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Abstract

We consider a model for phase separation in binary viscous liquids that
allows for material transport due to cross-diffusion of unlike particles and
convection by the hydrodynamic bulk flow. Typically, during the evolu-
tion, the average size of domains of the pure phases increases with time
— a phenomenon called coarsening. Siggia [24] predicts that at an initial
stage, coarsening proceeds mainly by diffusion, which leads to the well-known
evaporation-recondensation growth law ` ∼ t1/3, when ` denotes the average
domains size and t denotes time. Furthermore, he argues that at a later stage,
convection by the bulk flow becomes the dominant transport mechanism, lead-
ing to a crossover in the coarsening rates to ` ∼ t. Siggia’s predictions have
been confirmed by experiments and numerical simulations.

In this work, we prove the crossover in the coarsening rates in terms of
time-averaged lower bounds on the energy, which scales like an inverse length.
We use a method proposed by Kohn and the first author [15], which exploits
the gradient flow structure of the dynamics. Our adaption uses techniques
from optimal transportation. Our main ingredient is a dissipation inequality.
It measures how the optimal transportation distance changes under the effects
of convective and diffusive transport.

1 Introduction

We investigate the coarsening rates in the demixing process of binary viscous liq-
uids. Demixing in liquid mixtures typically proceeds when the mixture is put into a
thermodynamically unstable state far from equilibrium, for instance, after a quench
from a high to a sufficiently low temperature. Thermodynamics favors the separa-
tion of the two phases. This drives the formation of microstructure: Initially, the
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mixture equilibrates locally by forming small domains of the two pure phases due to
the growth of the unstable wavelength and the free energy concentrates along the
interface between these domains. In the subsequent evolution, the system tends to
equilibrium by reducing the interfacial area: Larger domains grow at the expense of
smaller ones. This effects into a growth of the average domain size — a phenomenon
called coarsening.

In binary viscous liquids, there are two parallel transport mechanisms. Material
is transported by cross-diffusion, the relative motion of the two different species
through the bulk, and by convection, the material transport by the bulk flow. It
turns out that each transport mechanism becomes dominant during a certain time
interval in the demixing process. Initially, demixing is mediated mainly by diffusion.
Later on, as the domains become large enough, viscous forces in the liquid become
effective and the flow transport becomes the more efficient mechanism.

We are interested in the rate at which the coarsening of the domain morphology
proceeds. Generically, the system develops a typical length scale ` that describes
the average size of the domains of the pure phases. Therefore, the coarsening rate
is measured by the growth rate of `. In 1979, in a seminal paper [24], Siggia argued
that during the first, diffusion-dominated regime, the coarsening rate behaves like
` ∼ t1/3 — the well-known coarsening law from the evaporation-recondensation
process (Ostwald ripening) studied by Lifshitz, Slyozov, and Wagner [17, 31]. Siggia
predicts that at a later stage, the dominance of convection leads to a crossover of the
coarsening rate to ` ∼ t. Siggia’s coarsening rates have been confirmed in numerical
simulations [2, 14, 22, 27] and physical experiments [6, 32, 33, 16]; see also the
discussion in Section 3.

In this paper, we rigorously establish Siggia’s coarsening rates in form of weak upper
bounds: We show that coarsening cannot proceed faster than ` . t1/3 for diffusion-
mediated and subsequently ` . t for convection-mediated transport. The coarsening
rates come in form of time-averaged lower bounds on the energy density — for a
discussion on the energy scaling, see page 9.

Our mathematical investigation of the crossover of the coarsening rates fuses to-
gether the individual results on coarsening rates for purely diffusive transport [15]
and for purely convective transport [4]. We apply the general method introduced in
[15]. There are two questions that arise. One concerns the technique:

Can the method of [15] be adapted to capture the crossover of coarsening
rates which reflect two different transport regimes?

The second issue is more fundamentally related to the nature of the system:

Can the bulk transport mechanism sufficiently “help” the diffusive trans-
port during the stage when the later is dominant, for the coarsening rate
to be affected?
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Below we answer the first question affirmatively and the second negatively.

Recently, Dai, Niethammer, and Pego [8] obtained rigorous results on the crossover of
coarsening rates from attachment-limited to diffusion-limited dynamics as it occurs
in rapid solidification processes from melts. They too used the framework of [15].
In addition to being a different system and a mean-field-type approximation (we
will work with a phase-field model), a significant difference from our work here is
that in [8], the system features two limiting dissipation mechanisms rather than
two transport mechanisms. The authors prove the crossover from ` ∼ t1/2 in the
regime of attachment dynamics to ` ∼ t1/3 in the regime of diffusion dynamics. The
presence of two limiting dissipation mechanisms slows down the coarsening process,
` ∼ min{t1/2, t1/3}, while the presence of two transport mechanisms speeds it up,
` ∼ max{t1/3, t}.
The paper is organized as follows: In Section 2 we introduce the models, both in
the diffuse-interface and the sharp-interface formulation. In Section 3 we present a
heuristic argument for the rates of coarsening and determine at what length scale
should the crossover occur. In Section 4 we state the main result. We present the
technique used and state the propositions that combine to establish the main result.
In Section 5 we present several results on how the optimal transportation distance
changes under the effects of (convective and diffusive) transport. They are needed
to establish the propositions of Section 4, but are of independent interest as well. In
Section 6 we present the detailed proofs of the statements of Section 4. Finally in
the Appendix A, we prove an optimal-transportation result we need, and Appendix
B contains a discussion on well-posedness and regularity (in three space dimensions)
of the dynamical system considered in this paper.

2 The models

We present our results for two levels of modeling the system: for the diffuse-interface
model and for the sharp-interface model. In the diffuse-interface model, the dynam-
ics are described in terms of an order parameter (or phase field), which measures
the local composition of the mixture. The order parameter varies smoothly between
the pure phases, as it is expected in diffusive systems. The sharp-interface model
depicts the thermodynamics on a mesoscopic level. As the name suggests, the dif-
fuse interface is replaced by a sharp borderline between the domains of the pure
phases, where the order parameter is supposed to be constant. This approximation
is justifiable in many systems if the typical domain size is much larger than the inter-
facial width; see for example [21, 3, 5, 1]. While for the diffuse-interface model the
questions of well-posedness and regularity can be answered by standard techniques
(cf. Appendix B), the well-posedness theory for the sharp-interface model remains
open. Nevertheless, since the sharp-interface system provides a cleaner geometric
description of the dynamics, we present the results on the coarsening of that system
as well. To do that, we assume that smooth enough solutions to the sharp-interface
system do exist.
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We consider the problem in a periodic setting. Let Ω ⊂ Rd, d ≥ 2, be the cell of
periodicity of all functions considered, and we assume that

|Ω| � 1.

Since we are always working with averages, the system size, i.e., the volume of Ω,
will not enter in our analysis. For any measurable set A ⊂ Ω, we write −

∫
A

= 1
|Ω|

∫
A

for convenience.

The mathematical quantity that models the physical configuration is the order pa-
rameter m, which describes the local composition of the mixture. It is supposed to
take the values ±1 in the pure phases. For symmetry reasons, m = 0 where both
phases are mixed in equal measure. As we shall see — and this is a very natu-
ral feature since we exclude chemical reactions —, the total mass of each phase is
conserved during the evolution, so that we may assume that

m := −
∫

Ω

mdx = 0.

This corresponds to the critical mixture, where both phases occupy the same volume
fraction. The case m 6= 0 can be treated analogously.

Below we introduce the models. For a more detailed introduction of the models as
well as an explanation of their gradient-flow structure, we refer to [4].

2.1 Diffuse-interface model

We begin with the introduction of the model for diffuse interfaces. The free energy,
averaged over cell Ω is given by the Ginzburg–Landau functional with the classical
double well potential

E(m) := −
∫

Ω

1

2
|∇m|2 +

1

2
(1−m2)2 dx. (1)

It favors the values m = 1 and m = −1, representing the pure phases, and penalizes
transitions between these values. It is nondimensionalized in such a way, that the
typical transition layer between the domains of the pure phases is of order one, and
thus much smaller than the system size |Ω|. The L2 derivative of the energy is the
chemical potential

µ :=
∂E

∂m
= −∆m− 2(1−m2)m. (2)

Since the order parameter must be conserved, the evolution equation for m comes
in form of a local conservation law, ∂tm + ∇ · J = 0. Due to the two parallel
transport mechanisms, the transporting flux combines diffusion and convection, J =
λJdiff + Jconv, where λ measures the relative strength of the diffusion flux compared
to the convection flux. The flux due to cross-diffusion is given by Jdiff = −∇µ, and
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the flux due to fluid convection is Jconv = mu, where u denotes the fluid velocity.
It obeys a Stokes equation:

−∆u+∇p = −m∇µ,
∇ · u = 0,

(3)

in which p is the hydrodynamic pressure. The forcing term which acts on u is
determined by the “principle of virtual work”: It guarantees that the dissipation
due to convection is given by the Stokes friction term (cf. (5)). Summing up, the
demixing process is described by the equation

∂tm− λ∆µ+∇ · (mu) = 0, (4)

where µ is given by (2) and u solves the Stokes equation (3). This model is nondi-
mensionalized and permits — besides the size of the system — one dimensionless
parameter: λ. Well-posedness and regularity (for d = 3) of this dynamical system is
established in the Appendix B.

Direct calculation shows that the energy dissipation rate is

dE

dt
= −−

∫
Ω

λ|∇µ|2 + |Du|2 dx. (5)

2.2 Sharp-interface model

On the mesoscopic level, m takes only the values which characterize the pure phases,
i.e., m = ±1. The energy concentrates on the interface and is proportional to its
area (length in two space dimensions). A straightforward computation of the energy
of the one-dimensional interfacial profile determines the prefactor 4

3
. We thus define

E(m) :=
4

3
× 1

2
−
∫

Ω

|∇m| dx =
2

3
−
∫

Ω

|∇m| dx. (6)

Let Ω+ be the subset of Ω where m takes value 1, and Ω− the subset where m = −1.
Let Γ = ∂Ω+. We denote the mean curvature of Γ by H, with the convention, that
H is nonnegative along convex boundaries ∂Ω+.

