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Abstract

This paper deals with the approximation of d-dimensional tensors, as discrete
representations of arbitrary functions f(x1, . . . , xd) on [0, 1]d, in the so-called Tensor
Chain format. The main goal of this paper is to show that the construction of a Tensor
Chain approximation is possible using Skeleton/Cross Approximation type methods.
The complete algorithm is described, computational issues are discussed in detail and
the complexity of the algorithm is shown to be linear in d. Some numerical examples
are given to validate the theoretical results.
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1 Introduction

Multiparametric arrays appear in many applications. The direct numerical treatment of

these arrays leads to serious problems like memory requirements and the complexity of

basic operations (they grow exponentially in d). In the last decade the approximation of

multiparametric arrays has become a central issue in approximation theory and numerical

analysis. These arrays, from now on called tensors, often arise from the discretizations

of multidimensional functions that are involved in the numerical treatment of complex

problems in many different areas of natural, financial or social sciences. In [1] one can

find an overview on applications of several formats of such tensor decompositions, where

for more recent developments one may look in [2, 8, 12, 21, 25, 34].

The main idea of the approximation of a tensor is decomposing the given tensor as sums

of outer products of vectors. In the language of functions, it is an approximation of

multivariable functions by sums of products of univariate functions.

In the matrix case (tensor of order 2) the low rank approximation is well studied. The

original n × n matrix A can be reconstructed through a product of U and V. Namely,

A ≈ Un×rVr×n, where r is the effective rank of A. Singular value decomposition (SVD)

gives the best decomposition with given rank. However the algorithm is very expensive

(O(n3)), especially when the matrix dimensions are large [22].

Various inexpensive techniques of low rank approximation based on skeleton/cross approx-

imation are available in the literature. In the skeleton decomposition [15] the matrix A is

approximated by A ≈ UGV T , where U, V T consists of selected columns and rows of A and

G = M−1, a r × r submatrix on the intersection of crosses formed by selected rows and

columns. The accuracy of this depends on the choice of M. A good choice for M is the
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maximum volume submatrix, i.e, the one with maximum modulus of determinant among

all r × r submatrices. Since the search for this submatrix is a NP−complex problem, it

is not feasible even for moderate values of n and r. In practise, such a submatrix can

be replaced by matrices that can be computed by the techniques described in [3, 32]. In

[3, 4] adaptive Cross Approximation (ACA) has been proposed. This technique gives the

above decomposition adaptively and the columns and rows are iteratively added until an

error criterion is reached. In pseudo-skeleton decomposition the matrix G is not necessary

equal to M−1 and even not necessarily nonsingular [18, 19]. For example G can be chosen

as pseudo inverse of M. The computational complexity of these techniques scales linear in

n.

For d > 2, there are many tensor formats like Canonical, Tucker (for complete list of

references look at [1]), Higher order Singular Value Decomposition (HOSVD) [9, 10], Hi-

erarchical format [23] and Tensor Train format [34, 35] etc. available in the literature. For

the details of all these formats and their applications in various fields one can look at the

recent book by Hackbusch [24]. Adaptive Cross Approximation is generalized to higher

dimensions (d=3,4) in [4]. In [33] matrix Cross Approximation method is generalized to

three dimensional tensors (see also [11, 30]) and in [16] the results for pseudo-skeleton

methods have been generalized to d dimensional tensors (compare also [7, 28, 14]).

In [34], Tensor Train (TT) approximation is proposed for multidimensional arrays using

skeleton decomposition, similar to what we are going to present here. The TT approxi-

mation of a 3-dimensional tensor A can be written as

A = (aijk) ≈
r1∑

m1=1

r2∑
m2=1

um1
i v

(m1,m2)
j wm2

k ,

where ui, vj , wk depend only on one variable. The summation indices m1,m2 are referred

to as auxiliary indices. TT approximation is computed by a sequence of skeleton decom-

position. Further developements in TT approximation can be found in [35, 31].

The Tensor Chain (TC) approximation of a three dimensional array A looks similar:

A = (aijk) ≈
r1∑

m1=1

r2∑
m2=1

r3∑
m3=1

u
(m1,m2)
i v

(m2,m3)
j w

(m3,m1)
k .

One can easily see that the Tensor Train (TT) format can be considered as a Tensor Chain

with one summation rank equal to one (i.e summation index m3 with r3 = 1).

The natural question arised whether skeleton/Cross Approximation type methods would

also be able to construct the TC format with the ranks r1, r2, r3 all different from 1. But

there was for some time the believe in the community that this is not possible. The main

aim of this paper is to show that such an approximation is possible, i.e, it is possible

to approximate a multidimensional array in Tensor Chain format with ranks r1, r2, ..., rd,

which are all different from 1, using skeleton/Cross Approximation type methods.

In this paper we focus on the construction of Tensor Chain approximation and the devel-

opement of the algorithm. The rigorous study of the quality of approximation is ongoing

work. We emphasize that we do not claim TC to be the format of choice having better

properties than other formats. We are aware of the results in [27], concerning the closed-

ness of the TC format.

The basic idea is explained for d = 3 in section 2, the implementation issues are discussed
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in section 3, also for higher dimensions. The computational complexity of the algorithm

is shown to be linear in d and n. Two numerical experiments are shown to support the

theory in section 4.

We will use a lot of terms and notation introduced in the literature mentiond above (es-

pecially [34] and [36]). When working with arrays we often use matlab notation.

2 The idea

We are given a function f(x, y, z) on [0, 1]3. After discretization of the unit cube with a

uniform grid of n points in each direction we represent f by the tensor

A = (aijk), where aijk = f

(
i− 1

n− 1
,
j − 1

n− 1
,
k − 1

n− 1

)
for indices 1 ≤ i, j, k ≤ n. The task is now to find an approximation of A ∈ Rn×n×n in the

form

A = (aijk) ≈
r∑

m1=1

r∑
m2=1

r∑
m3=1

u
(m1,m2)
i v

(m2,m3)
j w

(m3,m1)
k , (1)

where r ∈ N and for fixed numbers 1 ≤ m1,m2,m3 ≤ r the vectors u, v, w depend only on

one variable. The right-hand side of (1) is known as the Tensor Chain format, where this

name first appeared in [26]. It can be visualized by the following tensor network graph.

u

v

w

m2

m1

m3 Figure 1: Tensor Chain graph for d = 3

Here the nodes symbolize the spatial variables and the edges show the summation indices.

For a more detailed discussion of tensor network graphs see [12]. By the help of those

graphs we can illustrate the meaning of each step in the approximation scheme we treat

in this article.

