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In this article we describe an efficient approximation of the stochastic
Galerkin matrix which stems from a stationary diffusion equation. The un-
certain permeability coefficient is assumed to be a log-normal random field
with given covariance and mean functions. The approximation is done in
the canonical tensor format and then compared numerically with the tensor
train and hierarchical tensor formats. It will be shown that under additional
assumptions the approximation error depends only on the smoothness of the
covariance function and does not depend either on the number of random
variables nor the degree of the multivariate Hermite polynomials.
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1 Introduction

The particular problem considered here is formally a stationary diffusion equation de-
scribed by an uncertain conductivity parameter. Let D ⊂ Rd be a compact domain and
(Ω,A,P) a probability space. The diffusion problem is given by

−div(κ(ω, x)∇u(ω, x)) = f(ω, x) for all x ∈ Ḋ
u(ω, x) = 0 for all x ∈ ∂D

}
a.s. in ω ∈ Ω, (1)

where the conductivity κ and the source term f are random fields over Ω×D.
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The weak formulation of (1) reads as follows (see e.g. [8, 18, 20]): Find a function
u ∈ L2(Ω;H1

0 (D)) such that for all v ∈ V

a(u, v) :=

∫
Ω

∫
D
κ(ω, x) ∇u(ω, x) · ∇v(x)dxdP(ω) =

∫
Ω

∫
D
f(ω, x)v(x)dxdP(ω), (2)

where V denotes the space of test functions and must be chosen appropriately. A general
issue with this formulation arises if κ is not essentially bounded nor away from zero
over the entire Ω × D. Nevertheless, in [21] or [10] it is shown that under additional
assumptions to the right-hand side f and special choices of V the weak formulation is
well-posed.

In order to solve (1) numerically, one has to perform its full discretisation, in both
the deterministic and stochastic spaces. The method of choice is the stochastic Galerkin
discretisation, see e.g. [19, 16, 8, 18, 2, 15, 28].

Our considerations are based on the following assumption on the conductivity κ.

Assumption 1. There exists a Gaussian random field γ over Ω×D such that κ = exp γ.
κ(·, x) ∈ L2(Ω) holds for every x ∈ D. The mean function mκ(x) := E(κ(·, x)) and the
covariance function

Γκ(x, y) := cov(κ(·, x), κ(·, y)) = E [(κ(·, x)−mκ(x))(κ(·, y)−mκ(y))]

are given as continuous functions over D resp. D ×D.

The mean and covariance functions of κ determine the mean and covariance functions
of γ entirely, since

Γγ(x, y) = ln [Γκ(x, y) +mκ(x)mκ(y)]− ln [mκ(x)mκ(y)] , (3)

mγ(x) = 2 lnmκ(x)− 1
2 ln

[
Γκ(x, x) +mκ(x)2

]
. (4)

Both random fields are elements in L2(Ω×D).
Let Cκ and Cγ be the integral operators on L2(D) with kernels Γκ and Γγ respec-

tively. Since the kernels are continuous and the domain D is compact, these operators
are Hilbert-Schmidt operators. It exists an orthonormal basis κ1, κ2, . . . ∈ L2(D) of
eigenfunctions and a sequence of associated eigenvalues λ1 ≥ λ2 ≥ . . . ≥ 0 of Cκ such
that Cκκl = λlκl for all l ∈ N.

Accordingly, γ1, γ2, . . . ∈ L2(D) denote the orthonormal basis of eigenfunctions and
λ′1 ≥ λ′2 ≥ . . . ≥ 0 are the corresponding eigenvalues of Cγ . The functions θk(ω) =
1
λ′k

∫
D [γ(ω, x)−mγ(x)] γk(x)dx for those k ∈ N, where λ′k > 0, are jointly normal dis-

tributed and orthonormal random variables in L2(Ω). Here γ(x) denotes the mean value
of γ(ω, x). If γ(ω, x) is centred, then γ(x) = 0. We shall write θ as a short hand for the
sequence consisting of these θ1, θ2, . . ..