The chemical potential µ is given by

−∆µ = 0 in Ω\Γ,

µ =
2

3
H on Γ.

(7)

The fluid velocity u solves the following Stokes equation in which S = (Du+(Du)T )−
pI is the stress tensor, p is the hydrodynamic pressure, τ is any tangent vector to
Γ, and ν is the outside (relative to Ω+) unit normal vector to Γ:

−∇ · S = 0 in Ω\Γ,
∇ · u = 0 in Ω,

τ [Sν] = 0 on Γ,

ν[Sν] = −4

3
H on Γ.

(8)
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Above [A] denotes the jump in quantity A across Γ.

Again, the order parameter m is transported by the total flux. That is, the interface
Γt moves with normal velocity

V = −1

2

[
∂µ

∂ν

]
+ u · ν. (9)

While the second term in the velocity is just the transport by the bulk flow, the first
term is well-known from the Mullins–Sekerka law. The validity of the evolution (7)–
(9) as a sharp-interface approximation of (3)&(4) is discussed in a generalized setting
(the authors consider the full Navier–Stokes equation instead of the stationary Stokes
equation) in [1, Appendix A].

Notice that this sharp interface version of (3)&(4) is — besides the system size —
free of dimensionless parameters. This comes from the fact that there is no length
scale that corresponds to interfacial width. Thus, in any statements in which λ
appears and that apply to sharp interfaces, one should set λ = 1.

Assuming that the sharp interface system has solutions that are smooth enough, the
energy dissipation can be written as:

dE

dt
=

4

3
−
∫

Γ

HV dHd−1 = −−
∫

Ω

|∇µ|2 + |Du|2 dx.

Finally, a direct formal computation shows that the evolution preserves the volumes
of Ω+ and Ω−.

3 Heuristics

In this section, we present a simple heuristic argument in favor of the two coarsening
rates. A fairly neutral starting point for demixing studies is an almost uniform state
corresponding to full mixing, say m ≈ 0. This configuration is unstable and linear
analysis and numerical simulations (cf. [4]) indicate that wavelength of order one
grow fastest. A natural assumption on the typical domain size ` at the onset of
coarsening is therefore

` & 1. (10)

It is expected, as such behavior is ubiquitous in related energy-driven systems, that
in large systems, the evolution of the characteristic length scale obeys a power law:

`(t) ∼ tγ.

The coarsening exponent γ is determined by the dominant material transport mech-
anism. We argue that γ = 1/3 for diffusion-mediated and γ = 1 for convection-
mediated transport.
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The heuristics are based on the assumption that the coarsening evolves statistically
self-similar in the interfacial regime. This means

|Fm(t, · )(k)|2 ≈ f(tγk), (11)

for some structure function f and every wave number k. Above, Fm denotes the
Fourier transform of m, i.e., Fm(k) = −

∫
Ω
m(x)eik·x dx. Such a behavior is suggested

by numerical simulations, but, to our knowledge, there are no rigorous results in
this direction.

In order to determine the different coarsening exponents, we treat the underlying
dominant transport mechanisms separately. We consider the sharp-interface models.
In the purely diffusive system, the evolution of the interface Γ is the Mullins–Sekerka
law

V = −1

2

[
∂µ

∂ν

]
on Γ,

where µ is the chemical potential defined via (7). Solutions are invariant under the
scaling

x = αx̂, t = α3t̂, (12)

and therefore, assuming statistical self-similarity,

f(tγk)
(11)&(12)
≈ |Fm(α3t, α· )(k)|2 = |Fm(α3t, · )(α−1k)|2 ≈ f((α3t)γ(α−1k)),

which yields γ = 1/3, since α is arbitrary. Thus

`(t) ∼ (λt)1/3,

To illustrate the λ-dependence of the coarsening rate, observe that in the purely
diffusive version of (4), λ can be absorbed into the time scale via the transformation
t̂ = λt.

In the purely convective system, the evolution of the interface Γ is

V = u · ν,

where u solves (8). Solutions are invariant under the scaling

x = αx̂, t = αt̂.

This implies, assuming statistical self-similarity, by a similar computation as above:

`(t) ∼ t.

Comparing both coarsening rates, we expect the crossover from the diffusion-domi-
nated to the convection-dominated regime at time resp. length

tcrossover ∼ λ1/2, `crossover ∼ λ1/2. (13)
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In particular, in view of (10), we may think of λ ≥ 1 in order to treat a crossover
situation.

The heuristic argumentation presented in this section and the rigorous results in the
remainder of this paper apply in any space dimension larger than or equal two, in
particular in the physically important case of three dimensions. However, in dimen-
sion two, the validity of the convection-dominated growth law is under controversy
in the physics literature. There are basically two positions. On the one hand, in
[23], the authors claim that in two dimensions, the curvature-driven Stokes flow
induced by (8) does not yield the appropriate evolution law of the interface, and
therefore, the linear growth law ` ∼ t does not hold. The argumentation is based on
the investigation of Rayleigh instabilities in two dimensional hydrodynamic fluids:
Linear stability analysis indicates that long cylindrical tubes of fluid surrounded by
fluid of different density are stable under long wavelength perturbations — opposed
to the situation in three dimensions. Therefore, the authors deduce that convec-
tive coarsening is not possible. It is suggested that in two dimensions the linear
coarsening rate is replaced by ` ∼ t1/2 corresponding to droplet coalescence. This
scaling law has also been numerically observed [28, 18]. On the other, the author
of [11] explains the discrepancy of the coarsening rates in two and three dimensions
by the occurrence of many isolated spherical domains in two dimensions, for which
the hydrodynamic bulk flow is not effective, and which coarsen therefore according
to the evaporation-recondensation growth law ` ∼ t1/3. This thesis is supported by
the numerical computation of different measures of length scales (different moments
of the structure function). As a particular consequence, in two dimensions, the
presence of a sole characteristic length scale is questionable (the largest domains,
however, still show linear coarsening behavior). In three dimensions, one observes a
rich connectivity among the domains, so that the accumulation of isolated droplets
is less apparent. Despite this unsatisfactory ambiguity in the state of the art in 2-d
coarsening of binary viscous fluids, the present work contributes into the discussion,
proving that, even in two space dimensions, coarsening cannot proceed faster than
` ∼ t in the convective regime (more precisely, we show that the interfacial area
cannot decrease too fast).

4 Results and Method

Let us state our rigorous main results. We focus on the diffuse-interface setting,
this means, we consider the energy density defined in (1), and the (gradient flow)
dynamics given by (3)&(4). When it might be of interest, we will also shortly
comment on the corresponding sharp-interface versions of our results.

Our main result, Theorem 1 below, describes a crossover in the coarsening rates
from ` ∼ (λt)1/3 in a diffusion dominated regime to ` ∼ t in a convection dominated
regime. The result comes in form of time-averaged lower bounds on the energy
density (see discussion on page 10). Before presenting Theorem 1, we still need
some preparation.
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Our analysis uses two different notions of intrinsic length scales, a geometric one and
a physical one. The canonical candidate for a geometric length scale is the inverse
energy density of the system, which, because of

E ≈ energy of one-dimensional interfacial layer× area of interface

volume of system
,

cf. (6), indeed scales like a length (heuristically at least). The physical length
scale is defined via a transportation distance, which we call a Monge–Kantorovich–
Rubinstein distance (MKR distance) in its most abstract form, and which will be
introduced in the following.

For any two measures θ, ϑ on Ω, with θ(Ω) = ϑ(Ω) the MKR distance dc with cost
c is defined by

dc(θ, ϑ) := inf
π∈Π(θ,ϑ)

−
∫
−
∫

Ω×Ω

c(x, y)dπ(x, y),

where Π(θ, ϑ) is the set off all couplings between θ and ϑ, that is the set of all
measures π on Ω× Ω such that

π(A× Ω) = θ(A) and π(Ω×B) = ϑ(B) for all measurable sets A,B.

Here, we use the notation −
∫
−
∫
A×B = 1

|Ω|

∫∫
A×B for any measurable sets A and B.

With the cost function c defined by

c(z) :=

{
λ−1/2z 0 ≤ z ≤ λ1/2,
1 + ln z − lnλ1/2 λ1/2 ≤ z,

(14)

and

m+ := max{m, 0} and m− := max{−m, 0},

we set

L := dc(m+,m−). (15)

As we shall explain later, the latter can be considered a physical length of the system.
Let Ω = [0,Λ]d. For z ∈ Rd we set ‖z‖ = min{|z+Λ(α1e1 + · · ·αded)| : α1, . . . , αd ∈
Z} where ei are unit coordinate vectors. Note that if Ω is considered as a flat torus
then the distance between x and y in Ω is ‖x− y‖. We use c(x, y) = c(‖x− y‖) as a
symbol for both a function from Ω×Ω → [0,∞) and a function from [0,∞) → [0,∞)
as it is clear from the argument which one is considered. Note that, since m = 0,
we have −

∫
Ω
m+(x, t) dx = −

∫
Ω
m−(x, t) dx for all t ≥ 0. We remark that for m 6= 0,

one would consider (m−m)+ and (m−m)−.

Before motivating the definition of c and commenting the interpretation of L as a
physical length in our dynamical system, we present our main result and discuss the
analytical method we apply.
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Theorem 1. Let E(m(0)) � 1 and L(m(0)) � 1. Then∫ T

0

max{λ1/2E2, E} dt &
∫ T

0

min

{
λ1/2 1

(λt)2/3
,
1

t

}
dt

for all T such that λ−1/2T � L(m(0))3.

Remark 1. The above result, with λ = 1 and without assumption on E(m(0)), also
holds for the sharp interface system under the assumption that the sharp-interface
system has smooth enough solutions.

We use the sloppy notation “&” and “�” to indicate that the inequality holds up
to a generic constant which may depend on the space dimension only, provided
that E(m(0)) and L(m(0)) are sufficiently small and λ−1/2T

L(m(0))3
is sufficiently large. In

particular, the statement in Theorem 1 is uniform in L(m(0)) and λ, and we formally
obtain the individual results from [15] (pure diffusion) and [4] (pure convection) in
the asymptotic limits λ� 1 and λ� 1, respectively.

