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To solve 3D integral equations of molecular liquids, we have developed a numer-

ical scheme based on the Galerkin method. Using a domain decomposition of the

interface region, we reduce the problem to calculations of approximating coefficients

and the kernel matrix in spherical shell elements (SSE). Applying the linear trans-

formation of coordinates for each SSE we result in calcualtions of the approximating

coefficients in cubic volumes. Using the conventional triple Chebyshev series as a

basis set, we derive formulas for calculations of the approximating coefficients and

evaluate the computational costs of these operations. We have described the general

properties of the Chebyshev-Galerkin matrix and derived analytical expressions for

recursion calculations of the matrix elements. We have also outlined an iterative

method for the solutions of the nonlinear equations obtained for the approximating

coefficients, which is based on the direct inversion in the iterative space. Finally, we

have estimated the total computational cost of the proposed scheme and compared

it with current algorithms for computing 3D solvation problem. It was found the

proposed scheme to be by 2-3 orders effective than the current algorithms based on

the uniform FFT.
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I. INTRODUCTION

The integral equations theory (IET)1 is a perspective approach to investigate solvation

phenomena. Despite of a recent progress in this field, applications of the theory is still

limited in the case of molecular liquids. The reason of that is the absence of fast and

effective algorithms for calculating the sought-for correlation functions, which are to be

three-dimensional (3D) in the case of molecular solute immersed in a molecular liquid. The

current IET algorithms are based on the uniform fast fourier transform (FFT) which implies

a uniform cartesian grid in a large region, while the IET approach reduces the problem to

evaluations of the sought-for functions at the grid points in this volume. The bottleneck

of the current IET algorithms for search of such solution is likely that the extension of the

uniform FFT to high dimensions requires to treat enormous large number of grid points.

Indeed, high dimensionality of the sought-for functions restricts sufficiently the resolution

of the FFT, since evaluations of the functions is problematic when the total number of the

sought-for values is greater than 108.

Recently we propose a new approach2 to the 3D solvation problem, which is based on

evaluations with the use real-space meshes (RSM). Previously, we have reformulated the IET

in terms of the solvent induced potential and reduced the problem to evaluation of the volume

integrals in the interface region, which occupies only 1% the uniform FFT grid. We have

performed a domain decomposition of the region in terms of spherical shell elements (SSE)

built from scaled solvent accessible surfaces. We have found the Chebyshev polynomials to

be the most suitable for accurate approximation of the sought-for functions for these finite

elements. With the use of the polynomials, our approach is the Galerkin-Chebyshev (GC)

method3 for evaluating the sought-for functions in the 3D domains.

The goal of this paper is to provide details of the GC method for computing the 3D

solvation problem. In particularly, we evaluate the cost of computations of the Chebyshev-

Galerkin matrix arisen in the solvation problem. We will show that these calculations can be

done analytically in the case when the matrix can be approximated by low-order polynomials.

We also estimate the cost of computations of the approximating coefficients and indicate

that the triple Chebyshev series is to be best for approximating the sought-for functions in

the SSEs. We have derived formulas for evaluations of approximating coefficients and the

Chebushev-Galerkin matrix. We also give the details of iterative solution of the nonlinear
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equations for approximating coefficients, namely, the performance of the direct inversion in

the iterative space (DIIS) method for the proposed scheme. Finally, we will estimate the

total computational costs of the GC algorithm applied for computing 3D solvation problem.

The layout of the paper is the following. We outline briefly the Galerkin scheme in

Sec. 2. Then, in Sec.3 we describe how construct the triple Chebyshev basis set for the SSE,

using the linear transformation of coordinates for each SSE. We will provide formulas for

calculating approximating and evaluate the computational costs of these operations. We

investigate in Sec. 4 the general properties of the Chebyshev-Galerkin matrix, and derived

analytical formulas for recursion evaluations of the matrix elements in the case of polynomial

approximation of the kernel. The summary is given in Sec. 5, while Appendix 1 includes

the basic relations of the DIIS method.

