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Abstract. We establish a maximum principle and uniqueness for Dirac-harmonic
maps from a Riemannian spin manifold with boundary into a regular ball in any Rie-
mannian manifold N . Then we prove an existence theorem for a boundary value prob-
lem for Dirac-harmonic maps.
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1. Introduction

Dirac-harmonic maps have been introduced in [8, 9] as mathematical versions (without
anticommuting variables) of the supersymmetric σ-model of high energy theoretical physics.
This σ-model is an important model in quantum field theory that allows for a systematic study
of many phenomena that also occur in other, more difficult models, like supersymmetric Yang-
Mills. We refer to [22] for a systematic presentation of this model. In mathematical terms,
the model couples a harmonic map type nonlinear field and a spinor field along that map that
solves a nonlinear Dirac equation. In the same manner that the theory of ordinary harmonic
maps both found important geometric applications and paved the way for the mathematical
analysis of other geometric variational problems like Yang-Mills, we hope that Dirac-harmonic
maps can play a similarly useful role. In order to start such a program in more concrete
terms, we therefore need to carefully develop the appropriate analytical tools. Now the most
challenging analytical problem for ordinary harmonic maps has been the existence problem for
such maps with values in manifolds that may have positive sectional curvature, and here, the
most powerful analytical tools in the theory have been developed, see [16, 19, 15, 20, 23, 24, 29]
and others. The result achieved here is that the Dirichlet problem for harmonic maps can
be (uniquely) solved when the target is confined to a strictly convex ball, and this result is
optimal, as observed in [16].

We attempt a similar analysis here. Our program is more difficult than the classical theory
for several reasons. For instance, as we shall explain below, we can neither employ variational
methods nor heat equation techniques. We therefore need to combine some of the achievements
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267087. The research of QC is also partially supported by NSFC and RFDP of China. The authors
thank the Max Planck Institute for Mathematics in the Sciences for good working conditions when this
work was carried out.
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and techniques of the classical theory, in particular the maximum principle of Jäger-Kaul
[18, 19] with new estimates for nonlinear Dirac equations and handle the coupling between
the fields in a rather subtle manner. The maximum principle will then allow us to derive
a-priori estimates that we can utilize for a continuity method to obtain an existence result for
a boundary value problem that combines Dirichlet data for the harmonic map type field with
a boundary condition for the spinor field. The continuity scheme is inspired by that of von
Wahl [31], but we still need to handle a number of geometric aspects that played no role for
the analytical purposes of von Wahl.

1.1. Dirac-harmonic maps. In this subsection, we first recall the definition of Dirac-harmonic
maps. Let (Mn, g) be a Riemannian manifold with a fixed spin structure, and let ΣM be its
spinor bundle, on which we choose a Hermitian metric 〈·, ·〉. The Levi-Civita connection ∇
of g induces an connection (which we still denote by ∇) on ΣM compatible with 〈·, ·〉 and g.
Let φ be a smooth map from M to a Riemannian manifold (N, h) of dimension n′ ≥ 2 and
φ−1TN the pull-back bundle of TN by φ. On the twisted bundle ΣM ⊗ φ−1TN there is a
Hermitian metric (still denoted by 〈·, ·〉) induced from the metrics on ΣM and φ−1TN and a
natural connection ∇̃ on ΣM ⊗ φ−1TN induced from those on ΣM and φ−1TN .

In local coordinates {xα} and {yi} on M and N respectively, one can write the section ψ of
ΣM ⊗ φ−1TN as

ψ(x) = ψj(x)⊗ ∂yj (φ(x)),

where ψi is a (local) spinor field on M and {∂yj} is a local basis on N . The connection ∇̃ can
be written as

∇̃ψ(x) = ∇ψi(x)⊗ ∂yi(φ(x)) + Γi
jk∇φj(x)ψk(x)⊗ ∂yi(φ(x)).

Here and in the sequel, we use the summation convention. ψ is a spinor field along the map φ.
The Dirac operator along the map φ is defined [8] as

D/ψ := eα · ∇̃eαψ

= ∂/ψi(x)⊗ ∂yi(φ(x)) + Γi
jk∇eαφj(x)eα · ψk(x)⊗ ∂yi(φ(x)),

where {eα} is the local orthonormal basis of M and

∂/ := eα · ∇eα

is the usual Dirac operator on M . We use X ·Ψ or γ(X)Ψ to denote the Clifford multiplication
of a smooth vector field X ∈ Γ(M) and spinor field Ψ ∈ Γ(ΣM) on M .

Motivated by the supersymmetric version of the σ-model (harmonic maps), we introduced
in [8] the following functional

L(φ, ψ) :=
1
2

∫

M
(|dφ|2 + 〈ψ, D/ψ〉),(1.1)

where 〈ψ, ξ〉 := hij(φ)〈ψi, ξj〉, for ψ, ξ ∈ Γ(ΣM ⊗ φ−1TN). Since the value of
∫
M 〈ψ, D/ψ〉 is

real, in the sequel we replace the Hermitian product 〈·, ·〉 by its real part (but still use the same
notation).
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The Euler-Lagrange system for L is (see [8])

τ i(φ) =
1
2
Ri

jkl(φ)〈ψk,∇φj · ψl〉,(1.2)

D/ψi := ∂/ψi + Γi
jk(φ)∂αφjeα · ψk = 0,(1.3)

i = 1, 2, · · · , n′ := dimN, where τ(φ) is the tension field of the map φ.
Set

R(φ, ψ) :=
1
2
Ri

jkl(φ)〈ψk,∇φj · ψl〉 ⊗ ∂yi .

Then (1.2) and (1.3) can be written in a concise form

τ(φ) = R(φ, ψ),(1.4)
D/ ψ = 0.(1.5)

Solutions (φ, ψ) of (1.4), (1.5) are called Dirac-harmonic maps (c.f. [8], [9]). Dirac-harmonic
maps include two types of solutions that are trivial from our present point of view. One is
(φ, 0) with a harmonic map φ and another one is (p, ψ), where p stands for a constant map to
a some point p ∈ N and ψ is a tuple of ordinary harmonic spinor fields. We are interested in
solutions that couple the fields φ and ψ. Examples of such non-trivial Dirac-harmonic maps
were constructed in [8] by using twistor spinors and conformal maps between spheres. This
construction was generalized in [25] to obtain more non-trivial solutions.

The study of Dirac-harmonic maps has been taken up by several mathematicians. The
regularity theory has been developed in [8], [9], [32], [35] and [10]. The blow-up analysis was
established in [8], [9] and [34]. See also [33] for a classification result for Dirac-harmonic maps.
However, one of the most important problems, the general existence problem, still remains open.
Compared with the case of harmonic maps, the existence problem here is technically much
more difficult. First, since the functional L is unbounded both from above and from below,
one cannot use the direct methods of the calculus of variations to obtain solutions, though we
already possess the regularity theory. For the same reason, the well-known existence scheme
of Sacks and Uhlenbeck in [30], which is based on considering the minimizers of perturbed
functionals, seems also not applicable here. The heat flow method, which is a powerful tool for
many problems in geometric analysis, does not work either, since the equation for the spinor
field is of first order. (Perhaps one can consider to deform the equation for the spinor field by
using a 1/2 order nonlocal operator.)

The method of continuity and the Leray-Schauder theory are other fundamental tools for
dealing with existence problems. To apply these theories, one needs first to establish suitable
a priori estimates for solutions, so as to guarantee some compactness. This is one of the main
objectives of this paper. In general, as in the theory of harmonic maps one cannot expect that
a priori estimates hold for Dirac-harmonic maps without any constraint. In this paper, we
derive a priori estimates for Dirac-harmonic maps with image in a small ball, by generalizing
the maximum principle of Jäger-Kaul [19] for harmonic maps. With these a priori estimates
we can then show the existence and uniqueness of the Dirichlet problem for Dirac-harmonic
maps with small boundary data. The precise results are stated in the next subsection.



4 CHEN, JOST, AND WANG

1.2. Main results. We consider the boundary value problem for Dirac-harmonic maps. We
first establish a maximum principle and then prove an existence theorem. Let M be a compact
Riemannian manifold with boundary ∂M , BR(y0) a geodesic ball centered at y0 in an arbitrary
Riemannian manifold N whose sectional curvature is bounded from above by a constant κ > 0,
where the radius of BR(y0) satisfies R < 2π/

√
κ. We call BR(y0) a regular ball, and assume

that it satisfies the cut-locus condition (c.f. [19]), that is, any pair of points in the set can be
joined by a unique minimal geodesic arc.

We will consider Dirac-harmonic maps (φ, ψ) from M to N satisfying

(1.6) φ(M) ⊂ BR(y0), |ψ|2 < C0

for some positive constants R and C0.
For our purpose, we may assume that

(1.7) R < (1− ε0) · π

2
√

κ
, C0 ≤ 1

for some constant ε0 ∈ (0, 1).
By the assumption of the regular ball, on BR(y0) we can choose normal coordinates {yi}i=1,2,··· ,n′

centered at y0. In this coordinate system,

φ := (φ1, · · · , φn′), ψ = ψi(x)⊗ ∂

∂yi
(φ(x)).

For simplicity, we write

φ := (φ1, · · · , φn′), ψ := (ψ1, · · · , ψn′).

We call the above expressions the representation of (φ, ψ) in the normal coordinate system.
Throughout this paper, we will use this representation. Moreover we denote |φ1 − φ2|2 :=∑

i(φ
i
1 − φi

2)
2, |ψ1 − ψ2|2 :=

∑
i |ψi

1 − ψi
2|2 and |dφ1 − dφ2|2 :=

∑
i,α(φi

1α − φi
2α)2.

In [18] and [19], Jäger and Kaul established maximum principles for harmonic maps and
solutions of the following nonlinear elliptic systems

(1.8) τ(φ) = b(dφ),

where b is a given tensor field with quadratic growth in the differential dφ, and satisfies the
following Lipschitz condition:

(1.9) δ(b(p1), b(p2)) ≤ λ

2
dist(y1, y2)

2∑

i=1

|pi|2 + µδ(p1, p2)(
2∑

i=1

|pi|2)1/2

for some constants λ, µ ≥ 0 and any pair p1 ∈ Px,y1 , p2 ∈ Px,y2 , x ∈ M , and y1, y2 ∈ BR(y0),
where Px,y denotes the space of all linear maps of TxM into TyN , and δ denotes the pseudo
distance defined by (2.1) and (2.2).