The result of Theorem 1 above is in agreement with the physical prediction in [24].
Indeed, since the normalized energy scales like an inverse length (see discussion
above) and assuming that there is only one length scale present in the dynamics, a
lower bound on the energy can be interpreted as an upper bound on the coarsening
rate. As other results based on the technique of [15], our analysis produces only time-
averaged and only lower bounds on the energy. (A counter-example for a pointwise
version of the coarsening rates derived within this method is given in the original
paper [15, Remark 4].) The condition on T gives a bound for the minimal size of
the time interval over which the coarsening rates are averaged. Also, we have no
rigorous arguments to determine the crossover time in terms of λ. Our result has to
be read as follows: The initial configuration has to be chosen such that its typical
length scale is at least of order one, 1 � 1

E(m(0))
, to ensure that we start within the

interfacial regime, i.e., the mixture is separated into two domains of the two phases;
but the typical length scale of the initial configuration is well below the crossover
length, L(m(0)) � 1 (recall that for small length scales, L is normalized by λ1/2),
cf. (13). The diffusive regime, E � 1

λ1/2 and t � λ1/2, is only relevant if λ ≥ 1. If
so, the above result is a time-averaged version of E & 1

(λt)1/3 , since in this situation

max{λ1/2E2, E} = λ1/2E2 and min
{

λ1/2

(λt)2/3 ,
1
t

}
= λ1/2

(λt)2/3 . Likewise, in the regime

E � 1
λ1/2 and t� λ1/2, our result is a time-averaged version of E & 1

t
.

We want to remark that upper bounds on coarsening rates are quite different from
lower bounds. There are configurations, like parallel planar layers, that do not
coarsen at all, or do so exponentially slowly. Therefore, lower bounds depend
strongly on the initial data and can only be generically true.

The method we apply in our analysis was first introduced in [15]. It exploits the
gradient flow structure of the dynamics. In fact, the dynamical system (3)&(4) (or
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analogously (7)–(9)) can be interpreted as a gradient flow for the metric tensor

g(δm, δm)

= inf
j,u

{
−
∫

Ω

1

λ
|j|2 dx+−

∫
Ω

|Du|2 dx
∣∣∣ δm+∇ · (j +mu) = 0, ∇ · u = 0

}
, (16)

cf. [4, Section 1.4]. The method of [15] now translates bounds on the energy land-
scape, i.e., information on how fast the energy decreases as a function of distance
(originally, the distance induced by the metric tensor) to some reference configu-
ration to bounds on the dynamics, i.e., bounds on how fast the energy decreases
as a function of time. The method consists mainly of three ingredients: an energy
dissipation inequality, an interpolation (or isoperimetric) inequality, and an ODE
argument.

The main contribution of this work is the dissipation inequality.

Proposition 2 (Dissipation inequality). Let m be a solution of (4). Assume that
E(m(0)) . 1. Then L is an absolutely continuous function and for a.e. t ≥ 0,

d

dt
L(t) .

(
−
∫

Ω

λ|∇µ|2 + |Du|2 dx
)1/2

.

The statement with λ = 1 holds for the sharp interface system as well, again provided
that it has regular enough solutions. We may also drop the condition on the initial
energy.

The interpolation inequality we obtain holds for a very broad range of cost functions.
It represents a diffuse-interface counterpart of the one proved in [4]. One should
note that the interpolation inequality for the sharp interface case does not require
an assumption on energy smallness.

Proposition 3 (Interpolation inequality). Let c be monotonically increasing with
c(0) = 0. Let m ∈ L2(Ω) with m = 0. Assume E(m) � 1. Then there exists
constant c0, dependent on the space dimension only, such that

dc(m+,m−) & c

(
1

c0E(m)

)
.

Finally, we state the ODE argument. The inhomogeneous form of the time averages
in the statement of Proposition 4 is due to the particular feature of the argument,
which only allows for Lq averages in time, with 1 < q < 3 in the diffusive (for
convenience, we choose q = 2), and q = 1 in the convective regime, in order to
capture the explicit form of the cost function c from the interpolation inequality in
the particular regimes. Notice that in our formulation of the ODE argument below,
we have absorbed c0 and the constants from the inequalities in Propositions 2 & 3
into E, L, and the new constant C.

11



Proposition 4 (ODE argument). Let E(t) and L(t) be two absolutely continuous,
nonnegative functions satisfying

dL

dt
≤ C

(
−dE
dt

)1/2

for a.e. t, (17)

and

L ≥
{

1
λ1/2E

if 1 ≤ λ1/2E,

1 + ln 1
λ1/2E

if 1 ≥ λ1/2E.
(18)

Assume that 2L(0) ≤ 1. Then there is a constant C̃ such that∫ T

0

max{λ1/2E2, E} dt ≥ 1

C̃

∫ T

0

min

{
λ1/2 1

(λt)2/3
,
1

t

}
dt,

for any T such that λ−1/2T ≥ L(0)3.

Now we come back to the definition of c, (14), and the interpretation of L, (15), as
a physical length scale. A natural choice of the physical length scale is related to the
gradient flow structure of the dynamics: In a gradient flow, the metric tensor encodes
the limiting dissipation mechanisms. In particular, the geodesic distance induced
by the metric tensor measures the minimal amount of energy that is dissipated
when “moving” from one point in configuration space to another. However, in
our situation, the induced distance with metric tensor defined in (16) is not know
explicitly. Therefore, we construct a proxy L(m) that is bounded by the induced
distance. The idea of approximating induced distance functions by MKR distances
has been introduced in [19, 13].

We now motivate the choice of c. The cost function has to be chosen in such a
way that the MKR distance is dominated by the induced distance function. In the
purely diffusive setting, the induced distance reduces to the H−1 norm. Though in
this situation a proxy is not necessary, the authors of [15] use a slightly weaker norm,
the H−1,∞ norm, which is equivalent to the Monge–Kantorovich distance (i.e., the
MKR distance with cost function given by the Euclidean distance c(z) = z), in order
to treat simultaneously the case of surface diffusion (diffusion along the interfacial
layer in contrast to diffusion through the bulk). In the purely convective setting,
the induced distance is given by the viscous dissipation mechanism, i.e., −

∫
Ω
|∇u|2 dx.

Since the dissipation mechanism only controls the gradient of the convecting velocity,
it is not surprising that the cost functional in the MKR distance can only grow
logarithmically: In the finite dimensional analogue, trajectories of a Lipschitz vector
field can diverge exponentially fast. This idea is exploited in [4]. Since our goal is to
prove the crossover in the coarsening rates from diffusion- to convection-mediated
coarsening, we combine the cost function from [15] and [4]: We use the Euclidean
distance as cost function for distances smaller (measured in terms of E) than the
crossover length, 1

E
∼ λ1/2, cf. (13), and the logarithmic cost function for distances

larger than the crossover length.
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A key insight of our work is that combining the cost appropriately for the two
problems corresponding to separate transport mechanisms works for the problem in
which the transport mechanisms are combined.

We want to remark that a subtle but nontrivial difference from [4] in the definition of
L is used instead of dc(m+1, 1). The quantity above is more natural for the problem
considered. However the total mass of m+ and m− changes in time, which needs
to be accounted for when computing dL

dt
for example. Also the change is necessary

since there are no known L∞ bounds on m which are uniform in time (and which
one could use to find M such that m+M ≥ 0 and then consider dc(m+M,M)).

MKR distances have been successfully introduced as proxies for the induced distance
function in the framework of [15] in two further situations: In [25], the author con-
siders a Wasserstein distance (i.e., an MKR distance with cost function given by the
square of the Euclidean distance) to prove an upper bound on the coarsening rates
in a non-local, degenerate Cahn–Hilliard equation modelling biological aggregation
and phase segregation in binary alloys. In [20], a model for viscous thin films is
under consideration, in which droplet configurations coarsen by Ostwald ripening
and droplet collision. The evolution is given by a Cahn–Hilliard-type equation, the
induced distance is the Wasserstein distance.

5 Effect of material transport on optimal trans-

portation distances

We establish estimates on how much are the optimal transportation distances be-
tween fluid components changed if the fluid is perturbed. We consider two sources
of perturbation: mass redistribution via a flux j and bulk transport via a velocity
vector field u. Since this situation is of general interest, in this section j and u are
not assumed to be given by a model of demixing. More precisely, we consider m to
be a (distributional) solution of

∂tm+∇ · j +∇ · (mu) = 0

on a torus Ω, where j and u are given.

Effect of bulk transport on optimal transportation distances was considered in [4,
Lemma 1]. We state the result below and refer to [4] for a proof.

Lemma 5. Assume that c : [0,∞) −→ [0,∞) is smooth and nondecreasing, with
c(0) = 0. We denote the associated cost function by the same letter: c(x, y) =
c(‖x− y‖), where ‖x− y‖ denotes the distance on Ω considered as a torus. Let u be
a C1 vector field with period cell Ω. Let m1,m2 ∈ C(0, T ;L1(Ω)) be two distributional
solutions of

∂tmi +∇ · (miu) = 0,
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such that m1(0)(Ω) = m2(0)(Ω). Then

d̄+

dt
dc(m1(t),m2(t))

≤ −
∫
−
∫

Ω×Ω

c′(‖x− y‖)∇x‖x− y‖ · (u(x, t)− u(y, t)) dπ(t),

where π(t) is an optimal transportation plan with cost c between m1(t) and m2(t)
and d̄±

dt
is the one-sided upper derivative, i.e.,

d̄+

dt
f(t) := lim sup

h→0+

f(t+ h)− f(t)

h
.

The analogous result holds for the one-sided lower derivative.

When applying the above lemma to the demixing problems, we have in mind m
being the order parameter of average 0 and set m1 = m+ and m2 = m−. The main
difference between the situation considered in [4] and the one here is that the total
mass of m+, that is m+(t)(Ω), is not constant in time in the diffuse-interface case.
This is entirely due to the transport by flux j. The following lemma contains the
essential estimate to handle that element. It is an integral version of the estimate
on the rate of change of the transportation distance.