II. THE GALERKIN SCHEME

The IET within the framework of the hypernetted chain approximation (HNC) can be

written in terms of the solvent induced potential µi(r) as:
2

βui(r) = hi(ui(r)) +
Nv∑
j=1

∫
R3

cij(r− r1)hj(uj(r1))dr1, i = 1, ..., Nv, (1)

where hi(ui(r)) is the solute-solvent total correlation function determined as

hi(ui(r)) = exp[−βUi(r) + ui(r)]− 1. (2)

In the above equations the value β is the inverse temperature, Nv is the number of solvent

sites (atoms), cij is the solvent-solvent direct correlation function defined as a numerical

array (input data), and Ui(r) is the solute-solvent potential (input function), which is a sum

of the Lennard-Jones and the long-range Coulomb contributions Ui(r):

Uij(r) =
Nu∑
j

Uij(rj − ri) =
Nu∑
j

4ϵij[
σ12
ij

r12ij
−

σ6
ij

r6ij
] +

qiqj
rij

, (3)

where rij = rj −ri, while qi and qj are the partial charges (input parameters) of the relevant

species, and σij and ϵij are the force field (input) parameters determined the Lennard-Jones

contribution, and Nu is the total number of solute sites (atoms).
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The above relations can be easily reformulated in terms of the residue correlation function

∆hi = hi(r)−h0
i (r), where h

0
i (r) is the zero approximation for the total correlation function

defined as

h0
i (r) = exp[−βUi(r) + fi(r) + cij ∗ fj]− 1, (4)

whereas symbol ∗ means a convolution integration, and fi(r) = exp[−βUi(r)] − 1 is the

Mayer function. The function h0
i (r) can be easily evaluated before solution of the integral

equations. Moreover this approximation reveals all the peculiarities of asymptotical behavior

of h, and the difference between h0
i (r) and hi(r) is not equal zero only in the narrow interface

region. Therefore, using this substitution, we obtain

β∆ui(r) = β[ui(r)− u0
i (r)] = ∆hi(ui(r)) +

Nv∑
j=1

∫
Vir

cij(r− r1)∆hj(uj(r1))dr1, (5)

while u0
i (r) is the SIP corresponding to h0

i , i.e. βu
0
i (r) = h0

i (r) +
∑Nv

j=1 cij ∗ h0
j .

We decompose the interface region by spliting it into the few scaled surface accessible

surfaces (SASs). Thus, the interface region can be presented as a collection of spherical

shell elements (SSE) build from the relevant patches of scaled SASs (see, Fig. 1). Each

SSE represents a set of scaled SAS elements. There are effective tools4 which are able to

perform fast calculations of the SAS as well as the first and the second derivatives of the SAS

with respect to atomic coordinates. Such construction is supposed to decrease significantly

the computation of the volume integrals, because the angular dependence of the sought-for

functions in each SSE is to be very weak. Therefore, we perform the following division of

the interface region:

Vir = dNs
s=1Vs, (6)

where Vs is the volume of the s-th SSE, and Ns is the total number of the SSE.

Let’s us expand the sought-for functions ∆ui and ∆hi in an orthogonal basis set ap(r):

β∆ui(r) =

Np∑
p=1

ûipap(r) = û · a, ∆hi(r) =

Np∑
p=1

ĥipap(r) = ĥ · a, (7)

where a is the vector of the basis functions, while ĥ and û are the vectors of the approx-

imating coefficients for the corresponding sought-for functions, while symbol · means the

scalar product. Then, the integral equation (5) can be rewritten in the matrix form for the
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approximating coefficients

û = ĥ+ Ĉ · ĥ, (8)

here Ĉ is the matrix which elements Cij(m, s) are obtained by double integration:

Cij(m, s) =

∫
Vir

ωr

∫
Vir

ωr1am(r)cij(r− r1)as(r1)drdr1. (9)

where ωr and ωr1 are the relevant weight coefficients. Finally, the problem can be reduced

to the iterative solution of the matrix equations

û(n+1) = ĥ(n) + Ĉ · ĥ(n), (10)

while the n-th iteration of function ∆hi(r) is expressed in terms of vectors a and û(n):

h
(n)
i (r) = exp[−β(Ui(r) + u0

i (r)) + û(n) · a)]− h0
i (r)− 1. (11)

Hence, the procedure includes two stages, namely, a) initial stage: fast evaluation of matrix

Ĉ with the use of a chosen basis set and further storage of the array in the operating memory,

b) iterative solution of (10) and (11). Formally, this stage can be written as

û(n) → (11) → h(n) → (7) → ĥ(n) → (10) → û(n+1). (12)

This stage requires only evaluation of approximating coefficients ĥ and û, then the further

iterative solution of nonlinear equations coupled these coefficients.