For two solutions φ1 and φ2 of the non-linear elliptic system (1.8) (or two harmonic maps φ1,
φ2), Jäger and Kaul constructed elliptic operators L and specific functions Θ concerning the
distance between φ1 and φ2 with L(Θ) ≥ 0, from which the corresponding maximum principles
follow (c.f. [18], [19]). In our case, the Euler-Lagrange equations (1.2), (1.3) yield a system
coupling a second order quasi-linear elliptic system and a Dirac type equation on M , and this
makes the constructions more subtle.
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We can try to deal with the φ-part of Dirac-harmonic maps (φ, ψ) using the methods in [18]
and [19]; however, the right hand side of the φ-equation (1.2) does not satisfy (1.9). Nonetheless,
we shall be able construct the corresponding elliptic operator L and a corresponding function Θ
for Dirac-harmonic maps with the property L(Θ) ≥ 0, and hence obtain a maximum principle
for Dirac-harmonic maps.

For an arbitrary constant ω > 0, we let sω be the solution of s′′ω + ωsω = 0, that is,

(1.10) sω(t) =

{
sin
√

ωt√
ω

if ω > 0,

t if ω = 0.

Denote

(1.11) qω(t) :=
∫ t

0
sω =

{
1−cos

√
ωt

ω if ω > 0,
t2

2 if ω = 0.

Choose R̃ := 1
1−ε0

R ∈ (R, π
2
√

κ
). Let (φ1, ψ1) and (φ2, ψ2) be Dirac-harmonic maps from M

to N satisfying (1.6). Define

(1.12) Θ :=
qκ

4
(ρ) + 1

2 |ψ1 − ψ2|2
{[qκ(R̃)− qκ(ρ1)][qκ(R̃)− qκ(ρ2)](1 + C0 − |ψ1|2)(1 + C0 − |ψ2|2)}1/4

,

where ρ(x) := dist(φ1(x), φ2(x)), ρa(x) := dist(φa(x), y0), a = 1, 2, ∀x ∈ M . The basic idea
here is to compose a strictly convex function (coming from the distance function of the target
– that’s why we need to assume that the range lies in a convex ball) with the distance between
the two maps and likewise to take the squared distance with the spinor fields as some convex
operation. Since convex composed with harmonic yields a subharmonic function, we can hope
for a maximum principle. Now, there are some substantial technical difficulties with this idea.
First of all, the distance between two maps lives on the product of the target with itself, and
we need to understand how convexity can be carried over to this product. This issue has been
addressed by Jäger-Kaul [18] (and this was substantially harder than what one might have
naively expected), the upshot being that we need the counterterms in the denominator. The
second difficulty arises from the fact that the map is coupled with a spinor field and therefore
no longer harmonic. We thus need to control some error terms. By themselves, as it turns out,
they cannot be compensated, however. We rather need to utilize the properties of the Dirac
equation for the spinor field in a very careful manner. In fact, due to the nonlinearity of our
Dirac equation, we have a third difficulty in estimating norms of the spinor field and controlling
additional terms in a Lichnerowicz identity. Fortunately, it turns out that the difficult terms
arising from the second and third difficulties can be balanced when we arrange things very
carefully. This is very subtle and nontrivial and constitutes perhaps the main technical point
of this paper. It turns out that we need to assume the spinor field to be sufficiently small in
norm; perhaps this can be considered as analogous to the smallness condition on the map, that
it be contained in a suitable convex ball in the target.

For the map, we shall assume a Dirichlet type boundary condition. The boundary condition
B that we impose on the spinor field will be explained below (see (2.31)).

Theorem 1.1 (Maximum principle and uniqueness for Dirac-harmonic maps).
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Let (M, g) be a compact Riemannian spin manifold with non-void boundary ∂M which has
non-negative mean curvature (w.r.t. the inner normal vector). Assume that inf

M
SM > 0, where

SM denotes the scalar curvature of M . Let (N, h) be a Riemannian manifold with sectional
curvature bounded from above by a constant κ > 0, and y0 be any given point in N . Then there
exist positive constants R < π/2

√
κ and C0 such that for any pair of Dirac-harmonic maps

(φa, ψa) (a = 1, 2) in (C0(M, N) × C0(ΣM ⊗ φ−1
a TN))

⋂
(C∞(M̊,N) × C∞(ΣM̊ ⊗ φ−1

a TN))
satisfying

φa(M) ⊂ BR(y0), |ψa|2 < C0, a = 1, 2,

the maximum principle holds, namely

(1.13) sup
M

Θ ≤ sup
∂M

Θ.

Furthermore, assume that (φa, ψa) ∈ (H2,p(M, N) ×H1,p(ΣM ⊗ φ−1
a TN))

⋂
(C∞(M̊, N) ×

C∞(ΣM̊ ⊗ φ−1
a TN)), p > n = dimM , we have

‖φ1 − φ2‖C0(M) + ‖ψ1 − ψ2‖C0(M)

≤ C(‖φ1 − φ2‖
H

2− 1
p ,p

(∂M)
+ ‖Bψ1 −Bψ2‖

H
1− 1

p ,p
(∂M)

)(1.14)

for some constant C = C(n, n′, p, y0, R, C0,M,N) > 0. In particular, if φ1|∂M = φ2|∂M , and
Bψ1 = Bψ2, then

(1.15) (φ1, ψ1) ≡ (φ2, ψ2).

Here, the boundary operator B is defined by (2.31) below.

We will also prove the following existence theorem for a boundary value problem of Dirac-
harmonic maps. As is known from harmonic maps, we need to impose a smallness condition on
the map here, in order to guarantee that its image be contained in a convex ball. Analogously,
we need a smallness condition on the spinor field, as explained above. Thus, what we achieve
here is a local existence theorem from the perspective of geometry.

Theorem 1.2 (Existence theorem for Dirac-harmonic maps).
Let M , N , y0, κ, R and C0 be as in Theorem 1.1. Then there exist positive constants a0

and b0 such that for any φ0 ∈ H2,p(M, N) with ‖φ0‖H2,p(M) < a0 and any ψ0 ∈ H1,p(ΣM ⊗
φ−1

0 (TN)) with ‖ψ0‖H1,p(M) < b0, where p > n := dimM , the boundary value problem

(1.16)
{

τ(φ) = R(φ, ψ),
D/ ψ = 0,

(1.17)
{

φ|∂M = φ0|∂M ,

Bψ = Bψ0

admits a unique solution (φ, ψ) ∈ H2,p(M, N) × H1,p(ΣM ⊗ φ−1(TN)) satisfying φ(M) ⊂
BR(y0) and |ψ|2 < C0.

Remark 1.1. i) In Theorem 1.1 the condition that the scalar curvature of M is positive cannot
be removed for the uniqueness. Without it, uniqueness does not hold even for harmonic spinor
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fields. The scalar curvature comes in through the Lichnerowicz formula that we need to apply
to the spinor fields ψ1, ψ2. When the scalar curvature is positive, this will yield a positive
contribution that can be used to absorb a term involving |ψ|4 when we assume in addition that
that norm be sufficiently small. For details, see the summary of our estimates in (3.28) below.

ii) We expect that Theorem 1.1 and Theorem 1.2 hold for any fixed R < π
2
√

κ
and C0 < ∞.

Similarly, when κ = 0, that is, for targets of nonpositive sectional curvature, we expect that
Theorem 1.1 and Theorem 1.2 hold for any fixed R < ∞ and C0 < ∞.

This paper is organized as follows. In Section 2, we give some preliminary results on pseudo
distances of vectors and global estimates for Dirac operators with elliptic boundary conditions,
and we define the chirality boundary condition for Dirac-harmonic maps considered in this
paper. In Section 3, we prove the maximum principle and the uniqueness (Theorem 1.1) for
Dirac-harmonic maps from manifolds with boundary into small regular balls. In Section 4,
we prove the existence theorem (Theorem 1.2) for chirality boundary value problems of Dirac-
harmonic maps into small regular balls.

2. Pseudo distances of vectors and global estimates for Dirac operator with
elliptic boundary conditions

In this section, we will recall two notions of pseudo distances δ(v1, v2), δ0(v1, v2) between two
vectors v1, v2 on N and derive a relation between them. We will also consider global estimates
for the usual Dirac operator ∂/ on M with elliptic boundary conditions. These will be used in
the next sections; they are also of interest in their own right.

2.1. Pseudo distances. For any y1, y2 ∈ BR(y0), there exists a unique minimal geodesic
σ : [0, ρ] → BR(y0) ⊂ N such that σ(0) = y1, σ(ρ) = y2, where ρ := dist(y1, y2) stands for the
distance of y1, y2 on N . For any va ∈ TyaN , a = 1, 2, let X be the unique Jacobi field along σ
with X(0) = v1, X(ρ) = v2.

We start by defining (pseudo-)distances between vector fields or linear maps (c.f. [18]).

Definition 2.1. For a pair va ∈ TyaN of tangent vectors, a = 1, 2, we define a pseudo-distance

(2.1) δ(v1, v2) :=





(ρ
∫ ρ

0
|Ẋ|2) 1

2 if ρ > 0,

|v1 − v2|, if ρ = 0.

For p, q ∈ ⊔
y∈BR(y0)

Px,y (disjoint union), we then define their pseudo-distance as

(2.2) δ(p, q) := (
n∑

α=1

δ2(p(eα), q(eα))1/2,

where {e1, · · · , en} is an orthonormal base in TxM .

We note that δ(v1, v2) = 0 if the tangent vector v2 is obtained from v1 by parallel transport
along the shortest geodesic between their base points. Therefore, δ is not a true distance.
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This notion of a pseudo-distance arises from the Hessian of the distance function dist(·, ·)
on N ×N . Recall that when v1 and v2 are normal to σ, for v := v1 ⊕ v2 ∈ T(y1,y2)(N ×N), we
have

(∇2dist)(v, v) =
∫ ρ

0
(|Ẋ|2 − 〈X, R(X, σ′)σ′〉).