Step 1

Consider the unfolding A1 = A(i; jk) ∈ Rn×n2
and apply Cross Approximation with r2

steps to A1 (if the rank of A is smaller than r2, the algorithm would stop having found

this rank, see [3]). The resulting approximation can be written as

A1 ≈
r2∑
l=1

u
(l)
i B

(l)
jk , (2)

where the vectors u(l) ∈ Rn depend only on the first variable i and the long vectors

B(l) ∈ Rn2
still depend on the second and third variables j, k. In terms of our graphs, we

established the following connection:

u B
l

Figure 2: Graph after first step

Here the box means, that the object B is still depending on more than one spatial variable.

Now we come to a small trick that already gives us a Chain like look of the graph. We
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split the index l = r(m1 − 1) + m2, which means we just rename the chosen crosses by

using the pairs (m1,m2), and get

A1 ≈
r∑

m1=1

r∑
m2=1

u
(m1,m2)
i B

(m1,m2)
jk , (3)

where the right-hand sides of (2) and (3) are exactly the same just carrying more compli-

cated indices now. The graph looks like:

u B

m2

m1

Figure 3: Graph after index splitting

Step 2

For varying m1,m2 the object B can be interpreted as a 4-dimensional tensor. To achieve

the final structure of (1) we have to combine the right pairs of parameters and seperate

them from the others. So we reshape B into the matrix B(jm2; km1) ∈ Rrn×rn and apply

Cross Approximation with r steps now. That gives

B ≈
r∑

m3=1

v
(m2,m3)
j w

(m3,m1)
k , (4)

which inserted into (3) leads to the desired structure with a network graph identical to

Figure 1.

It is always possible to obtain the Tensor chain representation using singular value decom-

position at each step (i.e. applying SVD to A1 in Step 1 and to B in Step 2). Though

this is very expensive, we will show some numerical tests for the approximation quality at

the end of this section.

The above steps roughly describes the idea how to use Cross Approximation techniques

to construct a Tensor Chain for an arbitrarily given 3d-tensor. Here for simplicity we bal-

anced the Chain in the sense that all ranks equal r. When it comes to the implementation

we will allow different ranks r1, r2, r3.

The outcome of this procedure we formulate in the language of functions as the following

theorem.

Theorem 2.1 Given an arbitrary function f(x, y, z) defined on [0, 1]3, the steps described

above results in an approximant F having the following Tensor Chain structure

F (x, y, z) =
r∑

m1=1

r∑
m2=1

r∑
m3=1

u(m1,m2)(x)v(m2,m3)(y)w(m3,m1)(z), (5)

where

u(m1,m2)(x) =

r∑
m′1=1

r∑
m′2=1

c1f(x, (y, z)(m′1,m
′
2)), (6)

v(m2,m3)(y) =

r∑
m′3=1

c2f(x(m
(m′3)
1 ,m2), y, z(m′3)) (7)

and w(m3,m1)(z) = f(x(m1,m
(m3)
2 ), y(m3), z). (8)
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Here (y, z)(m′1,m
′
2) denote the pivot coordinates of the first step in ”second” direction,

y(m3), z(m′3) denote the pivot coordinates of the second step and x(m
(m′3)
1 ,m2), x(m1,m

(m3)
2 ) de-

note some of the pivot coordinates taken in the first step in ”first” direction selected by m3

or m′3 in the second step. The numbers c1 = c1(f,m1,m2,m
′
1,m

′
2) and c2 = c2(f,m3,m

′
3)

are real constants with respect to (x, y, z).

Remark 2.2 Although we just called the output of the procedure an approximant, it is not

clear yet that the procedure approximates our input function f at all. This will be justified

by the numerical examples in section 4.

Proof In the first step the algorithm treats the function f1(x, η) = f(x, y, z) with η =

(y, z) as a function of two variables and applies Cross Approximation with r2 steps, which

gives

f1(x, η) ≈
r2∑
l=1

r2∑
l′=1

c1f1(x, η(l′))f1(x(l), η), (9)

with pivot points (x(l), η(l)) for l = 1, . . . , r2 and coefficients c1, defined for example by

using the so-called Fredholm minors of f1, i.e.

c1 = c1(l, l′) = (−1)l+l
′ f1

(x(1),...,x(l−1),x(l+1),...,x(r
2)

η(1),...,η(l−1),η(l+1),...,η(r
2)

)
f1

(x(1),...,x(r2)
η(1),...,η(r

2)

) ,

(see [29, 36]). These coefficients are nothing but the entries of the inverse of the matrix

consisting of the function values at all the intersection points of pivot rows and columns.

Now we split the index l = r(m1 − 1) + m2 (analog also for l′) such that there is a one-

to-one correspondence between {1, . . . , r2} and {1, . . . , r} × {1, . . . , r}. Then formula (9)

becomes

f1(x, η) ≈
r∑

m1=1

r∑
m2=1

r∑
m′1=1

r∑
m′2=1

c1f1(x, η(m′1,m
′
2))

︸ ︷︷ ︸
=:u(m1,m2)(x)

f1(x(m1,m2), η), (10)

which gives (6).

Now for each of the r2 pairs (m1,m2) we can interpret f1(x(m1,m2), η) = f(x(m1,m2), y, z)

as a distinct function. For the second step the algorithm considers all those functions at

the same time by the definition

f2(µ, ν) := f(x(m1,m2), y, z), with µ = (m2, y) and ν = (m1, z).

This is formally again a two-dimensional function, so we apply Cross Approximation with

r steps and get

f2(µ, ν) ≈
r∑

m3=1

r∑
m′3=1

c2f2(µ, ν(m′3))

︸ ︷︷ ︸
=:v(m2,m3)(y)

f2(µ(m3), ν)︸ ︷︷ ︸
w(m3,m1)(z)

, (11)

with pivot points (µ(m3), ν(m3)) for m3 = 1, . . . , r and coefficients c2, defined analogously

to c1 now for the function f2. If we insert formula (11) for the last term in (10) we get
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(5). After re-substitution we find

v(m2,m3)(y) =
r∑

m′3=1

c2f2(µ, ν(m′3))

=
r∑

m′3=1

c2f2((m2, y), (m1, z)
(m′3))

=

r∑
m′3=1

c2f(x(m
(m′3)
1 ,m2), y, z(m′3)),

which is (7), and

w(m3,m1)(z) = f2(µ(m3), ν) = f2((m2, y)(m3), (m1, z)) = f(x(m1,m
(m3)
2 ), y(m3), z),

which proves (8) and finishes the proof.

2

One of the best properties of skeleton/Cross Approximation techniques is that they inter-

polate the original object on prescribed positions (see [3, 18, 32]). In this spirit we can

formulate the following result.