The proposed scheme is the spectral Galerkin method5 extended to the case on non-

linear integral equations. It includes three main operations: a) evaluations of matrix Ĉ;

b) calculations of approximating coefficients ĥ and û; c) an iterative solution of nonlinear

equations. The most time-consuming procedure is the evaluation of Ĉ. In the general case,

it requires calculations of N2
p matrix elements at the number N2

p of grid points. However

due to recursion relations for orthogonal polynomials, the cost of the computations can be

decreased down to N2
p operations (see, Sec. 4.1). Moreover, we will exploit the smoothness

of matrix Ĉ like it has been done in Ref.6. Due to this effect, the functions cij(r) can be

approximated by low- order polynomials. Then, using a special basis set (Chebyshev poly-

nomials) we can evaluate analytically all the elements of the matrix Ĉ (see, Sec. 4.2) that

reduces significantly the cost of computations.

In the general case, the evaluations of approximating coefficients require N2
p operations

(Np coefficients at Np points). But again, the applications of Chebyshev polynomials can



6

reduce this cost down to Np lnNp due to applicability of the FFT to Chebyshev polynomials.

Therefore, the use of Chebyshev polynomials reduces significantly the cost of the main

operations, i.e. evaluations of matrix Ĉ and calculations of approximating coefficients.

The last task is to provide effective iterative solution of nonlinear equations. For this

purpose we will use the DIIS. The method has been introduced in Ref.7 to accelerate the

convergence of solution to nonlinear equations arisen in quantum chemistry. The DIIS

method does not guarantee the convergence of solution in the general case, however it

provides a superlinear convergence for linear and weakly nonlinear algebraic equations.8

There is a strong link between the DIIS and Krylov space methods, it can be viewed as a

globalization of the well-known GMRES procedure9 to nonlinear equations.8 The Appendix 1

includes the basics of the DIIS method. Applications of the DIIS to the IET indicate10 that

the method converges in the most cases with number Nit of iterations less than 200. Thus, we

need to provide provide efficient evaluations of approximating coefficients and fast evaluation

of matrix Ĉ. Both the procedures depend strongly on the choice of the basis set. Moreover,

we will use a special shape-preserving domain decomposition of the interface region. Due to

this decomposition, the sought-for functions have weak angular dependencies in each SSE

that additionally decreases the number of the approximating coefficients and increases the

effectiveness of the scheme. However, to treat this angular dependencies we are to provide

a special basis set using the mapping of the SSE to the cube (see Sec. 3).

III. CHOICE OF THE BASIS SET FOR EFFICIENT EVALUATIONS OF

APPROXIMATING COEFFICIENTS.

Mapping of shell elements. Therefore, the interface region is decomposed as a set

nonoverlapping SSEs, each of them has an annular form which can be characterized by cut-of

radii, inclination and azimuth angles, i.e. each SSE represents an annular domain (Fig.1b)

limited by boundaries

rs − σv < r < rs + σv, 0 < θ < θs, 0 < ϕ < ϕs(θ). (13)

We should remark that in the general case the dependence ϕs(θ) is to be determined by

overlapping of solvent induced surfaces, which can be very complicated. Below we consider

the simple case then ϕs = const while the complicated boundaries will be discussed at the
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end of Sec. 5. The spherical coordinates are to be the natural choice in this case. Then the

approximating coefficients are defined by the three-fold integration:

û =

∫ rs+σv

rs−σv

ωr

∫ θs

0

ωθ

∫ ϕs

0

ωϕ∆ui(r)as(r, θ, ϕ)r
2drd(cos θ)dϕ (14)

where ωr, ωθ, and ωϕ are the relevant weight factors depending on the choice of the basis

set. Thus, our task is to choose a bsis set which provides fast 3D integration in the SSE.

We can map each SSE to the unit annulus by the coordinate transformations (Fig.1b):

r̃ = (r − rs)/σv, θ̃ = πθ/θs, ϕ̃ = πϕ/ϕs. (15)

Such transformations are often used for spherical-surface limited areas, cups, part of disc,

etc (see, for example11–15). Then, the basis set expressed in these transformed coordinates

becomes to be independent on the index of the shell element and the conventional methods

for constructing the basis set may be used.5

Radial dependence. Since the radial dependence is limited by the finite interval,

the Chebyshev polynomials Tn(r̃) (r̃ ⊂ [−1, 1]) seem to be best for the approximation.

