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Abstract

We study the coarsening rates for attachment-limited kinetics which is

modeled by nonlocal mean-curvature flow. Attachment-limited kinetics is

observed during solidification processes, in which the system is divided into

two domains of the two pure phases, more precisely islands of a solid phase

surrounded by an undercooled liquid phase, and the relaxation process is

due to material redistribution form high to low interfacial curvature regions.

The interfacial area between the phases decreases in time while the volume

of each phase is preserved. Consequently, the domain morphology coarsens.

Experiments, heuristics and numerics suggest that the typical domain size `

of the solid islands grows according to the power law ` ∼ t1/2, when t denotes

time.

In this paper, we prove a weak one-sided version of this coarsening rate,

namely we prove that ` . t1/2 in time average. The bound on the coarsening

rate is uniform in the initial configuration but requires some control on colli-

sions of different domains. Our approach is based on a method, introduced by

Kohn and Otto [18], relying on the gradient flow structure of the dynamics.

1 Introduction

For more than one century, coarsening phenomena in physics and material

science have been the object of extensive theoretical, experimental, and nu-

merical research. Coarsening is observed in two-phase (or multi-phase) sys-

tems far from equilibrium, where thermodynamics favors the separation of the

different phases and drives thus the formation of microstructure. Eventually

after an initial relaxation stage, the system is essentially divided into domains
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of the pure phases and the system energy is concentrated along the inter-

face between these domains. In the subsequent evolution, the systems tends

to minimize the interfacial area while the volume of each phase is preserved.

Consequently, the domain morphology coarsens. The coarsening behavior can

be quantified in terms of a characteristic length scale `, the average size of

the domains of the pure phases, that grows as a function of time t, typically

as power law.

In many situations the decrease of interfacial area is realized by mass

transport from regions with high interfacial curvature to regions with low

interfacial curvature. In this paper we consider the simplest volume-preserving

evolution in a two-phase system that implements this idea: the nonlocal mean-

curvature flow. Mathematically this flow relates the normal velocity V at any

point of the interface to its mean curvature κ. More precisely, if Ω(t) denotes

the volume that is occupied by one of the two phases at time t, the evolution

of its boundary ∂Ω(t) can be expressed via

V = 〈κ〉 − κ on ∂Ω(t), (1)

where 〈κ〉 denotes the average of the mean curvature over the interface, i.e.,

〈κ〉 = 1
|∂Ω(t)|

∫
∂Ω(t) κ dH

d−1.

Nonlocal mean-curvature flow models attachment-limited kinetics. This

latter can be observed during the growth process of a solid phase that is sur-

rounded by an undercooled liquid phase of the same substance, in which dif-

fusion is so fast that the chemical potential can be considered as constant and

excess mass of the solid in the substrate is negligible [29, 8, 28]. In this case,

solid particles move with “infinite” velocity from regions with large interfacial

curvature to regions with small interfacial curvature. More general solidifica-

tion processes can be modeled by the Mullins–Sekerka equations, where the

Gibbs–Thomson relation is modified by a kinetic drag term [20, 16]:

−∆µ = 0 in Ω ∪ Ωc

−[∇µ · ν] = V on ∂Ω

V = µ− κ on ∂Ω.

(2)

Here, µ is the chemical potential, ν is the outward normal on ∂Ω, and the

brackets [·] denote the jump of a quantity over the boundary. Furthermore, Ωc

is the (open) complement set of Ω. This model allows for attachment-limited

and bulk-diffusion-limited kinetics. It is observed that the early stages of the

phase separation process are dominated by attachment-limited kinetics, cf.

[11], so that nonlocal mean-curvature flow (1) can be considered as a singular

limit of (2).

Nonlocal mean-curvature flow can also be considered as a toy model for

grain growth, where grain boundaries move according to mean-curvature flow

with a nonlocal condition at the grain vertices, see e.g., [24]. Aside from their

application in phase separation models, variants of nonlocal mean-curvature

flow have been applied to shape recovery in image processing [7].
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We also recall that nonlocal mean-curvature flow has a phase field for-

mulation, the so-called nonlocal Allen–Cahn equation. In this formulation a

smooth order-parameter φ evolves in time by

∂tφ−∆φ− φ(1− φ2) +

∫
−φ(1− φ2) dx = 0. (3)

The order-parameter φ varies smoothly between the regions of the pure phases,

e.g., {φ = 1} and {φ = −1}, with a characteristic interfacial profile. The

integral in (3) is averaged over the system size, so that the volume fraction

of each phase is preserved. The connection between nonlocal mean-curvature

flow (1) and nonlocal Allen–Cahn equation (3) is investigated in [26, 4, 9]. In

particular, in [9] the authors prove that, in the so called sharp-interface limit,

solutions of (3) converge (in an appropriate sense) to solutions of (1), as long

as a smooth solution of (1) exists.

Opposed to the situation of the nonlocal Allen–Cahn equation (3), for

which well-posedness is relatively easy, the mathematical treatment of nonlo-

cal mean-curvature flow (1) is delicate. Local in time existence and uniqueness

of a smooth solution of (1) follow from the results obtained in [15, 17, 13].

Moreover, existence and uniqueness of a global (in time) classical solution, as

well as its asymptotic convergence to a sphere, has been proved for a smooth

convex initial datum Ω0 (see [15, 17]) and for an initial datum Ω0 whose

boundary ∂Ω0 is smooth and “near” to a sphere (see [13, 21]). For generic

initial data singularities occur in finite time, due, for example, to topological

changes of the domain morphology: small domains shrink and disappear; do-

mains collide and merge; parts of domains are pinched off. A few notions of

weak-solutions have been proposed, e.g., level set solutions [25] and diffusion

generated solutions [27]. However, to the best of our knowledge, no rigorous

results are available in the literature concerning the global existence and the

uniqueness of such weak solutions. Despite these analytical difficulties, in this

paper, we work with equation (1) under the assumption that piecewise smooth

solutions exist and that the evolution of the perimeter of ∂Ω is continuous for

all times. Considering (1) instead of (3) has the advantage that geometric

information on the domain morphology is directly accessible.