Proposition 2.3 (Interpolation)

We have f(x, y, z) = F (x, y, z) whenever there exist m1,m2,m3 satisfying

x = x(m1,m2) and y is such that (m2, y) = (m2, y)(m3) (12)

or x = x(m1,m2) and z is such that (m1, z) = (m1, z)
(m3) (13)

or (y, z) = (y, z)(m1,m2) with (m2, y) = (m2, y)(m3) (14)

or (y, z) = (y, z)(m1,m2) with (m1, z) = (m1, z)
(m3). (15)

Proof We look at the proof of the above Theorem and denote by F1(x, η) the right-hand

side of (10) and by F2(µ, ν) the right-hand side of (11). Because of the interpolation prop-

erty (see [3] again) we have f1(x, η) = F1(x, η) if we choose a pivot row x = x(m1,m2) for

a pair (m1,m2) ∈ {1, . . . , r}2, or a pivot column η = η(m′1,m
′
2) for (m′1,m

′
2) ∈ {1, . . . , r}2.

Our procedure approximates parts of F1 further on, so the interpolation property can only

hold where this second approximation is exact. That is, f2(µ, ν) = F2(µ, ν) if µ = µ(m3)

or ν = ν(m′3) for m3,m
′
3 ∈ {1, . . . , r}. Now we put those conditions together.

First suppose we choose x = x(m1,m2) for some fixed (m1,m2). Then the interpolation

property holds either if y is such that the coordinate (m2, y) was chosen as a pivot coor-

dinate in the second approximation, i.e. µ = (m2, y) = (m2, y)(m3) = µ(m3) for some m3

(condition (12), interpolation on a z-fiber), or if z is such that the coordinate (m1, z) was

chosen as a pivot coordinate in the second approximation, i.e. ν = (m1, z) = (m1, z)
(m3) =

ν(m3) for some m3 (condition (13), interpolation on a y-fiber).

In the other case, suppose we choose η = (y, z) = (y, z)(m1,m2) for fixed (m1,m2). Then

the procedure interpolates on a x-fiber if for some m3 either (m2, y) = (m2, y)(m3) (con-

dition (14)) or (m1, z) = (m1, z)
(m3) (condition (15)) was chosen as a pivot coordinate in

the second step.

2
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Remark 2.4 Conditions (12)-(15) look rather technical, but the philosophy behind is very

simple: The procedure reproduces the function exact if the interpolation conditions of both

Cross Approximation procedures together are fulfilled.

The question is how to implement this scheme with linear complexity in n. That means

we have to avoid to store the long vectors B(l) ∈ Rn2
from Step 1 and the large matrix

B(jm2; km1) ∈ Rrn×rn from Step 2. This is possible and we give the detailed description

in the next section. There we will modify the basic idea described above at many places

according to numerical stability, efficiency and low rank accuracy. The structure of the

factors u, v, w in (5) will also change a lot as well as the exact form of the involved

constants so that the Theorem and the Proposition above would have to be adapted to

the implemented procedure. But the main property will stay untouched, namely that each

factor in the decomposition is depending on one spatial variable only. We come back to

this again in the summary at the end of section 3.2.

To provide numerical evidence that the idea works at all (also for d > 3), we present some

small experiments using the expensive but optimal (and much easier to implement) SVD

instead of Cross Approximation in the procedure described above, as mentioned after Step

2. Here our underlying function is

f(x1, . . . , xd) =
1√

1 + x2
1 + . . .+ x2

d

defined on [0, 1]d. We discretize the unit cube with n points in each direction by an uniform

grid. In Step 1 by SVD we get A1 = UΣV T and truncate the factors A1 ≈ Ũ Σ̃Ṽ T such

that only singular values |σj | > 1e− 09 (determining the rank R) are taken into account

for the sequel. Then we take the rounded up square root of R as splitted rank r, which

is similarly described in Step 1. From Step 2 on, the truncation after each SVD (also for

d > 3) determines the rank r as smallest number such that the sum of all σ2
j with j > r

is smaller than ε2. This tolerance ε, the outcoming ranks and the relative approximation

error measured in the Frobenius norm are shown in Table 2.11.

d n ε ranks error
3 129 0.1 3,3,3 1.4e-05

1e-05 3,3,15 6.8e-09
4 33 0.1 3,3,3,3 4.0e-05

1e-05 3,3,15,19 6.6e-09
5 30 0.1 3,3,5,6,7 4.3e-05

1e-05 3,3,17,21,24 6.0e-09
20 0.1 3,3,3,3,3 8.3e-05

1e-05 3,3,15,21,23 8.7e-09
6 20 0.1 3,3,5,6,6,6 1.8e-03

1e-05 3,3,17,22,26,44 3.3e-09
10 0.1 3,3,3,3,3,3, 2.3e-04

1e-05 3,3,15,20,25,29 8.0e-09
7 10 0.1 3,3,4,5,6,6,6 4.8e-03

1e-05 3,3,15,22,29,87,30 1.2e-08
8 10 0.1 3,3,5,6,6,6,6,6 5.8e-03

Table 2.1: Outcome for the SVD-based version

1These results and the implementation in C++ of the SVD-based procedure were produced by our
colleague Stefan Handschuh, MPI MIS Leipzig.
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3 Tensor Chain approximation using Cross Approximation

As we have seen in the section 2, the size of the unfolding matrices are like n×m, where

m ∼ nq for some natural q. The adaptive Cross Approximation method (ACA) [3] is

expensive in these cases. So we use pseudo-skeleton approximation to decompose the

unfolding matrices. Here we describe it briefly.

3.1 Pseudo-skeleton approximation revisited

Before going to the details of pseudo-skeleton approximation, we first review the skeleton

approximation method. Consider a matrix A ∈ Rn×m, where m ∼ nq for some natural q.

As explained in the introduction the matrix A is approximated by A ≈ CGR, where C and

R contains the selected columns and rows respectively and G = M−1, a submatrix on the

intersections of the selected columns and rows. To construct a skeleton approximation, say

of rank r, first one needs to compute r columns of A given by the indices J = (j(1), . . . , j(r))

and store them as C = A(:, J) ∈ Rn×r. To find a good row matrix one can use the

maxvol procedure (see [17, 20]) that gives r row indices I = (i(1), . . . , i(r)) such that the

corresponding intersection matrix M = A(I, J) ∈ Rr×r has almost maximal volume.

In the matrix case (q = 1) one could now also store the row matrix R = A(I, :) ∈ Rr×n

and achieved already a skeleton approximation A ≈ CM−1R. If the column indices

J at the beginning were badly chosen (maybe because of some random strategy), this

approximation might not be very good and the inversion of M might even be unstable

(due to over estimation of ranks and random choice of columns). To overcome this one can

now use the maxvol procedure for the rows R to optimize the choice of the columns and

even alternate further the optimization between rows and columns until the determinant of

M stays almost constant and the approximation is fine (row-column alternating algorithm

[32, 34]).