The first term on the RHS is ρ−1δ2(v1, v2). This makes the pseudo distance δ(·, ·) important
in the estimates of the Laplacian of distance functions between two maps φ1, φ2 : M → N .
However, in applications, one often encounters another kind of pseudo distance function defined
as follows:

δ0(v1, v2) := |v1 − ¯̄v2|,
where ¯̄v2 stands for the vector in Ty1N obtained by the parallel displacement of v2 along
σ. This one is geometrically more natural and convenient to use. However, the maximum
principle of Jäger-Kaul [18] is formulated in terms of δ, and not of δ0, and it turns out the
precise properties of δ are really needed. Essentially, the reason is that parallel transport can
be estimated as precisely as Jacobi fields in terms of curvature conditions, because the latter
satisfy a differential equation. In particular, the estimate (2.19) below will be crucial.

Nevertheless, the following relation between the above two pseudo distances will be useful.
Since δ is expressed in terms of the derivative of a Jacobi field connecting the two vectors in
question, it is natural that estimates for Jacobi fields (c.f. [26], [21]) can be utilized to control
δ and δ0 in terms of each other.

Lemma 2.1. There is a positive constant C depending only on BR(y0) and the geometry of N
such that for any ya ∈ BR(y0) and va ∈ TyaN , a = 1, 2, we have

δ2
0(v1, v2)− C(|v1|2 + |v2|2)ρ2 ≤ δ2(v1, v2)

≤ δ2
0(v1, v2) + C(|v1|2 + |v2|2)ρ2.(2.3)

Proof. First, it is easy to verify that for both pseudo distances δ and δ0, the Pythagorean law
holds true:

δ2(v1, v2) = δ2(vtan
1 , vtan

2 ) + δ2(vnor
1 , vnor

2 ),
δ2
0(v1, v2) = δ2

0(v
tan
1 , vtan

2 ) + δ2
0(v

nor
1 , vnor

2 ).
Clearly, δ(vtan

1 , vtan
2 ) = δ0(vtan

1 , vtan
2 ) = |〈σ′(ρ), v2〉−〈σ′(0), v1〉|, hence, in the following, we may

assume that v1 and v2 are normal to the geodesic σ.
Let X be the unique Jacobi field along σ with boundary values

X(0) = v1, X(ρ) = v2.

Define a Jacobi field Y (·) along σ such that

Y (0) = v1, Y (ρ) = ¯̄v1.

Set Z(t) := X(t)− Y (t), ∀t ∈ [0, ρ], then Z is a Jacobi field along σ with

Z(0) = 0, Z(ρ) = v2 − ¯̄v1.

To estimate δ2(v1, v2) ≡ ρ
∫ ρ
0 |X ′|2, we need to estimate |Y ′| and |Z ′|.

The Jacobi field Z can be written as:

Z(t) = (dexpy1
)tσ′(0)(tZ

′(0)).
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Assume that the sectional curvature of N satisfies

θ ≤ KN ≤ κ

where θ < 0 is a constant. Denote

Sκ(t) :=
1√
κ

sin
√

κt, Sθ(t) :=
1√−θ

sinh
√
−θt.

Then for any vector w ∈ Ty1N , we have (c.f. Corollary 4.6.1 in [21]):

(2.4) |w|Sκ(t) ≤ |(dexpy1
)tσ′(0)(tw)| ≤ |w|Sθ(t).

Putting w = Z ′(0) and Z(ρ) = v2 − ¯̄v1 into these inequalities then yields

|Z ′(0)| 1√
κ

sin
√

κρ ≤ |v2 − ¯̄v1| ≤ |Z ′(0)| 1√−θ
sinh

√
−θρ,

namely,

(2.5)
√−θ|v2 − ¯̄v1|
sinh

√−θρ
≤ µ := |Z ′(0)| ≤

√
κ|v2 − ¯̄v1|
sin
√

κρ
.

Estimate of |Y ′|.

Let J(·) be the unique Jacobi field along σ such that

J(0) = v1, J ′(0) = 0.

Choose a parallel orthonormal frames {Ei(t)} along σ with E1 = σ′, and denote

fi(t) := 〈J(t), Ei(t)〉, i = 2, · · · , n′,

then we have the following expansions:

fi(t) = vi
1 −

t2

2
〈Rσ′v1σ

′, Ei〉(0) + O(t3), i = 2, · · · , n′,

consequently,

(2.6) J(t) = V1(t) + |v1|O(t2),

where V1 is the vector field obtained by the parallel displacement of v1 along σ.
Define Ỹ (t) := Y (t)− J(t), it is a Jacobi field along σ with boundary values

Ỹ (0) = 0, Ỹ (ρ) = ¯̄v1 − J(ρ) = |v1|O(ρ2).

By rescaling, we obtain a Jacobi field

Y (s) :=
1
ρ2

Ỹ (ρs), ∀s ∈ [0, 1]

along the geodesic σ(s) := σ(ρs), s ∈ [0, 1]. The boundary values of Y are

Y (0) = 0, Y (1) = |v1|O(1),

by the ODE theory, it is easy to see that there is a positive constant C such that |Y ′| ≤ C|v1|.
Scaling back, we have |Ỹ ′| ≤ C|v1|ρ, therefore,

(2.7) |Y ′| = |Ỹ ′ + J ′| = |v1|O(ρ),
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and consequently,

(2.8) ρ

∫ ρ

0
|Y ′(t)|2 = |v1|2O(ρ4).

Estimate of |Z ′|.

Set hi(t) := 〈Z ′(t), Ei(t)〉, i = 1, 2, · · · , n′, then

h′i(t) = 〈Z ′′(t), Ei(t)〉 = −〈Rσ′Zσ′, Ei〉(t) = −|Z|〈Rσ′ Z
|Z|

σ′, Ei〉(t),
hence,

hi(t)− hi(0) = th′i(θi) = −t|Z|〈Rσ′ Z
|Z|

σ′, Ei〉(θi)

for some θi ∈ [0, ρ], i = 1, 2, · · · , n′. Thus, we have

Z ′(t) = hi(0)Ei(t)− t|Z|〈Rσ′ Z
|Z|

σ′, Ei〉(θi)Ei(t)

:= PZ′(0)(t)− t|Z|A(t),

where PZ′(0)(t) is the vector field obtained by the parallel displacement of Z ′(0) along σ, and
|A(t)| = |〈Rσ′ Z

|Z|
σ′, Ei〉(θi)Ei(t)| ≤ C for some constant C > 0.

Noting that |PZ′(0)(t)| = |Z ′(0)| = µ, ∀t ∈ [0, ρ], we have

(2.9) |Z ′(t)|2 = |Z ′(0)|2 + t2|Z|2A2(t)− 2t|Z|〈PZ′(0)(t), A(t)〉.
Recalling that by (A4) in [26], we have

|Z(t)| ≤ fθ(t)

for t ∈ [0, ρ] and ρ small, where fθ(t) := µ√−θ
sinh

√−θt = µSθ(t). Substituting this into (2.9)
we have

(2.10) µ2 − Cµ2tSθ(t)− Cµ2t2S2
θ (t) ≤ |Z ′(t)|2 ≤ µ2 + Cµ2tSθ(t) + Cµ2t2S2

θ (t).

Consequently, we have

ρ

∫ ρ

0
|Z ′(t)|2dt ≤ µ2ρ2(1 + O(ρ2))

≤ ρ2 κ|v2 − ¯̄v1|2
sin2√κρ

(1 + O(ρ2)) (by (2.5))

= δ2
0(v1, v2)(1 + O(ρ2)).(2.11)

Note that

δ2(v1, v2) = ρ

∫ ρ

0
|Z ′ + Y ′|2

≤ ρ

∫ ρ

0
|Z ′|2 + ρ

∫ ρ

0
|Y ′|2 + 2ρ

∫ ρ

0
|Z ′||Y ′|,(2.12)

combining this with (2.11), (2.8), (2.5), (2.10) and (2.7) we obtain

δ2(v1, v2) ≤ δ2
0(v1, v2) + C(|v1|2 + |v2|2)ρ2.
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Similarly, we can deduce

δ2(v1, v2) ≥ δ2
0(v1, v2)− C(|v1|2 + |v2|2)ρ2.

This proves Lemma 2.1. 2

Corollary 2.1. There exist positive constants C, C ′ depending only on BR(y0) and the geometry
of N such that for any φ1, φ2 : M → BR(y0), the following estimates hold:

(2.13) C ′|dφ1 − dφ2|2 − Cρ2
2∑

a=1

|dφa|2 ≤ δ2
0(dφ1, dφ2) ≤ C|dφ1 − dφ2|2 + Cρ2

2∑

a=1

|dφa|2,

(2.14) C ′|dφ1 − dφ2|2 − Cρ2
2∑

a=1

|dφa|2 ≤ δ2(dφ1, dφ2) ≤ C|dφ1 − dφ2|2 + Cρ2
2∑

a=1

|dφa|2.

Proof. For any x ∈ M , let σ be the unique geodesic connecting φ1(x) and φ2(x), choose
a parallel orthonormal frame {Ei(t)} along σ with E1 = σ′, and a local orthonormal frame
{eα}α=1,2,··· ,n around x in M . Assume ∂yi := aj

iEj , and denote φ1α := dφ1(eα) := φk
1α∂yk(φ1)

and φ2α := dφ2(eα) := φk
2α∂yk(φ2), then

δ0(φ1α, φ2α) = δ0(φi
1α∂yi(φ1), φi

2α∂yi(φ2))

= δ0(φi
1αaj

i (φ1)Ej(φ1), φi
2αaj

i (φ2)Ej(φ2)),(2.15)

by definition of the pseudo distance δ0, we have

δ2
0(φ1α, φ2α) =

∑

j

(φi
1αaj

i (φ1)− φi
2αaj

i (φ2))2

=
∑

j

[(φi
1α − φi

2α)aj
i (φ1) + φi

2α(aj
i (φ1)− aj

i (φ2))]2

≤ C
∑

j

(φj
1α − φj

2α)2 + Cρ2
2∑

a=1

|dφa|2,(2.16)

where C > 0 is a constant depending on the bounds of (ai
j) and (dai

j) on BR(y0), and we have
used the fact that hij = ak

i a
k
j and hij(y0) = δij . Similarly, we can show that

(2.17) δ2
0(φ1α, φ2α) ≥ C ′∑

j

(φj
1α − φj

2α)2 − Cρ2
2∑

a=1

|dφa|2.