In this paper we study the coarsening behavior for attachment-limited ki-

netics as it is modelled by nonlocal mean-curvature flow (1). Systems evolving

by attachment kinetics are supposed to coarsen according to

` ∼ t1/2, (4)

where ` denotes the average size of the islands of the minority phase (i.e., the

solid phase), and t denotes time. This coarsening rate has first been predicted

by Wagner [29] using a mean-field theory for the evolution of droplet radii

(Lifshitz–Slyozov–Wagner theory). Real experiments, e.g., [2], and numerical

simulations, e.g., [19], support Wagner’s predictions. Evidence for this growth

law is given by scale invariance: As the equation (1) is invariant under the

scaling t = λ2t̂, x = λx̂, the only possible growth law for a characteristic

length scale ` is (4).
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Our main result is a time-averaged one-sided version of (4). More precisely

we prove an upper bound on the coarsening rate which is universal in the sense

that it is uniform in the particular choice of the initial data. However, to carry

on our analysis we have to impose two restrictions on the evolution: First,

we assume that collisions of domains are rare events, in a sense that we will

make precise and discuss later on pages 7f.; second we assume that the area

of the boundary of the domain-phases is continuous in time — a fact that we

expect to be true for generic evolutions. Consequences of the latter restriction

will be discussed on page 8. Our analysis follows a method proposed by Kohn

and Otto in [18].

The paper is organized as follows. In Section 2 we recall the (formal) gradi-

ent flow structure of the dynamics and introduce the mathematical framework

we apply for our studies: the Kohn–Otto method; in Section 3 we present and

discuss our main results, the proofs of which we collect in Section 4. Finally,

in Section 5 we state and prove a technical lemma that we need in the proof

of Proposition 2.

2 Gradient flow structure and method

Our mathematical investigation follows a method introduced by Kohn and

Otto [18] in order to study the coarsening rates for two variants of the Cahn–

Hilliard equation modeling bulk and surface diffusion. The method is based

on the gradient flow structure of the dynamics and analyzes the evolution of

the configuration in the energy landscape. Before introducing the Kohn–Otto

method, we first discuss the gradient flow structure of (1).

The nonlocal mean-curvature flow has a formal gradient flow interpreta-

tion, that is, the dynamics follows the steepest descend in an energy landscape:

V = −∇E.

The energy E is the surface area functional, which we normalize by the total

volume:

E :=
|∂Ω|
|Ω|

. (5)

(Here and in the following, we will often write | · | both for the (d − 1)-

dimensional Hausdorff measure and the d-dimensional Lebesgue measure.)

The energy gradient ∇E in (5) is defined implicitly via the Riesz Represen-

tation Theorem

diffE.W = g∂Ω(∇E,W ) for any W s. t.

∫
∂Ω
W (y) dHd−1(y) = 0,

where the metric tensor g∂Ω is the (normalized) L2 scalar product on ∂Ω,

g∂Ω(V,W ) :=
1

|Ω|

∫
∂Ω
V (y)W (y) dHd−1(y)

for any V,W s. t.

∫
∂Ω
V (y) dHd−1(y) =

∫
∂Ω
W (y) dHd−1(y) = 0.
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The constraints on the admissible normal velocity fields V and W ensure that

the volume of Ω is preserved and cause thereby the nonlocal correction in (1).

Indeed, if Ω(t) is evolving with normal velocity V (t, y) for y ∈ ∂Ω(t), then

d

dt
|Ω(t)| =

∫
∂Ω(t)

V (t, y) dHd−1(y) = 0. (6)

Notice also the dissipative structure of the gradient flow:

d

dt
E(t) = g∂Ω(t)(V (t, · ),∇E(t)) = −g∂Ω(t)(∇E(t),∇E(t)) ≤ 0. (7)

We now come back to the description of the strategy we will adopt to

prove our main result. The Kohn–Otto method translates information on

the energy landscape, i.e., information on how fast the energy decreases as a

function of the distance to some reference configuration, into information on

the coarsening rates, more precisely, a lower bound on how fast the energy

decreases as a function of time. Since the energy (in the original paper an

appropriate Ginzburg–Landau regularization of surface energy normalized by

system volume) scales like an inverse length,

E ∼ 1

length
,

assuming there is only one length scale present in the dynamics, lower bounds

on the energy can be interpreted as upper bounds on the coarsening rates.

The energy bounds come in time averages.

The key idea of [18] is to compare the geometric length scale E to a second

intrinsic quantity which is rather of physical origin: a distance L in configu-

ration space to some reference configuration. In the simplest application, this

distance is just the distance which is induced by the metric tensor in the gra-

dient flow formulation of the dynamics. Since in a gradient flow formulation

the metric tensor encodes the limiting dissipation mechanisms, cf. (7), the

induced distance measures the minimal amount of energy which is dissipated

along trajectories between two points in configuration space. Kohn and Otto

establish two basic relations between E and L: Both quantities are dual in

the sense that they satisfy an isoperimetric (or interpolation) inequality

EL & 1;

and the rate of change of L is controlled via a dissipation inequality

dL

dt
. L1/2

(
−dE
dt

)1/2

.

Notice that above, we present the dissipation inequality precisely in the version

that we will adopt in our analysis below. If the induced distance function is

not known explicitly, a proxy has to be introduced for L that satisfies both

inequalities. Finally, the core of the Kohn–Otto-method is an abstract ODE
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argument that is based on these two relations and produces a time-averaged

version of the coarsening rate

E &
1

t1/2
.

We also recall that the Kohn–Otto method does not provide pointwise bounds

on the energy. A counterexample is stated in [18, Remark 4].

The method is quite robust and it has been applied to a variety of models,

see [3, Sec. 1.2] for a review. Within the Kohn–Otto method, the challenge is

that of identifying a distance function L that satisfies the above inequalities.