Since we are not in the matrix case (q > 1) we can not follow this alternating strategy

because the object R is still too large to handle. Therefore we use pseudo-skeleton ap-

proximation. In the pseudo-skeleton approximation the inverse of the degenerate or badly

conditioned matrix M is replaced by the pseudo inverse of M [19, 37].

We choose our starting number k (instead of r) of randomly chosen columns to be rather

large (so that r important rows and columns are embedded in it) and after finding good

rows and the intersection matrix M by the maxvol procedure, we reduce the rank to r ≤ k
in the following way:

We perform a SVD of M = USV ′ (from now on the transposed of a matrix A will be

denoted by A′) and truncate S such that all its remaining singular values σl satisfy a

certain condition, for example, |σl| > epsCPU , l = 1, . . . , r (other conditions are possible).

Correspondingly we also truncate U ∈ Rk×r, V ′ ∈ Rr×k and our pseudo-skeleton approxi-

mation reads as A ≈ CV S−1 · U ′R, where the inversion of the small diagonal matrix S is

now very easy. The factor CV S−1 can be stored for the final approximation, where the

still large object U ′R can be treated in further steps as a d− 1-dimensional tensor. This

describes the basic idea for each step in our algorithm that we explain now in detail.
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3.2 The practical algorithm in d = 3

For an efficient implementation of the idea described at the beginning of section 2 we use

in each step the pseudo-skeleton procedure from above. Before we discuss in detail how

to incorporate it for our needs, we formulate the complete algorithm, which takes the

initial rank k and an error bound ε as input to produce a Tensor Chain approximation

for a tensor A ∈ Rn×n×n by using Cross Approximation techniques. The output of the

algorithm will be the vectors u, v, w from (1).

Algorithm 1 (Tensor Chain approximation, d = 3)

Step 1

1: Choose k random pivot indices η̄ = (η(1), . . . , η(k)) between 1 and n2.
2: Compute the k corresponding x-fibers of A and store them as U ∈ Rn×k.
3: Use maxvol procedure to find k row indices x̄ = (x(1), . . . , x(k)) in U and store the

submatrix M ∈ Rk×k.
4: Decompose M = UMSM (VM )′ by SVD. Set r as number of singular values larger

than epsCPU . Truncate UM , VM ∈ Rk×r and SM ∈ Rr×r.
5: Manipulate U = UVM (SM )−1 ∈ Rn×r.
6: Split r = r1r2 with r1, r2 ∈ N.
Step 2

7: Choose k random pivot indices ȳ = (y(1), . . . , y(k)) between 1 and r1n.
8: Compute the k corresponding vectors of length r2n with values in (UM )′(A1|x̄) and

store them as V ∈ Rr2n×k.
9: Use maxvol procedure to find k row indices z̄ = (z(1), . . . , z(k)) in V and store the

submatrix M̃ ∈ Rk×k.
10: Compute the k corresponding vectors of length r1n with values in (UM )′(A1|x̄) and

store them as W ∈ Rk×r1n.
11: Decompose M̃ = UM̃SM̃ (V M̃ )′ by SVD. Set r̃3 as number of singular values larger

than epsCPU . Truncate UM̃ , V M̃ ∈ Rk×r̃3 and SM̃ ∈ Rr̃3×r̃3 .
12: Manipulate V = V V M̃ ∈ Rr2n×r̃3 and W = (UM̃ )′W ∈ Rr̃3×r1n.
Step 3 (rank reduction)

13: Take QR-decompositions of V = QVRV and W ′ = QWRW .
Set S̃ = RV (SM̃ )−1(RW )′.

14: Decompose S̃ = U S̃SS̃(V S̃)′ by SVD with singular values σj . Set r3 minimal with∑r̃3
j=r3+1(σj)

2 < ε2. Truncate U S̃ , V S̃ ∈ Rr̃3×r3 and SS̃ ∈ Rr3×r3 .

15: Manipulate V = QV U S̃SS̃ ∈ Rr2n×r3 and W = (V S̃)′(QW )′ ∈ Rr3×r1n.

Detailed description

We should always keep in mind that before we run our procedure we have no information

about f (or the corresponding A), just the possibility to compute function values (or en-

tries in A), which might be expensive (Black Box). In addition to the two steps of the

algorithm roughly described in the previous section, here we have a third step to reduce

the rank of the last edge corresponding to the summation over m3.

Step 1

1-2: We start by choosing k x-dependent fibers of A randomly out of all n2 possibilities

and store these vectors of length n in the matrix U ∈ Rn×k.
3: Now we use the maxvol procedure ([17]) to find a ”good” submatrix with almost max-

imal determinant and store it as M ∈ Rk×k, the corresponding k row indices we store in

the vector x̄.
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4-5: Actually we would have to invert M for the approximation of the unfolding A1 ∈
Rn×n2

by the skeleton method, but because of the random initial choice of k columns this

might be an unstable operation. Therefore, we perform a SVD of M = UMSM (VM )′ and

take only the ”good” part of it, i.e., we truncate its singular values to machine epsilon,

call the new rank r ≤ k, update our final U = UVM (SM )−1 ∈ Rn×r and store UM ∈ Rk×r

for later use instead of inverting the full M .

6: Finally we split the rank r to establish the two edges according to the summations

over m1 and m2. In the previous section the initial rank was r2, so this splitting was just

r2 = rr to balance the chain. This might not be optimal, but since we are in a Black Box

situation this seemed natural. Nevertheless, now our r is unlikely to be a square, so we

split r = r1r2 such that |r1 − r2| is minimal. Again, this is very artificial, just think of

r being a prime, then the splitting is r = r · 1. One can certainly try different splitting

strategies, see the discussion at the end of section 4.

Step 2

In step 2 we are working only with entries of the unfolded restriction of A to the (y, z)-

slices chosen in Step 1, denoted by A1|x̄ ∈ Rk×n2
. We virtually reshape the entries of

(UM )′(A1|x̄) to a matrix, say B ∈ Rr2n×r1n and basically follow the same strategy as in

step 1.

7-8: That means we randomly choose k pivot columns of B and store them in V ∈ Rr2n×k.
9-10: We use maxvol again to find a submatrix M̃ ∈ Rk×k and store the corresponding

k rows of B in W ∈ Rk×r1n.

11: For this second approximation we use the same stabilization trick as before avoiding

the inversion of M̃ . We decompose M̃ = UM̃SM̃ (V M̃ )′ by SVD and truncate the singular

values to machine epsilon with rank r̃3 ≤ k.

12: We overwrite V = V V M̃ ∈ Rr2n×r̃3 and W = (UM̃ )′W ∈ Rr̃3×r1n and could actually

stop working.