Then (2.13) follows from (2.16) and (2.17). From Lemma 2.1 and (2.13), we immediately have
(2.14). 2

The following lemma is from [18] (Lemma 3.16). The main point is that it estimates the
Hessian of the distance function from below in terms of the pseudo distance δ. In other words,
it provides a precise quantitative version of the convexity properties of the distance function
of the image. This will be crucial below when this distance function is composed with Dirac-
harmonic maps, in order to obtain a useful differential inequality that will be at the heart of
the maximum principle.
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Lemma 2.2. (1) Denote G(·) := qκ ◦ dist(y0, ·) : BR(y0) → R, then

∇2G(u, u) ≥ s′κ(τ)|u|2,(2.18)

∀u ∈ TxN, x ∈ BR(y0), τ := dist(y0, x).
(2) Denote F := qκ

4
◦ dist : BR(y0)×BR(y0) → R, then

∇2F (v, v) ≥ s′κ
4
(ρ)δ2(v1, v2)− sκ

4
(ρ)bκ(ρ)

2∑

a=1

|va|2,(2.19)

∀v = v1 ⊗ v2, va ∈ TyaN, ya ∈ BR(y0), a = 1, 2, and

(2.20) bκ(t) :=
{ 1

2aκ(t)(1 + t
sκ(t)) if t > 0,

0 if t = 0,

(2.21) aκ(t) :=
{

s−1
κ (t)(1− s′κ(t)) if t > 0,

0 if t = 0.

2

2.2. Global elliptic estimates for the Dirac operator. In this subsection, we shall recall
the boundary condition for the usual Dirac operator and extend it to Dirac operators along
maps. We shall then consider global elliptic estimates for the Dirac operator with boundary
conditions. These will be important for us to deal with the spinor field ψ of a Dirac-harmonic
map (φ, ψ).

Let M be an n-dimensional compact Riemannian spin manifold with boundary ∂M 6= ∅.
First, we recall some notions and facts about the spin bundles and the usual Dirac operators
on ∂M (see e.g. [4], [6] and [14]).

Let S := ΣM |∂M be the restricted spinor bundle with induced Hermitian product. Then

(2.22) S ∼=
{

S∂M, n odd
S∂M ⊕ S∂M, n even.

Define the Clifford multiplication and covariant derivative on S by

γS(X)Ψ := γ(X)γ(ν)Ψ and ∇S
XΨ := ∇XΨ− 1

2
γS(AX)Ψ

respectively, ∀X ∈ Γ(T∂M), Ψ ∈ Γ(S) on ∂M , where ν is the unit normal vector field of ∂M ,
A denotes the shape operator of ∂M in M , and γ(·) stands for the Clifford multiplication on
ΣM .

Let u1, u2, · · · , un−1 be a local orthonormal frame on ∂M . Then the hypersurface Dirac
operator D is defined as

DΨ :=
n−1∑

j=1

γS(uj)∇S
uj

Ψ =
n− 1

2
HΨ− γ(ν)

n−1∑

j=1

γ(uj)∇ujΨ, ∀Ψ ∈ Γ(S),

where H is the mean curvature of ∂M in M .
Let us now impose the boundary condition for the spinor field ψ. There are various types

of boundary conditions in the physics and mathematics literature – the APS condition, the
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chirality condition, the Riemannian version of the MIT bag condition, the mAPS condition
etc. – which are elliptic for the usual Dirac operator (see [1-3], [5], [7], [14], [12], [17]).

Throughout this paper, our boundary conditions for Dirac operators will refer to either of the
above mentioned four conditions. By the exactly same arguments, our conclusions in Theorems
1.1 and 1.2 concerning the boundary conditions hold for all those four conditions. Here we take
the example of the chirality condition. This is a local boundary condition, we will extend it to
our settings (see [10] for the free boundary condition of Dirac-harmonic maps).

Definition 2.2. A chirality operator G is an endomorphism of the spinor bundle ΣM satisfy-
ing:

G2 = I, 〈Gψ, Gϕ〉 = 〈ψ, ϕ〉,(2.23)
∇X(Gψ) = G∇Xψ, γ(X)Gψ = −G(γ(X)ψ).(2.24)

∀X ∈ Γ(TM), ψ, ϕ ∈ Γ(ΣM). Here I denotes the identity endomorphism of ΣM .

When the dimension n of M is even, we have the usual chirality operator G = γ(ωn), the
Clifford multiplication by the complex volume form ωn.

Suppose that M admits a chirality operator G. One can verify that:

(2.25) 〈γ(ν)Gψ, ϕ〉 = 〈ψ, γ(ν)Gϕ〉, (γ(ν)G)2 = I.

This allows us to decompose S = V + ⊕ V −, where V ± is the eigensubbundle corresponding
to the eigenvalue ±1. Correspondingly, we have the orthogonal projections onto the eigensub-
bundles V ±:

B± : L2(S) → L2(V ±)

ψ 7→ 1
2

(I ± γ(ν)G) ψ.

Based on this, one can define a local elliptic boundary condition – the chirality condition – for
the Dirac operator ∂/ (see e.g. [14], [12]) as follows: for ψ ∈ Γ(ΣM) and a given spinor field
b0 ∈ L2(V −),

Bψ = b0,

where
Bψ := B−ψ|∂M :=

1
2
(I − γ(ν)G)ψ|∂M .

For a given ψ0 ∈ Γ(ΣM), we can then impose the boundary condition

Bψ = Bψ0.(2.26)

The next lemma tells us that the Sobolev norm of ψ ∈ Γ(ΣM) can be controlled in terms
of the norm of its Dirac and its boundary condition. Of course, this is essentially an ellipticity
argument.

Lemma 2.3. Let M be a compact Riemannian spin manifold with boundary ∂M which has
non-negative mean curvature (w.r.t. the inner normal), assume that the scalar curvature of M
satisfies inf

M
SM > 0. Let B be a boundary condition for the Dirac operator ∂/. Then

(2.27) ‖ψ‖H1,p(ΣM) ≤ C(‖∂/ψ‖Lp(ΣM) + ‖Bψ‖
H

1− 1
p ,p

(S)
), ∀p > 1, ∀ψ ∈ Γ(ΣM),
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where C = C(p,M) > 0 is a constant.

Proof. Consider the following operator between Banach spaces:

(2.28) (∂/,B) : H1,p(ΣM) → Lp(ΣM)⊕H
1− 1

p
,p(S).

For any Ψ in the kernel Ker(∂/,B), by the definitions of B, D and G, it is easy to verify that
(c.f. [14]) on the boundary ∂M ∫

∂M

〈DΨ,Ψ〉 ≤ 0.

Recall that we have the following spinorial Reilly inequality (see e.g. [14]):

(2.29)
∫

∂M

[〈DΨ,Ψ〉 − n− 1
2

H|Ψ|2] ≥
∫

M

[
SM

4
|Ψ|2 − n− 1

n
|∂/Ψ|2], ∀Ψ ∈ Γ(ΣM).

Using this we have

0 ≥
∫

M

SM

4
|Ψ|2 +

∫

∂M

n− 1
2

H|Ψ|2, ∀Ψ ∈ Γ(ΣM).

From our assumptions it then follows that Ψ ≡ 0. Namely, Ker(∂/,B) = {0}.
Since the boundary condition is elliptic, the operator (∂/,B) is Fredholm and therefore (c.f.

[28], Proposition 1.5.8),

‖ψ‖H1,p(ΣM) ≤ C(‖∂/ψ‖Lp(ΣM) + ‖Bψ‖
H

1− 1
p ,p

(S)
)

for some constant C(p,M) > 0. 2

Finally, we extend the above boundary condition to Dirac operators along maps.

Definition 2.3. For any spinor field ψ ∈ Γ(ΣM ⊗φ−1TN) along a map φ, if ψ := ψi⊗ ∂
∂yi (φ)

in local coordinates (yi)i=1,2,··· ,n′ in N , we define

(2.30) Bψ := (Bψi)⊗ ∂

∂yi
.

For a given spinor field ψ0 ∈ Γ(ΣM ⊗φ−1
0 TN) along a map φ0 satisfying φ|∂M = φ0|∂M , we

define the chirality boundary condition:

(2.31) Bψ = Bψ0.

Remark 2.1. Clearly, (2.31) is independent of the choice of local coordinates.

3. Maximum principle and uniqueness for Dirac-harmonic maps

In this section, we will prove the maximum principle and uniqueness for Dirac-harmonic
maps from manifolds with boundary. The main idea to prove a maximum principle for maps
between manifolds is to construct an appropriate elliptic operator L and apply it on some
function Θ of the distance of two maps, such that L(Θ) ≥ 0. A natural choice of L is the
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Laplacian operator ∆. However, ∆Θ usually contains some negative terms which prevent ∆Θ
from being nonnegative. Therefore, one needs to modify the operator ∆ as well as the function
Θ to obtain an operator L and a new Θ that create positive terms to cancel out those negative
terms. A clever construction of L and Θ was given in [18] and [19]. This construction motivates
our proof below, but we need to work harder in order to handle the Dirac term.

Proof of Theorem 1.1. For a pair of Dirac-harmonic maps (φ1, ψ1), (φ2, ψ2) into the regular
ball BR(y0), we introduce the following function of distances:

ξ̃ := qκ
4
◦ dist(φ1, φ2) +

1
2
|ψ1 − ψ2|2,

Define an elliptic operator L as follows:

(3.1) L(f) := eΦdiv(e−2Φ∇f), ∀f ∈ C2(M,R),

where

(3.2) Φ :=
1
4
(

2∑

a=1

η ◦ ξa +
2∑

a=1

η̃ ◦ ζa),

η(t) := − ln(qκ(R̃)− t), η̃(t) := − ln(1 + C0 − t).

ξa := qκ ◦ dist(y0, φa), ζa := |ψa|2, a = 1, 2.

Using the definition of L and the properties of the functions η and η̃, it is easy to verify that
(c.f. (2.18) in [18]):

(3.3) L(eΦξ̃) ≥ ∆ξ̃ +
1
4
ξ̃

2∑

a=1

η′(ξa)∆ξa +
1
4
ξ̃

2∑

a=1

η̃′(ζa)∆ζa.