Let (N0)Nc := {(α1, α2, . . .) ∈ (N0)N | ∃K ∈ N ∀k ≥ K : αk = 0} be the set of
sequences in N0 with only finitely many nonzero elements. For ι ∈ (N0)Nc we set Hι(x) =∏∞
k=1 hιk(xk) for x ∈ RN, where hι denotes the ι-th Hermite polynomial. The Hι are

called multivariate Hermite polynomials and
{

1√
ι!
Hι(θ) | ι ∈ (N0)Nc

}
is an orthonormal
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basis of L2(Ω, σ(θ),P), see e.g. [14]. The random variable κ(·, x) = exp γ(·, x) is σ(θ)-
measurable for almost all x ∈ D and it holds

E(κ(·, x) 1√
ι!
Hι(θ)) = mκ(x) ·

∞∏
k=1

[√
λ′kγk(x)

]ιk
√
ιk!

, (5)

see for example [15, p. 71] or [28, p. 16]. Thus the expansion of κ̃ = κ −mκ into the
orthonormal basis

{
1√
ι!
Hι(θ)⊗ κl | ι ∈ (N0)Nc , l ∈ N

}
has the Fourier coefficients

ξ
(ι)
l =

1√
ι!

∫
D
κl(x) · E(κ̃(·, x)Hι(θ))dx = E

(
ξl ·

1√
ι!
Hι(θ)

)
=

∫
D
κl(x) ·mκ(x) ·

∞∏
k=1

[√
λ′kγk(x)

]ιk
√
ιk!

dx−
∫
D
κl(x)mκ(x)dx · δ0ι,

(6)

where δι0 = δι10 · δι20 · · · is the product of the usual Kronecker deltas.
Let VN ⊆ H1

0 (D) be an N -dimensional subspace with basis {ϕ1, . . . , ϕN} ⊂ VN .
The subspace in L2(Ω) will be chosen accordingly to a given number of stochastic
variables K ∈ N and the maximal degrees of the multivariate Hermite polynomials
p = (p1, . . . , pK) ∈ NK . The subset Jp ⊆ (N)Nc consists of all sequences α ∈ (N0)Nc such
that 0 ≤ αk ≤ pk for all k = 1, . . . ,K and αk = 0 for all k > K. Let SJp ⊆ L2(Ω) be
the subspace spanned by {Hα(θ) |α ∈ Jp}.

The bilinear form a applied to these basis elements of SJp ⊗ VN yields (see also [8])

a(Hα(θ)⊗ ϕi, Hβ(θ)⊗ ϕj) (7)

=

∫
D
mκ(x)∇ϕi(x) · ∇ϕj(x)dx · δαβ (8)

+
∞∑
l=1

∑
ι∈(N)Nc

ξ
(ι)
l · E(Hι(θ)Hα(θ)Hβ(θ)) ·

∫
D
κl(x)∇ϕi(x) · ∇ϕj(x)dx (9)

= (K0)ij · (∆0)αβ +

∞∑
l=1

(K l)ij
∑

ι∈(N0)Nc

ξ
(ι)
l · (∆ι)αβ, (10)

wherein

(∆ι)αβ = E(Hι(θ)Hα(θ)Hβ(θ)) =

∞∏
k=1

E(hιk(θk)hαk(θk)hβk(θk)), (11)

(K l)ij =

∫
D
κl(x)∇ϕi(x) · ∇ϕj(x)dx for l > 0 and (12)

(K0)ij =

∫
D
mκ(x)∇ϕi(x) · ∇ϕj(x)dx. (13)

It is worth noting that the summation over ι can be restricted to ι ∈ J2p, since

(∆ιk)αkβk := E(hιk(θk)hαk(θk)hβk(θk)) = 0 for ιk > αk + βk. By (11), ∆ι =
⊗K

k=1 ∆ιk

3



holds and thus, finally, the stiffness matrix K can be written as

K = ∆0 ⊗K0 +
∞∑
l=1

∑
ι∈J2p

ξ
(ι)
l ·

(
K⊗
k=1

∆ιk

)
⊗K l ∈ T :=

(
K⊗
k=1

Rpk×pk
)
⊗ RN×N . (14)

As a further step of discretisation we truncate the series in (14) to M ∈ N terms. The
error measured in the Frobenius norm is bounded by some constant times

∑∞
l=M+1 λl,

which tends to zero for M → ∞. In the following we shall simply write K for the

truncated series and ξ for the tensor consisting of all coefficients ξ
(ι)
l . It holds ξ ∈(⊗K

k=1 Rpk
)
⊗ RM .