Before discussing our choice of L, we comment on previous (partial) results

on coarsening rates for nonlocal mean-curvature flow.

• In [12], Dai and Pego consider a mean-field approximation of a Mullins–

Sekerka model with kinetic undercooling, cf. (2), which allows for attach-

ment kinetics and bulk diffusion. The model comes as an evolution equa-

tion for the radii of a collection of spherical islands, i.e., Ω =
⋃
BRi(xi),

(Lifshitz–Slyozov–Wagner theory) and coincides in the regime of domi-

nant attachment kinetics with nonlocal mean-curvature flow under the

assumption that each island remains spherical during the evolution. The

authors derive an upper bound on the t1/2 coarsening rate using the

method from [18] with distance

L :=

∑
Rd+1
i∑
Rdi

.

A simplified proof can be found in [11].

• In [10], Dai considers nonlocal mean-curvature flow in two space dimen-

sions assuming that Ω is a finite collection of convex domains Ωi. Using

the Kohn–Otto method with distance

L :=

∑
|Ωi|3/2∑
|Ωi|

,

the author obtains, as desired, a t1/2 bound on the energy decay. How-

ever, this bound is not universal in the sense that the coarsening rate

depends on the geometry of the initial data. More precisely, the bound

becomes trivial if the isoperimetric ratio of the initial data becomes large.

In contrast with the strategy of Kohn and Otto described above, in our

setting it seems hopeless to look for a distance function L that can be con-

sidered as a proxy for the induced geodesic distance. In fact, it turns out

that the distance induced by an L2 metric tensor on the (suitably defined)

manifold of geometric curves in the plane is degenerate, in that the distance

between two well separated configurations on the manifold is zero (see [23]).

This insight suggests that we need a more subtle choice of L. In fact, our

choice of L is rather geometrically motivated and generalizes the one of [12]

and its interpretation as a volume-weighted average of radii [12, page 5], cf.

(8) below. Moreover, in order to apply the Kohn–Otto method, besides the

gradient flow structure, in the proof of the dissipation inequality we need to

use some characteristic properties of nonlocal mean-curvature flow.

6



3 Main results

We are now in the position to state our main results. We limit ourselves to

the two-dimensional setting, but we comment on the higher dimensional case

in Remark 1 below. By Ω ⊂ R2 we denote an open, bounded subset of finite

topological genus, that is

Ω =

N⋃
i=1

Ωi \
( M⋃
j=1

ωj

)
,

where Ωi, ωj are open, simply connected subsets and N,M ∈ N. We suppose

that Ω evolves according to nonlocal mean-curvature flow (1). More precisely,

we consider a time-parametrized family of subsets {Ω(t)}t∈[0,T ) verifying

V (t, x) = 〈κ(t, · )〉 − κ(t, x) for x ∈ ∂Ω(t) and t ∈ [0, T ) \ {T1, . . . , TK},

where V (t, x), κ(t, x) denote respectively the (outward) normal velocity and

the curvature of ∂Ω(t) at x ∈ ∂Ω(t) (with the sign convention that the cur-

vature is non-negative at x if Ω(t) is locally convex around x). Moreover,

the brackets 〈·〉 denote the average over the boundary of Ω(t). We suppose

that ∂Ω(t) is smooth except for at most finitely many times {T1, . . . , TK},
corresponding to possible topological changes of Ω(t) (collisions, pinch-offs,

shrinkage to points) in the time interval [0, T ). Finally, we suppose that the

perimeter of Ω(t) evolves continuously in the whole time interval [0, T ]. For

a more detailed description of solutions to the nonlocal mean-curvature flow

(1), we refer to Definitions 1 & 2 in Section 4.

As generalized average domain radius, we consider

L :=
1

|Ω|

N∑
i=1

∫
Ω̂i

dist(x, ∂Ω̂i) dx, (8)

where Ω̂i denotes the convex hull of Ωi. For given initial data and with the

evolution described above, L is a function of time: L = L(t). Notice that

we consider the convex hulls componentwise. In particular, the convex hulls

of two (or more) distinct domains possibly overlap. Furthermore, due to

the discontinuous evolution of the convex hulls, L has a positive jump when

two domains collide, while, in general, L develops a negative jump in case a

domain pinches-off. To measure the height of the jumps of L we introduce a

total variation measure at the topological changes in the time interval [0, T ).

We define

TV1/2(L, T ) :=
K∑
k=1

(
L(Tk+)1/2 − L(Tk−)1/2

)
.

As we already said above, our result applies to a restricted class of solutions

of the nonlocal mean-curvature flow satisfying the two following assumptions.

The first assumption states that collisions of different domains are rare events.

More precisely, we suppose that

L(T )1/2 ≥ 4 TV1/2(L, T ). (9)
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When domains only either shrink to a point or pinch-off, L is either continuous

or has negative jumps. Hence, in these cases assumption (9) does not represent

a restriction on the evolution. However, it does in the case of collisions.

Condition (9) rules out series of many collisions all happening in short time

intervals, and collisions of large domains, i.e., domain sizes comparable to

the system size. We notice that in the case where the typical length scale

is small compared to the system size, that is, in the case of a large number

of domains, the height of the jump of L at the time two domains collide is

relatively small compared to L. Therefore, in generic large-size, low-volume

fraction configurations, that is, when the domains are well separated from

each other, and collisions do indeed only happen rarely, we expect condition

(9) to be generically satisfied.

The second assumption we make is that the perimeter of Ω(t) evolves con-

tinuously in the whole time interval. This second restriction on the admissible

flows is rather of mathematical nature, and we expect it to be generically true.

The reason why we have to state this condition as an assumption is due to the

lack of results ensuring the continuity of the energy of (suitably defined) weak

solutions, with smooth initial data, when topological changes occur during

the flow.