Our aim is to show that L(eΦξ̃) ≥ 0. We divide the first term on the RHS into two parts:
∆ξ̃ = ∆ξ + 1

2∆|ψ1 − ψ2|2, where

ξ := qν ◦ dist(φ1, φ2), ν :=
κ

4
.

Step 1. Estimate of ∆ξ.
We can build upon the established strategy in the harmonic map case, and the essential

point thus is to handle the additional terms on the right hand side of the equations for φ1, φ2

when compared with ordinary harmonic maps. The resulting error term has to controlled very
carefully so that we can later trade it off against other terms.

Set φ̃ := φ1 × φ2. Then ρ = dist ◦ φ̃ : M → R. Using (2.19) we have

∆ξ = ∆(F ◦ φ̃)

= traceMφ∗∇2F + 〈∇F ◦ φ̃, τ(φ̃)〉

≥ s′ν(ρ)δ2(dφ1, dφ2)− sν(ρ)bκ(ρ)
2∑

a=1

|dφa|2 + 〈∇F ◦ φ̃, τ(φ̃)〉.(3.4)
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Since
∇F ◦ φ̃ = (∇(qν ◦ dist)) ◦ φ̃ = sν(ρ)(∇dist) ◦ φ̃,

and
τ(φ̃) = τ(φ1)⊕ τ(φ2) = R1 ⊕R2,

here we have used
Ra := R(φa, ψa), a = 1, 2

to denote the RHS of the φ-equations (1.4), we have

〈∇F ◦ φ̃, τ(φ̃)〉 = sν(ρ)〈∇dist) ◦ φ̃,R1 ⊕R2〉
= sν(ρ)〈e1(φ̃)⊕ e2(φ̃),R1 ⊕R2〉
≤ sν(ρ)δ(R1,R2),(3.5)

e1 := −σ′(0), e2 := σ′(ρ). In the last step, we have used the following inequality (c.f. (2.13) in
[18] ):

|〈e1 ⊕ e2, v1 ⊕ v2〉| = |〈e1, v1〉+ 〈e2, v2〉| ≤ δ(v1, v2).

Substituting (3.5) into (3.4), we have

(3.6) ∆ξ ≥ s′ν(ρ)δ2(dφ1, dφ2)− sν(ρ)bκ(ρ)
2∑

a=1

|dφa|2 − sν(ρ)δ(R1,R2).

To estimate the last term in the above inequality, we denote Km
jkl(φa) ≡ Ri

jkl(φa)am
i (φa),

a = 1, 2, then Ra = Km
jkl(φa)φ

j
aα〈eα · ψk

a , ψl
a〉Em(φa) (recall that the notations am

i and Ei were
given in the proof of Corollary 2.1), and

δ0(R1,R2) ≤
∑
m

|Km
jkl(φ1)φ

j
1α〈eα · ψk

1 , ψl
1〉 −Km

jkl(φ2)φ
j
2α〈eα · ψk

2 , ψl
2〉|

≤
∑
m

|[Km
jkl(φ1)−Km

jkl(φ2)]φ
j
1α〈eα · ψk

1 , ψl
1〉|

+
∑
m

|Km
jkl(φ2)(φ

j
1α − φj

2α)〈eα · ψk
1 , ψl

1〉|

+
∑
m

|Km
jkl(φ2)φ

j
2α〈eα · (ψk

1 − ψk
2 ), ψl

1〉|+
∑
m

|Km
jkl(φ2)φ

j
2α〈eα · ψk

2 , ψl
1 − ψl

2〉|

≤ Cρ|dφ1||ψ1|2 + C|dφ1 − dφ2||ψ1|2 + C|dφ2|(|ψ1|+ |ψ2|)|ψ1 − ψ2|,(3.7)

by Lemma 2.1, and utilizing the Young’s inequality, we have

δ(R1,R2) ≤ δ0(R1,R2) + Cρ(|R1|+ |R2|)
≤ Cρ

∑
a

(|dφa|2 + |ψa|4) + C|dφ1 − dφ2||ψ1|2 + CS |dφ2||ψ1 − ψ2|,(3.8)

here and in the sequel, we use C and CS to denote positive constants depending only on
n, n′, y0, R, C0,M,N . In some cases (such as (3.33) bellow), they may also depend on an
integer p > 0. CS is small when R and C0 are small. C, CS may change values from line to
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line. For our purpose, we will not concern the concrete values of them. From (3.8) and the
fact that sν(ρ) ≤ ρ, we have

sν(ρ)δ(R1,R2) ≤ Cρ2
∑

a

(|dφa|2 + |ψa|4) +
C

ε1
ρ2

∑
a

|ψa|4 + Cε1|dφ1 − dφ2|2

+CSρ2
∑

a

|dφa|2 + CS |ψ1 − ψ2|2,(3.9)

where ε1 > 0 is a small constant to be chosen later.
Now we turn to the second term of the RHS of (3.6). Using (2.20), (2.21), and the elementary

identities (recall: ν := κ
4 )

(3.10) aκ(t) =
κ

2
· sν(t)
s′ν(t)

,
s2
ν

2qνs′ν
=

1
2
(1 +

1
s′ν

),

one can easily obtain

(3.11)
sν(ρ)bκ(ρ)

qκ(ρ)
=

κ

2
(1 +

1
s′ν(ρ)

)(1 +
ρ

sκ(ρ)
),

and consequently

(3.12) sν(ρ)bκ(ρ) ≤ Cρ2.

Substituting (3.9), (3.12) into (3.6), and using (2.14), we obtain

(3.13) ∆ξ ≥ (s′κ(ρ)− Cε1)δ2(dφ1, dφ2)− C

ε1
ρ2

∑
a

(|dφa|2 + |ψa|4)− CS |ψ1 − ψ2|2.

Step 2. Estimate of ∆1
2 |ψ1 − ψ2|2.

By the Lichnerowicz formula (see e.g. [21]), we have
1
2
∆|ψ1 − ψ2|2 ≡ 1

2

∑

i

∆|ψi
1 − ψi

2|2

=
∑

i

|∇(ψi
1 − ψi

2)|2 +
∑

i

〈∇2(ψi
1 − ψi

2), ψ
i
1 − ψi

2〉

=
∑

i

|∇(ψi
1 − ψi

2)|2 +
∑

i

SM

4
|ψi

1 − ψi
2|2 −

∑

i

〈∂/2(ψi
1 − ψi

2), ψ
i
1 − ψi

2〉

≡ |∇(ψ1 − ψ2)|2 +
SM

4
|ψ1 − ψ2|2 −

∑

i

〈∂/2(ψi
1 − ψi

2), ψ
i
1 − ψi

2〉.(3.14)

The first two terms are good, because positive. (For the positivity of the second term, we need
our scalar curvature assumption.) The last term still needs to be controlled. In fact, this term
mixes the φ and the ψ fields because the Dirac operator depends on φ. To deal with this term,
we shall need estimates for |∇φ| and |∇ψ| for a Dirac-harmonic map (φ, ψ) satisfying (1.6) as
stated in the following lemma.

Lemma 3.1. Let (φ, ψ) be as in Theorem 1.1. Then

(3.15) max
M

|∇φ|, max
M

|∇ψ| ≤ C(n, n′, y0, R, C0,M,N)
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for some positive constant C(n, n′, y0, R, C0,M,N).

We leave the proof to the Appendix and continue to prove Theorem 1.1. From the ψ-equation
∂/ψi

1 = −Γi
jk(φ1)∇φj

1 · ψk
1 , we have

∂/2ψi
1 = −Γi

jk,l(φ1)∇φl
1 · ∇φj

1 · ψk
1 − Γi

jk(φ1)eα · ∇eα(∇φj
1) · ψk

1

−Γi
jk(φ1)eα · ∇φj

1 · ψk
1α.

Noting that

eα · ∇eα(∇φj
1) · ψk

1 = eα · 〈∇eα(∇φj
1), eβ〉 · ψk

1

= Hess(φj
1)(eα, eβ)eα · eβ · ψk

1

= −∆φj
1ψ

k
1 ,(3.16)

we have

∂/2ψi
1 = −Γi

jk,l(φ1)∇φl
1 · ∇φj

1 · ψk
1 + Γi

jk(φ1)∆φj
1ψ

k
1

−Γi
jk(φ1)eα · ∇φj

1 · ψk
1α.

Similarly,

∂/2ψi
2 = −Γi

jk,l(φ2)∇φl
2 · ∇φj

2 · ψk
2 + Γi

jk(φ2)∆φj
2ψ

k
2

−Γi
jk(φ2)eα · ∇φj

2 · ψk
2α.

Hence

〈∂/2(ψi
1 − ψi

2), ψ
i
1 − ψi

2〉 = 〈Γi
jk,l(φ2)∇φl

2 · ∇φj
2 · ψk

2 − Γi
jk,l(φ1)∇φl

1 · ∇φj
1 · ψk

1 , ψi
1 − ψi

2〉
−〈Γi

jk(φ2)∆φj
2ψ

k
2 − Γi

jk(φ1)∆φj
1ψ

k
1 , ψi

1 − ψi
2〉

+〈Γi
jk(φ2)eα · ∇φj

2 · ψk
2α − Γi

jk(φ1)eα · ∇φj
1 · ψk

1α, ψi
1 − ψi

2〉
:= I + J + K.(3.17)

I = 〈(Γi
jk,l(φ2)− Γi

jk,l(φ1))∇φl
2 · ∇φj

2 · ψk
2 , ψi

1 − ψi
2〉

+〈Γi
jk,l(φ1)(∇φl

2 −∇φl
1) · ∇φj

2 · ψk
2 , ψi

1 − ψi
2〉

+〈Γi
jk,l(φ1)∇φl

1 · (∇φj
2 −∇φj

1) · ψk
2 , ψi

1 − ψi
2〉

+〈Γi
jk,l(φ1)∇φl

2 · ∇φj
2 · (ψk

2 − ψk
1 ), ψi

1 − ψi
2〉

:= I1 + I2 + I3 + I4.(3.18)

When C0 is small, we have

|I1| ≤ Cρ|dφ2|2|ψ2||ψ1 − ψ2| ≤ CS ξ̃
∑

a

|dφa|2,
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|I2| ≤ C|dφ1 − dφ2||dφ2||ψ2||ψ1 − ψ2|
= CS |dφ1 − dφ2|2 + CS |ψ1 − ψ2|2

∑
a

|dφa|2

≤ CSδ2(dφ1, dφ2) + CS ξ̃
∑

a

|dφa|2 (by (2.14)).