Step 3

But since V and W are quite small objects now, we can afford a further reduction of r̃3.

13: In this last step we take QR-decompositions of V = QVRV and W ′ = QWRW and

set S̃ = RV (SM̃ )−1(RW )′ (see [5]).

14: Now we perform a SVD for S̃ = U S̃SS̃(V S̃)′ and set the final rank r3 ≤ r̃3 as the min-

imal number such that
∑r̃3

j=r3+1(σj)
2 < ε2, where σj are the singular values of S̃ and ε is

the input error bound. Then we truncate U S̃ , SS̃ and V S̃ according to the new rank r3. 15:

We can now update our final V = QV U S̃SS̃ ∈ Rr2n×r3 and W = (V S̃)′(QW )′ ∈ Rr3×r1n

and finish.

Comments

Algorithm 1 solves the task from the following point of view: Given an arbitrary function

f(x, y, z)|[0, 1]3, we want to find the building blocks u, v, w for the Tensor Chain approxi-

mation (1) of its discrete representation with a desired Frobenius norm accuracy ε using

at most rank k for each summation.

We also implemented a slightly different algorithm in terms of the rank reduction, let’s

call it Algorithm 2. The modification takes place in step 11 of Algorithm 1. There the

truncation criterion is such that all the singular values being smaller in modulus than

10



machine epsilon are omitted. In Algorithm 2 we now omit already all singular values such

that the sum of their squares is still smaller than ε2 (similar to step 14 of Algorithm 1). As

an effect, the additional QR-decompositions in step 3 to reduce the rank have no further

effect, therefore the whole step 3 is omitted in Algorithm 2. We will compare these two

variants in our numerical results.

Computational Cost

The overall computational cost of Algorithm 1 is

O(k3 + r̃3
3 + n(k(r + (r1 + r2)r̃2

3)),

where we need O(nk(r1 + r2) + k(k + r + r̃3)) units of storage and O(nk(r1 + r2)) tensor

entry evaluations. The costs of all relevant steps are listed in Table 3.2.

step numerical cost storage tensor value calls
2: - nk nk
3: - k2 -
4: O(k3) O(k(k + r)) -
5: O(nkr) - -
8: - r2nk r2nk
9: - k2 -
10: - r1nk r1nk
11: O(k3) O(k(k + r̃3)) -
12: O((r1 + r2)nkr̃3) - -
13: O((r1 + r2)nr̃23 + r̃33) - -
14: O(r̃33) r̃23 -
15: O((r1 + r3)nr3r̃3) - -

Table 3.2: Computational cost of Algorithm 1

Summary

As mentioned at the end of section 2 the practical algorithm described above draws many

modifications compared with Theorem 2.1 or the subsequent Proposition. Our interest

now is to give the true structure of the approximant which our algorithm produces using

the discrete setting.

If we reshape the output matrices V,W in line 15 of Algorithm 1 such that V ∈ Rn×r2r3 ,

W ∈ Rn×r3r1 and index the columns of U, V,W by the pairs (m1,m2), (m2,m3), (m3,m1)

respectively, we can state the following: Given an arbitrary tensor A ∈ Rn×n×n, Algorithm

1 generates an approximant of the form

A ∼
r1∑

m1=1

r2∑
m2=1

r3∑
m3=1

U (m1,m2) ⊗ V (m2,m3) ⊗W (m3,m1), (16)

where

U = A1|η̄VM (SM )−1, V = Q
[
B|ȳV M̃

]
U S̃SS̃ , W = (V S̃)′

(
Q

[(
(UM̃ )′B|z̄

)′])′
,

(17)

where Q[·] denotes the corresponding factor of a QR-decomposition and all the other no-

tation was introduced before. Although the explicit formulas in (17) are rather terrifying,

we can see that the columns of U, V,W are linear combinations of original fibers of A in

11



the corresponding directions with coefficients depending on the pivots.

3.3 The case (d > 3)

It is possible to generalize the above procedure to arbitrary dimensions d ∈ N. We will

describe now how such a generalization should look like even though we implemented it

for d = 3, 4 only. The basic idea is the same as for the three-dimensional case and it is

again useful to visualize the meaning of each step by the corresponding graph.

Given a function f(x1, . . . , xd) defined on [0, 1]d we wish to approximate the correspond-

ing tensor A ∈ Rn1×...×nd (arising after discretization) by using Cross Approximation

techniques applied to successive unfoldings of A. The desired form is the following

A ∼
r1∑

m1=1

· · ·
rd∑

md=1

U
(m1,m2)
1 ⊗ U (m2,m3)

2 ⊗ . . .⊗ U (md−1,md)
d−1 ⊗ U (md,m1)

d , (18)

where the Ut ∈ Rrt×nt×rt+1 are 3-tensors for all t = 1, . . . , d. The corresponding graph is

shown in figure 4.

u1

u2 u3

...

ud−1ud

m2

m3

m4

md−1

md

m1

Figure 4: Tensor Chain graph for d ∈ N

For simplicity of the description we assume from now on that n1 = . . . = nd = n, so first

we have to consider the unfolding A1 ∈ Rn×nd−1
.

Opening step

1: Choose k random pivot indices J1 = (j
(1)
1 , . . . , j

(k)
1 ) between 1 and nd−1.

2: Compute the k corresponding x1-fibers of A and store them as U1 ∈ Rn×k.
3: Use maxvol procedure to find k row indices I1 = (i

(1)
1 , . . . , i

(k)
1 ) in U1 and store the

submatrix M1 ∈ Rk×k.
4: Decompose M1 = UM1SM1(VM1)′ by SVD. Set r as number of singular values larger

than epsCPU . Truncate UM1 , VM1 ∈ Rk×r and SM1 ∈ Rr×r.
5: Manipulate U1 = U1V

M1(SM1)−1 ∈ Rn×r.
6: Split r = r1r2 with r1, r2 ∈ N.

In terms of our network graph we established the following connections with l = 1, . . . , k,

m1 = 1, . . . , r1 and m2 = 1, . . . , r2:

u1 B
l

Figure 5: Graph before index splitting

12



u1 B

m2

m1

Figure 6: Graph after index splitting

Here B just denotes the remaining object to approximate still depending on all other

spatial variables not separated yet. Since we already produced a chain like graph we can

proceed very similar to the tensor train method proposed in [34]. Therefore, in each step

t we consider the unfolded remainder At ∈ Rrtn×r1nd−t
.

Intermediate steps (d− 3 many)

0: Set counter t = 2, . . . , d− 2.

1: Choose k random pivot indices Jt = (j
(1)
t , . . . , j

(k)
t ) between 1 and r1n

d−t.