Of course, there are other possibilities like as Zernike polynomials, radial basis functions,

etc (see, Ref.16). However we choose the Chebyshev polynomials due to simplicity of the

manipulations with them. An advantage of this choice is a possibility of the FFT for fast

evaluation of the radial dependence. Another attractive feature of the polynomials is that

they provide fast mesh-free evaluation of kernel (see Sec. 4.2). In the case of the discretization

of the interval by Nr, the approximating radial coefficients can be computed by Nr lnNr

operations. The weight factor ωr is to be determined by the orthogonality of the polynomials

at the unit annulus, i.e. ωr = σv/r(σ
2
v − (r − rs)

2)1/2. Using the conventional substitution

r̃ = cos y we transform these polynomials to the suitable form Tn(r̃) = cy cos(ny) where cy

is the normalization constant. Finally, the integration over the radius can be expressed as∫ rs+σv

rs−σv

ωr∆ui(r)Tn(r̃)r
2dr = cy

∫ π

0

∆ui(r)(rs − σv cos y) cos(ny)dy. (16)

This integration may be discretized with the use the Chebyshev-Gauss-Lobotto points yj =

πj/Nr as

≈ 2cNr

Nr

Nr∑
j=0

∆ui(rs − σv cos(
πj

Nr

), θ, ϕ)(rs − σv cos(
πj

Nr

))cj cos(
πjn

Nr

), (17)
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where c0 = cNr = 1/2, and cj = 1, (0 < j < Nr).

Angular dependence. The situation with angular dependence is more complicated.

There are three possibilities: spherical harmonics, the double Fourier and the double Cheby-

shev series.18 In previous paper2 we propose to use the spherical harmonics. The advantage

of this choice is that the harmonics can be effectively used for the Fast Multipole method.5

The disadvantage of the spherical harmonics is that the direct application of the recursion

relations is difficult for higher order polynomials. Another disadvantage of the spherical

harmonics is that the FFT can not be applied for inclination angles θ̃ and the cost to calcu-

late approximating coefficients would be N2
θ , whereas it would be Nϕ lnNϕ for longitudinal

direction, where Nθ and Nϕ are the respective numbers of the grid points in the longitudinal

and the latitudinal directions. We expect that Nθ < 5 and hence, the absence of the uniform

FFT for the latitude can increase the computational costs by 3-4 times. On the other hand,

the integration procedure over latitude may be accelerated by the non-equispaced FFT.17

Comparative analysis indicates what spherical harmonics provide the best convergence on

a sphere for boundary and eigen-value problems.18 Unfortunately, in the general case we

have nonperiodical boundary conditions at each SSE, and hence the Chebyshev polynomials

are more suitable in this case since the double Fourier series and the associated Legendre

polynomials are useful only in global or hemisphere domains.18 Therefore, the integration

over angles expressed as∫ θs

0

ωθ

∫ ϕs

0

ωϕ∆ui(r)as(r, θ, ϕ)d(cos θ)dϕ =

∫ π

0

∫ π

0

∆ui(r)Tl(θ̃)Tm(ϕ̃)d
θsθ̃

π
d
ϕsϕ̃

π
. (18)

Using equispaced discritezation for ϕ̃j = πj/Nϕ and θ̃p = πp/Nθ, we transform the above

integral into the double sum:

≈
4ϕsθscNθ

cNϕ

π2NϕNθ

Nθ∑
p=0

Nϕ∑
j=0

∆ui(r, θ, ϕ)cpcj cos(
πlp

Nθ

) cos(
πmj

Nϕ

), (19)

where c0 = cNϕ
= cNθ

= 1/2, cj = 1, (0 < j < Nϕ), and cp = 1, (0 < p < Nθ).

Then, using the triple Chebyshev series as a basis set, we can apply the FFT in all the

directions. Thus, the computational cost of approximating coefficients is to be proportional

Ns ∗Nr ∗Nϕ ∗Nθ ln(Nr ∗Nϕ ∗Nθ). We should remark that the angular dependence of ĥ and,

hence, û are to be very weak, they can be approximated by low-order polynomials.
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FIG. 1: Sketch of SSEs: a) domain decomposition of the intreface region, b) fine structure of the

volume element indicated as SSE1 in (a) , and c) mapping of SSE1 to the cubic element [0, π]3 by

the transformations of coordinates.