Similarly,
|I3| ≤ CSδ2(dφ1, dφ2) + CS ξ̃

∑
a

|dφa|2.

|I4| ≤ C|dφ1|2|ψ1 − ψ2|2 ≤ C
∑

a

|dφa|2|ψ1 − ψ2|2.

Summing up the above four inequalities, we obtain

(3.19) |I| ≤ CSδ2(dφ1, dφ2) + Cξ̃
∑

a

|dφa|2.

By similar arguments (see Appendix for details), we have

(3.20) |J | ≤ CS ξ̃
∑

a

(|dφa|2 + |ψa|4) + CSδ2(dφ1, dφ2) + CS |ψ1 − ψ2|2,

|K| ≤ Cρ|dφ2||∇ψ2||ψ1 − ψ2|+ CS |dφ1 − dφ2||∇ψ2||ψ1 − ψ2|
+CS |dφ1||∇(ψ1 − ψ2)||ψ1 − ψ2|

≤ CSδ2(dφ1, dφ2) +
C

ε
ξ̃
∑

a

|dφa|2 + CS |∇(ψ1 − ψ2)|2 + (Cε + CS)|ψ1 − ψ2|2,(3.21)

where ε > 0 is a small constant to be chosen later, and in the last step, we have used (3.15).
Substituting (3.19), (3.20) and (3.21) into (3.14), we obtain

1
2
∆|ψ1 − ψ2|2 ≥ |∇(ψ1 − ψ2)|2 +

SM

4
|ψ1 − ψ2|2 − (|I|+ |J |+ |K|)

≥ |∇(ψ1 − ψ2)|2 +
SM

4
|ψ1 − ψ2|2 − CSδ2(dφ1, dφ2)− C

ε
ξ̃
∑

a

|dφa|2

−CS ξ̃
∑

a

|ψa|4 − (CS + Cε)|ψ1 − ψ2|2 − CS |∇(ψ1 − ψ2)|2

≥ (
1
4
SM − CS − Cε)|ψ1 − ψ2|2 − C

ε
ξ̃
∑

a

(|dφa|2 + |ψa|4)− CSδ2(dφ1, dφ2).(3.22)

Combining (3.13 ) and (3.22 ), we conclude

∆ξ̃ ≥ (
1
4

inf SM − CS − Cε)|ψ1 − ψ2|2 + (s′κ(ρ)− Cε1 − CS)δ2(dφ1, dφ2)

−C(
1
ε

+
1
ε1

)ξ̃
∑

a

(|dφa|2 + |ψa|4),(3.23)

choosing ε, ε1, R and C0 small enough, we then have

(3.24) ∆ξ̃ ≥ −Cξ̃
∑

a

(|dφa|2 + |ψa|4).
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Step 3. Estimates of ∆ξa and ∆ζa

These terms are somewhat easier because they only involve one of the Dirac-harmonic pairs.
For the φ-fields, this can also be seen as controlling the distance from a constant field (compare
(2.18) with (2.19) and note that the former does not need the pseudo distance δ).

Back to (3.3). For the second term in the RHS of (3.3), by Lemma 2.2, we have

∆ξa = ∆(G ◦ φa)
= traceMφ∗a∇2G + 〈(∇G)(φa), τ(φa)〉
≥ s′κ(ρa)|dφa|2 + 〈(∇G)(φa), τ(φa)〉.(3.25)

Using (∇G)(φa) = sκ(ρa)(∇dist(y0, ·))(φa), we conclude

(3.26) ∆ξa ≥ s′κ(ρa)|dφa|2 − Csκ(ρa)|dφa||ψa|2, a = 1, 2.

As for the third term of the RHS of (3.3), using the Weitzenböck formula in [8], we have

∆|ψa|2 = |∇̃ψa|2 +
SM

4
|ψa|2 − 1

2
Rmijk〈∇φk

a · ψm
a ,∇φl

a · ψj
a〉

≥ SM

4
|ψa|2 − C|dφa|2|ψa|2, a = 1, 2,(3.27)

where C > 0 is a constant.

We can now combine our estimates and obtain the desired inequality. Substituting (3.24),
(3.26) and (3.27) into (3.3) and noting that s′κ(ρa) = 1− κqκ(ρa), a = 1, 2, we deduce that

L(eΦξ̃) ≥ ξ̃

4

∑
a

[
1− κqκ(ρa)

qκ(R̃)− qκ(ρa)
− 4C − C|ψa|2

1 + C0 − |ψa|2 ]|dφa|2

+
ξ̃

4

∑
a

[
inf SM

4(1 + C0 − |ψa|2) −
Csκ(ρa)|ψa|2

qκ(R̃)− qκ(ρa)
− 4C|ψa|2]|ψa|2.(3.28)

It is not hard to see that by taking R small (so that R̃ ∈ (R, π/2
√

κ) is also small), and then
choosing C0 sufficiently small, we can conclude that

(3.29) L(Θ) ≡ L(eΦξ̃) ≥ 0.

In particular, we see that we need to assume that |ψa| be sufficiently small so that we can
absorb the last term in the first sum by the convexity properties of the target and the last term
in the second sum by the positive scalar curvature of the domain.

Therefore, by Hopf’s maximum principle, the function Θ satisfies

(3.30) sup
M

Θ ≤ sup
∂M

Θ.

Having thus achieved (1.13), we can now prove the global estimate (1.14). This will follow from
(1.13), essentially by utilizing the equations and applying the Sobolev embedding theorem and
the elliptic estimate (2.27).
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From the above inequality (3.30), we deduce the following estimate:

(3.31) ‖φ1 − φ2‖C0(M) + ‖ψ1 − ψ2‖C0(M) ≤ C(‖φ1 − φ2‖C0(∂M) + ‖ψ1 − ψ2‖C0(∂M))

for some constant C > 0.
Note that from

∂/(ψi
1 − ψi

2) = Γi
jk(φ2)∇φj

2 · ψk
2 − Γi

jk(φ1)∇φj
1 · ψk

1

= (Γi
jk(φ2)− Γi

jk(φ1))∇φj
2 · ψk

2 + Γi
jk(φ1)(∇φj

2 −∇φj
1) · ψk

2

+Γi
jk(φ1)∇φj

1 · (ψk
2 − ψk

1 )

and (3.15), it follows that

‖∂/(ψi
1 − ψi

2)‖C0(M) ≤ CS(‖φ1 − φ2‖C0(M) + ‖dφ1 − dφ2‖C0(M)

+‖ψ1 − ψ2‖C0(M)), i = 1, 2, · · · , n′.(3.32)

From (2.27), for any p > n, we have

‖ψi
1 − ψi

2‖H1,p(M) ≤ C(‖∂/(ψi
1 − ψi

2)‖Lp(M) + ‖B(ψi
1 − ψi

2)‖
H

1− 1
p ,p

(∂M)
).

By the Sobolev embedding theorem and (3.32), we obtain

‖ψ1 − ψ2‖C0(M) ≤ CS‖φ1 − φ2‖C0(M) + CS‖dφ1 − dφ2‖C0(M)

+C‖B(ψ1 − ψ2)‖
H

1− 1
p ,p

(∂M)
.(3.33)

From this and (3.31), we have

‖φ1 − φ2‖C0(M) + ‖ψ1 − ψ2‖C0(M) ≤ C‖φ1 − φ2‖C0(∂M) + C‖B(ψ1 − ψ2)‖
H

1− 1
p ,p

(∂M)

+CS‖dφ1 − dφ2‖C0(M).(3.34)

On the other hand,

∆(φi
1 − φi

2) = Γi
jk(φ2)φ

j
2αφk

2βgαβ − Γi
jk(φ1)φ

j
1αφk

1βgαβ

+
1
2
Ri

jkl(φ1)〈∇φj
1 · ψk

1 , ψl
1〉 −

1
2
Ri

jkl(φ2)〈∇φj
2 · ψk

1 , ψl
2〉,

using (3.15) and the smallness of R and C0, it follows that

|∆(φ1 − φ2)| ≤ C|φ1 − φ2|+ CS |dφ1 − dφ2|+ CS |ψ1 − ψ2|.
Hence, for any p > n,

‖φ1 − φ2‖H2,p(M) ≤ C‖φ1 − φ2‖Lp(M) + CS‖dφ1 − dφ2‖Lp(M)

+CS‖ψ1 − ψ2‖Lp(M) + C‖φ1 − φ2‖
H

2− 1
p ,p

(∂M)
.

By Sobolev embedding, we conclude that

‖dφ1 − dφ2‖C0(M) ≤ C‖φ1 − φ2‖C0(M) + CS‖ψ1 − ψ2‖C0(M)

+C‖φ1 − φ2‖
H

2− 1
p ,p

(∂M)
.(3.35)
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Substituting this into (3.34) and using the Sobolev embedding again, we obtain

‖φ1 − φ2‖C0(M) + ‖ψ1 − ψ2‖C0(M) ≤ C(‖φ1 − φ2‖
H

2− 1
p ,p

(∂M)
+ ‖Bψ1 −Bψ2‖

H
1− 1

p ,p
(∂M)

)

for some constant C = C(n, n′, p, y0, R, C0,M,N) > 0. The uniqueness is a direct consequence
of the above inequality. This completes the proof of Theorem 1.1. 2

4. Existence for boundary value problems of Dirac-harmonic maps

In this section, we will prove existence theorem for Dirac-harmonic maps satisfying the
boundary condition (1.17) in Theorem 1.2, namely:

(4.1)
{

φ|∂M = φ0|∂M ,
Bψ = Bψ0

for any given φ0 ∈ H2,p(M, N) with φ0(M) ⊂ BR(y0) and ψ0 ∈ H1,p(ΣM ⊗ φ−1
0 (TN)) with

|ψ0|2 < C0, p > n := dimM .
As already explained in the introduction, we need to employ a continuity method, because

we neither have a variational method nor a heat equation technique at our disposal. Essentially,
we shall multiply the nonlinear terms in our equations by a factor τ which we shall let increase
from 0 to 1. Of course, we shall have to be careful with the boundary conditions as well as
with the geometric interpretations in terms of convexity conditions.

