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To provide fast computation of the 3D solvation in molecular liquids, we develop

a new computational approach based on real-space mesh techniques. Basic aspects

and peculiarities of this approach are presented within the framework of the integral

equation theory of molecular liquids. Starting from the free energy functional of

the 3D solvation problem, we reformulate the integral equations in terms of the

solvent induced potential. As a result, we reduce the problem to evaluation of the

volume integrals in the interface region. We perform a domain decomposition of the

region in terms of finite elements consisting from of the relevant surface elements

built from scaled solvent accessible surfaces. The Chebyshev polynomials are found

to be the most suitable for accurate approximation of the sought-for functions for

these finite elements. The tensor product approximation and the nonequispaced

fast fourier transform are proposed to be applied for fast evaluation of the relevant

kernel of the integral equations. The computational complexity of the calculations

are supposed to be reduced by 103 times with respect to current algorithms of the

molecular solvation, which are based on the uniform fast fourier transform.
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I. INTRODUCTION

Solvation phenomena play a key role in various chemical and biological processes. Many

nanotechnological applications are also based on manipulations in molecular or macromolec-

ular solutions. Considerable effort has been devoted to develop efficient computational meth-

ods, which are able to reveal mechanisms of the solvation. Although significant progress has

been made in the field of computational chemistry in recent decades due to a strong in-

crease in computational resources, the most of investigations of solvation effects are still

experimental, whereas successive applications of computational methods are rather limited.

The reason of that lies, perhaps, in many-body cooperative nature of the solvation, which

requires fine evaluations of the whole system including dozens (or sometimes hundreds) of

thousands of molecules. Details of the intermolecular interactions are believed to be inves-

tigated in the full format by molecular simulations based on quantum, classical, or hybrid

schemes. All these schemes can be broadly classified into two types - continuum and ex-

plicit (discrete) solvent models. Continuum methods are computationally efficient,1–3 but

often inadequate to properly represent the specific molecular interactions between the so-

lute and solvent molecules. The discrete molecular mechanics (MM) models are, in principle,

more realistic,4,5 since they treat explicitly intermolecular interactions. However their use

dramatically increases the computational time necessary to carry out statistical sampling.

Given the above difficulties, there is an ongoing effort to develop new accurate and efficient

solvation models. Among the recent developments in this area is the integral equation theory

(IET) of molecular liquids (see, for example Ref.6). Similar to explicit solvation models, this

approach provides detailed information about intermolecular interactions in terms of solute-

solvent distribution functions. Although a considerable progress has been achieved in the

development of the IET, nevertheless the application of the theory is still limited in the case

of molecular liquids, because the complete treatment of the liquids requires investigations

of 6-dimensional distribution functions and solution of the corresponding high-dimensional

integral equations. The bottleneck of current algorithms for search of such solution is likely

that most of the them are based on the uniform fast fourier transform (FFT) which extension

to high dimensions requires to treat enormous large number of grid points. There is a naive

idea that a nonuniform distribution of the grid points can significantly reduce computational

costs, and hence, increase effectiveness of the calculations. For example, multigrid and
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multiscale algorithms have been actively applied to solve the Poisson-Boltzmann equation,7,8

whereas real space mesh (RSM) techniques have been extensively used to solve the Hartree-

Fock and Kohn-Sham equations of electronic structure (see, review8). There are also several

attempts to apply the algorithms based on multiscale meshes9 or wavelets,10 to molecular

theory of solvation, however, the comparative analysis11 does not reveal serious advantages

of the methods with respect to the uniform FFT.

Nevertheless, the idea of the RSM techniques remains to be attractive for applications

to the IET. However, to realize this approach we are to analyze carefully peculiarities and

limitations of the method. The goal of this paper is to provide such analysis and formulate

requirements for RSM algorithms which are able to perform effective calculations in the

case of three-dimensional (3D) treatment of solvation in molecular liquids. The layout of

the paper is the following. First, we outline the IET method in Sec. 2, mainly focusing

on the mathematical statement of the 3D solvation problem. We also describe briefly the

physical behavior of the sough-for functions, since it is important for a choice of the RSM

scheme. Relations between the 3D solvation and other IET approaches to molecular liquids

are outlined in the Appendix, where we describe the main scheme of iterative solutions of

the relevant integral equations, and indicate bottlenecks in the direct application of RSM

to IET of molecular liquids. In Sec. 3, we rewrite the integral equations in the terms of the

solvent induced potential, which allows us to reduce the problem to evaluations in a narrow

interface region. Then, we apply the basis set representation to the IET (Section 4) and

formulate requirements for the application of the RSM techniques to molecular liquids. In