Under these hypotheses we prove:

Theorem 1. Suppose that L(T )1/2 ≥ 4 TV1/2(L, T ). Then, for any 1 < σ < 2

we have ∫ T

0
Eσ dt &

∫ T

0

(
1

t1/2

)σ
dt,

provided that T � L(0)2.

We have to comment on our sloppy notation. The result has to be read

as follows: For every given σ, if T is sufficiently large compared to L(0)2 then

the constant in the statement can be chosen uniformly (only dependent on σ).

Notice that the above result is in agreement with the coarsening rate (4).

Indeed, since the energy scales like an inverse length and assuming that there

is only one length scale present in the dynamics, a lower bound on the energy

translates into an upper bound on the coarsening rate.

We also recall that proving upper bounds on coarsening rates is substan-

tially different from proving lower bounds. While upper bounds can be uni-

versally true, lower bounds depend strongly on the initial data: There are

(infinitely many) configurations that do not coarsen at all, e.g., a collection

of spheres with the same radii. Therefore, lower bounds can only be “generi-

cally” true.

For proving Theorem 1, we use the method proposed by Kohn and Otto in

[18], discussed in the previous section. As a first step, we derive the isoperi-

metric inequality:

Proposition 1.

EL & 1.
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Our main contribution is the dissipation inequality:

Proposition 2. For all but a finite number of times {t1, . . . , tK} we have

dL

dt
. L1/2

(
−dE
dt

)1/2

.

The core of the Kohn–Otto method is the ODE argument that, in our

context, has the following form:

Proposition 3 ([18, 12]). Let E and L be continuous on [0, T )\{T1, . . . , TK}.
Suppose that (9) holds and

EL & 1 and
dL

dt
. L1/2

(
−dE
dt

)1/2

.

Then, for any 1 < σ < 2 we have∫ T

0
Eσ dt &

∫ T

0

(
1

t1/2

)σ
dt,

provided that T � L(0)2.

Remark 1. Let us also mention that our main result can be easily generalized

to any dimension d ≥ 2, under the additional assumption that the initial

datum is given by a finite collection of convex domains and that the domains

remain convex during the evolution. In fact, since in this situation, apart

from the gradient flow structure, no additional information on the flow is

needed, the techniques developed in Proposition 1 and 2 above can be used

to generalize the results from [12] (and from [11] for the evolution (2)) to

collections of convex domains.

Before turning to the proofs of our results, we motivate our choice of L. A

natural generalization of the length scale used by Dai and Pego in [12] to con-

figurations with nonspherical islands leads to the choice L̃ = 1
|Ω|
∫

Ω dist(x, ∂Ω) dx.

Indeed, this quantity measures the average diameter of the configuration and

reduces to the average radius in the case of spherical islands. The reason for

our modification (i.e., to consider the convex hull of the connected compo-

nents of Ω) is the following: On the one hand, infinitesimally small “holes” ωj
inside the components may decrease the average distance to ∂Ω while keep-

ing the perimeter of Ω constant. In particular, L̃ can become arbitrary small

and the interpolation/isoperimetric inequality stated in Proposition 1 may

fail. Therefore it is convenient to “fill these holes”. On the other hand, small

negative-curvature regions on the outer boundaries ∂Ωi result in a steep as-

cend of L̃ during the evolution which might not be controlled by the energy

dissipation. In order to rule out this inconvenience, we convexify the con-

nected components — with the negative effect, that L jumps up when two (or

more) components collide.
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4 Proofs

Before presenting the proof of our main result we introduce some notation.

In particular we give a rigorous definition of what we mean by open set with

smooth boundary, and of the admissible initial data and solutions of (1) to

which our result apply.

Definition 1 (Smooth domains). Let Ω ⊂ R2 be open. We say that Ω has

smooth boundary if

for every x ∈ ∂Ω there exists r(x) > 0 such that (up to rigid mot-

ions) Ω ∩Br(x) can be written as the subgraph of a C∞ function.
(10)

Definition 2 (Admissible Flows). Let {Ω(t)}t∈[0,T ) be a time-parametrized

family of open subsets. We say that Ω(t) is is an admissible flow with initial

condition Ω(0) if

• for every t ∈ [0, T ) but possibly a finite set J of times the set Ω(t) is open,

bounded, with smooth boundary and of finite topological genus. That is,

for every t ∈ [0, T ) \ J the set Ω(t) has smooth boundary, and we have

Ω(t) =

N(t)⋃
i=1

Ωi(t) \
(M(t)⋃
j=1

ωj(t)
)

; (11)

where Ωi(t), ωj(t) are open, simply connected subsets with smooth bound-

ary, N(t),M(t) ∈ N. Moreover, for t ∈ J we require that Ω(t) has

piecewise smooth boundary (i.e., (10) holds for all but (possibly) a finite

number of points of ∂Ω(t)) and that (11) still holds, but now Ωi(t), ωj(t)

are only piecewise smooth;

• for every ψ ∈ C∞c (R2) the function

t 7→
∫
∂Ω(t)

ψ dH1,

is continuous in [0, T ]. Moreover {Ω(t)}t∈[0,T ) is a smooth solution of

(1) up to a finite set of singular times SingΩT = {0 < t1 < t2 < · · · <
tK < T} ⊇ J with K ∈ N. That is, letting T0 = 0 and TK+1 = T , for

every i = {0, . . . ,K} the functions M(t), N(t) are constant for every

t ∈ [ti, ti+1), and

V (t, x) = 〈κ(t, · )〉 − κ(t, x) for any x ∈ Ω(t),

where V (t, x) and κ(t, x) respectively denote the velocity of the boundary

at x in direction of the outer normal to ∂Ω(t) and the curvature of ∂Ω(t)

at x, with the sign convention that κ(t, x) is non-negative if Ω(t) is locally

convex around x.

