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Cross–immunity plays a crucial role in the epidemiological properties of influenza A virus. Recent
experimental studies have pointed out that genetic distances do not fully account for the observed
antigenic clusters. In particular, jumps from an antigenic cluster to another seem to be triggered by
correlated mutations. However, no specific sites determine whether a sequence belongs to a given
antigenic cluster, suggesting that sites mutations could be dynamically correlated. In this paper we
introduce an epistatic interaction rule among mutations that dynamically defines neutral clusters
in the immunity space. We investigate the structure of this epistatic immunity space, highlighting
how this can affect the dynamical properties of the virus–host interaction.

The interest of the scientific community in the In-
fluenza A virus evolution has been continuously increas-
ing in the last years [1–3]. Understanding the mecha-
nisms that drive the ever–changing of the antigenic de-
terminants is crucial in order to implement effective pre-
vention strategies. Major efforts have been devoted to
explain apparently contradictory features: On one hand
the virus mutates fast enough so that the same host can
be infected several times in the course of its life, on the
other hand a viral quasispecies can be sufficiently well de-
fined in any given epidemic season, so that a temporarily
effective vaccine can be developed. The peculiar evolu-
tionary dynamics of the Influenza A virus is revealed by
the comb–like shape of its phylogenetic tree [4–6], as re-
constructed from haemaglutinin (HA) coding sequences.
It has been contrasted with phylogenetic trees of other
viruses [7], as measles virus and HIV virus at the popu-
lation level, which show more ramified patterns [8].

A crucial mechanism driving the interaction between
the virus and the host immune system is cross–immunity :
After being infected by a strain, the host acquires partial
or total immunity to a set of other strains antigenically
similar to the infecting one [9]. However it is not yet
clear what determines the similarity relation in terms
of genetic distance. A first attempt to reproduce in a
modeling framework the complex balance between strains
proliferation induced by antigenic drift, and strains se-
lection, induced by the increasing acquired immunity of
the hosts, is due to Ferguson et al. [1]. In their work,
a mechanism of broad spectrum cross immunity, lasting
for a period of several weeks after infection, in addition
to the life–long cross–immunity, is claimed to be crucial
in order to recover the observed evolutionary dynamics
of the Influenza A virus. Although this idea seems to be
confirmed in the framework of simple evolutionary mod-
els [10, 11], a clear evidence of the existence of such a
mechanism has not been provided so far.

A common trait of the above mentioned and previous
models [12] is the assumed equivalence between genetic

and antigenic distance: mutations in the HA protein ac-
cumulate in time until eventually the mutated strain be-
comes enough antigenically distant to escape host im-
munity. In this case the degree of cross–immunity be-
tween the two strains is measured in terms of the Ham-
ming distance between their sequences. Recent stud-
ies, however, highlight how that assumption is not com-
pletely correct [13]: high genetic differences can be irrel-
evant from the antigenic point of view and, vice versa,
few nucleotidic mutations can elicit a large antigenic ef-
fect [13, 14], indicating that the accumulation of genetic
distance is not a necessary (and sometimes nor sufficient)
condition for the emergence of antigenically novel strains.
Moreover, genetic and antigenic evolution exhibit differ-
ent patterns: While genetic mutations occur gradually,
antigenic evolution seems more punctuated, though a de-
bate is still going on [15]. Further, it has been pointed
out that amino acid changes which seem to be relevant
in differentiating two specific antigenic clusters, can ex-
hibit a null antigenic effect when appearing in different
sequences [13], suggesting that antigenic clusters cannot
simply be associated with key influential sites [16]. The
presence of correlations in genetic mutations might ex-
plain why phenotypic changes do not necessarily appear
as a consequence of accumulated mutations. Correlation
between mutations have indeed been observed [15] and
positive epistasis between pairs of sites in neuraminidase
(NA) and hemagglutinine (HA) proteins is supported by
phylogenetic and sequence analisys [17–19]. The effect
on the Influenza virus evolutionary dynamics of a non-
trivial relation between genotypic and phenotypic (anti-
genic) space has been investigated introducing a neutral
network topology in the space of sequences [20, 21]. We
here investigate the effect of correlations between point
mutations. In particular, we consider correlations be-
tween pairs of sites, though the present framework can
be easily extended to more complex patterns of corre-
lated mutations. Our aim is to investigate the geometric
properties of the resulting antigenic space and to possibly
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relate them to the viral evolutionary dynamics. We find
that the introduction of dynamic correlations reflects in
a staggered time structure, with an alternation of periods
where a high number of relatively low fitness strains are
able to spread the infection, followed by periods where
a single highly fit strain is the favoured escape mutant.
This behaviour is absent when we consider the antigenic
distance as directly proportional to the genetic distance.