The number of entries in the stiffness matrix K depends exponentially on the number
K of random variables θ1, . . . , θK used for the stochastic Galerkin discretisation. How-
ever, in order to minimize the error of this discretisation it is important to choose the
finite dimensional space SJp ⊗ VN ⊆ L2(Ω)⊗H1

0 (D) as large as possible.
The main purpose of this article is to approximate the coefficients tensor ξ in (14) by

a tensor η ∈
(⊗K

k=1 Rpk
)
⊗RM represented in the canonical tensor format. If η is given

by η
(ι)
l =

∑R
j=1

∏K
k=1(ηjk)ιk · (ηj)l, we have

L = ∆0 ⊗K0 +
M∑
l=1

∑
ι∈J2p

 R∑
j=1

K∏
k=1

(ηjk)ιk(ηj)l

( K⊗
k=1

∆ιk

)
⊗K l

= ∆0 ⊗K0 +

R∑
j=1

 K⊗
k=1

[
2pk∑
ιk=0

(ηjk)ιk∆ιk

]⊗ [ M∑
l=1

(ηj)lK l

]
.

(15)

Obviously, the representation of η in the canonical tensor format leads us to a repre-

sentation of L in the canonical tensor format in
(⊗K

k=1 Rpk×pk
)
⊗RN×N , whose rank is

bounded by the representation rank R of η.
The main advantage of the canonical tensor representation is the linear scaling in K

of further numerical operations like matrix-vector multiplication, computation of the
maximum (minimum) value and level-sets of the tensor, see e.g. [3, 8, 12] for more
details.

Since one is usually interested in a solution u of (1) it is important to estimate the
error between the exact solution u and the solution û which stems from (1) if we replace
the conductivity κ by κ̂ with a different Fourier coefficients tensor η instead of ξ.

One possible measure of the impact is the Lp-norm of the relative error, i.e. of the
function ω ∈ Ω 7→ ‖u(ω, ·)− û(ω, ·)‖H1(D)/‖u(ω, ·)‖H1(D). In order to estimate this error
we have to make a further assumption.

Assumption 2. It holds
∑∞

k=1

√
λ′k‖γk‖∞ <∞.

Remark 1.1. This series converges for example, if the covariance function of γ is
sufficiently smooth, see [26, Subsections 2.2 and 2.3]. Since the covariance function of
γ is determined by the covariance function of κ as seen in (3), the smoothness of Γκ
carries over to Γγ.
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In [10, Lemma 2.5] it is shown, that under the last assumption there exists a positive
minimum function ω ∈ Ω 7→ κ(ω) such that it holds 0 < κ ≤ κ(·, x) P-almost surely for
almost all x ∈ D.

Using a(ω; v, w) :=
∫
D κ(ω, x)∇v(x) · ∇w(x)dx for u, v ∈ H1(D) and accordingly â

with κ̂ we get

0 ≤ κ(ω) · ‖u(ω, ·)− û(ω, ·)‖2H1(D) ≤ a(ω;u(ω, ·)− û(ω, ·), u(ω, ·)− û(ω, ·))

= (a− â)(ω;u(ω, ·), u(ω, ·)− û(ω, ·))
≤ ‖κ(ω, ·)− κ̂(ω, ·)‖L∞(D) · ‖u(ω, ·)‖H1(D) · ‖u(ω, ·)− û(ω, ·)‖H1(D).

In [10, Lemma 3.10] it is shown that E(1/κ2) <∞ and since that it holds

E

(
‖u− û‖H1(D)

‖u‖H1(D)

)2

≤ E
(

1

κ2

)
· E(‖κ− κ̂‖2L∞(D)), (16)

and with ‖·‖F denoting the Frobenius norm, i.e. ‖ξ‖2F =
∑
ι∈J2p

∑M
l=1 |ξ

(ι)
l |

2, this yields

E(‖κ− κ̂‖2L∞(D)) ≤
M∑
l=1

∑
ι∈J2p

[
ξ

(ι)
l − η

(ι)
l

]2 · M∑
l=1

λl‖κl‖2L∞(D) (17)

= ‖ξ − η‖2F ·
M∑
l=1

λl‖κl‖2L∞(D). (18)

Together with the previous inequalities we conclude, that the L1-norm of the relative
error ‖u(ω, ·) − û(ω, ·)‖H1(D)/‖u(ω, ·)‖H1(D) can be made arbitrarily small if ‖ξ − η‖F
is close enough to zero. Therefore, if we want to approximate ξ by an η, this has to be
done with respect to the Frobenius norm.