2: Compute the k corresponding xt-fibers of A (after manipulation with the correspond-

ing UM1 , . . . , UMt−1 from the previous steps) and store them as Ut ∈ Rrtn×k.
3: Use maxvol procedure to find k row indices It = (i

(1)
t , . . . , i

(k)
t ) in Ut and store the

submatrix Mt ∈ Rk×k.
4: Decompose Mt = UMtSMt(VMt)′ by SVD. Set rt+1 as number of singular values larger

than epsCPU . Truncate UMt , VMt ∈ Rk×rt+1 and SMt ∈ Rrt+1×rt+1 .

5: Manipulate Ut = UtV
Mt(SMt)−1 ∈ Rrtn×rt+1 .

After d−3 of those steps the chain graph is almost complete, it looks as in figure 7. Again,

the box means that the remaining object Z still depends on more than one spatial variables.

u1

u2 u3

...

Z

m2

m3

m4

md−1m1

Figure 7: Tensor Chain graph for d ∈ N

As we described in the Comments after Algorithm 1, here we also considered two different

truncation strategies.

The point of view for the first one is to gather as much information about the tensor as

possible in each step in order to assure good approximation quality. That means we omit

the singular values with modulus smaller than machine epsilon (see point 4 in the inter-

mediate step). Only in the very last step (closing step), which will be described below, we

take the desired accuracy ε into account and truncate with respect to the Frobenius norm

to reduce the rank of the last edge.

Another point of view could be that one is only interested in a final approximation accu-

racy of order ε anyway. So, why not truncating with respect to the Frobenius norm (as in

point 8 below) in every step already in order to keep the ranks smaller ? That is exactly

our second truncation strategy, previously called Algorithm 2 in case d = 3 (also here it

results in the redundancy of steps 7,8,9 below). The opening step is untouched by this,
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there we always cut down to machine epsilon because we need to split the outcoming rank

making it small enough. We will discuss this issue again, when it comes to the experiments.

For the last step we are left to approximate the unfolded remainder Ad−1 ∈ Rrd−1n×r1n.

This is a fairly small object and so we can store columns and rows needed for Cross Ap-

proximation to produce the last two factors in (18).

Closing step

1: Choose k random pivot indices Jd−1 = (j
(1)
d−1, . . . , j

(k)
d−1) between 1 and r1n.

2: Compute the k corresponding xd−1-fibers of A (after manipulation with the corre-

sponding UM1 , . . . , UMd−2 from the previous steps) and store them as Ud−1 ∈ Rrd−1n×k.

3: Use maxvol procedure to find k row indices Id−1 = (i
(1)
d−1, . . . , i

(k)
d−1) in Ud−1 and store

the submatrix Md−1 ∈ Rk×k.
4: Compute the k corresponding vectors of length r1n (xd-fibers of A after manipulation)

and store them as Ud ∈ Rk×r1n

5: Decompose Md−1 = UMd−1SMd−1(VMd−1)′ by SVD. Set r̃d as number of singular val-

ues larger than epsCPU . Truncate UMd−1 , VMd−1 ∈ Rk×r̃d and SMd−1 ∈ Rr̃d×r̃d .

6: Manipulate Ud−1 = Ud−1V
Md−1 ∈ Rrd−1n×r̃d and Ud = (UMd−1)′Ud ∈ Rr̃d×r1n.

(final rank reduction :)

7: TakeQR-decompositions of Ud−1 = Qd−1Rd−1 and U ′d = QdRd. Set S̃ = Rd−1(SMd−1)−1R′d.

8: Decompose S̃ = U S̃SS̃(V S̃)′ by SVD with singular values σj . Set rd minimal with∑r̃d
j=rd+1(σj)

2 < ε2. Truncate U S̃ , V S̃ ∈ Rr̃d×rd and SS̃ ∈ Rrd×rd .

9: Manipulate Ud−1 = Qd−1U
S̃SS̃ ∈ Rrd−1n×rd and Ud = (V S̃)′Q′d ∈ Rrd×r1n.

Finally, we produced all factors U1, . . . , Ud needed for the approximant in (18) having the

network graph as in figure 4.

Computational Cost

The computational cost for the case d > 3 is given in Table 3.3.

The overall computational cost is summed up to

O
(
d(k3 + r2nk) + nkr3

)
,

where r = max1≤t≤d rt. The memory requirement is O
(
d(k3 + rnk)

)
, where we need

O (drnk) tensor entry evaluations.

Error behavior

Each step introduces two types of errors to the approximation. In step t the unfolding At

is first approximated by a skeleton Ut(Mt)
†Vt (where (Mt)

† is the pseudo inverse of Mt)

with an accuracy δt (always measured in the Frobenius norm). This error we do not have

under control, it heavily depends on the random pivot choice. But experience with Cross

Approximation methods shows that if the underlying function f is ”nice” (smooth, slowly

oscillating, no peaks, etc.) this error will be very small. The second error εt always appears

in the truncation of Mt = UMtSMt(VMt)′ to smaller ranks. This error is controlled by

the input parameter ε (in different ways according to Algorithm 1 or 2). If we denote the
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step numerical cost storage tensor value calls
Opening step

2: - nk nk
3: - k2 -
4: O(k3) O(k(k + r)) -
5: O(nkr) - -

Intermediate step d− 3 times d− 3 times d− 3 times
2: - rtnk rtnk
3: - k2 -
4: O(k3) O(k(k + rt+1)) -
5: O(rtrt+1nk) - -

Closing step
2: - rd−1nk rd−1nk
3: - k2

4: - r1nk r1nk
5: O(k3) O(k(k + r̃d)) -
6: O((r1 + rd−1)nkr̃d) - -
7: O((r1 + rd−1)nr̃2d + r̃3d) - -
8: O(r̃3d) O(r̃2d) -
9: O((r1 + rd−1)nrdr̃d) - -

Table 3.3: Computational cost of the Algorithm for d > 3

right-hand side of (18) by X, then after using triangle inequality for the approximations

and truncations in each step, we end up with something like

‖A−X‖ ≤
d−1∑
i=1

αi(δi + βiεi),

where the α’s and β’s are amplification factors depending on the norms of chosen rows

and column matrices. For ”nice” f and normalized factors in the approximant, ε plays

the dominant role for the final accuracy which can be observed in the experiments.

In contrast to that, the error behavior is quite different, for example, if

g(x1, . . . , xd) = exp

−10 ∗

√√√√ d∑
i=1

(xi − 0.5)2


on [0, 1]d. Then the δt’s are dominating and the choice of ε plays only a minor role. A

rigorous error analysis is still desirable and ongoing work. The most promising approach

is in the spirit of the recent work in [6], where error bounds for skeleton decompositions

of matrices are given with certain probabilities and are based on the notion of coherence.