In our definition above, the set J consists of the points of time at which

different domains collide or pinch-off, while SingΩT additionally contains the

points of time at which connected components shrink to a point.
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We notice that if {Ω(t)}t∈[0,T ) is an admissible flow, the function L(t),

defined in (8), is smooth on [0, T ]\SingΩT , and Lipschitz continuous on [0, T ]\
J . Moreover we have: L ∈ L∞(0, T ) ∩BV (0, T ), and in particular,

TV1/2(L, T ) =
K∑
k=1

(
L(Tk+)1/2 − L(Tk−)1/2

)
< ∞.

Hence the singular part of distributional derivative of L can only concen-

trate on the (possibly not empty) set J .

Finally we also remark that the continuity assumption of |∂Ω(t)| on [0, T ],

together with the assumption that {Ω(t)}t∈[0,T ) is a smooth solution of the

nonlocal mean-curvature flow on [0, T ]\SingΩT , ensure that E ∈W 1,1(0, T )∩
C0([0, T ]).

Next we observe that the volume of Ω(t) is preserved during the evolution,

cf. (6), so that, by rescaling length, w.l.o.g. from here on we may assume that

|Ω(t)| = |Ω(0)| = 1.

We then have

E(t) =

N(t)∑
i=1

|∂Ωi(t)|+
M(t)∑
j=1

|∂ωj(t)|

and

L(t) =

N(t)∑
i=1

∫
Ω̂i(t)

dist(x, ∂Ω̂i(t)) dx.

We are now in a position to prove Proposition 1.

Proof of Proposition 1. We first observe that the convexification reduces the

length of the boundary,

E(t) ≥
N(t)∑
i=1

|∂Ωi(t)| ≥
N(t)∑
i=1

|∂Ω̂i(t)|, (12)

while it enlarges the area

1 = |Ω(t)| ≤
N(t)∑
i=1

|Ω̂i(t)|. (13)

We split each set Ω̂i into a boundary and a bulk part. More precisely, for

` ≥ 0 we have

|Ω̂i(t)| =

∫
Ω̂i(t)∩{dist(·,∂Ω̂i(t))≤`}

dx+

∫
Ω̂i(t)∩{dist(·,∂Ω̂i(t))>`}

dx.

The bulk part is easily estimated:∫
Ω̂i(t)∩{dist(·,∂Ω̂i(t))>`}

dx ≤ 1

`

∫
Ω̂i(t)

dist(x, ∂Ω̂i(t)) dx.

11



For the boundary part, we invoke the co-area formula[14, Theorem 1.3.4.2]

and find∫
Ω̂i(t)∩{dist(·,∂Ω̂i(t))≤`}

dx ≤
∫ `

0
H1
(

Ω̂i(t) ∩ {dist(·, ∂Ω̂i(t)) = s}
)
ds

≤
∫ `

0
H1
(
∂Ω̂i(t)

)
ds

= `|∂Ω̂i(t)|,

where the second inequality holds because Ω̂i is simply connected.

Combining the estimates for the boundary and the bulk part with (12)

and (13), we have

1 ≤ `

N(t)∑
i=1

|∂Ω̂i(t)|+
1

`

∫
Ω̂i(t)

dist(x, ∂Ω̂i(t)) dx

≤ `E(t) +
1

`
L(t).

We optimize in ` > 0 by choosing ` ∼ E(t)−1/2L(t)1/2 and obtain

1 . E(t)L(t).

Before proceeding with the proof of Proposition 2, we collect some easy

consequence of basic properties of convex hulls and of the definition of admis-

sible flows in a technical lemma we will need later on.

Lemma 1. Suppose {Ω(t)}t∈[0,T ) is an admissible flow with initial condition

Ω(0) = (∪N(0)
i=1 Ωi(0)) \ (∪M(0)

j=1 ωj(0)). Let Tl ∈ SingΩT . For every t ∈ [Tl, Tl+1]

and i ∈ {1, . . . , N(Tl)} we define the following subsets of ∂Ω̂i(t):

Σ−i (t) := ∂Ω̂i(t) ∩ {x : dist(x, ∂Ωi(t)) > 0}, Σ+
i (t) := ∂Ω̂i(t) \ Σ−i (t).

The following properties hold for every t ∈ [0, Ti):

(i) Σ+
i (t) = ∂Ωi(t) ∩ ∂Ω̂i(t), and for every y ∈ Σ+

i (t) we have κ(t, y) ≥ 0;

(ii) Σ−i (t) = ∪k∈I(t)αk,t, where: for every t ∈ [0, Ti) the index set I(t) is

at most countable; for every k ∈ I(t) and t ∈ [0, Ti) every αk,t is an

open, connected flat segment of finite length whose extremes are points of

Σ+
i (t). That is, for every y ∈ Σ−i (t) we can find p1(t, y), p2(t, y) ∈ Σ+

i (t)

and s ∈ (0, 1), such that y = s p1(t, y) + (1− s) p2(t, y);

(iii) the (outer) normal velocity V̂ of ∂Ω̂i(t) is given by

V̂ (t, y) =

{
V (t, y) if y ∈ Σ+

i (t)

s V (t, p1(t, y)) + (1− s)V (t, p2(t, y)) if y ∈ Σ−i (t).

12



Proof of Lemma 1. (ii) follows from the fact that Σ−i (t) is an open subset of

∂Ω̂i(t) and basic properties of the convex hull. (i) follows from the fact that

Σ+
i (t) is a closed subset of ∂Ω̂i(t), the smoothness of ∂Ωi(t) and again basic

properties of the convex hull. Eventually (iii) is a consequence of (i), (ii), and

the definition of admissible flow.

Let us now proceed with the

Proof of Proposition 2. Let t ∈ (0, T ) \ SingΩT . Then M(t+ h), N(t+ h) are

constant for |h| << 1. Moreover, for every 1 ≤ i ≤ N(t) we have

d

dt

∫
Ω̂i(t)

dist(x, ∂Ω̂i(t)) dx

=

∫
Ω̂i(t)

∂tdist(x, ∂Ω̂i(t)) dx+

∫
∂Ω̂i(t)

V̂ (t, y)dist(x, ∂Ω̂i(t)) dH1(y)

=

∫
Ω̂i(t)

V̂ (t, π
∂Ω̂i(t)

(x)) dx.

where π
∂Ω̂i(t)

(x) denotes the projection of x onto ∂Ω̂i(t).