Section 4, we perform a domain decomposition of the interface region in terms of spherical

shell elements consisting from of the relevant surface elements. These surface elements

are supposed to be built from scaled solvent accessible surfaces. Then, we indicate that

the Chebyshev polynomials are to be the most suitable for accurate approximation of the

sought-for functions for these finite elements. In Section 5, we apply the tensor product

approximation and the non-equispaced fast fourier transform (NFFT) to provide effective

calculations of the relevant kernels of the integral equations. Finally, we propose to combine

fast spherical transform with fast polynomial multiplication to provide NFFT for each finite

element. We should remark that we discuss here only the main features of the RSM approach

to molecular theory of solvation, while detailed calculations based on this approach will be

provided elsewhere.
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II. 3D IET OF MOLECULAR LIQUIDS

Integral equations in the 3D format. The IET of molecular liquids provides evalua-

tions of equilibrium solvent densities around molecular solutes, from which various thermo-

dynamic properties may be obtained. The IET method consists in calculations of the binary

correlation functions g(r,Θ) representing the density distributions of molecular species with

regards to their translational r and orientational Θ degrees of freedom. The theory is

based on the Molecular Ornstein-Zernike (MOZ) integral equation which relates the total

correlation function, h(r,Θ) = g(r,Θ) − 1, with the direct correlation functions, c(r,Θ)12

(see, Appendix). In the general case, the correlation functions are the six-dimensional (6D)

functions (distance + 5 independent angles). The high dimensionality of the MOZ equa-

tion makes it practically insolvable for most systems of chemical interest. The conventional

approximation is to reduce the dimensionality by averaging the functions over angular dis-

tributions. In practice, it is performed by averaging the susceptibility around solvent sites.

We should remark that although the averaging strongly reduces the dimensionality, it de-

creases also the quality of molecular representation and produces additional errors, since

some molecular information may be lost.

After this averaging the MOZ transforms into the set of 3D Ornstein-Zernike (OZ) integral

equations for the relevant 3D correlation functions:13

hi(r) =
Nv∑
j=1

∫
R3

χij(r− r1)cj(r1)dr1, (1)

where χij(r) is the 3D matrix of susceptibility (input data). Of course, the averaging pro-

cedure increases the number of components up to the number of different solvent sites Nv

and typically this number Nv is not so large (does not exceed several units). The reduction

of the closure to the 3D case is straightforward (see Appendix), we should replace only 6D

variables by their 3D vector analogs. The general form of the closure relation is written as

hi(r) = exp[−βUi(r) + hi(r)− ci(r) +Bi(hi − ci)]− 1, (2)

where Ui(r) is the solute-solvent potential (input function), β is the inverse temperature,

while Bi(h− c) is the so called bridge function depending on the difference γi = hi − ci, the

later functional dependence is also input data.

Therefore, the IET of molecular liquids is formulated in the 3D format as a search of
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FIG. 1: The OZ and the DFT kernels, the green line corresponds to the nonlocal part of oxygen-

oxygen susceptibility χ̃OO(r) = (χOO(r)− δ(r))/n2
0 of water under normal conditions, the blue one

to the nonlocal part of second-order direct correlation function C̃OO(r) = 0.01n0 ∗ [C2(r) − δ(r)]

scaled by factor 100. All the functions are obtained by solution 1D RISM/HNC integral equations.

solution (1-2) at given χij(r), Ui(r), Bi(γi), and β. In the most cases of interest, the in-

teraction potential Ui is presented as a sum of multi-center spherical contributions, i.e.

Ui(r) =
∑

j Uij(rj − ri), usually these contributions have long range coulomb asymptotics:

Uij(rij → ∞) = qiqj/rij, (3)

where qi and qj are the partial charges of the relevant species, while rij is the distance

between these species. We note also that the susceptibility χij is defined as a numerical 3D

array, and the bridge B as an analytical smooth function. In the general case the correlation

functions have rather complicated shapes and behave differently at short-range and long-

range distances. At short-range distances the functions reveal pronounced sharp peaks and

slopes, whereas the functions decay weakly with oscillations at the long-range distances.

Details of the distant dependence will be outlined below. The angular dependence of the

sought-for functions are less investigated, it is known only that the dependence is smooth

in most cases of the interest.