4 Numerical results

To show the quality of our approximation scheme we present the results of some numerical

experiments with our favourite function

f(x1, . . . , xd) =
1√

1 + x2
1 + . . .+ x2

d

defined on [0, 1]d. Obviously this function is very smooth and should not cause any kind

of problems in the approximation. But since our goal was to show whether the approx-

imation in the TC format is possible by our method, we found this example sufficient.

In case d = 3 we took n = 129 points in each direction of an uniform grid and show the
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outcome in table 4.4. Table 4.5 presents the results for d = 4, where only n = 33 is taken

because of the waiting time needed to test the final error.

k ε QR r1, r2, r3 error time
3,3,3 (70%) 1e-05

+ 2,5,4 (25%) 1e-04
10 0.1 2,4,4 (5%) 8e-05 0.01

3,3,2 (65%) 3e-04
- 2,5,2 (30%) 4e-04

2,4,2 (5%) 4e-04
3,3,9 (40%) 1e-08

+ 3,3,10 (30%) 5e-07
10 1e-05 2,5,9 (20%) 5e-08 0.01

3,3,5 (45%) 5e-06
- 3,3,6 (35%) 2e-06

2,5,6 (10%) 3e-06
13,1,9 (65%) 5e-13

+ 2,7,16 (15%) 5e-13 0.03
20 1e-10 3,4,19 (10%) 6e-12

13,1,7 (60%) 1e-11
- 13,1,6 (15%) 1e-08 0.02

3,4,14 (10%) 7e-11
19,1,27∗ (50%) 3e-14

30 1e-16 + - 3,6,29∗ (40%) 6e-13 0.06
4,5,29∗ (10%) 8e-14

Table 4.4: Results for f in d = 3

k ε QR r1, r2, r3, r4 error time
3,3,10,3 (70%) 2e-05

+ 2,4,10,3 (20%) 3e-04
10 0.1 2,5,10,3 (10%) 2e-04 0.02

3,3,2,2 (75%) 7e-04
- 2,4,2,2 (20%) 8e-04

2,5,2,2 (5%) 7e-04
3,3,10,9 (30%) 5e-07

+ 2,4,10,9 (30%) 8e-08
10 1e-05 3,3,10,10 (25%) 2e-07 0.02

3,3,4,4 (35%) 2e-05
- 2,4,6,6 (20%) 6e-06

3,3,5,6 (15%) 9e-06
3,4,20,19 (30%) 1e-10 0.1

+ 13,1,15,10 (15%) 5e-12 0.2
20 1e-10 3,4,20,20 (15%) 5e-11 0.1

13,1,7,8 (35%) 1e-10 0.2
- 11,1,7,8 (15%) 8e-11 0.2

3,4,14,15 (10%) 2e-10 0.1
3,6,29∗, 29∗ (55%) 1e-12 0.2

30 1e-16 + - 17,1,25∗, 27∗ (25%) 1e-13 0.7
19,1,25∗, 28∗ (15%) 5e-11 0.8

Table 4.5: Results for f in d = 4

The meaning of the columns in the tables is as follows: Obviously, k is the starting rank

(number of randomly chosen columns in each step), ε is the desired accuracy of the final

approximation and the time needed to construct all factors of the approximant measured

in seconds is shown in the last column.

The third column specifies the truncation method, as mentioned in the comments after

Algorithm 1 and before the closing step in the previous section: ’+’ means that we per-

form additional QR-decompositions after the closing step and always truncate to machine

epsilon in all previous steps and ’−’ refers to the fact that we always truncate with respect

to the initial ε in the Frobenius norm (except for the first step) and can therefore omit

the QR’s for final reduction.

The main results are displayed in columns 4 and 5: r1, . . . , rd shows for fixed parameters

k and ε the three rank distributions appearing most often (within 20 runs) with its cu-

mulative percentage in brackets and the final (averaged) approximation error measured in

the Frobenius norm is given. In the rows for k = 30 the superscript ∗ at some given rank

numbers indicate that these are averaged and the true rank may slightly differ.

The experiments were performed on a Sun/Oracle SPARC Enterprise M3000 Server (shared

with other users) with 32GB memory and a SPARC64-VII processor at 2,5 GHz. The code

was written in matlab.

Discussion

The comparison between the two variants (+ and −) follows our expectation. The variant

with the QR’s at the end is always a bit more accurate, because of the weaker truncation

to machine epsilon in all the steps, where without the QR’s the procedure leads to a more

balanced chain in terms of ranks (best visible in case k = 10). In both cases the desired
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accuracy ε, that the algorithm gets as an input, is almost always reached. If one needs

really precise calculations (ε ≤ 1e− 10), then larger ranks have to be allowed. Therefore,

the starting rank k is chosen to be 20 or 30, but there is no obvious strategy to choose k,

it is up to heuristics.

The appearance of 1’s for r2 is because of the splitting r = r1r2 with r1 ≥ r2 and |r1− r2|
minimal. If r happens to be a prime, r2 = 1 will be chosen. As mentioned before this is

artificial and one could try to modify this. In later work ([13] is not yet published) the

splitting is more natural. If r ≤ k is the number of singular values of the intersection

matrix M that are larger than epsCPU , we truncate the size of the involved factors to

r̂ = ([
√
r] + 1)2 such that r ≤ r̂ ≤ k, where now the splitting for a balanced chain is easy.

In case ε = 1e− 16 the two variants do not differ much, as expected.

Although we do not compete with other formats, we shortly compare our results with

the well-established TT-toolbox of Oseledets, due to a wish of an anonymous referee. In

case d = 3, n = 129 for an accuracy of 1e − 06 (measured in relative Frobenius norm)

the TT-ranks for our function f are (4, 4) and for an error of 1e − 10 the toolbox gives

(7, 7). For d = 4, n = 33 the TT-ranks are analogue ((4, 4, 4) for 1e− 06 and (7, 7, 7) for

1e− 10). These results are comparable to the ranks produced by our Algorithm without

final QR-decomposition (indicated with − in the tables above).

Special example

To investigate the important question whether our algorithm is able to reproduce tensors

that are given in the TC format already, let us consider an explicit example here. This

will also shed some light on the connection between TT ranks and TC ranks.

Let {ej ∈ Rr : 1 ≤ j ≤ r} be the canonical basis of Rr. Let us further define

u(i,j) := v(i,j) := w(i,j) := ei ⊗ ej ∈ Rr
2
, (1 ≤ i, j ≤ r)

and

A :=

r∑
m1=1

r∑
m2=1

r∑
m3=1

u(m1,m2) ⊗ v(m2,m3) ⊗ w(m3,m1).