Let R(t, y) denote the distance along normals, i.e., −ν
∂Ω̂(t)

(y), from a point

y on the boundary ∂Ω̂(t) to the singular set S(t), i.e.,

R(t, y) := sup{s ≥ 0 : [y, y + sν
∂Ω̂(t)

(y)[⊂ Ω̂(t) \ S(t)}

with

S(t) := {x ∈ Ω̂(t) : π
∂Ω̂(t)

(x) is not a singleton},

and [y, y+sν
∂Ω̂(t)

(y)[:= {z = λy+(1−λ)sν
∂Ω̂(t)

(y) : λ ∈ [0, 1)}. Since ∂Ωi(t)

is smooth, we have that ∂Ω̂i(t) is of class C1,1 and thus, applying Lemma 2

at fixed time t yields

d

dt

∫
Ω̂i(t)

dist(x, ∂Ω̂i(t)) dx

=

∫
∂Ω̂i(t)

V̂ (t, y)

(∫ R(t,y)

0
|1− sκ̂(t, y)| ds

)
dH1(y),

where κ̂(t, y) is the curvature at y ∈ ∂Ω̂(t), which is well defined H1-a.e. since

∂Ω̂(t) is of class C1,1. By the convexity of Ω̂i(t) we can conclude that

0 ≤ κ̂(t, y) ≤ 1

R(t, y)
for H1 − a.e. y ∈ ∂Ω̂i(t). (14)

Moreover, as a consequence of Lemma 1-(i)&(ii),

κ̂(t, y) =

{
κ(t, y) for y ∈ Σ+

i (t)

0 for y ∈ Σ−i (t).
(15)

13



so that

d

dt

∫
Ω̂i(t)

dist(x, ∂Ω̂i(t)) dx

(14)&(15)
=

∫
Σ+
i (t)

V̂ (t, y)

(∫ R(t,y)

0
(1− sκ(t, y)) ds

)
dH1(y) (16)

+

∫
Σ−
i (t)

V̂ (t, y)R(t, y) dsdH1(y). (17)

We first observe that∫
∂Ω̂i(t)

R(t, y)2 dH1(y) .
∫

Ω̂i(t)
dist(x, Ω̂i(t)) dx. (18)

Indeed, again by Lemma 2, we have∫
Ω̂i(t)

dist(x, ∂Ω̂i(t)) dx

=

∫
∂Ω̂i(t)

∫ R(t,y)

0
s|1− sκ̂(t, y)| dsdH1(y)

(14)&(15)
=

∫
Σ+
i (t)

∫ R(t,y)

0
s(1− sκ̂(t, y)) dsdH1(y)

+

∫
Σ−
i (t)

∫ R(t,y)

0
s dsdH1(y)

=

∫
Σ+
i (t)

(
1

2
R(t, y)2 − 1

3
R(t, y)3κ̂(t, y)

)
dH1(y)

+

∫
Σ−
i (t)

1

2
R(t, y)2 dsdH1(y)

(14)

≥ 1

6

∫
Σ+
i (t)

R(t, y)2 dH1(y) +
1

2

∫
Σ−
i (t)

R(t, y)2 dH1(y)

&
∫
∂Ω̂i(t)

R(t, y)2 dH1(y).

We turn to the estimate of (16). In view of Lemma 1-(iii) and the definition

of Σ+
i (t) we have∫

Σ+
i (t)

V̂ (t, y)

(∫ R(t,y)

0
(1− sκ̂(t, y)) ds

)
dH1(y)

(14)

≤

(∫
Σ+
i (t)

V (t, y)2 dH1(y)

)1/2(∫
Σ+
i (t)

R(t, y)2 dH1(y)

)1/2

(18)

.

(∫
∂Ωi(t)

V (t, y)2 dH1(y)

)1/2(∫
Ω̂i(t)

dist(x, ∂Ω̂i(t)) dx

)1/2

. (19)

To estimate the term (17), we use the fact that {Ω(t)}t∈[0,T ) evolves with

14



nonlocal mean-curvature flow (1). Let y ∈ Σ−i (t). By Lemma 1 we have

V̂ (t, y) = s V (t, p1(t, y)) + (1− s)V (t, p2(t, y))

(1)
= 〈κ(t, · )〉 − (s κ(t, p1(t, y)) + (1− s)κ(t, p1(t, y)))

(14)

≤ 〈κ(t, · )〉.

and hence

V̂ (t, y) ≤ max{0, 〈κ(t, · )〉} for all y ∈ Σ−i (t).

It is enough to consider the situation where 〈κ(t, · )〉 ≥ 0. In this case, we

conclude that∫
Σ−
i (t)

V̂ (t, y)R(t, y)dH1(y)

≤
(
|Σ−i (t)|〈κ(t, · )〉2

)1/2(∫
Σ−
i (t)

R(t, y)2 dH1(y)

)1/2

(18)

.
(
|∂Ωi(t) \ Σ+

i (t)|〈κ(t, · )〉2
)1/2(∫

Ω̂i(t)
dist(x, ∂Ω̂i(t)) dx

)1/2

,

where in the last estimate we used that |Σ−i (t)| ≤ |∂Ωi(t) \Σ+
i (t)|, as convex-

ification reduces the length of the boundary. However, since ∂Ω̂i(t) is of class

C1,1, the oriented tangents at the two endpoints of each connected component

of ∂Ωi(t) \ Σ+
i (t) are parallel and therefore we have∫

∂Ωi(t)\Σ+
i (t)

κ(t, y) dH1(y) = 0,

and thus

|∂Ωi(t) \ Σ+
i (t)|〈κ(t, · )〉2 ≤

∫
∂Ωi(t)\Σ+

i (t)
〈κ(t · )〉2 + κ(t, y)2 dH1(y)

=

∫
∂Ωi(t)\Σ+

i (t)
(〈κ(t, · )〉 − κ(t, y))2 dH1(y)

=

∫
∂Ωi(t)\Σ+

i (t)
V (t, y)2 dH1(y).

