seg-
ments in Fig. 12 b) or d).

It is known that cross-sections of QN have no non-
exposed faces. On the other hand the twisted cylinder
(see Fig. 7) and the convex hull C of the space curve
(Fig. 8) do have non-exposed faces of dimension one. In
contrast to cross-sections, projections of QN can have
non-exposed points, see e.g. the planar projections of Q3

in Fig. 11. They are related to discontinuities in certain
entropy functionals (in use as information measures) [34].

The dual concept to exposed face is normal cone [13].
The normal cone of a two-dimensional convex set X ⊂ R2

at (x1, x2) ∈ X is

{(y1, y2)T ∈ R2 |
(z1 − x1)y1 + (z2 − x2)y2 ≤ 0 ∀(z1, z2) ∈ X}.

The normal cone generalizes outward pointing normal
vectors of a smooth boundary curve of X to points
(x1, x2) where this curve is not smooth. Then the dimen-
sion of the normal cone is two and we call (x1, x2) a cor-
ner. The examples in Fig. 12 have 0, 1, 2, 3 corners from
left to right. There are different types of corners: The
top corners of Fig. 12 b) and d) are polyhedral, i.e. they

are intersections of two boundary segments. If a corner
is not the intersection of two boundary segments we call
it non-polyhedral. The bottom corners of c) and d) are
non-polyhedral corners. Polyhedral and non-polyhedral
corners are characterized in [35] in terms of normal cones.
From this characterization it follows that any corner of a
two-dimensional projection of QN is polyhedral [13]. An
analogue property holds in higher dimensions but it can
not be formulated in terms of polyhedra. Fig. 11 shows
that two-dimensional cross-sections of Q3 can have non-
polyhedral corners.

Given a two-dimensional convex body including the
origin in the interior, the duality (13) maps non-exposed
points onto the set of non-polyhedral corners of the dual
convex body. There will be one or two non-exposed
points in each fiber depending on whether the corner does
or does not lie on a boundary segment of the dual body
[35]. We conclude that a two-dimensional self-dual con-
vex set has no non-exposed points if and only if all its
corners are polyhedral.

V. WHEN THE DIMENSION MATTERS

So far we have discussed the qutrit, and properties of
the qutrit that generalise to any dimension N . But what
is special about a quantum system whose Hilbert space
has dimension N? The question gains some relevance
from recent attempts to find direct experimental signa-
tures of the dimension,

One obvious answer is that if and only ifN is a compos-
ite number, the system admits a description in terms of
entangled subsystems. But we can look for an answer in
other directions too. We emphasised that a regular sim-
plex ∆N−1 can be inscribed in the quantum state space
QN . But in the Bloch ball we can clearly inscribe not
only ∆1 (a line segment), but also ∆2 (a triangle) and
∆3 (a tetrahedron). If we insist that the vertices of the
inscribed simplex should lie on the outsphere of QN , and
also that the simplex should be centred at the maximally
mixed state, then this gives rise to a non-trivial problem
once the dimension N > 2. This is clear from our model
of the latter as the convex hull of the seam of a tennis
ball, or in other words because the set of pure states form
a very small subset of the outsphere. Still we saw, in Fig.
10 a), that not only ∆2 but also ∆3 can be inscribed in
Q3, and as a matter of fact so can ∆5 and ∆8. But is it
always possible to inscribe the regular simplex ∆N2−1 in
QN , in such a way that the N2 vertices are pure states?
Although the answer is not obvious, it is perhaps sur-
prising to learn that the answer is not known, despite a
considerable amount of work in recent years.

The inscribed regular simplices ∆N2−1 are known as
symmetric informationally complete positive operator
valued measures, or SIC-POVMs for short. Their ex-
istence has been established, by explicit construction, in
all dimensions N ≤ 16 and in a handful of larger di-
mensions. The conjecture is that they always exist [36].
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But the available constructions have so far not revealed
any pattern allowing one to write down a solution for all
dimensions N . Already here the quantum state space
begins to show some N -dependent individuality.

Another question where the dimension matters con-
cerns complementary bases in Hilbert space. As we have
seen, given a basis in Hilbert space, there is an (N − 1)-
dimensional cross-section of QN in which these vectors
appear as the vertices of a regular simplex ∆N−1. We
can—for instance for tomographic reasons [37]—decide
to look for two such cross-sections placed in such a way
that they are totally orthogonal with respect to the trace
inner product. If the two cross-sections are spanned by
two regular simplices stemming from two Hilbert space
bases {|ei〉}N−1

i=0 and {|fi〉}N−1
i=0 , then the requirement on

the bases is that

|〈ei|fj〉|2 =
1
N

(24)

for all i, j. Such bases are said to be complementary, and
form a key element in the Copenhagen interpretation of
quantum mechanics [38]. But do they exist for all N?