Choose the normal coordinates {yi}i=1,2,··· ,n′ centered at y0, we can then write

φ0 := (φ1
0, φ

2
0, · · · , φn′

0 ) ∈ (H2,p(M))n′ ≡
n′︷ ︸︸ ︷

H2,p(M)× · · · ×H2,p(M),

ψ0 := (ψ1
0, ψ

2
0, · · · , ψn′

0 ) ∈ (H1,p(ΣM))n′ ≡
n′︷ ︸︸ ︷

H1,p(ΣM)× · · · ×H1,p(ΣM) .

For any Dirac-harmonic map (φ, ψ) ∈ H2,p(M, N)×H1,p(ΣM⊗φ−1(TN)) with φ(M) ⊂ BR(y0)
we can also write

φ := (φ1, · · · , φn′) ∈ (H2,p(M))n′ , ψ := (ψ1, · · · , ψn′) ∈ (H1,p(ΣM))n′ .

In these notations, φ and ψ can be viewed as vectors in Rn′ and ΣM ⊗ Rn′ respectively, and
we have:

(4.2) E1|φ1 − φ2| ≤ dist(φ1, φ2) ≤ E2|φ1 − φ2|, E1|ψ| ≤ |ψ|ΣM⊗φ−1(TN) ≤ E2|ψ|,
where E1 and E2 are positive constants depending only on N, y0, and κ, and | · | denotes the
standard norms in Rn′ or ΣM ⊗ Rn′ .

Proof of Theorem 1.2. We first note that by the same proof as that of Theorem 1.1, one can
find positive constants R < π/2

√
κ and C0 ≤ 1 such that for all τ ∈ [0, 1], the solutions of

{
∆φi + τΓi

jkφ
j
αφk

βgαβ + τ
2Ri

jkl〈ψk,∇φj · ψl〉 = 0,

∂/ψi + τΓi
jk∇φj · ψk = 0, i = 1, 2, · · · , n′;
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with the corresponding smallness conditions on φ and ψ (φ(M) ⊂ BR(y0) and |ψ|2 < C0) also
satisfy the maximum principle in Theorem 1.1. We choose ‖φ0‖H2,p(M) and ‖ψ0‖H1,p(M) small
such that φ0(M) ⊂ BR(y0) and |ψ0|2 < C0.

As in [31], for any two real parameters λ, τ with (λ, τ) ∈ [0, 1] × [0, 1], we consider the
following boundary value problems

(4.3) P τ,λ
R,C0

(φ0, ψ0) :





{
∆φi + τΓi

jkφ
j
αφk

βgαβ + τ
2Ri

jkl〈ψk,∇φj · ψl〉 = 0,

∂/ψi + τΓi
jk∇φj · ψk = 0, i = 1, 2, · · · , n′;

{
φ− τλφ0 ∈ (H2,p

0 (M))n′ ,
B(ψ − τλψ0) = 0;

{
φ(M) ⊂ BR(y0),
|ψ|2 < C0.

Denote by Λ the set of all λ ∈ [0, 1] for which the problem P τ,λ
R,C0

(φ0, ψ0) has a solution
(φ, ψ) ∈ (H2,p(M))n′ × (H1,p(ΣM))n′ .

Let Λ∗ be the set of all λ ∈ Λ such that

(4.4)
{

[0, λ] ⊂ Λ,

‖φ
λ̃
‖2,p + ‖ψ

λ̃
‖1,p < C(n, n′, p, φ0, ψ0, y0, R, C0,M,N, λ), 0 ≤ λ̃ ≤ λ,

where (φ
λ̃
, ψ

λ̃
) denotes the solutions of P τ,λ̃

R,C0
(φ0, ψ0), and C(· · · ) is a positive constant de-

pending only on the corresponding quantities in the bracket.
Our aim is to show that Λ∗ = [0, 1], from which the conclusion of Theorem 1.2 follows.
Clearly Λ∗ is not empty, since 0 ∈ Λ∗. Suppose that λ1 ∈ Λ∗, λ1 < λ2 and λ2 ∈ Λ. To derive

the estimates in (4.4), we consider the difference of the solutions |φλ1 − φλ2 | and |ψλ1 − ψλ2 |.
From the φ-equations, we have

∆(φi
λ1
− φi

λ2
) = −τΓi

jk(φλ2)φ
j
λ2,αφk

λ2,βgαβ + τΓi
jk(φλ1)φ

j
λ1,αφk

λ1,βgαβ

−τ

2
Ri

jkl(φλ2)〈ψk
λ2

,∇φj
λ2
· ψl

λ2
〉+

τ

2
Ri

jkl(φλ2)〈ψk
λ1

,∇φj
λ1
· ψl

λ1
〉.(4.5)

The boundary conditions of φ1, φ2 imply

(4.6) (φλ2 − φλ1)− τ(λ2 − λ1)φ0 ∈ (H2,p
0 (M))n′ .

By the standard elliptic estimates with boundary conditions, we have

‖φλ2 − φλ1‖2,p ≤ C(‖|dφλ2 |2‖Lp + ‖|dφλ1 |2‖Lp + ‖τ(λ2 − λ1)φ0‖2,p +
√

R + C2
0 )

≤ C(‖|dφλ2 − dφλ1 |2‖Lp + ‖|dφλ1 |2‖Lp + ‖φ0‖2,p +
√

R + C2
0 ).(4.7)

Using the extended Sobolev inequality (see Theorem 10.1 in [11], p.27 )

(4.8) ‖|dφλa |2‖Lp ≤ C‖φλa‖2,p‖φλa‖L∞ , a = 1, 2
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in (4.7) we have

‖φλ2 − φλ1‖2,p ≤ C(‖φλ2 − φλ1‖2,p‖φλ2 − φλ1‖L∞

+‖φλ1‖2,p‖φλ1‖L∞ + ‖φ0‖2,p +
√

R + C2
0 ).(4.9)

On the other hand, from (1.14) in Theorem 1.1,

‖φλ2 − φλ1‖L∞(M) ≤ C(‖φλ2 − φλ1‖
H

2− 1
p ,p

(∂M)
+ ‖Bψ1 −Bψ2‖

H
1− 1

p ,p
(∂M)

)

≤ C(‖φ0‖
H

2− 1
p ,p

(∂M)
+ ‖Bψ0‖

H
1− 1

p ,p
(∂M)

)|λ2 − λ1|.(4.10)

From (4.9) and (4.10), we can find a positive constant δ = δ(n, n′, p, φ0, ψ0, y0, R, C0,M,N)
which is independent of λ1 and τ such that if

|λ1 − λ2| ≤ δ,

then

(4.11) ‖φλ2 − φλ1‖2,p ≤ C(‖φλ1‖2,p‖φλ1‖L∞ + ‖φ0‖2,p +
√

R + C2
0 ),

and consequently, for any λ1 ∈ Λ∗ and λ2 ∈ [0, λ1 + δ] ∩ Λ, we have

(4.12) ‖φλ2‖2,p ≤ C(n, n′, p, φ0, ψ0, y0, R, C0,M,N, λ1).

Now we derive estimates for the spinor fields ψ. From the ψ-equations, we have

(4.13)





∂/(ψi
λ2
− ψi

λ2
) = −τΓi

jk(φλ2)∇φj
λ2
· ψk

λ2
+ τΓi

jk(φλ1)∇φj
λ1
· ψk

λ1
,

B(ψλ2 − ψλ2 − τ(λ2 − λ1)ψ0) = 0, i = 1, 2, · · · , n′.

By Lemma 2.3 and our assumptions in Theorem 1.2, we have

‖ψi
λ2
− ψi

λ1
− τ(λ2 − λ1)ψi

0‖1,p ≤ C‖∂/(ψi
λ2
− ψi

λ1
− τ(λ2 − λ1)ψi

0)‖Lp ,

for i = 1, 2, · · · , n′. Hence,

‖ψi
λ2
− ψi

λ1
‖1,p ≤ C(‖∂/(ψi

λ2
− ψi

λ1
)‖Lp + τ |λ2 − λ1|‖ψ0‖1,p)

≤ C(‖|dφλ2 ||ψλ2 |‖Lp + ‖|dφλ1 ||ψλ1 |‖Lp + ‖ψ0‖1,p)

≤ C(‖|dφλ2 |2‖Lp + ‖|dφλ1 |2‖Lp + C0 + ‖ψ0‖1,p).(4.14)

¿From the previous estimates (4.12), we have

(4.15) ‖ψλ2‖1,p ≤ C(n, n′, p, φ0, ψ0, y0, R, C0,M,N, λ1).

The estimates (4.12) and (4.15) imply that

(4.16) [0, λ1 + δ] ∩ {λ|[0, λ] ⊂ Λ} ⊂ Λ∗.

Next, we will show that [0, λ1 + δ] ⊂ Λ∗. To see this, we first note that by (4.12) and (4.15)
we have

(4.17)




‖φ

λ̃
‖2,p + ‖ψ

λ̃
‖1,p ≤ C(n, n′, p, φ0, ψ0, y0, R, C0,M,N, λ1) := ĉ,

λ̃ ∈ [0, λ1 + δ] ∩ Λ.
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Similar to (4.10), for any solution (φ, ψ) of P τ,λ
R,C0

(φ0, ψ0), there is a positive constant T0 =
T0(n, n′, p, y0, R, C0,M,N) such that

(4.18) ‖φ‖L∞(M) + ‖ψ‖L∞(M) ≤ T0(‖φ0‖
H

2− 1
p ,p

(∂M)
+ ‖Bψ0‖

H
1− 1

p ,p
(∂M)

).

For R and C0 already chosen, we can find small constants a0 and b0 such that when
‖φ0‖H2,p(M) < a0 and ‖ψ0‖H1,p(M) < b0, we have

(4.19) T0(‖φ0‖
H

2− 1
p ,p

(∂M)
+ ‖ψ0‖

H
1− 1

p ,p
(∂M)

) < min{
√

R/E2,
√

C0/E2}.