Peculiarities of the distance behavior of the correlation functions. We focus on

the distant dependence of the sought-for functions and consider their behavior for the 3D
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FIG. 2: The distance behavior of correlation functions, the green line corresponds to the total

correlation function hOO(r) of water under normal conditions, the blue one to the relevant direct

correlation function c̃OO(r) = cOO(r)/cOO(r = 0). The inset shows the similar behavior of short-

range direct correlation function c̃s(r) = [cOO(r) + βU(r)]/cOO(r = 0) in the core the interface

regions.

format, since the angular averaging does not affect this behavior. First, we note that kernel

χ(r) has complicated behavior (see Fig. 1), it oscillates at large distances weakly decaying.

The scale σv of the oscillations is determined by the real part of the first pole of the fourier

transform F(χ) =
∫
exp[ikr]χ(r)dr. The decay scale σd is typically larger by a factor of 4-5.

The direct correlation function c(r) decreases rapidly at distances less than size σu deter-

mined by an increase of the potential U(r → 0) (see Fig. 2). We denote this region as the

core (r < σu). At the same time, the direct correlation function c(r) is quite close to −βU

at r > σu + σv. We define this region as a linear response (LR) region, since it can be easily

obtained from the OZ equation that h → −βχ ∗ U in the region, (where symbol ∗ means

convolution integration). We can obtain the asymptotical behavior of the total correlation

functions from the closure relation:

h(r → 0) = −1. (4)

Moreover, the transition to the short-range limit r → 0 occurs rapidly at r < σu. The

function h(r) rises sharply at distances above σu and typical scale of these changes is about
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FIG. 3: The distance behavior of gOO(r) in the region of the exponential growth. The inset shows

the similar behavior of the interaction potential U(r) at the same region.

of ds = 0.05σu (Fig. 3 ). We refer the region (σu < r < σu + σv) as the interface region.

On the other hand, the total correlation function h(r) oscillates at large distances weakly

decaying, the scales of oscillations and decay are mainly determined by the first pole of the

function χ. Thus, we have three domains (the core, the interface, and the LR regions) in

which the behavior of correlation functions is quite different (see, Fig.2).

III. IET IN TERMS OF SOLVENT INDUCED POTENTIAL

Variational formulation of IET. Below we focus on the 3D format, the extension to

the 6D and 1D consideration is straightforward. Following the density functional theory for

nonuniform molecular liquids14 we consider the density functional of the free energy A(n(r))

determined by the relation:

βA(ni(r)) =
∑
i

∫
ni(r)(ln[

ni(r)

n0

] + βUi(r)− 1)dr

−1

2

∫ ∫ ∑
ij

∆ni · Cij(r− r′, ni) ·∆nj(r
′)drdr′, (5)

where ni(r) is the density distribution of solvent sites of type i around the solute, while

∆ni(r) = ni(r) − n0 is the change in this distribution, and n0 is the average density of
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the solvent. This distribution is related with the relevant correlation functions hi(r) as

ni(r) = n0(hi(r) + 1). In the above equation, the matrix Cij(r − r′, ni) is the second order

direct correlation function, which functional dependence on ni is not known in the general

case. However, we may relate Cij(r−r′, ni) with the similar function of pure solvent C0
ij(r−r′)

(see Fig. 1) while the later can be expressed in terms of solvent susceptibility:

Cij(r− r′, ni) = C0
ij(r− r′) + ∆Cij(r− r′, ni) C0

ij(r) = δijδ(r)/n0 − χ−1(r). (6)

The above free energy functional A(n(r)) corresponds to the general formulation of 3D

solvation problem, however a successive application of the functional to molecular liquids

depends on the appropriate choice of the functional dependence ∆Cij(ni). If this dependence

is known, then the calculation of functional derivative C′
ijk = δ∆Cij/δnk is straightforward.

We do not focus here on this problem and will discuss it elsewhere. The minimization of the

free energy functional A(n(r)) with respect to n(r) leads to the nonlinear integral relations

ln[hi(r) + 1] = −βUi(r) + hi(r)−
∑
j

χ−1
ij ∗ hj +Bi(r), (7)

where we introduce the bridge functionBi =
∑

jk ∆nj∗C′
ijk∗∆nk/2. In this paper we assume

B = 0 that corresponds to the so called hypernetted chain closure (HNC). We note that eq.

(7) can be transformed to the closure relation by the substitution ci(r) =
∑

j χ
−1
ij ∗ hj(r),

while the inverse form of the later equation leads to the 3D OZ integral equation. Therefore,

the free energy functional (5) provides the variational formulation of the IET for molecular

liquids.

Solvent induced potential. We introduce new variables ui(r), which refer to as solvent

induced potential (SIP):

ui(r) = ln[hi(r) + 1]/β + Ui(r). (8)

The SIP has physical meaning, it is related with the mean-force potential Wi(r) = ui − Ui,

and with change in the excess chemical potential ∆µi(r) caused by insertion of the solute

in the position r from the i-th solvent site:15

ui(r) = µi + µu −∆µi(r), (9)

where µi and µu are excess chemical potentials of the i-th solvent site and solute, respectively.