The answer is yes. To see this, let one basis be the com-
putational one, and let the other be expressed in terms
of it as the column vectors of the Fourier matrix

FN =
1√
N


1 1 1 . . . 1
1 ω ω2 . . . ωN

1 ω2 ω4 . . . ω2(N−1)

...
...

...
...

1 ωN−1 ω2(N−1) . . . ω(N−1)2

 , (25)

where ω = e2πi/N is a primitive root of unity. The Fourier
matrix is an example of a complex Hadamard matrix, a
unitary matrix all of whose matrix elements have the
same modulus.

We are interested in finding all possible complementary
pairs up to unitary equivalences. The latter are largely
fixed by requiring that one member of the pair is the com-
putational basis, since the second member will then be
defined by a complex Hadamard matrix. The remaining
freedom is taken into account by declaring two complex
Hadamard matrices H and H ′ to be equivalent if they
can be related by

H ′ = D1P1HP2D2 , (26)

where Di are diagonal unitary matrices and Pi are per-
mutation matrices.

The task of classifying pairs of cross-sections of QN

forming simplices ∆N−1 and sitting in totally orthogonal
N -planes is therefore equivalent to the problem of classi-
fying complementary pairs of bases in Hilbert space. This
problem in turn is equivalent to the problem of classify-
ing complex Hadamard matrices of a given size. But the

latter problem has been open since it was first raised by
Sylvester and Hadamard, back in the nineteenth century.
It has been completely solved only for N ≤ 5, and it was
recently almost completely solved for N = 6 [39].

More is known if we restrict ourselves to continuous
families of complex Hadamard matrices that include the
Fourier matrix. Then it has been known for some time
[40] that the dimension of such a family is bounded from
above by

dFN
=

N−1∑
k=0

gcd(k,N)− (2N − 1) , (27)

where gcd denotes the largest common divisor, and
gcd(0, N) = N . We subtracted the 2N − 1 dimensions
that arise trivially from eq. (26). Moreover, if N = pk

is a power of prime number p this bound is saturated by
families that have been constructed explicitly. In partic-
ular, if N is a prime number dFp

= 0, and the Fourier
matrix is an isolated solution. For N = 4 on the other
hand there exists a one-parameter family of inequivalent
complex Hadamard matrices.

Further results on this question were presented in
Bia lowieża [41]. In particular the above bound is not
achieved for any N not equal to a prime power and not
equal to 6. It turns out that the answer depends critically
on the nature of the prime number decomposition of N .
Thus, if N is a product of two odd primes the answer
will look different from the case when N is twice an odd
prime. However, at the moment, the largest non-prime
power dimension for which the answer is known—even
for this restricted form of the problem—is N = 12.

At the moment then, both the SIC problem and the
problem of complementary pairs of bases highlight the
fact that the choice of Hilbert space dimension N has
some dramatic consequences for the geometry of QN .
Now the basic intuition that drove Mielnik’s attempts to
generalize quantum mechanics was the feeling that the
nature of the physical system should be reflected in the
geometry of its convex body of states [1]. Perhaps this
intuition will eventually be vindicated within quantum
mechanics itself, in such a way that the individuality of
the system is expressed in the choice of N?

VI. CONCLUDING REMARKS

Let us try to summarize basic properties of the set QN

of mixed quantum states of size N ≥ 3 analyzed with
respect to the flat, Hilbert-Schmidt geometry, induced
by the distance (3).

a) The set QN is a convex set of N2 − 1 dimensions.
It is topologically equivalent to a ball and does not have
pieces of lower dimensions (’no hairs’).

b) The set QN is inscribed in a sphere of radius RN =√
(N − 1)/2N , and it contains the maximal ball of radius

rN = 1/
√

2N(N − 1).
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c) The set QN is neither a polytope nor a smooth body.
d) The set of mixed states is self-dual (15).
e) All cross-sections of QN have no non-exposed faces.
f) All corners of two-dimensional projetions of QN are

polyhedral.
g) The boundary ∂QN contains all states of less than

maximal rank.
h) The set of extremal (pure) states forms a connected

2N − 2 dimensional set, which has zero measure with
respect to the N2 − 2 dimensional boundary ∂QN .

i) Explicit formulae for the volume V and the area
A of the d = N2 − 1 dimensional set QN are known
[18]. The ratio Ar/V is equal to the dimension d, which
implies that QN has a constant height [17] and can be
decomposed into pyramids of equal height having all their
apices at the centre of the inscribed sphere.
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Sarbicki for fruitful discussions and helpful remarks. I.B.
and K.Ż. are thankful for an invitation for the workshop
to Bia lowieża, where this work was presented and im-
proved. Financial support by the grant number N N202
090239 of Polish Ministry of Science and Higher Educa-
tion and by the Swedish Research Council under contract
VR 621-2010-4060 is gratefully acknowledged.