Set γ := 1− n
p ∈ (0, 1). Define

K1 := {φ ∈ (C1+γ(M))n′ |‖φ‖(C0(M))n′ < A1, ‖φ‖(C1+γ(M))n′ < B},
K2 := {ψ ∈ (Cγ(ΣM))n′ |‖ψ‖(C0(ΣM))n′ < A2, ‖ψ‖(Cγ(ΣM))n′ < B},

where {
A1 <

√
R/E2, A2 <

√
C0/E2, B > ĉ,

T0(‖φ0‖
H

2− 1
p ,p

(∂M)
+ ‖ψ0‖

H
1− 1

p ,p
(∂M)

) < min{A1, A2}.(4.20)

Then K := K1 × K2 is a convex neighborhood of 0 ∈ (C1+γ(M))n′ × (Cγ(ΣM))n′ . For any
(Φ,Ψ) ∈ K̄, let T τ (Φ,Ψ) ≡ (T τΦ, T τΨ) be the unique solution of the following boundary value
problem:

(4.21)





∆(T τΦ)i + τΓi
jk(Φ)Φj

αΦk
βgαβ + τ

2Ri
jkl(Φ)〈Ψk,∇Φj ·Ψl〉 = 0,

∂/(T τΨ)i + τΓi
jk(Φ)∇Φj ·Ψk = 0, i = 1, 2, · · · , n′.

(4.22)
{

T τΦ− τλφ0 ∈ (H2,p
0 (M))n′ ,

B(T τΨ− τλψ0) = 0.

By the standard elliptic estimates and the fact that H2,p (resp. H1,p) is compactly embedded
into C1+γ (resp. Cγ), we have a compact map

T τ : K̄ → (C1+γ(M))n′ × (Cγ(ΣM))n′ ,

(Φ,Ψ) 7→ (T τΦ, T τΨ).
Define a map

T τ∗ : K̄ → (C1+γ(M))n′ × (Cγ(ΣM))n′

as follows:

(4.23) T τ∗x :=
{

T τx, if T τx ∈ K̄,
x0, if T τx∈̄K̄,

where T τx ≡ σx0 with x0 ∈ ∂K, σ ∈ [0,+∞). It is clear that T τ∗x : K̄ → K̄. By the Leray-
Schauder fixed point theorem (c.f. Corollary 11.2 in [13]), T τ∗ has a fixed point x ∈ K̄, namely,
T τ∗x = x.

If T τx∈̄K̄, then we have

(4.24) T τx0 = σx0, σ > 1, x0 ∈ ∂K.
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Denote x0 := (Φ0,Ψ0), then (4.24) implies

(4.25)





∆Φi
0 + τ

σΓi
jk(Φ0)Φ

j
0,αΦk

0,βgαβ + τ
2σRi

jkl(Φ0)〈Ψk
0,∇Φj

0 ·Ψl
0〉 = 0,

∂/Ψi
0 + τ

σΓi
jk(Φ0)∇Φj

0 ·Ψk
0 = 0, i = 1, 2, · · · , n′.

(4.26)
{

Φ0 − τ
σλφ0 ∈ (H2,p

0 (M))n′ ,
B(Ψ0 − τ

σλψ0) = 0.

Because x0 ∈ ∂K, at least one of the following four equalities ‖Φ0‖C0 = A1, ‖Ψ0‖C0 = A2,
‖Φ0‖C1+γ = B, ‖Ψ0‖Cγ = B holds. From the estimates (4.17) and the assumptions in (4.20),
we conclude that neither of the last two equalities can hold true. For the first two equalities,
if ‖Φ0‖C0 = A1, then by (4.18), we have

‖Φ0‖C0 ≤ T0(‖φ0‖
H

2− 1
p ,p

(∂M)
+ ‖Bψ0‖

H
1− 1

p ,p
(∂M)

),

from (4.20), ‖Φ0‖C0 < A1, a contradiction. Similarly, ‖Ψ0‖C0 = A2 can not hold. Therefore,
we must have T τx ∈ K̄. Consequently, T τx = x. We have proved that for all λ ∈ [0, λ1 + δ]
and τ ∈ [0, 1], the boundary value problem P τ,λ

R,C0
(φ0, ψ0) admits a solution. In other words,

[0, λ1 + δ] ⊂ Λ∗. Since δ is independent of λ1, through the above argument step by step, we
conclude that Λ∗ = [0, 1]. This completes the proof of Theorem 1.2.

2

5. Appendix

Proof of Lemma 3.1. The strategy will be to control φ in terms of estimates for a harmonic
map φ0 with the same boundary values plus some results from the theory of quasilinear elliptic
systems. Thus, we choose a harmonic map φ̃0 : M → BR(y0) with φ̃0|∂M = φ|∂M . Then by
the theory of harmonic maps, we have

(5.1) |∇φ̃0|, |∇2φ̃0| ≤ C.

Set φ̃ := φ− φ̃0, then φ̃ satisfies

(5.2) gαβφ̃i
αβ + bγ(x)φ̃i

γ + bi(x, φ̃, dφ̃) = 0

with

bγ(x) := −Γγ
αβ(x)gαβ(x), γ = 1, 2, · · · , n,

bi(x, φ̃, dφ̃) := Γi
jk(φ)φ̃j

αφ̃k
βgαβ − 1

2
Ri

jkl(φ)〈∇φ̃j · ψk, ψl〉

+Γi
jk(φ)φ̃j

αφ̃k
0βgαβ + Γi

jk(φ)φ̃j
0αφ̃k

βgαβ − 1
2
Ri

jkl(φ)〈∇φ̃0
j · ψk, ψl〉,
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i = 1, 2, · · · , n′. Denote ~b(x, φ̃, dφ̃) := (b1(x, φ̃, dφ̃), · · · , bn′(x, φ̃, dφ̃)), it’s easy to see that the
elliptic system (5.2) satisfies the following structure conditions:

(1) ν
∑
α

ξ2
α ≤ gαβξαξβ ≤ µ

∑
α

ξ2
α,

(2) |bγ | ≤ µ,

(3) |~b(x, φ̃, dφ̃)| ≤ ε(R, C0)(1 + |dφ̃|2),

(4) |∂gαβ

∂xγ
| ≤ µ,

where ν, µ and ε(R, C0) are positive constants, and ε(R, C0) is small when R and C0 are small.
By Theorem 4.1 in [27] (p.417) and then by the standard elliptic estimates with boundary, we
have (3.15). 2

Proof of (3.20) and (3.21). These will be derived from (3.9) by some easy inequalities. We
recall

J = −〈(Γi
jk(φ2)− Γi

jk(φ1))∆φj
2ψ

k
2 , ψi

1 − ψi
2〉 − 〈Γi

jk(φ1)(∆φj
2 −∆φj

1)ψ
k
2 , ψi

1 − ψi
2〉

−〈Γi
jk(φ1)∆φj

1(ψ
k
2 − ψk

1 ), ψi
1 − ψi

2〉
:= J1 + J2 + J3.(5.3)

Recalling that

∆φi
a = −Γi

jk(φa)φj
aαφk

aβgαβ +Ri(φa, ψa),

= −Γi
jk(φa)φj

aαφk
aβgαβ +

1
2
Ri

jkl(φa)〈∇φj
a · ψk

a , ψl
a〉,

a = 1, 2, i = 1, 2, · · · , n′, we have

|J1| ≤ CSρ(
∑

a

|dφa|2 +
∑

a

|ψa|4)|ψ1 − ψ2|

≤ CS ξ̃(
∑

a

|dφa|2 +
∑

a

|ψa|4).

Since

|J2| ≤ CS

∑

i

|∆φi
1 −∆φi

2||ψ2||ψ1 − ψ2|,

and using (3.9) we have, for i = 1, 2, · · · , n′,

|∆φi
1 −∆φi

2| ≤ |(Γi
jk(φ2)− Γi

jk(φ1))φ
j
2αφk

2βgαβ + Γi
jk(φ1)(φ

j
2α − φj

1α)φk
2βgαβ

+Γi
jk(φ1)φ

j
1α(φk

2β − φk
1β)gαβ |+ |R1 −R2|

≤ Cρ|dφ2|2 + CS |dφ1 − dφ2||dφ2|+ Cρ|dφ1||ψ1|2
+C|dφ1 − dφ2||ψ1|2 + C|dφ2|(|ψ1|+ |ψ2|)|ψ1 − ψ2|,
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hence,

|J2| ≤ CSρ|dφ2|2|ψ2||ψ1 − ψ2|+ CS |ψ2||dφ2||dφ1 − dφ2||ψ1 − ψ2|
+CSρ|dφ1||ψ1|2|ψ2||ψ1 − ψ2|+ CS |ψ1|2|ψ2||dφ1 − dφ2||ψ1 − ψ2|
+CS |dφ2||ψ2|(|ψ1|+ |ψ2|)|ψ1 − ψ2|2

≤ CS ξ̃
∑

a

|dφa|2 + CSδ2(dφ1, dφ2) + CS |ψ1 − ψ2|2.

Furthermore,

|J3| ≤ CS |∆φ1||ψ1 − ψ2|2
≤ CS(|dφ1|2 + |dφ1||ψ1|2)|ψ1 − ψ2|2
≤ CS ξ̃

∑
a

(|dφa|2 + |ψa|4),

hence, we obtain

(5.4) |J | ≤ CS ξ̃
∑

a

(|dφa|2 + |ψa|4) + CSδ2(dφ1, dφ2) + CS |ψ1 − ψ2|2.

Finally,

K = 〈(Γi
jk(φ2)− Γi

jk(φ1))eα · ∇φj
2 · ψk

2α, ψi
1 − ψi

2〉
+〈Γi

jk(φ1))eα · (∇φj
2 −∇φj

1) · ψk
2α, ψi

1 − ψi
2〉

+〈Γi
jk(φ1))eα · ∇φj

1 · (ψk
2α − ψk

1α), ψi
1 − ψi

2〉,
we have

|K| ≤ Cρ|dφ2||∇ψ2||ψ1 − ψ2|+ CS |dφ1 − dφ2||∇ψ2||ψ1 − ψ2|
+CS |dφ1||∇(ψ1 − ψ2)||ψ1 − ψ2|

≤ CSδ2(dφ1, dφ2) +
C

ε
ξ̃
∑

a

|dφa|2 + CS |∇(ψ1 − ψ2)|2 + (Cε + CS)|ψ1 − ψ2|2(5.5)

for any small constant ε > 0.
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