Obviously, the ranks of A in the TC format are bounded by r. Now let’s check the ranks

in the TT format, which are given by the ranks of the matricizations (unfoldings) of A.

Because of symmetry it is sufficient to consider only the first unfolding of A

M1(A) = UW T

where the the matrices U ∈ Rr2×r2 and W ∈ Rr4×r2 are defined as follows:

U :=
(
u(m1,m2) : 1 ≤ m1,m2,≤ r

)
,

W :=

(
r∑

m3=1

v(m2,m3) ⊗ w(m3,m1) : 1 ≤ m1,m2,≤ r

)
.

Since U is invertible and W TW = r · IdRr×r ⊗ IdRr×r , i.e. rank(W ) = r2, we have

rank(M1(A)) = r2. Therefore, all the TT ranks of A are equal to r2.

In such a case where the TC ranks are much smaller than the ranks in the TT format,

it would be even more desirable that Algorithm 1 reproduces A exactly. Because of our

general Black Box assumption, the position of the columns that carry useful information
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in this degenerate situation is not known in advance, so it’s of course unlikely to find them

here (also in the right order) by a random choice and the approximation often fails then.

Consequently, a recovery property can not be expected in general. Still there is some

hope that in case of more input information about our underlying function this property

could hold. Namely, if we use the expensive SVD-based procedure described at the end of

section 2 for this specific example, the original A will be reconstructed perfectly with the

correct ranks in many cases. What goes wrong sometimes is the index reordering after the

rank splitting in the first step. So if, in addition, we ensure that in Step 1 the left-singular

vectors form U as the identity matrix, then we recover A in all cases, which has to be

exploited in future work. Here we present the outcome for the procedure described at the

end of section 2 with the tolerance ε = 1e− 05, where the third column indicates whether

we forced U to be the identity or not.2

d n = r2 U
!
= I ranks error

3 4 + 2,2,2 5.8e-16
- 2,2,4 1.7e-16

9 + 3,3,3 2.7e-16
- 3,3,21 2.6e-15

16 + 4,4,4 1.6e-16
- 4,4,4 1.6e-16

25 + 5,5,5 2.7e-16
- 5,5,5 2.7e-16

36 + 6,6,6 1.4e-15
- 6,6,96 1.8e-15

49 + 7,7,7 7.4e-16
- 7,7,7 7.4e-16

64 + 8,8,8 2.0e-15
- 8,8,120 2.5e-15

81 + 9,9,9 1.8e-15
- 9,9,9 1.8e-15

100 + 10,10,10 4.9e-16
- 10,10,10 4.9e-16

4 4 + 2,2,2,2 1.6e-16
- 2,2,2,2 1.6e-16

9 + 3,3,3,3 3.6e-15
- 3,3,3,3 3.6e-15

16 + 4,4,4,4 6.4e-16
- 4,4,20,20 1.1e-15

25 + 5,5,5,5 8.0e-16
- 5,5,5,5 8.0e-16

36 + 6,6,6,6 1.6e-15
- 6,6,6,6 1.6e-15

49 + 7,7,7,7 6.9e-16
- 7,7,7,7 6.9e-16

64 + 8,8,8,8 9.2e-16
- 8,8,8,8 9.2e-16

81 + 9,9,9,9 6.9e-16
- 9,9,9,9 6.9e-16

d n = r2 U
!
= I ranks error

5 4 + 2,2,2,2,2 7.9e-16
- 2,2,4,4,4 8.4e-16

9 + 3,3,3,3,3 9.5e-16
- 3,3,3,3,3 9.5e-16

16 + 4,4,4,4,4 1.3e-15
- 4,4,4,4,4 1.3e-15

25 + 5,5,5,5,5 1.5e-15
- 5,5,25,25,25 3.3e-15

36 + 6,6,6,6,6 1.2e-15
- 6,6,6,6,6 1.2e-15

6 4 + 2,2,2,2,2,2 3.1e-15
- 2,2,8,8,8,8 1.0e-15

9 + 3,3,3,3,3,3 1.2e-15
- 3,3,3,3,3,3 1.2e-15

16 + 4,4,4,4,4,4 2.4e-15
- 4,4,4,4,4,4 2.4e-15

7 4 + 2,2,2,2,2,2,2 2.0e-15
- 2,2,8,8,8,8,8 2.2e-15

9 + 3,3,3,3,3,3,3 2.9e-15
- 3,3,3,3,3,3,3 2.9e-15

8 4 + 2,2,2,2,2,2,2,2 1.4e-15
- 2,2,2,2,2,2,2,2 1.4e-15

9 + 3,3,3,3,3,3,3,3 8.0e-15
- 3,3,3,3,3,3,3,3 8.0e-15

9 4 + 2,2,2,2,2,2,2,2,2 2.7e-15
- 2,2,2,2,2,2,2,2,2 2.7e-15

Table 4.6: Recovering of TC-ranks for different d

5 An Outlook

Now that we know how to construct tensor trains and tensor chains by Cross Approxima-

tion methods, we believe that it is possible to tackle much more general tensor networks

2These results and the implementation in C++ of the SVD-based procedure were produced by our
colleague Stefan Handschuh, MPI MIS Leipzig.
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by similar techniques. It might just be the question of a clever decomposition of the graph.

We postpone this as future work but would like to mention the rough idea here.

Suppose we are given a fixed format characterized by a network graph, say

v1

v2

v4
v3

v5 v6

m2

m1

m5 m3

m4
m6

m7

m8

Figure 8: Arbitrary tensor network graph

The task is to approximate a tensor Af generated as uniform discretization of the function

f(x1, . . . , x6) within the format given by Figure 8, i.e.

Af (i1, . . . , i6) ∼
r1∑

m1=1

· · ·
r8∑

m8=1

v1(i1)(m1,m2)v2(i2)(m2,m3,m5) · · · v6(i6)(m7,m8) (19)

using only a few function values (linear in n). The idea is similar to the method treated

above, using a pseudo-skeleton approximation successively to certain unfoldings of Af .

The figures below illustrate the development of the network graph during the first few

steps of the procedure we have in mind.

v1 B
l

Figure 9: Graph after first step

v1 B

m2

m1

Figure 10: Graph after first index splitting

v1

v2

C

m2

m1

l Figure 11: Graph after second step

v1

v2

C

m2

m1

m5 m3 Figure 12: Graph after second index splitting

Recent results ([13]) show that by this strategy it is basically possible to construct any

tensor network structure. This structure is coded in a matrix S determining what nodes

are connected (in graph theory, this is called adjacency matrix). S is then given as input

to the algorithm, which is now able to treat different networks including the Tensor Train

19



and the Tensor Chain formats, where the approximation quality is similar to the examples

shown before. In this sense the present text is an important building block.
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