IV. EVALUATIONS OF THE KERNEL

A. General properties of the Chebyshev-Galerkin matrix.

Thus, applying the triple Chebyshev series Tn(cosny)Tl(cos(lθ̃))Tm(cos(mϕ̃)) we need to

evaluate the matrix elements Cij(m, s), where m and s are to be vectors, i.e. m = (n, l,m)
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and s = (n1, l1,m1). Then, using the Fourier transforms, we express the matrix elements

Cij(m, s) as

Cij(m, s) =
1

8π3

∫
ãm(k)cij(k)ãs(k)dk (20)

where ãs(k) is the Fourier transform of the basis function, which can be analytically calcu-

lated. For example, in the case of spherical solutes we have as(k) = Tn(r̃) and its Fourier

transform can be expressed in terms of the Besel functions Jn(x) as:

T̃n(k)=

∫
Tn(r̃) exp[ikr]dr) =

4π

k

∫ π

0

cos(ny) sin[k(rs − σv cos y)]dy

=
4π2

k
sin(krs −

πn

2
)Jn(kσv). (21)

Then integral (20) can be rewritten after discretization by:

Cij(m, s) = 8π2

Nr∑
p=0

sin(kprs −
πm

2
)Jm(kpσv)cij(kp) sin(kprs −

πs

2
)Js(kpσv), (22)

where kp = π/[rs − 0.5σv cos(πp/Nr)].

Therefore, we need to evaluate N2
r matrix elements at Nr points. The functions cij(x) are

symmetric with respect to change of sign of argument, therefore, we are to evaluate only a

half of the matrix elements since Cij(m, s) = Cij(s,m), i.e. the upper triangular part of the

matrix. Moreover the sum m + s should be even, hence both the indices are to be even or

odd and the entries are calculated independently. The even-even entries can be calculated

starting from the top row and the diagonal, while the odd-odd entries starting from the tope

row and the first off-diagonal.19 There is the recursion relation for matrix elements:19

m[Cij(m, s+ 1)− Cij(m, s− 1)] + s[Cij(m+ 1, s)− Cij(m− 1, s)] = 0. (23)

Due to this property, we can generate only 3Nr elements and the total cost of the matrix

computations decreases down to N2
r . All the above considerations remain valid in the more

complicated case of nonspherical solutes. In the 3D case, the recursion relations are to be

given in the vector form by

m(Cij(m, s+ u)− Cij(m, s− u) + s(Cij(m+ u, s)− Cij(m− u, s)) = 0, (24)

where u is the unit vector, which is (1, 0, 0), (0, 1, 0) or (0, 0, 1), respectively. Hence, we can

generate only 27 ∗ Nr ∗ Nθ ∗ Nϕ elements and the total cost of the matrix computations

decreases down to O(N2
r ∗ N2

θ ∗ N2
ϕ) . However, in the case when the functions cij(x)

are smooth, we may avoid the numerical integration at the grid points and reduce the

computational costs to O(M3) where M is the order of the polynomial approximating cij(x).
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B. Polynomial approximation of Chebyshev-Galerkin matrix.

The functions cij(x) are smooth and have no singularities at rs − σv < x < rs + σv.

Therefore they can be approximated by low order polynomial of even powers (the last

property due to sign symmetry):

c(x) =
M∑
k=0

ckx
2k. (25)

In this equation and below we omit indices ij indicating dependency on the solvent cite.

Thus, we have

c(|r− r1|) =
M∑
k=0

ck((r− r1)
2)k. (26)

Therefore we need to evaluate (r2 + r21 − 2r · r1)k at certain k. Using the transformation of

coordinates, we obtain

(r2 + r21 − 2r · r1)k =
k∑

k1=0

(kk1)σ
k1
v [∆rss1 − σv(r̃ − r̃1)]

2k−k1 cosk1 γ (27)

where γ is the angle between vectors r and r1, while ∆rss1 = rs − rs1 . Therefore this

factorization allows us to evaluate independently the radial and the angular dependencies.

Moreover, since cos γ = cos θ cos θ1 + sin θ sin θ1 cos(ϕ − ϕ1), we may factorize the angular

dependencies again

cosk1 γ =

k1∑
k2=0

(cos θ cos θ1)
k1−k2(sin θ sin θ1)

k2 cosk2(ϕ− ϕ1), (28)

and provide a consequent integration over the latitudinal and the longitudinal directions.

Thus, we need to evaluate the integrals of the types:

Ir(na) =

∫ π

0

Tn(r̃)r̃
nadr̃,

Iϕ(nb) =

∫ ϕs

0

cosnb(ϕ− ϕ1)Tm(ϕ̃)dϕ,

Iθ(nc, nd) =

∫ θs

0

cosnd(θ) sinnc(θ)Tl(θ̃)dθ, (29)

where na, nb, nc and nd are some integers. The evaluation of the relevant integrals are

straightforward and given by the following relations:

Ir(na) = 21−na

[na/2]∑
k=0

(na
k )