The Epistatic Immunity Space. We represent vi-
ral strains by binary sequences ~v of fixed length n [22].
We define the immunity set In(~v) of a strain ~v as the set
of viruses antigenically similar to it: those viruses that
cannot infect an host that has been already infected by ~v.
We can further consider the immunity elicited by more
than one strain, for istance by all the strains produced by
successive mutations and spread during an infection his-
tory. We call the Epistatic Immunity Space (EIS) In(A)
of the infection set A the union of all the immunity sets
In(~v) of the strains in A:

In(A) =
⋃
~v∈A

In(~v). (1)

The immunity set, and therefore the EIS, depends on
the definition of antigenic similarity. We investigate the
simplest choice which includes correlations: We assume
that two strains are cross–immune unless they differ in
at least two consecutive bits [23]. Therefore

In(~v) = { ~z ∈ Hn : zi 6= vi ⇒ z|i+1|n = v|i+1|n ∀i }, (2)

where Hn is the n–dimensional hypercube, composed of
2n strings, with the metric given by the Hamming dis-
tance, and periodic boundary conditions. The fraction
ρn(i) of strains that belong to In(~v) and have Hamming
distance i from ~v can be computed (see SI) and reads
ρn(i) = exp(−i2/n) + O(1/n): correlations introduce
on the one hand a non trivial correspondance between
genotipic and phenotipic space, on the other hand anti-
genic similarity is not completely decorrelated from ge-
netic distance [13]. The size S(n) ≡ |In(~v)| of the im-
munity set generated by a strain, i.e. the number of
strains cross–immune to it, satisfies a Fibonacci–like re-
cursive relation: S(n) = S(n − 1) + S(n − 2) with ini-
tial condition S(2) = 3 and S(3) = 4. S(n) is known
as Lucas sequence, and an explicit expression is known:
S(n) = φn+(1−φ)n ' φn, where φ = (1+

√
5)/2 ∼ 1.618

is the golden ratio, and the last asymptotic holds for
large n (see also SI). The size |In(A)| of the Epistatic
Immunity Space (EIS) generated by k different strains
strongly depends on the actual form of the set A. We
firstly consider two quantities that provide bounds for
every epidemic dynamics with the above defined anti-
genic similarity measure: (i) M(n), the maximum num-
ber of distinct strings that fit in the sequence space,
and such that the next string would immunize the whole
space (the strings are therefore chosen with the maxi-
mum overlap between their immunity sets); (ii) m(n),

the minimum number of strings needed to immunize the
whole sequence space, and therefore chosen with the min-
imum overlap between their immunity sets. The compu-
tation of M(n) is straightforward: in order to have at
least a string, say ~v, left out of the EIS, the infection
set cannot contain any of the strings in I(~v). There-
fore, the biggest infection set that does not immunize
the whole hypercube is AD(n) = Hn / I(~v), which im-
munizes the set Hn/{~v}, and M(n) = 2n − S(n). We
estimate m(n) by numerical simulations and we pro-
vide analytically an upper mU (n) and a lower mL(n)
bound. A (trivial) lower bound is given by assuming to-
tally disjoint immunity sets, and it is given by counting
the total number of sequences divided by the size S(n)
of a single immunity set: mL(n) ' 2n/φn = 2ηn, with
η = 1 − ln2 φ ∼ 0.306. The fraction of strings contained
in the immunity set of a single strain is therefore 2−ηn.
An upper bound mU (n) can be derived constructively by
exhibiting a set of sequences whose immunity sets cover
the sequence space. Such a set of sequences is obtained
for example by combining in all possible ways n/2 pairs
of identical bits, either (0, 0) or (1, 1) (for instance for
n = 4 such a coverage is realized by the four sequences
(0, 0, 0, 0), (1, 1, 0, 0), (0, 0, 1, 1), (1, 1, 1, 1)). The number

of such sequences is mU (n) = 2[n
2 ], where [·] denotes

the integer part. The asymptotic value of m(n) as com-
puted numerically by simulated annealing [24] (see SI) is
m(n) ' 2αn with α ∼ 0.4, compatible with the analytical
bounds.

Let us now focus on the topological properties of
the EIS. Noticeably, the EIS is always a connected set,
for any infection history. This can be seen as follows:
we need to show that for any pair of sequences ~x, ~y,
there exists a path of cross-immune sequences joining
them. It is easy to convince oneself that every sin-
gle immunity set is connected. It is thus enough to
show that any pair of immunity sets overlap, or are
at most contiguous. Take ~x = ~0 without loss of gen-
erality, and ~y = (y1, y2, . . . , yn). For n even, the two
immune sets always overlap at least in the sequence
(0, y2, 0, y4, 0, . . . , 0, yn). For n odd they are contiguous in
the two points (0, y2, 0, y4, 0, . . . , 0, yn−1, 0) ∈ In(~0) and
(0, y2, 0, y4, 0, . . . , 0, yn−1, yn) ∈ In(~y) (actually they al-
ways overlap at some point unless ~y = ~1).

Though always connected, the EIS is not always simply
connected, and the complementary set, i.e. the infectious
region, can be not connected. This might have a strong
impact on the underlying virus–host interaction. For ex-
ample, the EIS for k strings drawn at random is simply
connected only for k = dn/2e (see SI). For k slightly
above this threshold the infectious region is composed
by one big connected cluster and many small connected
clusters (“holes” in the EIS). The disappearence of the
big connected cluster as k increases sets the threshold
where a further spread of an epidemic is inhibited (see
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Fig. 1 for a cartoon and SI for a more detailed analysis).