It follows that∫
Σ−
i (t)

V̂ (t, y)R(t, y)dH1(y)

≤

(∫
∂Ωi(t)

V (t, y)2 dH1(y)

)1/2(∫
Ω̂i(t)

dist(x, ∂Ω̂i(t)) dx

)1/2

. (20)

Putting together (16), (17), (19), and (20), for every t ∈ [0, T ) \ SingΩT ,

we get

d

dt

∫
Ω̂i(t)

dist(x, ∂Ω̂i(t)) dx

.

(∫
∂Ωi(t)

V (t, y)2 dH1(y)

)1/2(∫
Ω̂i(t)

dist(x, ∂Ω̂i(t)) dx

)1/2

.
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Since
dE

dt
= −

∫
∂Ω(t)

V (t, y)2 dH1(y),

cf. (7), the above inequality turns into

d

dt
L(t) . L(t)1/2

(
− d

dt
E(t)

)1/2

,

for every t ∈ (0, T ) \ SingΩT .

Finally, in order to complete the proof of our main result, we prove Propo-

sition 3.

Proof of Proposition 3. The proof of this Proposition closely follows the one

of [18, Lemma 3] (see also [12, lemma 4.2]). Our modifications are due to the

fact that in our case L(t) may jump at times t ∈ SingΩT .

We consider separately the two possible cases L(T ) ≥ 4L(0) and L(T ) <

4L(0). Let us begin supposing that L(T ) ≥ 4L(0). By the dissipation in-

equality of our assumptions we have

d

dt
L(t)1/2 .

(
− d

dt
E(t)

)1/2

for t ∈ [0, T ) \ SingΩT ,

and thus, after integration,

L(Tk−)1/2 − L(Tk−1+)1/2 .
∫ Tk

Tk−1

(
− d

dt
E(t)

)1/2

dt

for any k ∈ {1, . . . ,K + 1}, recalling that T0 = 0 and TK+1 = T . Summing

over all k yields

L(T )1/2 − L(0)1/2 − TV1/2(L, T ) =

K+1∑
k=1

(
L(Tk−)1/2 − L(Tk−1+)1/2

)
.

K+1∑
k=1

∫ Tk

Tk−1

(
− d

dt
E(t)

)1/2

dt.

Making use of L(T ) ≥ 4L(0) and (9) we observe that

1

4
L(T )1/2 ≤ L(T )1/2 − L(0)1/2 − TV1/2(L, T ),

and thus, thanks to the continuity of E(t) guaranteed by the choice of admis-

sible flows in Definition 2, we obtain

L(T )1/2 .
∫ T

0

(
− d

dt
E(t)

)1/2

dt.
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Estimating the integral on the right hand side with the help of the Cauchy–

Schwarz inequality, we obtain

L(T )1/2 .

(∫ T

0

(
− d

dt
E(t)

)
E(t)−σ dt

)1/2(∫ T

0
E(t)σ dt

)1/2

=

(
1

σ − 1

(
E(T )1−σ − E(0)1−σ))1/2(∫ T

0
E(t)σ dt

)1/2

.
(
E(T )1−σ)1/2(∫ T

0
E(t)σ dt

)1/2

,

where in the last inequality we use the fact that σ > 1. Taking the square on

both sides, and applying the isoperimetric inequality of our assumptions, we

obtain

(
E(T )−σ

) 2−σ
σ . E(T )σ−1L(T ) .

∫ T

0
E(t)σ dt.

Setting h(T ) =
∫ T

0 Eσ dt and using σ < 2, this reads

d

dT

(
h(T )

2
2−σ
)

& 1 provided L(T ) ≥ 4L(0). (21)

Now we consider the case L(T ) < 4L(0). Under this assumption, the

isoperimetric inequality yields

L(0)σ &
1

E(T )σ
,

which in terms of h(T ) reads

d

dT
(h(T )L(0)σ) & 1 provided 4L(0) ≥ L(T ). (22)

Combining (21) and (22) we get

d

dT

(
h(T )

2
2−σ + h(T )L(0)σ

)
& 1.

Integrating in T and using Young’s inequality we then have

T . h(T )
2

2−σ + h(T )L(0)σ . h(T )
2

2−σ + L(0)1/2.

Finally, since T � L(0)2, we conclude that

h(T ) & T 1−σ
2 ∼

∫ T

0
t−σ/2 dt.
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5 Appendix

In the present section we state and prove a technical lemma needed in the

proof of Proposition 2.

Lemma 2. Let Ω ⊂ R2 be open, bounded, connected and with C1,1-smooth

boundary. Let S denote the singular set of the distance function, that is

S := {x ∈ Ω : π∂Ω(x) is not a singleton},

and define

R : ∂Ω→ [0,+∞), y 7→ sup{s ≥ 0 : [y, y + sν∂Ω(y)[⊂ Ω \ S},

where [y, y + sν∂Ω(y)[:= {z = λy + (1 − λ)sν∂Ω(y) : λ ∈ [0, 1)}. For every

f ∈ L1(Ω) we have∫
Ω
f(x) dx =

∫
∂Ω

∫ R(y)

0
f(y + sν∂Ω(y))|1− sκ∂Ω(y)| dsdH1(y). (23)

Remark 2. The proof of (23) in case Ω has C2-boundary is straightforward.

In fact in this case the closure of the singular set S has zero Lebesgue measure

(see [5, 6]), and the function R(y) defined above coincides with the continuous

function τ(y) := min{s ≥ 0 : y + sν∂Ω(y) ∈ S}. However, as shown in [22],

there exist open (convex) subsets of R2 with C1,1-smooth boundary such that

S has positive Lebesgue measure. In this case the function R(·) is only upper

semi-continuous, it verifies R(y) > τ(y), and the proof of (23) requires a bit

more of work.