Lemma 6. Let c : [0,∞) −→ [0,∞) be smooth and nondecreasing, with c(0) = 0.
Furthermore assume that c is subadditive and that c′(0) ≤ 1. Let m be an L2 function
on Ω and j an H1 vector field. Let m′ = m+∇ · j. Then

dc(m
′
+,m

′
−)− dc(m+,m−) ≤ −

∫
Ω

|j| dx.

Proof. Note that since c is subadditive, nondecreasing, and c(0) = 0, the function
c(x, y) = c(‖x− y‖) defines a metric on Ω. This enables is to use Lemma 10 in the
Appendix to conclude

dc(m
′
+,m

′
−) ≤ dc(m

′
+ +m−,m

′
− +m+) + dc(m+,m−).

Observe that dc(m−,m+) = dc(m+,m−). Let d1 be the Monge–Kantorovich dis-
tance, that is the optimal transportation distance corresponding to the Euclidean
distance cost. Since c is subadditive and c′(0) ≤ 1, it holds that c(z) ≤ z for all
z ≥ 0. Therefore

dc(m
′
+ +m−,m

′
− +m+) ≤ d1(m

′
+ +m−,m

′
− +m+).

We now recall the following representation formula for d1 (see [29, page 38]):

d1(m,m
′) = inf

{
−
∫

Ω

|j̃| dx : ∇ · j̃ = m′ −m

}
. (19)
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On the one hand, this implies that

d1(m
′
+ +m−,m

′
− +m+) = d1(m+ −m−,m

′
+ −m′

−) = d1(m,m
′).

On the other hand, we have the estimate

d1(m,m
′) ≤ −

∫
Ω

|j| dx.

Gathering the inequalities above we conclude that

dc(m
′
+,m

′
−) ≤ −

∫
Ω

|j| dx+ dc(m+,m−).

While the above lemma applies to the sharp-interface case as well, here we state the
sharp-interface result in a more geometric setting. Namely, we consider the situation
when the flux is not specified, but only the evolution of interfaces is given. To state
the appropriate result, consider the evolution of subsets of Ω. Let Ω+(t) and Ω−(t)
be disjoint open subsets of Ω such that ∂Ω+(t) = ∂Ω−(t) = Γ(t), |Ω+(t)| = |Ω−(t)|
for all t and Γ(t) is a smooth manifold evolving smoothly in time. Let V be the
normal velocity by which Γ is evolving.

Corollary 7. Consider c as in Lemma 6 and Ω+(t), Ω−(t), Γ(t), and V as above.
Let m+ = χΩ+, m− = χΩ−, and m = m+−m−. For h > 0, let Qh be the solution of

−∆Qh = m(t+ h)−m(t).

Then

dc(m+(t+ h),m−(t+ h))− dc(m+(t),m−(t))

≤ −
∫

Ω

|∇Qh| dx ≤
∫ t+h

t

−
∫

Ω

|∇q(x, s)| dxds

where q( · , t) solves

−∆q = 0 in Ω\Γ(t),[
∂q

∂ν

]
= 2V on Γ(t),

(20)

where ν is the unit outside normal vector to Ω+ and [ · ] denotes the jump over the
interface. Furthermore

d̄+

dt
dc(m+(t),m−(t)) ≤

(
1

|Ω|

∫
Γ(t)

2V qdHd−1

) 1
2

.
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Proof. The proof of the first inequality follows immediately from the proof of Lemma
6 with j = −∇Qh. To show the second fact note that using a smooth function ξ as
a test function in (20) gives

0 = −
∫

Ω

∇q · ∇ξ dx+

∫
Γ

[
∂q

∂ν

]
ξ dHd−1

= −
∫

Ω

∇q · ∇ξ dx+

∫
Γ

2V ξ dHd−1

= −
∫

Ω

∇q · ∇ξ dx+
d

dt

∫
Ω

m(x, t)ξ(x) dx.

Integrating from t to t+h gives that
∫ t+h
t

q(x, s)ds satisfies the equation that defines

Qh. Uniqueness implies that Qh(x, t) =
∫ t+h
t

q(x, s)ds, which in turn implies the
second inequality. Dividing by h and taking lim suph→0+ implies that

d̄+

dt
dc(m+(t),m−(t)) ≤

(
−
∫

Ω

|∇q(x, t)|2 dx
) 1

2

=

(
1

|Ω|

∫
Γ

[
∂q

∂ν

]
q dHd−1

) 1
2

=

(
1

|Ω|

∫
Γ

2V q dHd−1

) 1
2

.

We now combine the results of Lemma 5 and Lemma 6 and generalize them to apply
to less regular vector fields.

Lemma 8. Let c : [0,∞) −→ [0,∞) be C1 and concave and such that c(0) = 0 and
c′(0) ≤ 1. Assume that u is vector field in L1(0, T ;L2(Ω,Rd)) and j is a vector field
in L1(0, T ;L1(Ω,Rd)). Let m ∈ C(0, T ;L2(Ω)) be a distributional solution of

∂tm+∇ · j +∇ · (mu) = 0

with m = 0. Let L(t) = dc(m+(t),m−(t)). Then for all t ∈ [0, T ) and h ∈ (0, T − t)

L(t+ h)− L(t)

≤
∫ t+h

t

−
∫

Ω

|j(x, s)| dxds

+

∫ t+h

t

−
∫
−
∫

Ω×Ω

c′(x− y)∇x‖x− y‖ · (u(x, s)− u(y, s)) dπ(s)ds, (21)

where π(s) is an optimal transportation plan, for cost c, between m+(s) and m−(s).

From (21) and assumptions on j, u, and m, it follows that L is an absolutely con-
tinuous function. That allows us to use the (a.e.) derivative of L in subsequent
calculations.
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Proof. Step 1. Assume that u and j are C1 vector fields. To be able to separately
account for the effects of the two transport mechanisms, we introduce for any t ∈
[0, T ) the solution ρt of

∂sρt +∇ · (ρtu) = 0 on Ω× [t, T ],

ρt(t) = m(t).

Let σt(s) = m(s) − ρt(s). When the subscript t is clear from the context, we
will omit it. To estimate the change of the transportation distance, we separate
the contributions that come from the two transport mechanisms. In particular, by
Lemma 10 in the Appendix A and ρt(t) = m(t), we have for 0 < h < T − t and
ρ = ρt,

dc(m+(t+ h),m−(t+ h))− dc(m+(t),m−(t))

≤ dc(ρ+(t+ h), ρ−(t+ h))− dc(ρ+(t), ρ−(t))

+ dc(ρ+(t+ h) +m−(t+ h), ρ−(t+ h) +m+(t+ h)).

Now (21) follows from the two estimates

dc(ρ+(t+ h), ρ−(t+ h))− dc(ρ+(t), ρ−(t))

≤
∫ t+h

t

−
∫
−
∫

Ω×Ω

c′(x− y)∇x‖x− y‖ · (u(x, s)− u(y, s)) dπ(s)ds (22)

and

dc(ρ+(t+ h) +m−(t+ h), ρ−(t+ h) +m+(t+ h))

≤
∫ t+h

t

−
∫

Ω

|j(x, s)| dxds+ o(h). (23)

Indeed, dividing by h and taking the limit h → 0 establishes the upper bound for
d̄+

dt
L(t) for every t ∈ [0, T ). Integrating in time then gives (21).

Obviously, by the definition of ρ, (22) is a direct consequence of Lemma 5. We now
argue in favor of (23). We estimate

dc(ρ+(t+ h) +m−(t+ h), ρ−(t+ h) +m+(t+ h))

≤ d1(ρ+(t+ h) +m−(t+ h), ρ−(t+ h) +m+(t+ h))

= d1(ρ(t+ h),m(t+ h))

= d1(σ(t+ h), 0)

≤
∫ t+h

t

−
∫

Ω

|j(x, s)|+ |σ(x, s)u(x, s)| dxds,

where we used c(z) ≤ z, the representation of the d1 distance given in (19) and the
fact that σ satisfies

∂sσ +∇ · j +∇ · (σu) = 0,
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with σ(t) = 0. We have to show that the second term on the r. h. s. of the above
inequality is of higher order. To do so, we multiply the equation by σ; integrating
by parts gives for s ≥ t:

d

ds

1

2
‖σ(s)‖2

L2(Ω) ≤ ‖j(s)‖H1(Ω)‖σ(s)‖L2(Ω) +
1

2
−
∫

Ω

σ(s)2|∇ · u| dx.

Above and in the rest of this proof, all the norms, ‖ · ‖L2(Ω), ‖ · ‖H1(Ω), etc., are
rescaled by the size of the domain. Dividing by ‖σ(s)‖L2(Ω) yields

d

ds
‖σ(s)‖L2(Ω) ≤ C(j, u)(1 + ‖σ(s)‖L2(Ω)),

where C = C(j, u) is a constant involving the C1 bounds on j and u. Via Gronwall’s
inequality

‖σ(s)‖L2(Ω) ≤ exp(C(s− t))− 1,

for all s ∈ [t, T ]. Therefore∫ t+h

t

−
∫

Ω

|σ(x, s)u(x, s)| dxds = o(h).

Step 2. Consider j ∈ L1(0, T ;L1(Ω)), with u still assumed to be C1. Let ηε be
a standard mollifier in space and time. Consider the interval [t, t + h] ⊂ (0, T ).
Convolving with ηε, where Ω is considered as a torus, gives that mε := m ∗ ηε is a
solution of

∂tmε +∇ · (mεu) +∇ · j̃ε = 0 on Ω× [t, t+ h],

where j̃ε := j ∗ ηε−mεu+(mu) ∗ ηε. Note that j̃ε is C1 and thus the assumptions of
Step 1 are satisfied. Let for s ∈ [t, t+ h], Lε(s) := dc(mε+(s),mε−(s)) and let πε(s)
be an optimal transportation plan between mε+(s) and mε−(s). We have

Lε(t+ h)− Lε(t)

≤
∫ t+h

t

−
∫
−
∫

Ω×Ω

c′(x− y)∇x‖x− y‖ · (u(x, s)− u(y, s)) dπε(s)ds

+

∫ t+h

t

−
∫

Ω

|j̃ε(x, s)| dxds.

Since mε+(s) → m+(s) and mε−(s) → m−(s) in L2(Ω) as ε → 0, we conclude
Lε(t) → L(t) and Lε(t+ h) → L(t+ h) as ε→ 0.