∫ π

0

Tn(r̃)Tna−2k(r̃)dr̃ = 21−na(na
n ), n ≤ na. (30)
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At the same time, the angular integrals can be calculated with the use of recursion relations:

Iϕ(nb) = amnb
sin(ϕ− ϕ1) cos

nb−1(ϕ− phi1)|ϕs

0 + bmnb
Iϕ(nb − 2) (31)

Iθ(nc, nd) = dlndnc(sin
nc−1 θ cos θnd+1θ − sinnc+1 θ cos θnd−1θ)|θs0

+elndncIθ(nc − 2, nd) + glndncIθ(nc, nd − 2), (32)

where amnb
, bmnb

, dlndnc , elndnc , and glndnc are the recursion coefficients. We should remark

that in the general case when θs ̸= π and ϕs ̸= π, the free terms in (31) and (32) are

also nonzero, and hence the angular recursion relations are to generate infinite chains, cor-

responding to the infinite number of the relevant matrix elements. This results from a

difference in a symmetry of functions cij(x) and Tl(θ̃), or Tm(ϕ̃). However, as we discussed

in ref.2, we may restrict the angular expansions by some order Ms which corresponds to the

symmetry of functions hi(r) for certain SSE, i.e. (r ⊂ Vs).

V. SUMMARY.

We have described the main stages and the details of the Chebyshev-Galerkin scheme

for computing 3D solvation problem. The scheme includes three main steps: fast evalua-

tions of the approximating coefficients, calculations of the Chebyshev-Galerkin matrix, and

the iterative solution of nonlinear equations for approximating coefficients. Using the lin-

ear transformation of coordinates, we reduce the evaluations the approximating coefficients

in each SSE to those in a cube of size Nr ∗ Nθ ∗ Nϕ. Further application of the conse-

quent 1D FFTs provides the computational costs of the evaluations to be of the order of

NrNϕNθ ln(NrNϕNθ). At the same time, the computational cost of kernel calculations are

to be sufficiently less this value, since the matrix elements can be calculated analytically

due to smoothness of the kernel and the recursion relations for the Chebyshev polynomials.

We have derived the main formulas for evaluating the approximating coefficients and the

matrix elements in the case of simple SSEs being a part of the sphere. Thus, applying the

polynomial approximation of functions cij(x) and using the above recursion relations, we

reduce the problem to O(N2
sM min2(M,Ms)) operations, that it is sufficiently less than N2

p

obtained by the direct method (Sec. 4.1). Moreover, the derived analytical formulas allows

us to provide symbolic computations of the matrix elements. We should remark that in the
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case when a solute atom has more than 2 bonds, the boundary ϕs(θ) represents a spherical

polygon. Nevertheless, the approach can be applied in this case also, but the recursion re-

lations for latitudinal coefficients are to be modified in the case of complicated geometry of

this polygon. The final step of the scheme is to be based on the effective iterative solution

of nonlinear equations. For this purpose we use the DIIS method. Therefore, the complete

cost of the proposed scheme is to be about of NitNsNrNϕNθ ln(NrNϕNθ). Since, the volume

of the interface region is at least by two orders less than the total volume of the cell used

in the 3DRISM calculations, the proposed scheme will be by two orders more effective than

the 3DRISM calculations. We expect that Nϕ = Nθ < 5. At the same time, the radial

dependence will be limited by radial dependence of functions cij(r). We expect that these

functions to be approximated by 3-order polynomials of even powers (see Sec. 4.2). There-

fore, Nr < 5 and the total number of operations does not exceed O(600 ∗Ns). If Ns < 103

then it is by three orders less than cost of computations of small organic solutes provided

respectively by current algorithms based on the uniform FFT.20

VI. APPENDIX 1. DIIS METHOD.

We need to find solution û∗ of nonlinear equations:

û ∗ −ĥ(û∗)− Ĉ · ĥ(û∗) = F (û∗) = 0. (33)

Then we compute the n+ 1 iteration in terms of residues ri = û(i+1) − û(i) as

û(n+1) =
n∑

i=l(n)

bi(û
(i) + ri),

n∑
i=l(n)

bi = 1, (34)

by minimazing the least-square functional J = 0.5|
∑n

i=l(n) biri)|2. That results to the set of

linear equations for bj

n∑
j=l(n)

[(ri · rj)− λ]bj = 0,
n∑

i=l(n)

bi = −1. (35)

where (ri · rj) is the norm of the scalar product of the relevant residue vectors. The solution

of this set of linear equation is straightforward. The details of convergence of the DIIS
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scheme have been discussed in Ref.8.
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