Finally we also remark that, up to minor changes, the proof of Lemma 2 works

also when Ω is a C1,1 open bounded connected subset of Rd, (d ≥ 2). In this

case (23) reads:

∫
Ω
f(x) dx =

∫
∂Ω

∫ R(y)

0
f(y + sν∂Ω(y))

d−1∏
i=1

|1− sκ(i)
∂Ω(y)| dsdHd−1(y),

where κ
(1)
∂Ω(y), . . . , κ

(d−1)
∂Ω (y) denote the principal curvatures of ∂Ω at y ∈ ∂Ω.

Proof of Lemma 2. As Ω has C1,1-smooth boundary by [22, Proposition 4.2,

Remark 4.3] we obtain infy∈∂ΩR(y) > 0. Moreover by [5, Proposition 2.2] (see

also [1, Theorem 5.9, Remark 5.10]) we have that for every x ∈ Ω and y ∈
π∂Ω(x) the function dist(·, ∂Ω) is differentiable in every point z belonging to

the open segment ]y, x[:= {z = λx+(1−λ)y : λ ∈ (0, 1)}, and ∇dist(z, ∂Ω) =

(x− y)/|x− y|. As a consequence,

]y, x[∩S = ∅ for every x ∈ Ω, and y ∈ π∂Ω(x). (24)

Hence y + R(y)ν∂Ω(y) ∈ Ω. Moreover, again due to the C1,1-regularity hy-

pothesis on ∂Ω, the curvature κ∂Ω is well defined H1-a.e. on ∂Ω, and it verifies

1 > R(y)κ∂Ω(y) for H1-a.e. y ∈ ∂Ω.
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We claim that the function R is a bounded upper semi-continuous function

(and hence measurable). To prove that, we argue by contradiction: Suppose

that we can find a sequence {yn}n ⊂ ∂Ω such that, as n → ∞, yn → y ∈ ∂Ω

and R(yn) → R∗ > R(y). Let δ > 0 be such that R(y) + δ < R∗. By the

definition of R(y) we can find a s ∈ [R(y), R(y)+δ) such that y+sν∂Ω(y) ∈ S.

Furthermore, fixed s̃ ∈ (R(y) + δ,R∗), for every n ∈ N large enough we have

s̃ < R(yn), so that zn := yn + s̃ν∂Ω(yn) ∈ Ω \ S, and π∂Ω(zn) = {yn} and

dist(zn, ∂Ω) = s̃. Since limn→∞ zn = y + s̃ν∂Ω(y) =: z and, by the continuity

of the distance function, we have dist(z, ∂Ω) = s̃, we conclude that y ∈ π∂Ω(z).

However, we also have using s̄ < s̃ that

y + sν∂Ω(y) ∈ S∩ ]y, z[,

which is in contradiction with (24).

Since Ω is bounded, connected and with C1,1-boundary, we have

Ω = Ω0 \
( M⋃
j=1

ωj

)
,

where Ω0, ω1, . . . , ωM are open, simply connected subsets with C1,1-boundary.

We fix Ik = [ak, bk) (k = 0, . . . ,M) such that: ∩Mk=0Ik = ∅; |b0 − a0| =

H1(Ω0) and |bk − ak| = H1(ωk) for k = 1, . . . ,M . We then consider γ0 ∈
C1,1([a0, b0),R2) (respectively γj ∈ C1,1([aj , bj),R

2) for every j = 0, 1, . . . ,M)

be the arc length parametrization of ∂Ω0 (respectively of ∂ωj) such that

the vector γ̇⊥0 (σ), obtained rotating counter-clockwise (respectively clock-

wise) by π/2 the tangent vector γ̇0(σ) (respectively γ̇j(σ)), verifies γ̇⊥0 (σ) =

−ν∂Ω(γ0(σ)) (respectively γ̇⊥j (σ) = −ν∂Ω(γj(σ))). We consider the map

Ψ :
( M⋃
k=0

Ik

)
× [0,+∞)→ R2, (σ, s) ∈ Ik × [0,+∞) 7→ γk(σ) + sγ̇⊥k (σ).

By the regularity assumptions on Ω, we can conclude that the map Ψ is locally

Lipschitz on (∪Mk=0Ik) × [0,+∞), and uniformly Lipschitz on every subset of

the form (∪Mk=0Ik)× [0,M) with a Lipschitz constant that depends on M and

the Lipschitz constant of ν∂Ω.

We define

U := {(σ, s) : σ ∈ (0,H1(∂Ω)), 0 < s < R(γ(σ))},

and notice that: by the upper semi-continuity of R(·), U is a measurable

subset of R2; by construction Ψ(U) ⊂ Ω, and for every x ∈ Ψ(U) we have

that Ψ−1(x) ∩ U is a singleton. Thus applying the area formula (see [14,
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Theorem 3.3.3.2]) we obtain∫
∂Ω

∫ R(y)

0
f(y + sν∂Ω(y))|1− sκ∂Ω(y)| dsdH1(y)

=

∫ H1(∂Ω)

0

∫ R(y)

0
f(Ψ(σ, s))| det JΨ(σ, s)| dsdσ

=

∫
Ψ(U)

[ ∑
(σ,s)∈Ψ−1(x)∩U

f(Ψ(σ, s))
]
dx =

∫
Ψ(U)

f(x) dx.

Since, by (24), for every x ∈ Ω \ S we have ]π∂Ω(x), x[⊂ Ω \ S, we then have

|π∂Ω(x)−x| < R(π∂Ω(x)) and hence x = π∂Ω(x) + |π∂Ω(x)−x|ν∂Ω(x) ∈ Ψ(U).

Therefore Ψ(U) ⊃ (Ω\S). Since by [22] S has null Lebesgue measure, we can

conclude that (23) holds.
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