Regarding the term involving the velocity u: For any s ∈ [t, t+ h],

−
∫
−
∫

Ω×Ω

c′(x− y)∇x‖x− y‖ · (u(x, s)− u(y, s)) d(πε(s)− π(s)) → 0 as ε→ 0, (24)

since πε(s) − π(s) → 0 weakly in the sense of measures due to stability of optimal
transportation plans (see Theorem 5.20 in [30]). Assumptions on c imply that
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0 ≤ c′(z) ≤ 1 for all z ≥ 0. Thus∣∣∣∣−∫−∫
Ω×Ω

c′(x− y)∇x‖x− y‖ · (u(x, s)− u(y, s)) d(πε(s)− π(s))

∣∣∣∣
≤ −
∫
−
∫

Ω×Ω

|u(x, s)|+ |u(y, s)| d(πε(s) + π(s))

= −
∫

Ω

|u(x, s)|(mε+(x) +m+(x)) dx+−
∫

Ω

|u(y, s)|(mε−(y) +m+(y)) dy,

which enables us to the dominated convergence theorem to obtain the integral-in-
time form of (24).

Since j̃ε → j in L1(0, T ;L1(Ω)) as ε → 0, convergence of the term involving j̃ε
follows as well. So (21) follows in the ε→ 0 limit.

Step 3. Now consider u ∈ L1(0, T ;L2(Ω)) and j ∈ L1(0, T ;L1(Ω)). Again let
[t, t+ h] ⊂ (0, T ). Let ηε be a mollifier in space and time and let uε := u ∗ ηε. Then
m ∈ C(0, T ;L2(Ω)) is a distributional solution of

∂tm+∇ · (muε) +∇ · (j +m(u− uε)) = 0 on Ω× [t, t+ h].

Let jε := j +m(u− uε). Note that jε, uε satisfy the assumption of Step 2. To take
the limit ε→ 0 of

L(t+ h)− L(t)

≤
∫ t+h

t

−
∫

Ω

|jε(x, s)| dx

+−
∫
−
∫

Ω×Ω

c′(x− y)∇x‖x− y‖ · (uε(x, s)− uε(y, s)) dπ(s)ds,

it suffices to observe that jε → j in L1(0, T ;L1(Ω)) as ε→ 0,∣∣∣∣−∫−∫
Ω×Ω

c′(x− y)∇x‖x− y‖ · (uε(x, s)− u(x, s)− (uε(y, s)− u(y, s)) dπ(s)ds

∣∣∣∣
≤ −
∫

Ω

|uε(x, s)− u(x, s)|m+(x, s) dx+−
∫

Ω

|uε(y, s)− u(y, s)|m−(y, s) dy,

integrate in time and use the fact that uε → u in L1(0, T ;L2(Ω)) and m+, m− ∈
L∞(0, T ;L2(Ω)).

For the case t = 0, the result follows in the limit of the result on intervals [δ, δ + h],
due to continuity of both sides of (21) with respect to t.

Again for sharp interfaces we present the result in the geometric setting.

Corollary 9. Consider c as in Lemma 8, and Ω+(t), Ω−(t), Γ(t), m, m+, m− and
V as in Corollary 7. Let u be a smooth vector field on Ω× [0,∞). Let Ṽ = V −u · ν
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where ν is the unit outside normal vector to Ω+. Then L(t) = dc(m+(t),m−(t)) is
absolutely continuous and for q( · , t) solving

−∆q = 0 in Ω(t)\Γ(t),[
∂q

∂ν

]
= 2Ṽ on Γ(t),

we have for a.e. t

d

dt
L(t) ≤ −

∫
−
∫

Ω×Ω

c′(x− y)∇x‖x− y‖ · (u(x)− u(y)) dπ +−
∫

Ω

|∇q(x, s)| dx

≤ −
∫
−
∫

Ω×Ω

c′(x− y)∇x‖x− y‖ · (u(x)− u(y)) dπ +

(
−
∫

Γ(t)

2V q dHd−1

) 1
2

,

where π is any optimal transportation plan between m+(t) and m−(t).

6 Proof of the upper bound on coarsening rate

6.1 Dissipation Inequality

We now turn to the proof of Proposition 2. It relies on the main result from the
previous section, Lemma 8, which measures the effect of diffusive and convective
material transport on transportation distances. Our proof follows closely the one of
[4, Proposition 2.2], which in turn was inspired by estimates derived by Crippa &
DeLellis in [7, Theorem 2.1 resp. Theorem 3.3].

Proof of Proposition 2. We apply Lemma 8 with c replaced by λ−1/2c. Then c′(0) ≤
1 and c′(z) ≤ 1

z
, and we have for a.e. t ≥ 0

d

dt
L(t) ≤ −

∫
Ω

1

λ1/2
|j| dx+−

∫
−
∫

Ω×Ω

|u(x)− u(y)|
|x− y|

dπ,

where π is any optimal transport plan with respect to cost c between m+(t) and
m−(t). Recall that j = −λ∇µ in our setting. Thus

−
∫

Ω

1

λ1/2
|j| dx ≤

(
−
∫

Ω

λ|∇µ|2 dx
) 1

2

.

The estimate for the contribution coming from convective transport is exactly the
one from [4, Proposition 2]. For the convenience of the reader, we repeat the argu-
ment. The proof is based on maximal functions, M(f)(x) = supr>0

1
|Br|

∫
Br(x)

|f | dx,
cf. [26]. Maximal functions have the following basic properties:

|f(x)− f(y)| . (M(Df)(x) +M(Df)(y))|x− y|,
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and

−
∫

Ω

|Mf |2 dx . −
∫

Ω

|f |2 dx.

Using these properties of Mf , we have

−
∫
−
∫

Ω×Ω

|u(x)− u(y)|
|x− y|

dπ

. −
∫
−
∫

Ω×Ω

(M(Df)(x) +M(Df)(y)) dπ

. −
∫

Ω

M(Du)(m+ +m−) dx

.

(
−
∫

Ω

M(Du)2 dx

) 1
2
(
−
∫

Ω

m2 dx

) 1
2

.

(
−
∫

Ω

|Du|2 dx
) 1

2

.

Above we used that

−
∫

Ω

m2 dx = −
∫
{|m|>2}

m2 dx+−
∫
{|m|≤2}

m2 dx

≤ −
∫
{|m|>2}

(1−m2)2 dx+−
∫
{|m|≤2}

22 dx

≤ E + 4 . 5,

since E ≤ E(m(0)) . 1. Combining the estimates above and the expression for the
energy dissipation, (5), gives the desired estimate.

For the sharp-interface model, we no longer assume that E . 1. Also recall that we
take λ = 1. The proof is entirely analogous to the diffuse-interface case, so we do
not present the details.

6.2 Interpolation Inequality

The interpolation inequality for sharp-interfaces is the one proved in [4][Proposition
3]. The one for diffuse interfaces can be proved very similarly. It requires the
additional result that the domain is essentially divided into phases. We present
a proof below for completeness. We also remark that an alternative proof of the
inequality follows from the proof of Theorem 6 (and Corollary 7) in [25] (in particular
Step 5 and Step 6 imply that in any coupling between m+ and m− a significant
proportion of the mass has to be transported over distances at least of size 1/E
which implies the inequality). Recall that the interpolation inequality was stated in
Proposition 3.
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Proof of Proposition 3. We introduce some notations. We denote by A the set es-
sentially occupied by one phase, and by χ its indicator function. More precisely,

A = {x ∈ Ω : m(x) ≥ 1

2
} and χ = χA.

Furthermore, let hW denote some constant satisfying

W (m) ≥
{

2hW (|m| − 1) for |m| ≥ 3
2
,

hW for |m| ≤ 1
2
.

Here, W (m) denotes the potential energy, W (m) := 1
2
(1−m2)2. (It is easy to check

that hW = 9
32

is optimal.) We first claim that

‖A‖ :=
|A ∩ Ω|
|Ω|

& 1. (25)

We split the phase space according to

1 = −
∫
{m≤− 1

2
}
(m+ 1) dx+−

∫
{− 1

2
<m< 1

2
}
(m+ 1) dx

+−
∫
{ 1

2
≤m≤ 3

2
}
(m+ 1) dx+−

∫
{ 3

2
<m}

(m+ 1) dx

≤ 1

2
+

3

2
−
∫
{− 1

2
<m< 1

2
}
1 dx+

5

2
‖A‖+−

∫
{ 3

2
<m}

(m− 1) dx+ 2

∥∥∥∥{3

2
< m

}∥∥∥∥
≤ 1

2
+

3

2hW
−
∫

Ω

W (m) dx+
5

2
‖A‖+

1

2hW
−
∫

Ω

W (m) dx+ 2‖A‖

≤ 1

2
+

2

hW
−
∫

Ω

W (m) dx+
9

2
‖A‖.

We can rewrite the estimate as 1 ≤ 4
hW
E+9‖A‖. Due to the assumption E(m) � 1,

this implies (25).

In the sequel, the superscript R denotes the convolution with a standard mollifier
supported in the ball of radius R. From (25) and the definition of A we find

1 . −
∫

Ω

χdx . −
∫

Ω

χmdx,

which we spilt according to

1 . −
∫

Ω

χ(m−mR) dx+−
∫

Ω

χmR dx. (26)

For the first term in (26), we proceed as in [15]. Defining

U(m) :=

∫ m

0

|1− m̃2| dm̃,
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we have dU
dm

= |1−m2|, and thus

−
∫

Ω

|∇(U(m))| dx = −
∫

Ω

|∇m|dU
dm

dx

≤ −
∫

Ω

1

2
|∇m|2 +

1

2

(
dU

dm

)
dx = E. (27)

On the other hand, by the definition of U(m), it holds (m1−m2)
2 . |U(m1)−U(m2)|,

so that ∣∣∣∣−∫
Ω

χ(m−mR) dx

∣∣∣∣ .
1

δ
−
∫

Ω

(m−mR)2 dx+ δ−
∫

Ω

χ2 dx

≤ 1

δ
sup
|y|≤R

−
∫

Ω

(m(x)−m(x+ y))2 dx+ δ

.
1

δ
sup
|y|≤R

−
∫

Ω

|U(m(x))− U(m(x+ y))| dx+ δ

.
R

δ
−
∫

Ω

|∇(U(m))| dx+ δ.