Section 2 gives a quick survey of the most common tensor formats along with the most
important properties and some remarks on the conversion from the canonical tensor
format. Section 3 contains the construction of the approximation η of ξ and the main
theorem, which essentially states that the introduced error does not depend on the
number of random variables K nor the maximal degrees of the multivariate Hermite
polynomials p but on the smoothness of the covariance function Γκ. Applying the
aforementioned theorem to the Gaussian covariance function on a domain being the union
of cuboidal domains, we are led to concrete rank estimates for this case. In Subsection 4.1
we further approximate the tensor approximations obtained by the quadrature method
in the canonical tensor format with smaller ranks, in order to assess how conservative the
rank estimates of the main theorem are. In Subsection 4.2 we convert the given tensors
into the tensor train (TT) and hierarchical tensot formats to test whether those may lead
to even better compressions with respect to the storage requirements and complexity of
the inner product by an elementary tensor.
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2 Tensor formats

Let V =
⊗K

ν=1 Vν be the tensor product of vector spaces V1, . . . , VK . A tensor format is
described by a parameter space P =×L

ν=1 Pν (K ≤ L) and a multilinear map U : P → V
into the tensor space V. For practical implementations of high dimensional problems we
need to distinguish between a tensor v ∈ V and its tensor format representation p ∈ P ,
where v = U(p). There are many possibilities to define tensor formats. Here, we consider
the canonical, the hierarchical, and the tensor train format (see [11, 13] and [23, 24]). In
the following we briefly repeat the definitions of these formats, for a complete overview
see the book of Hackbusch [12]. The last two tensor formats are so called tensor networks,
we refer to [6] for a mathematical description of tensor networks.

2.1 The canonical tensor format

Definition 2.1 (Canonical Tensor Format, r-Term Representation, Representation Sys-
tem, Representation Rank). The canonical tensor format in V for variable r is defined
by the multilinear mapping

UCT,r : PCT,r :=
K

×
ν=1

V r
ν → V, (19)

p := (piν : 1 ≤ i ≤ r, 1 ≤ ν ≤ K) 7→ UCT,r(p) :=
r∑
i=1

K⊗
ν=1

piν .

We call the sum of elementary tensors v =
∑r

i=1

⊗K
ν=1 piν a tensor represented in the

canonical tensor format with r terms. The system of vectors (piµ : 1 ≤ i ≤ r, 1 ≤ µ ≤ d)
is a representation system of v with representation rank r.

Remark 2.2. Let v = UCT,r(p) =
∑r

j=1

⊗K
ν=1 pjν be represented in the canonical tensor

format with r-terms and representation system p ∈ PCT,r. For the standard choice
Vν = Rnν the storage size for the parameter system v̂ is

r ·
d∑

ν=1

nν .

Numerical operations with tensors represented in the canonical format can be performed
linear in K. For instance, let A =

∑s
l=1

⊗A
ν=1Alν ∈

⊗
ν=1R

nν×nν be represented with
s-terms then the matrix-vector product of Av is given by

Av =
s∑
l=1

r∑
j=1

K⊗
ν=1

Alνvjν .

We need O
(
r · s ·

∑K
ν=1 n

2
ν

)
arithmetic operations to compute a representation system

of Av.

A complete description of fundamental operations in the canonical tensor format and
a their numerical cost can be found in [12]. For recent algorithms in the canonical tensor
format we refer to [3, 4, 5, 8, 9].
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2.2 The hierarchical tensor format

The hierarchical tensor format is introduced in [13] and further considered in [11]. Cer-
tainly, the hierarchical approach has been discussed earlier in quantum computing (see
e.g. [17]). In this section, we briefly repeat the description in [12, 13]. In the following
let K̃ := {1, · · · ,K}.

Definition 2.3 (Dimension Partition Tree, [12]). The tree TD is called dimension par-
tition tree of K̃ if

(1) all vertices t ∈ TK̃ are non-empty subsets of K̃,

(2) K̃ is the root of TK̃ ,

(3) every vertex t ∈ TK̃ with #t ≥ 2 has two sons t1, t2 ∈ TK̃ with t = t1∪̇t2.