Non-immunized region

Immunized region “Small” connected clusters

FIG. 1. Sketch of the noninfectious (green) and infectious
(blue) region of the sequence space. Left: for small k above
threshold the infectious region has big connected cluster, cor-
responding to a infectious region of the hypercube, and small
connected clusters. Right: increasing k only small holes in
the EIS are left.

We have so far examined general topological proper-
ties of the EIS from a static point of view. The nontriv-
ial shape of the set of cross–immune sequences can be
however better highlighted considering simple infectious
dynamics. We then consider a local maximization (LM)
of the EIS: starting with a random strain, we chose at
every step the next strain among those not already be-
longing to the EIS, and such that it maximizes the size
of the current EIS (and thus minimizes the overlap with
the existing EIS). In case that several strings satisfy this
criterion we chose one at random among them. We iter-
ate until the whole space Hn is noninfectious. Note the
this dynamics performs a local maximization, therefore
we expect the number of strains required to immunize
the whole space to be greater than m(n). Though in a
very näıve way, the local maximization of the epistatic
immunity set mimicks a successful escape strategy for
the virus in an actual population: smaller is the over-
lap of the new strain immunity set with the pre–existing
EIS, smaller would be the probability for the host to be
already immune to the new strain.

If we look at the number of sequences that satisfy the
local maximization constraint at each time step, we find a
peculiar behaviour which is not observed when the immu-
nity sets are constructed by means of the bare hamming
distance from the generating strain. The time behavior
features a well defined series of peaks corresponding to an
alternation of periods with many equivalent options and
only one optimal option to maximize the immunity set
(Fig. 2): this gives a hint of how dynamical constraints
arise from the presence of epistatic interactions with re-
spect to the case in which antigenic distance is directly
proportional to genetic distance.

To further characterize the epidemic dynamics we look
at the normalized invasion rate, i.e. the fraction of strains
becoming noninfectious at each step of the LM dynamics
(Fig. 3). This quantity also shows a non-trivial behav-
ior characterized by a series of hierarchically distributed
jumps that occur always at the same time steps, in-
dependently of n, and that are not present when the
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FIG. 2. Left: Degeneracy of strings allowed by the local opti-
mization dynamics (normalized with 2n) as a function of the
iteration number k (time) for the epistatic rule. The aver-
ages are taken over 1000 realizations. Right: For comparison:
same dynamics, but with cross–immunity defined by the Ham-
ming rule with distance D = 4 (the immunity set is the set of
all strings whose Hamming distance ≤ D from the generating
one).

same dynamics is studied with a Hamming rule for cross–
immunity (see Fig. 3, right). This points again to a stag-
gered time structure with an alternation of periods of
highly effective immunization, followed by periods with
a relatively lower immunization rate. This picture is also
confirmed by the parametric plot in the bottom of Fig. 3
where the degeneracy (the fraction of optimal strains) is
plotted versus the normalized invasion rate. The pecu-
liar triangular structure, absent in the Hamming case, is
the signature of an alternation of times with no degen-
eracy (only one option) corresponding to a high invasion
rate followed by times with a very high degeneracy and
low invasion rate. This behaviour is reminiscent of the
comb-like shape of the Influenza HA phylogenetic tree,
where a single quasispecies is responsible for each annual
epidemic and antigenic clusters follow one another each
few years [14].

Conclusion and perspectives. In this paper we
introduced a specific interaction rule among mutations
that dynamically defines neutral clusters in the immu-
nity space. We have studied how this rule shapes the
EIS, i.e. the set of viruses to which a host is immune af-
ter infection by all the strains in his infection history. We
have studied in particular a simple extremal dynamics
of viral epidemic, focusing on the important differences
with respect to the case where the usual Hamming dis-
tance defines cross–immunity. A striking difference that
we find is represented by a staggered time structure, in
the epistatic case, in which times where one single choice
exists that maximizes the invasion rate are followed by
times where many different options exist to immunize a
relatively smaller set of sequences. Although our model
is a toy model, if one imagines this feature in a real-
istic virus–host dynamics, it is quite tempting to iden-
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FIG. 3. Top left: Time behavior of the normalized invasion
rate, i.e., the fraction of sequences becoming noninfectious
at time k for different values of n. Top right: For compari-
son: Same quantity but with cross–immunity defined by the
Hamming rule. In this case no jumps are observed. Bot-
tom: Parametric plot of the Degeneracy vs. the Normalized
Invasion Rate for the epistatic rule with n = 19.

tify our staggered structure with the succession in time
of different antigenic clusters and with the more violent
epidemic outbreaks at each cluster change. The analy-
sis presented here can help in understanding the effect
of the conjectured epistatic interactions on the shape of
immunity clusters as well as on the viral evolutionary dy-
namics at large, with a possibly relevant impact on the
structure of the modeling schemes. The analysis of the
effect of the epistatic rule in a more realistic model of
virus evolution in a host population is the subject of a
forthcoming work.
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