Thanks to the Modica–Mortola estimate (27), we obtain∣∣∣∣−∫
Ω

χ(m−mR) dx

∣∣∣∣ .
R

δ
E + δ. (28)

For the second term in (26), we argue as in [4]. We have for any admissible transfer
plan π

−
∫

Ω

χmR dx = −
∫

Ω

χRmdx

= −
∫

Ω

χRm+ dx−−
∫

Ω

χRm− dx

= −
∫
−
∫

Ω×Ω

(
χR(x)− χR(y)

)
dπ(x, y).

To estimate the last term, we must deal separately with transport over large and
small distances:∣∣∣∣−∫

Ω

χmR dx

∣∣∣∣ ≤ −
∫
−
∫
{|x−y|≤r}

|χR(x)− χR(y)| dπ(x, y)

+−
∫
−
∫
{|x−y|<r}

|χR(x)− χR(y)| dπ(x, y).

(29)

For the small distances, we find∣∣∣∣−∫−∫
{|x−y|≤r}

|χR(x)− χR(y)| dπ(x, y)

∣∣∣∣
≤ sup |∇χR|−

∫
−
∫
{|x−y|≤r}

|x− y| dπ(x, y) .
r

R
. (30)
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For large distances, we use the monotonicity of c:∣∣∣∣−∫−∫
{|x−y|>r}

|χR(x)− χR(y)| dπ(x, y)

∣∣∣∣
≤ 2 sup |χR| 1

c(r)
−
∫
−
∫

Ω×Ω

c(|x− y|) dπ(x, y) .
dc(m+,m−)

c(r)
. (31)

Substituting (30) and (31) in (29) we conclude∣∣∣∣−∫
Ω

χmR dx

∣∣∣∣ .
r

R
+
dc(m+,m−)

c(r)
. (32)

In view of (28) and (32), inequality (26) turns into

1 .
RE

δ
+
r

R
+
dc(m+,m−)

c(r)
+ δ.

Choosing δ sufficiently small and optimizing in R yields

2

(
1

c0

)1/2

≤ (rE)1/2 +
dc(m+,m−)

c(r)
,

when we reintroduce some constant c0. Choosing r = 1
c0E

, this becomes(
1

c0

)1/2

≤ dc(m+,m−)

c
(

1
c0E

) ,

which is the desired estimate of Proposition 3.

6.3 ODE Argument

In this section, we provide the proof of Proposition 4.

Proof of Proposition 4. By rescaling

E = λ−1/2Ê, L = L̂, t = λ1/2t̂,

we may w. l. o. g. assume that λ = 1. We set for abbreviation:

c(s) :=

{
s for s ≤ 1
1 + ln s for s ≥ 1

}
,

(which is our cost function in the definition of L with λ = 1,)

f(e) :=

{
e for e ≤ 1
e2 for e ≥ 1

}
= max{e2, e},
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and

g(e) := c

(
1

e

)
=

{
1 + ln 1

e
for e ≤ 1

1
e

for e ≥ 1

}
.

Notice that g and f are related by

g′(e) =

{
−1
e

for e ≤ 1
− 1
e2

for e ≥ 1

}
= − 1

f(e)
.

Hence, as long as L(T ) ≥ 2L(0), we have

L(T ) ≤ 2(L(T )− L(0)) = 2

∫ T

0

dL

dt
dt,

and thus, applying (17), (18) and the definition of g:

g(E(T )) ≤ C̃

∫ T

0

(
−dE
dt

)1/2

dt,

where C̃ denotes a generic constant whose value may change from line to line. W. l.
o. g. we may assume that C̃ ≥ 1. With the help of the Cauchy–Schwarz inequality,
this estimate turns into

g(E(T )) ≤ C̃

(∫ T

0

1

f(E)

(
−dE
dt

)
dt

∫ T

0

f(E) dt

)1/2

. (33)

By the relation between f and g, it is

1

f(E)

(
−dE
dt

)
= g′(E)

dE

dt
=

d

dt
g(E),

and thus ∫ T

0

1

f(E)

(
−dE
dt

)
dt = g(E(T ))− g(E(0)) ≤ g(E(T )),

so that (33) implies

g(E(T )) ≤ C̃

(
g(E(T ))

∫ T

0

f(E) dt

)1/2

,

or equivalently

g(E(T )) ≤ C̃

∫ T

0

f(E) dt.

We rewrite this estimate as an implicit ODE for h(T ) :=
∫ T

0
f(E) dt:

(g ◦ f−1)(h′(T )) ≤ C̃h(T ).
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Since g is a decreasing and f−1 an increasing function, the above inequality is equiv-
alent to

h′(T ) ≥ (f ◦ g−1)(C̃h(T )).

Let F be the antiderivative of 1
f◦g−1 with F (0) = 0. An easy calculation shows

F (z) =

{
1
3
z3 for z ≤ 1

exp(z − 1)− 2
3

for z ≥ 1

}
.

Then the above inequality can be rewritten as

d

dT
F (C̃h(T )) ≥ C̃,

which turns into

F (C̃h(T )) = F (C̃h(T ))− F (C̃h(0)) ≥ C̃T
C̃≥1

≥ T

after integration. Since F is an increasing function, this can be paraphrased as

C̃h(T ) ≥ F−1(T )

=

{
(3T )1/3 for T ≤ 1

3

1 + ln
(
T + 2

3

)
for T ≥ 1

3

}
∼

∫ T

0

min{
(

1

t1/3

)2

,
1

t
} dt.

By the definition of h, this turns into∫ T

0

max{E2, E} dt ≥ 1

C̃

∫ T

0

min{
(

1

t1/3

)2

,
1

t
} dt. (34)

We now argue for the case that L(T ) ≤ 2L(0). By (18), we have

c

(
1

E(T )

)
≤ L(T ) ≤ 2L(0).

Since 2L(0) ≤ 1, it is c
(

1
E(T )

)
≤ 1, and thus c

(
1

E(T )

)
= 1

E(T )
. Consequently, the

above estimate can be rewritten as

1

E(T )
≤ L(T ) ≤ 2L(0).

Since L(0) ≤ T 1/3, it is
1

E(T )
≤ 2T 1/3,

and since E(t) is an decreasing function, this implies

E(t) ≥ E(T ) ≥ 1

2T 1/3
,
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for all 0 ≤ t ≤ T . We square both sides and integrate in time:∫ T

0

max{E2, E} dt ≥
∫ T

0

E2 dt

≥ 1

4
T 1/3

=
1

12

∫ T

0

(
1

t1/3

)2

dt

≥ 1

12

∫ T

0

min{
(

1

t1/3

)2

,
1

t
} dt. (35)

It remains to combine (34) and (35) to conclude the proof of Proposition 4.

7 Appendix A

Here we establish some properties of optimal transportation distances.

Lemma 10. Let c : Ω × Ω −→ [0,∞) be a metric on Ω. Then for all positive
measures θ1, θ2, ϑ1, and ϑ2, such that θ1(Ω) = ϑ1(Ω) and θ2(Ω) = ϑ2(Ω),

dc(θ1, ϑ1) ≤ dc(θ1 + θ2, ϑ1 + ϑ2) + dc(θ2, ϑ2).

Proof. By Kantorovich duality, cf. [29, Theorem 1.3]

dc(θ1, ϑ1) = sup
{φ, ψ |φ(x)+ψ(y)≤c(x,y)}

−
∫

Ω

φ dθ1 +−
∫

Ω

ψ dϑ1.

Furthermore it is enough to consider pairs such that φ and ψ are c-duals of each
other, for instance

ψ = φc and φ = ψc,

where the c-duals are defined as

φc(y) = inf
x∈Ω

{c(x, y)− φ(x)} and ψc(x) = inf
y∈Ω
{c(x, y)− ψ(y)}.

We claim that if φ = ψc for some ψ then for all x1, x2 ∈ Ω

|φ(x1)− φ(x2)| ≤ c(x1, x2). (36)

To see this, note that by the definition of ψc, for any ε > 0 and x1, x2 ∈ Ω there
exists x′1 such that

φ(x1) ≥ c(x1, x
′
1)− ψ(x′1)− ε.

Therefore

φ(x2) ≤ c(x2, x
′
1)−ψ(x′1) ≤ c(x2, x

′
1)−c(x′1, x1)+φ(x1)+ε ≤ c(x1, x2)+φ(x1)+ε.
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Letting ε→ 0 and using symmetry in x1, x2 allows us to conclude (36). By similar
arguments, based on (36), we prove that

−φ(x)− ψ(y) ≤ c(x, y).

We deduce that

−
∫

Ω

φ dθ1 +−
∫

Ω

ψ dϑ1

= −
∫

Ω

φ d(θ1 + θ2) +−
∫

Ω

ψ d(ϑ1 + ϑ2)−
(
−
∫

Ω

φ dθ2 +−
∫

Ω

ψ dϑ2

)
≤ dc(θ1 + θ2, ϑ1 + ϑ2) +−

∫
−
∫

Ω×Ω

c(x, y) dπ2(x, y).

It remains to optimize in φ, ψ, and π2.

8 Appendix B

We conclude this article with a discussion on well-posedness and regularity of our
dynamical system (4), (3) in three space dimensions. For simplicity, we set λ = 1
and drop all constants. (In particular, we lower the potential term in the Ginzburg–
Landau energy (1) by the factor of 1/2.). Again, we consider the periodic setting
for convenience and we denote the period cell by Ω.

Proposition 11. Let the initial configuration m0 be of finite energy,

E(m0) < ∞.

Then there there is a unique smooth periodic solution (m,u, p) (p is unique up to an
additive constant) of the system

∂tm−∆µ+ u · ∇m = 0, (37)

−∆u+∇p = −m∇µ, (38)

∇ · u = 0, (39)∫
Ω

u dx = 0, (40)

with m(t = 0) = m0, and where µ = −∆m−m+m3. Moreover

E(m(t)) ≤ E(m0) for any t ≥ 0.