The set of sons of t is denoted by S(t). If S(t) = ∅, t is called a leaf. The set of leaves
is denoted by L(TK̃).

Let TK̃ be a dimension partition tree. The hierarchical tensor representation in V =⊗
ν∈K̃ Vµ is based on a hierarchy of finite dimensional tensor product subspaces

Ut ⊂ Vt :=
⊗
ν∈t

Vν for all t ∈ TK̃ .

Definition 2.4 (Hierarchical Subspace Family, [12]). We call {Ut : t ∈ TK̃} a hierar-
chical subspace family, if TK̃ is a dimension partition tree and the subspaces Ut satisfy

(1) Ut ⊆ Vt for all t ∈ L(TK̃),

(2) (crucial nestedness) Ut ⊂ Ut1 ⊗ Ut2 for all t ∈ TK̃ \ L(TK̃), t1, t2 ∈ S(t).

We say a tensor v is represented by the hierarchical subspace family {Ut : t ∈ TK̃}, if
v ∈ UK̃ .

The subspace Ut is generated by the system

Bt =
(
b
(t)
` ∈ Ut : 1 ≤ ` ≤ rt

)
, Ut = spanBt.

Except for t ∈ L(TK̃), the tensors b
(t)
` are served for theoretical purpose. Only for

leaves, the spanning vectors are explicitly represented. Because of the crucial nestedness

condition, the vectors b
(t)
` ∈ Ut (t ∈ TK̃ \ L(TK̃)) can be represented hierarchically by

coefficient matrices C(t,`), i.e. we have

b
(t)
` =

rt1∑
i=1

rt2∑
j=1

C
(t,`)
ij b

(t1)
i ⊗ b(t2)

j , where S(t) = {t1, t2}.

The representation of a tensor v represented by the hierarchical subspace family {Ut :

t ∈ TK̃} uses the parameter C(t,`) for t ∈ TK̃ \ L(TK̃) and b
(t)
j for {t} ∈ L(TK̃). Only for
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theoretical discussion the implicit hierarchical representation of b
(t)
` for t ∈ TK̃ \L(TK̃) is

considered. Similarly, to the canonical tensor format, numerical operations with tensors
represented in the hierarchical format can be performed linear in K. We refer to [12]
for a complete description of the hierarchical format and fundamental operations in this
tensor representation.

2.3 The tensor train format

The tensor train (TT) format is described in [23, 24], see also matrix product stats
(MPS) [29] and references therein.

Definition 2.5 (TT-Format, TT-Representation, TT-Ranks). The TT-tensor format is
for variable TT-representation ranks r = (r1, . . . , rK−1) ∈ NK−1 defined by the following
multilinear mapping

UTT : V r1
1 ×

(
K−2

×
ν=2

V rν−1×rν
ν

)
× V rK−1

K →
K⊗
ν=1

Vν

p = (p1, . . . , pK) 7→ UTT (v̂) :=

r1∑
j1=1

· · ·
rK−1∑
jK−1=1

pj11 ⊗

(
K−2⊗
ν=2

pjν−1jνν

)
⊗ pjK−1K .

As mentioned for the tensor formats above, the numerical cost for operation with
tensors represented in the TT-format is linear in K, see for example [12, 23, 24].

2.4 Conversion from the canonical format

Let a tensor v = UCT (v̂CT ) =
∑r

j=1

⊗K
ν=1 vjν be represented in the canonical tensor

format with representation system v̂CT ∈ PTC,r. We discuss the simple conversion of
v into the hierarchical tensor format and the TT-format, i.e. we define representation
systems ûH ∈ PH,r and ûTT ∈ PTT,r such that

v = UH(v̂H) = UTT (v̂TT ).

Remark 2.6 (Conversion to the hierarchical tensor representation). Let v ∈ rangeUCT,r
be represented in the canonical tensor format with r-terms, e.g. v =

∑r
j=1

⊗K
ν=1 vjν .

Let TK̃ be a dimension partition tree for K̃ := {1, . . . ,K}. The hierarchical subspace
family {Ut : t ∈ TK̃} is generated by the the systems

Bt =
(
b
(t)
j ∈ Ut : 1 ≤ j ≤ r

)
, Ut = spanBt,

where
b
(t)
j :=

⊗
ν∈t

vjν , for t ∈ TK̃ \ K̃.