APPENDIX A: TRIGONOMETRIC CURVES

We write the convex hull C of the trigonometric space
curve in Section III as a projection of a cross-section of
the 35-dimensional set Q6 of density matrices. Up to the
trace normalization, this problem is solved in [26] for the
convex hull of any trigonometric curve [0, 2π) → Rn. The
assumptions are that each of the n coefficient functions
of the curve is a trigonometric polynomial of some finite
degree 2d,

t 7→
∑d

k=1(αk cos(kt) + βk sin(kt)) + γ

for real coefficients αk, βk, γ.
The space curve (16) lives in dimension n = 3, we de-

note its coefficients by ~x = (x1, x2, x3)T. Using trigono-
metric formulas and the parametrization cos(t) = y2

0−y2
1

y2
0+y2

1

and sin(t) = 2y0y1
y2
0+y2

1
we have

1 def.= (y2
0 + y2

1)4 ,
x1 = (y2

0 − y2
1)2[(y2

0 − y2
1)2 − 3(2y0y1)2] ,

x2 = (y2
0 − y2

1)(2y0y1)[3(y2
0 − y2

1)2 − (2y0y1)2] ,
x3 = −(y2

0 + y2
1)3(2y0y1) .

A basis vector ofm-variate forms of degree 2d = 8 is given
by ~ξ = (x8

0, x
7
0x1, x

6
0x

2
1, x

5
0x

3
1, x

4
0x

4
1, x

3
0x

5
1, x

2
0x

6
1, x0x

7
1, x

8
1)

(for the number m = 1 used in [26] for the degrees of
freedom of the projective coordinates (y0 : y1) in the cir-
cle P1(R)) and we have

(1, x1, x2, x3)T = A~ξ
for the 4× 9-matrix

A =
(

1 0 4 0 6 0 4 0 1
1 0 −16 0 30 0 −16 0 1
0 6 0 −26 0 26 0 −6 0
−1 0 −2 0 0 0 2 0 1

)
.

Let us denote by M � 0 that a complex square matrix
M is positive semi-definite. The 5× 5 moment matrix of
~u = (u1, . . . , u9) is given by

M4(~u) =

(
u1 u2 u3 u4 u5
u2 u3 u4 u5 u6
u3 u4 u5 u6 u7
u4 u5 u6 u7 u8
u5 u6 u7 u8 u9

)
.

Now [26] provides the convex hull representation

C
def.= conv{~x(t) ∈ R3 | t ∈ [0, 2π)} = (A1)

{
(

v1
v2
v3

)
∈ R3 | ∃~u ∈ R9 s.t.

(
1
v1
v2
v3

)
= A~u and M4(~u) � 0}

which we shall simplify by eliminating the variables
u1, . . . , u4.

A particular solution of (1, v1, v2, v3)T = A~u is

ũ1 = 1
5 (4 + v1) , ũ2 = 1

44 (3v2 − 13v3) ,

ũ3 = 1
20 (1− v1) , ũ4 = 1

44 (−v2 − 3v3) ,

ũ5 = ũ6 = ũ7 = ũ8 = ũ9 = 0. The reduced row echelon
form of A being(

1 0 0 0 54/5 0 0 0 1
0 1 0 0 0 39/11 0 2/11 0
0 0 1 0 −6/5 0 1 0 0
0 0 0 1 0 −2/11 0 3/11 0

)

and regarding u5, . . . , u9 as free variables we have

u1 = ũ1 − 54
5 u5 − u9 , u2 = ũ2 − 39

11u6 − 2
11u8 ,

u3 = ũ3 + 6
5u5 − u7 , u4 = ũ4 + 2

11u6 − 3
11u8 .

One problem remains, the matrix M4 parametrized by
v1, v2, v3 and u5, . . . , u9 has not trace one,

TrM4 = u1 +u3 +u5 +u7 +u9 = 1
20 (17−172u5 +3v1) .

This we correct by adding a direct summand to M4 and
by defining

M =

(
M4 0
0 172

20 u5 + 3
20 (1− v1)

)
.

If M4 � 0 then u5 ≥ 0 follows because u5 is a diagonal
element of M4 and −1 ≤ v1 ≤ 1 follows from (A1) be-
cause (v1, v2, v3) ∈ C is included in the unit ball of R3.
This proves M � 0 ⇐⇒ M4 � 0 and we get

C = {
(

v1
v2
v3

)
∈ R3 | ∃

(
u5

...
u9

)
∈ R5 s.t. M � 0} .

We conclude that C is a projection of the 8-dimensional
spectrahedron {(v1, v2, v2, u5, . . . , u9) ∈ R3+5 | M � 0},
which is a cross-section of Q6.
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