Sketch of the proof. In view of (37)&(39), it is obvious that any sufficiently strong
notion of solutions is mass preserving, and so are the weak or time-discrete solutions
we introduce in the following. For convenience, we may therefore w.l.o.g. assume
that ∫

Ω

mdx =

∫
Ω

m0 dx = 0.
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This choice (and the periodic boundary conditions) simplifies the notation slightly
when we use Sobolev’s inequalities, since Sobolev norms reduce to the norms of the
highest derivatives thanks to the Poincaré’s inequality.

Step 1. Existence of time-discrete weak solutions. For convenience, we rewrite (38)
as

−∆u+∇q = −∇ · (∇m⊗∇m). (41)

Indeed, this formula can be derived by absorbing gradient terms from the r. h. s. of
(38) into the hydrodynamic pressure term, producing a new conservative field ∇q
with

q = p−m∆m− 1

2
|∇m|2 − 1

2
m2 +

3

4
m4. (42)

Let 0 < h� 1 denote the time step size. Given some m ∈ H2,2(Ω), we first consider
the Stokes equation in the formulation of equation (41), this means,

−∆u+∇q = −∇ · (∇m⊗∇m), (43)

∇ · u = 0, (44)∫
Ω

u dx = 0. (45)

Notice that the r. h. s. of (43) is in H−1,2(Ω), and we can easily derive the a priori
estimate ∫

Ω

|∇u|2 dx .
∫

Ω

|∇m|4 dx .

(∫
Ω

|∇2m|2 dx
)2

. (46)

The second estimate above is due to Hölder’s inequality and Sobolev embedding
in three space dimensions in the sense that L6(Ω) ⊂ L4(Ω) and H1,2(Ω) ⊂ L6(Ω),
respectively. From standard theory for the Stokes equation, cf. [12, Chapter IV], we
deduce existence and uniqueness of a solution u ∈ H1,2(Ω), q ∈ L2(Ω) to (43)–(45).
(In fact, q is unique up to an additive constant.)

On the other hand, given a divergence-free velocity field u ∈ H1,2(Ω), we find a
unique solution m ∈ H3,2(Ω) to the elliptic equation

∆2m+ u · ∇m = ∆(m3 −m) +
1

h
(m0 −m). (47)

The argument involves a fixed point argument in the nonlinearity such as the a
priori bounds

1

h

∫
Ω

m2 dx+

∫
Ω

|∇2m|2 dx .
1

h

∫
Ω

m2
0 dx, (48)

and

1

h

∫
Ω

|∇m|2 dx+

∫
Ω

|∇3m|2 dx

. 1 +

(∫
Ω

|∇u|2 dx
)2

+

(
1

h

∫
Ω

m2
0 dx

)3

+
1

h

∫
Ω

|∇m0|2 dx. (49)
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Indeed, testing (47) with m and integrating by parts yields

1

h

∫
Ω

m2 dx+

∫
Ω

|∇2m|2 dx

= −3

∫
Ω

m2|∇m|2 dx−
∫

Ω

m∆mdx+
1

h

∫
Ω

m0mdx.

It remains to apply Hölder’s and Young’s inequality together with the fact that
h� 1 to deduce (48). For (49), we test (47) with −∆m. Integration by parts gives

1

h

∫
Ω

|∇m|2 dx+

∫
Ω

|∇3m|2 dx

= −
∫

Ω

∇∆m · umdx+ 3

∫
Ω

∇∆m ·m2∇mdx

+

∫
Ω

|∇2m|2 dx+
1

h

∫
Ω

∇m · ∇m0 dx.

The terms coming from the convective part and the nonlinear part of the equation
can both be estimated using Hölder’s and Sobolev’s inequality. We invoke (48) and
Young’s inequality to get (49).

Existence of solutions of the coupled system (43)–(45)&(47) follows again by a fixed
point argument. To make it precise, we define the (nonlinear) mapping

A : H2,2(Ω) → H3,2(Ω) ⊂ H2,2(Ω)

in the following way: Given m̃ ∈ H2,2(Ω), we solve the Stokes equation (43)–(45)
and find u ∈ H1,2(Ω), q ∈ L2(Ω). Inserting u in (47) in turn yields a solution
m ∈ H3,2(Ω). We set Am̃ = m. Thanks to (49), it is readily verified that this
mapping is compact. Continuity of A is less obvious. In fact, we first have to
argue that the solution of the Stokes equation u depends continuously on m̃. This
property follows from the continuity of the nonlinear r. h. s. of (43) on m̃ via a
priori estimates similar to (46). Moreover, the continuous dependence of m on m̃
and u uses estimates in the spirit of (49). We leave details to the interested reader.
Finally, the set

{m ∈ H2,2(Ω) |m = σAm for some 0 ≤ σ ≤ 1}

is bounded. Indeed, if m = σAm for some 0 < σ ≤ 1, we may replace m in (47) by
1
σ
m and find that (48) still holds true, independently of σ. Now, Schaefer’s Fixed

Point Theorem, cf. [10, p. 502], states that A has a fixed pointm
(1)
h inH3,2(Ω). Here,

subscript “h” emphasizes the dependence on the time step size, and superscript “(1)”
marks the solution on the first time step. We may iterate this scheme for fixed h
by starting with initial configuration m

(1)
h and proving existence of solutions on the

next time step. In this way, we obtain a sequence of solutions

m
(k)
h ∈ H3,2(Ω), u

(k)
h ∈ H1,2(Ω), and q

(k)
h ∈ L2(Ω)

30



to (43)–(45)&(47) with m0 replaced by m
(k−1)
h for each k ∈ N. In view of the

integrability of m
(k)
h and q

(k)
h , we deduce from (42) that we can go back to the

formulation (38) of the Stokes equation with p
(k)
h ∈ L2(Ω) and µ

(k)
h = −∆m

(k)
h −

m
(k)
h + (m

(k)
h )3 ∈ H1,2(Ω).

Step 2. Existence of weak solutions. In this step, we establish the existence of weak
solutions to (37)–(40). For this purpose, we construct mh(t, ·), uh(t, ·), and µh(t, ·)
as piecewise constant interpolations, and m̃h(t, ·) as a piecewise affine interpolation
on the steps ((k − 1)h, kh]. For instance,

mh(t, ·) = m
(k)
h ,

m̃h(t, ·) =
t− (k − 1)h

h
m

(k)
h +

kh− t

h
m

(k−1)
h ,

for any t ∈ ((k − 1)h, kh]. These functions satisfy weakly the following system
(the pressure drops out in the weak formulation, so that we do not need an explicit
construction):

∂tm̃h −∆µh + uh · ∇mh = 0,

∇ · uh = 0,

−∆uh +∇ph = −mh∇µh,∫
Ω

uh dx = 0.

Testing the convection-diffusion equation with mh and µh, respectively, we have the
new a priori estimates:

sup
0≤t≤T

∫
Ω

m2
h dx+

∫ T

0

∫
Ω

|∇2mh|2 dxdt .
∫ T

0

∫
Ω

m2
h dxdt+

∫
Ω

m2
0 dx, (50)

and

sup
0≤t≤T

E(mh) +

∫ T

0

∫
Ω

|∇µh|2 dxdt . E(m0), (51)

and thus, by convexity,

sup
0≤t≤T

∫
Ω

m̃2
h dx+

∫ T

0

∫
Ω

|∇2m̃h|2 dxdt .
∫ T

0

∫
Ω

m2
h dxdt+

∫
Ω

m2
0 dx, (52)

and

sup
0≤t≤T

∫
Ω

|∇m̃h|2 dx ≤ E(m0).

The control of the velocity field uh in the Stokes equation uses the Sobolev’s in-
equality and the dissipation estimate (51):∫ T

0

∫
Ω

|∇uh|2 dxdt . sup
0≤t≤T

(∫
Ω

|∇mh|2 dx
)2 ∫ T

0

∫
Ω

|∇µh|2 dxdt . E(m0).

(53)
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Finally, the time derivative of m̃h can be bounded in a similar way:∫ T

0

‖∂tm̃h‖2
H−1,2 dt

.
∫ T

0

∫
Ω

|∇µh|2 dxdt+ sup
0≤t≤T

∫
Ω

|∇mh|2 dx
∫ T

0

∫
Ω

|∇uh|2 dxdt

. 1 + E(m0)
2.

This is enough to ensure compactness. More precisely, we find for T sufficiently
small:

• m ∈ L∞(0, T ;H1,2(Ω)) ∩ L2(0, T ;H3,2(Ω)),

• m̃ ∈ L∞(0, T ;H1,2(Ω)) ∩ L2(0, T ;H2,2(Ω)),

• µ ∈ L2(0, T ;H1,2(Ω)),

• u ∈ L2(0, T ;H1,2(Ω)),

and — up to subsequences — convergence of mh, m̃h, µh, and uh to m, m̃, µ, and u,
respectively, in the corresponding weak topologies. Moreover, since m̃h is bounded
in L2(0, T ;H2,2(Ω)) with time derivative bounded in L2(0, T ;H−1,2(Ω)), it follows
from the Aubin–Lions Lemma that m̃h → m̃ strongly in L2(0, T ;H1,2(Ω)).

We have to show that
m = m̃.

This fact follows from the estimate∣∣∣∣∫ T

0

∫
Ω

(mh − m̃h)ϕdxdt

∣∣∣∣ ≤ C0h

(∫ T

0

∫
Ω

|∇ϕ|2 dxdt
)1/2

, (54)

where C0 denotes a generic constant depended on the initial energy E(m0), and ϕ
varies in the class of C1 functions which are periodic in space. In order to derive
(54), we appeal to definition of mh and m̃h, and rewrite the term on the left as∫ T

0

∫
Ω

(mh − m̃h)ϕdxdt =
K∑
k=1

∫
Ω

1

h

(
m

(k)
h −m

(k−1)
h

)
ζ

(k)
h dx,

where K ∈ N is such that T = hK and ζ
(k)
h =

∫ kh
(k−1)h

(kh − t)ϕdt. Observing that

(m
(k)
h −m

(k−1)
h )/h = ∂tm̃h = ∆µ

(k)
h −∇ ·

(
m

(k)
h u

(k)
h

)
, we obtain after integration by

parts and using the Cauchy–Schwarz inequality:∫ T

0

∫
Ω

(mh − m̃h)ϕdxdt

≤

(
K∑
k=1

∫
Ω

|∇µ(k)
h |2 dx

)1/2( K∑
k=1

∫
Ω

|∇ζ(k)
h |2 dx

)1/2

+

(
K∑
k=1

∫
Ω

|m(k)
h u

(k)
h |2 dx

)1/2( K∑
k=1

∫
Ω

|∇ζ(k)
h |2 dx

)1/2

.
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Applying Hölder’s and Sobolev’s inequality to the convective term, expressing m
(k)
h

and u
(k)
h by mh and uh, respectively, invoking the estimates (51)&(53) and using the

definition of ζ
(k)
h we finally derive (54).