Manipulation with the SIP has some advantages with respect to the conventional treat-

ment of the IET of molecular liquids, since
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FIG. 4: Distance behavior of us(r) of the oxygen-oxygen SIP for water under normal conditions in

the interface region. The inset shows the similar behavior of the relevant u(r).

a) in contrast to h and c the SIP is a smooth function without any sharp changes (see

Fig. 4);

b) data on the SIP are enough to calculate both h and c, while knowledge of functions h

and c is not enough to evaluate the SIP;

c) the free energy functional is quadratic for certain closure approximations like as HNC,

and partially linearized HNC.

IET in terms of SIP. The IET can be rewritten in terms of the SIP as the linear

integral equations (when the function h is known):

βui(r) = Cij ∗ hj. (10)

This reformulation allows us to account asymptotical behavior of the correlation function h.

For this purpose, we consider the zero approximation h0i (r) of this function by introducing

the Mayer function

fi(r) = exp[−βUi(r)]− 1. (11)

Then we define h0i (r) as

h0i (r) = exp[−βUi(r) + Cij ∗ fj]− 1. (12)
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FIG. 5: The distance behavior of h(r) (blue curve) and h0(r) (green curve) of the oxygen-oxygen

for water under normal conditions. The inset shows the similar behavior for h(r) (blue curve) and

residue h(r)− h0(r) at the interface region.

This approximation can be easily evaluated before solution of integral equations. Moreover

this approximation reveals all the peculiarities of asymptotical behavior of h, it is quite

close to -1 below σu, and corresponds to the linear response in the LR region. The difference

between h0i (r) and hi(r) is significant only in the narrow interface region (Fig. 5). Therefore,

using the substitution

β∆ui(r) = βui(r)− Cij ∗ h0j , (13)

we reduce the problem to the evaluation of the SIP residue in the interface region

β∆ui(r) = Cij ∗ [hj − h0j ] = Cij ∗∆hj (14)

We will show below that the evaluation of the SIP in the core region is straightforward when

the SIP is known for interface region.

Solvent induced potential and the Poisson-Boltzmann equation. The kernel C0
ij

reveals a complicated distant dependent behavior. But, it can be split in the short-range

(Cs
ij) and the long range parts as

C0
ij(r) = Cs

ij(r)−
βqiqj
rij

. (15)
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Then introducing the electrostatic potential ψ(r) as

ψ(r) =
∑
j

∫
R3

qjnj(r1)dr1
|r− r1|

, (16)

we may also split the short-range and the long-range part of the SIP:

ui(r) = usi (r) + qiψ(r). (17)

The short-range contribution usi (r) is to be calculated by the integral equation:

βusi (r) = Cs
ij ∗ hj, (18)

while the integral equation for electrostatic potential ψ(r) can rewritten in the differential

(local) form:

∇2ψ(r) = 4π
∑
j

qjnj(r). (19)

The last relation is the Poisson-Boltzmann (PB) equation,16 whereas various approximations

used for nj and us to evaluate integral in (16) result in the so-called nolocal electrostatic

approach.17 Therefore, we conclude ui(r) to be a change in the electrochemical potential,

while us and ψ are its non-electrostatic and electrostatic contributions. Although the relation

between ui and the Poisson-Boltzmann equation is known, the incorporation of the short-

range part usi is not straightforward and has been provided only for very simply models.18

In the general case, the algorithms for calculations of usi and ψ are to be different, be-

cause they have distinct long-range asymptotical behavior. There are several approaches

for solutions to the PB equation based on wavelets, multigrid, or multiscale methods (see,

review8). Below, we will focus on methods for evaluations of the short-range part us, while

the evaluations of the electrostatic potential will be considered in a separate paper.

IV. IET IN THE BASIS SET REPRESENTATION

Approximation of sought-for functions. To describe the main idea, we omit below

solvent indexes (considering a monoatomic liquid). The extension of the proposed algorithms

to the case of molecular liquids and nonzero bridge is straightforward, we should consider

matrices instead relevant vectors, tensors instead of the relevant matrices, etc.
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Let’s us expand the sought-for functions u (the index s is also omitted below) and h in

an orthogonal basis set a(r) = {a1(r), a2(r), ..., aNs(r)} whose dimension is Nn:

∆u(r) =
Ns∑
s=1

ûsas(r) = û · a, ∆h(r) =
Ns∑
s=1

ĥs, as(r) = ĥ · a (20)

where a is the vector of the basis functions, while ĥ and û are the vectors of the approx-

imating coefficients for the corresponding sought-for functions, while symbol · means the

scalar product. Then, the integral equation (18) can be rewritten in the matrix form for the

approximating coefficients

βû = Ĉ · ĥ, (21)

where Ĉ is the matrix which elements Cij are obtained by double integration

Cij =

∫
R3

∫
R3

ai(r)C(r− r1)aj(r1)drdr1. (22)

Therefore, the problem can be reduced to the iterative solution of the matrix equation

β∆û(n+1) = Ĉ · ĥ(n), (23)

while the n-th iteration of function h(r) is expressed in terms of vectors a and û(n):

h(n)(r) = exp[−β(U(r) + û(n) · a)]− 1. (24)

Hence, we may propose the following iterative scheme: a) initial stage: fast evaluation of

matrix Ĉ and vector ĥ0 with the use of a basis set and further storage of these arrays in a

memory, b) iterative solution of (23) and (24). Formally, this stage can be written as

û(n) → (24) → h(n) → (20) → ĥ(n) → (23) → û(n+1). (25)

Of course, there are a lot of ways to provide such iteration, but we outline an approach

which naturally account properties of the sought-for functions, namely, their smoothness,

localization, and asymptotical behavior.

Reduction of the 3D integrals to evaluations in the interface region. We divide

the whole volume into the core, the interface, and the LR regions, i.e.

R3 = Vcr ∪Vir ∪Vlr. (26)

Since the difference h(r)− h0(r) is nonzero only in the interface region, then calculations of

the integrals can be reduced only to evaluations in this region. We remark that this region

includes only 1-2% of mesh points used in the uniform FFT (see Fig.6). Thus, we reduce

the complexity of computational costs by 50 times.
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V. CONSTRUCTION OF REAL SPACE MESH FOR 3D SOLVATION

Domain decomposition with the use of solvent accessible surface. First, we

should decompose the interface region to provide the required integration with high ef-

fectiveness. The concept of solvent accessible surface (SAS) can be applied to perform

such decomposition. The SAS has been introduced to calculate free energy of hydrophobic

solutes.19 The meaning of the SAS is the following. The hydrophobic solute can be presented

as a collection of hard spheres with van-der-Waals radii. When rolling a sphere, representing

a solvent molecule, over the van der Waals surface of the solute, we can construct the SAS

as the locus of points swept out by the center of the solvent sphere.20 The free energy of the

hydrophobic solutes is assumed to be proportional to SAS. Now, this concept is widely used

to built SAS and other molecular surfaces around biomacromolecules. There are effective

tools21 which are able to perform fast calculations of the SAS as well as the first and the sec-

ond derivatives of the SAS with respect to atomic coordinates. Typically the computation

of SAS require the number operations which is linearly (for small solutes) or quadratically

(for large solutes) proportional to the number of the solute atoms.

Of course, we can not reduce volume integrals to the evaluation of a SAS, but we may

split the interface region into the few scaled SASs and reduce the problem to the evaluation

of surface integrals. Thus, the interface region can be presented as a collection of spherical

shell elements (SSE) build from relevant parts of scaled SASs (see, Fig. 7). Each SSE

represents a set of scaled SAS elements (SE). Such construction is supposed to decrease

significantly the computation of the volume integrals, because the angular dependence of

the sought-for functions in each SSE is to be very weak. Therefore, we perform the following

division of the interface region:

Vir = V1 ∪V2.... ∪VNsse , Vi = Si1 ⊗ dr ∪ Si1 ⊗ dr...SiNse ⊗ dr, (27)

where Vi is the volume of the i-th SSE, while Sis is a s-th scaled SAS which belongs to the

i-th SSE. Due to that we can construct basis set as a union of basis sets asi (r) for each SSE,

where the first index corresponds to the s-th SSE, while the second index indicate the i-th

basis function for this SSE. Then, all the equations can be rewritten in terms of this union

basis set.

Orthogonal polynomials and spherical harmonics as the optimal basis set. As

we have indicated above, the variable u(r) is a very smooth function. Its distance dependence
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FIG. 6: Sketch of solvation in the interface region. The 3D distribution function of water oxygen

around α-chymotripsinogen obtained in Ref.22. The grey cells correspond to the uniform mesh of

size 1283 used in the current IET algorithms. The solid green curves indicate boundaries of the

interface region.

in the interface region seems to be approximated by low-order polynomials. It is expected

their order does not exceed 6, since the SIP is 5-order piece-wise polynomial for the hard-

sphere potential U(r). The change of the hard-sphere potentials to the Lennard-Jones ones

does not effect the polynomial order but only smooths the SIP behavior at the contact region

r ≈ σu where derivative of the SIP is discontinues for the hard sphere potentials.