Since b
(t)
j = b

(t1)
j ⊗ b(t2)

j , the coefficient matrices have for t ∈ TK̃ \ K̃ the form

ct,`ij := δijδj`, (1 ≤ i, j, ` ≤ r)

8



where S(t) = {t1, t2}. For t = K̃ the coefficient matrix CK̃,1 is equal to Id, see [12].

Remark 2.7 (Conversion to the TT-tensor representation). Let v =
∑r

j=1

⊗K
ν=1 vjν ∈

rangeUCT . Then define r := (r, . . . , r) ∈ NK−1 and for 1 ≤ j1, . . . , jK−1 ≤ r

uj11 := vj11, ujK−1K := vjK−1K , ujν−1 jν ν := δjν−1,jνvjνν (2 ≤ ν ≤ K − 1), (20)

where δ is Kronecker’s delta. With (20) we have that

r∑
j1=1

· · ·
r∑

jK−1=1

u1j1 ⊗
K−2⊗
ν=2

uνjν−1jν ⊗ uKjK−1
=

r∑
j=1

K⊗
ν=1

vjν .

3 Low rank approximation of ξ

3.1 Error estimation

The most obvious way to approximate the coefficients tensors ξ from (6) is to apply a
quadrature rule to the integral. Since the integrand of ξ already separates we immedi-
ately obtain an approximation of ξ in the canonical tensor format. Theorem 3.1 reveals
that the error introduced by this approximation does not depend on the number of ran-
dom variables K nor the maximal degrees of the multivariate Hermite polynomials p.
Nevertheless it depends on the analytical properties of the covariance function Γκ and
the eigenvalues of the covariance operator Cκ and the quality of the used quadrature and
its error estimation.

Let C(D) the set of continuous functions on D and Q : C(D)→ R a quadrature rule
on D with nodes x1, . . . , xR ∈ D and weights w1, . . . , wR ∈ R. Let E : C(D)→ R be the
error functional of the quadrature Q, i.e.

E(f) =

∫
D
f(x)dx−Q(f) ∈ R (21)

for all f ∈ C(D). In order to approximate the tensor

ξ
(ι)
l =

∫
D
κl(x) ·mκ(x) ·

∞∏
k=1

[√
λ′kγk(x)

]ιk
√
ιk!

dx−
∫
D
κl(x)mκ(x)dx · δ0ι (22)

by a tensor η = (η
(ι)
l )l∈{1,...,M},ι∈J2p ∈

(⊗K
k=1 Rpk

)
⊗RM , we apply the quadrature rule

Q and get

η
(ι)
l = Q

(
κl ·mκ ·

K∏
k=1

[√
λ′kγk

]ιk
ιk!

)
−Q(κlmκ) · δ0ι (23)

=
R∑
j=1

wjκl(xj)mκ(xj)
K∏
k=1

[√
λ′kγk(xj)

]ιk
ιk!

−

 R∑
j=1

wjκl(xj)mκ(xj)

 · δ0ι. (24)
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Theorem 3.1. The rank of η defined in (23) is bounded by R+1, where R is the number
of quadrature nodes. It holds

‖ξ − η‖2F ≤ (E ⊗ E)

([
M∑
l=1

κl ⊗ κl

]
· Γκ

)
, (25)

where Γκ is the covariance function of the random field κ and κ1, . . . , κM the first M
eigenfunctions of the associated covariance operator.

The error between ξ and η does not depend on the number of stochastic variables K
nor on the maximal degrees of the multivariate Hermite polynomials p.

The functional E ⊗ E : C(D) ⊗ C(D) → R denotes the tensor product functional,
i.e. (E ⊗ E)(f ⊗ g) = E(f) · E(g) for all f, g ∈ C(D). The value of the function h ∈
C(D ×D) = C(D) ⊗ C(D) applied to this functional can be seen as the consecutively
application of E to the first argument and then to the second one or vice versa.