In fact, applying estimate (54) to ϕ = mh − m̃h, and using the a priori estimates
(50) and (52) to bound the resulting ∇ϕ-terms uniformly by the initial data, we
see that mh − m̃h converges strongly to zero, and thus, by triangle inequality, mh

converges strongly to m.

We now derive the limiting equation. Concerning the limit in the Cahn–Hilliard
equation, we only have to check that

µ = −∆m−m+m3.

This means, we have to discuss convergence of the cubic term. In fact, writing
m3−m3

h = (m−mh)(m
2 +mmh+m2

h) we see that the cubic term converges thanks
to the strong convergence of mh and since m2

h is uniformly bounded via Sobolev’s
inequality and estimate (51).

It remains to check the limit in the Stokes equation, this means, we have to prove
convergence of the nonlinear r. h. s. In fact, for this purpose we invoke a standard
argument, noting that mh∇µh is a product of a strong and a weak converging
sequence.

To summarize, we have shown existence of weak solutions

m ∈ L∞(0, T ;H1,2(Ω)) ∩ L2(0, T ;H3,2(Ω)), u ∈ L2(0, T ;H1,2(Ω))

of (37)–(40) with

∂tm ∈ L2(0, T,H−1,2(Ω)) and m(t = 0) = m0.

It is easy to check that the a priori energy inequality holds for any T > 0:

E(m(T )) +

∫ T

0

∫
Ω

|∇µ|2 dxdt+

∫ T

0

∫
Ω

|∇u|2 dxdt ≤ E(m0). (55)

In particular, weak solutions exist globally in time.

Step 3: Uniqueness of weak solutions. As for the classical Cahn–Hilliard equation, we
show uniqueness via a contraction principle for the H−1,2 distance. Let (m1, u1, p1)
and (m2, u2, p2) be two solutions of (37)–(40) with m1(t = 0) = m2(t = 0) = m0.
It suffices to prove uniqueness in m, since, given a fixed r. h. s., solutions to the
Stokes problem (38)–(40) are well-known to be unique (p is unique up to an additive
constant). Recall that∫

Ω

||∇|−1(m1 −m2)|2 dx =

∫
Ω

|∇(ϕ1 − ϕ2)|2 dx,
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when ϕ1, ϕ2 : Ω 7→ R are given by

−∆ϕi = mi,

∫
Ω

ϕi dx = 0 for i = 1, 2.

A direct calculation based on the evolution equation (37) yields

d

dt

1

2

∫
Ω

||∇|−1(m1 −m2)|2 dx

= −
∫

Ω

|∇(m1 −m2)|2 dx+

∫
Ω

(m1 −m2)
2 dx

−
∫

Ω

(m1 −m2)(m
3
1 −m3

2) dx

−
∫

Ω

(ϕ1 − ϕ2)(u1 · ∇m1 − u2 · ∇m2) dx. (56)

In the following, we argue that we can estimate the terms on the right such that

d

dt

∫
Ω

||∇|−1(m1 −m2)|2 dx . I(t)

∫
Ω

||∇|−1(m1 −m2)|2 dx, (57)

where I(t) is a integrable function. Notice that this estimate immediately guarantees
uniqueness. Indeed, by a Gronwall argument, we infer that∫

Ω

||∇|−1(m1 −m2)|2 dx = 0,

because of m1(t = 0) = m2(t = 0), and thus m1 = m2.

We now turn to the proof of (57). The L2 term on the r. h. s. of identity (56) can
likewise be absorbed into H1,2 and H−1,2 terms by duality. Furthermore, we have

−
∫

Ω

(m1 −m2)(m
3
1 −m3

2) dx = −
∫

Ω

(m1 −m2)
2(m2

1 +m1m2 +m2
2) dx ≤ 0.

Compared to the classical Cahn–Hilliard equation, it is the last term in (56), which
arises due to the additional convection term in (37). It can be split into two parts
according to∫

Ω

(ϕ1 − ϕ2)(u1 · ∇m1 − u2 · ∇m2) dx

=

∫
Ω

(ϕ1 − ϕ2)(u1 − u2) · ∇m1 dx+

∫
Ω

(ϕ1 − ϕ2)u2 · ∇(m1 −m2) dx. (58)

The estimate for the second term is obvious, using Hölder’s, Sobolev’s and Young’s
inequality:∫

Ω

(ϕ1 − ϕ2)u2 · ∇(m1 −m2) dx

.

(∫
Ω

|∇u2|2 dx
∫

Ω

|∇(m1 −m2)|2 dx
∫

Ω

|∇(ϕ1 − ϕ2)|2 dx
)1/2

. ε

∫
Ω

|∇(m1 −m2)|2 dx+

∫
Ω

|∇u2|2 dx
∫

Ω

||∇|−1(m1 −m2)|2 dx,

34



where ε is some small number. Observe that thanks to the dissipation inequality
(55), the fluid velocity term is integrable and contributes therefore to I(t). In
preparation of the estimate of the first term in (58), we show that∫

Ω

|∇(u1 − u2)|2 dx . I(t)

∫
Ω

|∇(m1 −m2)|2 dx. (59)

Indeed, using (41) again, we have∫
Ω

|∇(u1 − u2)|2 dx .
∫

Ω

|∇m1 ⊗∇m1 −∇m2 ⊗∇m2|2 dx.

Writing ∇m1⊗∇m1−∇m2⊗∇m2 = ∇m1⊗(∇m1 −∇m2)+(∇m1 −∇m2)⊗∇m2,
we further estimate∫

Ω

|∇(u1 − u2)|2 dx .

(
sup

Ω
|∇m1|+ sup

Ω
|∇m2|

)2 ∫
Ω

|∇(m1 −m2)|2 dx,

which by the Sobolev embedding H2,2(Ω) ⊂ L∞(Ω) in three dimensions yields∫
Ω

|∇(u1 − u2)|2 dx .
∫

Ω

(
|∇3m1|2 + |∇3m2|2

)
dx

∫
Ω

|∇(m1 −m2)|2 dx.

Observe that maximal regularity for the Laplace equation −∆m = µ+m−m3 and
Hölder’s and Sobolev’s inequality imply∫

Ω

|∇3m|2 dx .
∫

Ω

|∇µ|2 dx+

∫
Ω

|∇m|2 dx+

∫
Ω

m4|∇m|2 dx

.
∫

Ω

|∇µ|2 dx+

∫
Ω

|∇m|2 dx+

(∫
Ω

|∇m|2 dx
)2 ∫

Ω

|∇2m|2 dx,

and thus by interpolation and Young’s inequality∫
Ω

|∇3m|2 dx .
∫

Ω

|∇µ|2 dx+

(∫
Ω

|∇m|2 dx
)5

+ 1.

In view of (55), this reads ∫
Ω

|∇3m|2 dx . I(t),

and therefore (59) holds. It follows via Hölder’s, Sobolev’s and Young’s inequality
that ∫

Ω

(ϕ1 − ϕ2)(u1 − u2) · ∇m1 dx

.

(∫
Ω

|∇(ϕ1 − ϕ2)|2 dx
∫

Ω

|∇(u1 − u2)|2 dx
∫

Ω

|∇m1|2 dx
)1/2

. ε

∫
Ω

|∇(m1 −m2)|2 dx+ I(t)

∫
Ω

||∇|−1(m1 −m2)|2 dx,
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where, again, ε is some small number. Collecting the above estimates and choosing
ε sufficiently small, we deduce (57).

Step 4. Regularity of solutions. We only sketch the first steps in proving regularity
of weak solutions. To show that solutions are indeed smooth, the arguments can be
iterated. To shorten the notation, we refrain from writing time interval and domain
dependence in our notion of function spaces.

Regularity in m is based on the maximal regularity estimate∫ T

0

(∫
Ω

|∂tm|r + |∇4m|r dx
)s/r

dt .
∫ T

0

(∫
Ω

|∂tm+ ∆2m|r dx
)s/r

dt, (60)

provided that m(t = 0) = 0, and where 1 < r, s <∞ and T > 0, cf. [9, p. 102, Thm
8.2]. Concerning regularity in u, we invoke the regularity estimate∫

Ω

|∇2u|r + |∇p|r dx .
∫

Ω

| −∆u+∇p|r dx, (61)

where 1 < r <∞, cf. [12, Chapter IV].

We start with the observation, that the r. h. s. of (38), −m∇µ, is bounded in
L2(L3/2), so that (61) yields u ∈ L2(H2,3/2) ⊂ L2(H1,3). This in turn guarantees that
the convection term in the Cahn–Hilliard equation is bounded: u · ∇m ∈ L2(Lr) for
any r < 2. In particular ∂t(tm)+∆2(tm) ∈ L2(Lr) for any r < 2, so that (60) implies
that m ∈ H1,2(Lr)∩L2(H4,r) for any r < 2. We can use this fact again to show that
u ∈ L2(H2,2), and the above regularity for m upgrades to r = 2. On the other hand,
straight forward estimations show that the nonlinear terms in the Cahn–Hilliard
equation are in fact in L3/2(H1,2), so that we find m ∈ H1,3/2(H1,2) ∩ L3/2(H5,2) by
(60). In turn, this new insight can be used to infer u ∈ L3/2(H3,2) from (61). The
discussion has to be continued in the same spirit. Once the regularity in space is
pushed far enough, regularity in time can be considered (also for u). In the end, we
obtain smooth solutions in space and time:

m, u, p ∈ C∞((0,∞)× Ω).

This concludes the sketch of the proof of Proposition 11.
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