Thus, we may use the Chebyshev polynomials Tk(r) to approximate distance dependence

for each SSE. Since, the interaction potential U is a sum of spherical contributions, we

may use spherical coordinates and apply the spherical harmonics Pm
l (θ, ϕ) to approximate

angular dependencies. Hence, we construct the basis set as a product of the Chebyshev
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FIG. 7: Sketch of domain decomposition of the intreface region. The violet curves depict scaled

SAS, the blue and the yellow regions correspond to spherical shell elements consisting from patches

of the corresponding SAS.

polynomials and spherical harmonics

askml(r) = Tk(|r− rs|)Pm
l (cos θ) exp[imϕ]. (28)

We denote this basis set as(r) as the tensor product of the orthogonal polynomials and

spherical harmonics

as = as
T ⊗ as

P , (29)

where as
T and as

P are respective subsets consisting of the polynomials and the harmonics.

Then, we can rewrite matrix eq. (21) in the tensor form:

ûs = ûs
T ⊗ ûs

P , ûs
T = ĥs

T · ĈT , ûs
P = ĈP · ĥs

P . (30)

where ûs
J is the vector of the approximating coefficients of the J−the subset (J = T, P )

while ĈT and ĈP are the matrices whose elements are equal to of the scalar product of the

kernel and the respective basis functions.

It is important that due to construction of the SSE the angular dependency of the total

correlation function h is very simple for each SSE and may be approximated by few spherical
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harmonics, whereas the angular dependence of the kernel is very complicated for each SSE.

However, the complexity of calculations of the scalar product ĥs
P · ĈP would be determined

by dim(ĥs
P ) not dim(ĈP ). On other other hand, the radial dependence of h is not smooth in

the core region in contrast to the that of the kernel, therefore the complexity of calculations

of the scalar product ĥs
T · ĈT is to be determined by dim(ĈT ) << dim(ĥs

T ) . Thus, we can

cut off the approximations of the radial dependence of h and the angular dependence of Ĉ

and account only the few approximating coefficients of them.

VI. EFFECTIVE CALCULATIONS OF THE KERNEL

Evaluation of kernel in the tensor product approximation. In the general case,

the kernel C(r− r′) is degenerate, i.e. it can be expressed as a product23

C(r− r1) ≈
Nmax∑
n=1

yn(r) · xn(r1). (31)

To prove it, we use the Taylor expansion:

C(r− r1) =
∞∑
n=1

rn1 · ∇nC(r)
n!

. (32)

However, the function C(r) is smooth outside the region of exponential growth (which is

very narrow, see inset in Fig. 2). Hence, this function has only few nonzero derivatives

and may be well approximated by few number of piece-wise polynomials with an accuracy

proportional to scale of the region of exponential growth. For examples, in the case of

hard-sphere potentials U the function C is to be the third-order polynomial.24 Thus, we my

reduce infinite sum (32) to evaluations of few first terms by (31). Then, the matrix Ĉ can

be also decomposed as the tensor product, i.e.

Ĉ = L̂ · R̂, L̂ = a⊗ rn, R̂ = fn ⊗ a, (33)

where fn = ∇nC(r)/n!, and elements of matrices L̂ and R̂ are 3D integrals (not 6D as Ĉ):

L
n[s]
i =

∫
Vs

rnasi (r)dr, R
n[s]
i =

∫
Vs

fn(r)a
s
i (r)dr. (34)

Moreover, the matrix L̂ includes evaluations of the few first moments of the basis functions

and it is independent on the input data. Therefore, using orthogonal polynomials as the basis
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set, we may reduce strongly the dimension of the basis from Ns down to Nmax corresponding

to the number of nonzero derivatives of the kernel.

At the same time, we need only to modify L̂ for calculations of SIP in the core region

and construct it from elements. The elements of matrix L̂ are to be modified as

L̃
n[s]
i =

∫
Vcr

rnasi (r)dr. (35)

Therefore, we reduce the problem to the evaluations the SIP in the interface region.

Application of the fast spherical Fourier transform and fast polynomial trans-

forms. We reduce the problem to the evaluation of volume integrals on each SSE. These

integrals are to be calculated by consequent integration over the shell surfaces and the shell

widths. Both the integration procedures may be accelerated by the non-equispaced FFT

(NFFT).25 In the case of the surface integration we may use the fast spherical Fourier trans-

forms (see for example Ref.26). In the general there are several methods to provide it, (see,

for example discussions in27,28), depending on the choice of nodes (arbitrary or special grid),

applying discrete cosine transform or fast multipole methods, etc. We suppose to use the

standard discretization of the sphere surface, consisting of all pairs of the form (θl, ϕm) with

cos(θi) (0 ≤ i ≤ 2l − 1) being the Gauss-Legendre quadrature nodes of degree 2l and ϕm

being equispaced on the interval [0; 2π]. It has been shown26,27 what the computational com-

plexity of such calculations may be decreased down to O(l2m ln lm) where lm is the so called

bandwidth of the approximated functions. As we estimate above, the bandwidth lm is to

be about of dim(ĥs
P ). On the other hand, an effective summation over different scaled SAS

which belong to the same SSE can be provided by the fast discrete polynomial transform,29

which is also has computational complexity O(Nr lnNr), where Nr is the number of the

scaled SAS of each SSE. We cas estimate Nr as Nr ≈ dim(ĈT ). Thus, the total complexity

of the fast computation is about of O(NSSE ∗ dim(ĈT ) ∗ dim2(ĥs
P ) ln[dim(ĈT ) + dim(ĥs

P )],

where NSSE is the total number of SSE which is to be about of number of solvent accessible

atoms. We expect dim(ĈT ) < 4 and dim(ĥs
P ) < 3 to be enough to provide a reasonable

accuracy of calculations in most of cases.
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VII. DISCUSSION AND SUMMARY

Using correlation functions derived from the linear response theory as an initial guess,

we reduce the 3D solvation problem to evaluations of the SIP residue ∆u(r) in the nar-

row interface region. Due to such consideration, we reduce the number Ngrid of grid points

by 2 orders. However, effective RSM techniques are to be applied to provide the similar

reduction of the computational complexity of the problem. In general, various basis set

representations can used for it. The curvlets30, multidimensional splines,31 and multivari-

ate orthogonal polynomials are the most popular approaches in the 3D case. We choose

orthogonal polynomials, since the sought-for functions are very smooth and may be well ap-

proximated by low-order polynomials. The Chebyshev series seems to be most suitable for

the 3D solvation problem, since the Chebyshev polynomials can provide FFT in a bounded

interval. It allows us to apply NFFT and reduce the computational complexity to the

value Ngrid lnNgrid. If we increase the number of finite elements by an additional subdivi-

sion of SSE, we can apply B-splines instead of polynomials and perform NFFT in a way

similar to that proposed in Ref.32 However, we believe the proposed approach to be a rea-

sonable balance between complexity caused by the complicated shape of molecular solutes

and smoothness of the sought-for functions. The domain decomposition of the interface

region in terms of SSE built form patches of SAS can provide a further reduction of the

computational complexity. We assume to use the tensor decomposition of the kernel for

non-contacted SSE. Such decomposition allows us to apply the Fast Multipole Method and

decrease the computational complexity to Ns lnNs, where Ns is the number of grid points

for two neighboring SSE. We suppose the total complexity of the computation to be about

of dim(ĈT ) ∗ dim2(ĥs
P ) ln[dim(ĈT ) + dim(ĥs

P )], while the total number of the SSE can vary

from units up to thousands. Therefore, the computational complexity can be reduced down

to 103 for small organic solutes and to 104 for biomacromolecules instead of 8 ∗ 106 and of

8 ∗ 107 provided respectively by current algorithms based on the uniform FFT.33,34

Summary Starting from the free energy functional for the 3D solvation problem, we

reformulate the IET of molecular liquids in terms of the solvent induced potential. It al-

lows us to reduce the problem to evaluation of the volume integrals in the interface region.

Then, we perform a domain decomposition of the region in terms of spherical shell (finite)

elements consisting from of the relevant surface elements. These surface elements are built
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from scaled solvent accessible surfaces. We suppose to use the NFFT or the tensor product

approximation for fast evaluation of the kernel. The computational complexity of the cal-

culations are assumed to be reduced by 103 times with respect to current algorithms of the

molecular solvation, which are based on the uniform FFT.

VIII. APPENDIX. OVERVIEW OF IET OF MOLECULAR LIQUIDS

Full molecular (6D) Format. For a homogeneous molecular liquid the MOZ equation

is written by:12

h(r,Θ) =

∫
R3

∫
Θ

χ(r− r1,Θ−Θ1)c(r1,Θ1)dr1dΘ1, (36)

where Θ contains all possible orientations of a molecule, Θ = {(ψ, θ, ϕ) | ψ ∈ [0, 2π], θ ∈

[0, π], ϕ ∈ [0, 2π]}, while the solvent susceptibility function χ(r,Θ) describes the mutual

correlations of the sites of solvent molecules in the bulk solvent. This function is the input

data of the problem in the case of infinitely diluted solution. The MOZ equation must

be complemented with a closure relationship, which is an additional equation that relates

h(r,Θ) with c(r,Θ). The general form is the closure relation is written as

h(r,Θ) = exp[−βU(r,Θ) + h(r,Θ)− c(r,Θ),+B(h− c)]− 1 (37)

where U(r,Θ) is the solute-solvent potential (input function), β is the inverse temperature,

while B(h− c) is the bridge function depending on the difference γ = h − c, the later

functional dependence is also input data. At the current level the MOZ can be solved only

for rather symmetrical type of potential U .

Reduced (1D RISM) Format. The conventional approximation is to reduce the

dimensionality by averaging the functions over angular distributions. It is performed by

averaging the susceptibility around solvent sites. Then, we have a set of three-dimensional

(3D) susceptibilities χij(r) instead of 6D susceptibility, i.e. χ(r,Θ) ≈ χij(r):

χij(r) =
1

4π

∫
Θ

χ(r+ rij,Θ)dΘ, (38)

where rij is the shift vector, when we rotate solvent site j around solvent site i. Then, we

obtain the integral equations in 3D format (see Sec.2).
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The further reduction my be obtained by averaging the functions around solute sites

cij(r) =
1

4π

∫
Ω

ci(r+ rj)dΩ, (39)

where Ω is the solid angle defined by orientation of vector rj. The model is referred to as

1D reference interaction site model (1DRISM),35 for which the OZ equations are given by

hij(r) =
Nu∑
s=1

Nv∑
m=1

∫
R3

∫
R3

ωis(|r− r′|)csm(|r′ − r′′|)χmj(r
′′)dr′dr′′, (40)

where Nu is the number of solute sites (in the general case, it may exceeds hundreds and

even thousands for macromolecular solutes), ωij(r) is the intramolecular correlation function

written as

ωij(r) = δij + [1− δij]
δ(r − rij)

4πr2ij
, (41)

where rij is the distance between the solute sites, and δ(r− rij) is the Dirac delta-function.

The reduction of the closure relation is similar, we need to replace only the sought-for 6D

functions by the relevant distant dependent matrices. Within the framework of 1D RISM

approach the solute and solvent molecules are modeled as a set of sites interacting via

pairwise distance dependent potentials Uij(r). Thus, the input functions are the following

ωij(r), χij(r), Uij(r), Bij(γ), and β. Again, the averaging increases the size of the sought-for

functions transforming them into matrices, but strongly decreases the dimensionality of the

integrals. Although, the complete treatment of (40) required 6-fold integration, applica-

tion of the fourier transform reduces it to a set of linear equation for the relevant fourier

transforms.

Iterative scheme of the solution. In this subsection we omit the distance and the

angular dependencies of the sought-for functions, because the scheme of the solution of

integral equation is the same for the 1D, the 3D, and even the 6D format. In all these

cases, the equations are solved by an iterative scheme. Combining the OZ and the closure

equations, it can be easily obtained the recurrent relation between n+ 1 and n iterations:

F(h(n+1)) = F(χ) · [F(h(n))−F(ln[h(n) + 1] + βU)]. (42)

Unfortunately, this relation can be hardly used, because function ln(h+1)+βu is ill defined

at small distances. However Eq. (42) can be rewritten in terms of new variable γ = h − c

(referred to as indirect correlation function) and expressed as

F(γ(n+1)) = F(χ) · [F(exp[−βU + γ(n)]− 1)−F(γ(n))]. (43)
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Therefore, the conventional algorithm for solution of the integral equations is based on the

fast fourier transform (FFT), whereas the iterative scheme can be schematically written by

γ(n) → FFT → F(γ(n)) → OZ → F(γ(n+1)) → IFFT → γ(n+1), (44)

where IFFT means inverse fast fourier transform. The conventional algorithms are based on

the 1D and the the 3D FFT for the 1D and 3D RISM respectively. All the current algorithms

apply a uniform grid. The required number of grid points is about Ng = σd/ds > 500 for the

1D RISM, whereas this value rises up to N3
g ≈ 108 for the 3D RISM, since the cartesian grid

is usually used. The application of NFFT instead of FFT is not simple, because the function

γ has a complicated multi-scale behavior, it oscillates at large distances like as h, has a region

in which it rises sharply (exponentially). Moreover, the region of the exponential growth is

very narrow (about 0.03σu) and very sensitive to changes in the input data (potential U and

susceptibility χ).
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