Proof. The representation of η in the canonical tensor format in (23) has a representation
rank R+ 1. Furthermore it holds∑

ι∈(N0)Nc

1

ι!2
E[κ̃(·, x)Hι(θ)]E[κ̃(·, y)Hι(θ)] = E[κ̃(·, x)κ̃(·, y)] = Γκ(x, y), (26)

since the Hermite polynomials form an orthogonal basis of L2(Ω, σ(θ)). For all l ∈
{1, . . . ,M} we thus get∑

ι∈J2p
|ξ(ι)
l − η

(ι)
l |

2 (27)

=
∑
ι∈J2p

[∫
D

∫
D

1

ι!2
κl(x)κl(y)E(κ̃(·, x)Hι(θ))E(κ̃(·, x)Hι(θ))dxdy (28)

− 2

∫
D

R∑
j=1

wj
1

ι!2
κl(x)κl(xj)E(κ̃(·, x)Hι(θ))E(κ̃(·, xj)Hι(θ))dy (29)

+
R∑
i=1

R∑
j=1

wiwj
1

ι!2
κl(xi)κl(xj)E(κ̃(·, xi)Hι(θ))E(κ̃(·, xj)Hι(θ))

]
(30)

≤
∑

ι∈(N0)Nc

[
· · ·
]

(31)

=

∫
D

∫
D
κl(x)κl(y)Γκ(x, y)dxdy − 2

∫
D

R∑
j=1

wjκl(x)κl(xj)Γκ(x, xj)dx (32)

+

R∑
i=1

R∑
j=1

wiwjκl(xi)κl(xj)Γκ(xi, xj) (33)

= (E ⊗ E)([κl ⊗ κl] · Γκ) (34)

Finally, summation over all l yields (25). �
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Remark 3.2. 1. Even though the accuracy of the approximation η does not depend
on the number of random variables nor the maximal degrees of the multivariate
Hermite polynomials p, the amount of data to be stored is still (R + 1) ·

∑K
k=1 pk,

depends on K and p.

2. Smoother covariance functions with smoother eigenfunctions permit better quadra-
ture methods Q, i.e. those with fewer nodes and sharper estimates of |(E ⊗ E)(f)|.
Thus the representation rank of the approximation to a given accuracy depends on
the smoothness of the covariance function.

3. If there exists n ∈ N such that the derivatives ∂ix∂
j
yΓκ for i, j ≤ n exist and are

continuous, the random field κ must be n-times mean-square differentiable (see [1,
Theorem 2.2.2].) Thus more rough random fields κ will lead to larger ranks of the
approximation η.

3.2 Gaussian covariance on cuboidal domains

Let D =
⋃L
m=1Cm, where C1, . . . CL ⊂ Rd are closed cuboidal domains, whose pairwise

intersections are sets of measure zero in Rd. For a given a > 0, we set Γκ(x, y) =
exp(−a2‖x− y‖2) for all x, y ∈ D. The value 1

a characterizes the covariance length.

Theorem 3.3. Let Q denote the compound quadrature rule, which consists of d-fold
product quadratures of S-point Gaussian quadratures on each cuboidal domain Cm. Let
η be the approximation of ξ as defined in (23), then η has the representation rank SdL
with the norm estimation

‖η − ξ‖2F ≤
M∑
l=1

E ⊗ E(κl ⊗ κlΓκ)

≤
M∑
l=1

1

λ2
l

· a
4S |D|
(2S)!

L∑
m=1

L∑
n=1

|Cm||Cn|
d∑
i=1

d∑
j=1

diami(Cm)2S diamj(Cn)2S ·

· exp
[

1
4a

2 diami(D) + 1
4a

2 diamj(D)
][

1 +
(
(3

2)2S − 1
)
δij

]
. (35)

Proof. Combining the errors of the quadratures on each cuboidal domain, we get

E(f) =
cS

(2S)!

L∑
m=1

|Cm|
d∑
i=1

diami(Cm)2S∂2S
i f(ξim), (36)

where ξim ∈ Cm, 0 < cS < 1, and f ∈ C2S(D). diami(A) := sup{|xi − yi| |x, y ∈ A}
denotes the diameter of A ∈ Rd in the i-th direction.

Since the Gaussian covariance is sufficiently smooth, this quadrature error can be
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applied and we have to estimate

‖ξ − η‖2F ≤
M∑
l=1

E ⊗ E(κl ⊗ κlΓκ) =
c2
S

(2S)!2

L∑
m=1

L∑
n=1

|Cm||Cn|

·
d∑
i=1

d∑
j=1

diami(Cm)2S diamj(Cn)2S ·
M∑
l=1

∂2S
xi ∂

2S
yj

[
κl ⊗ κlΓκ

]∣∣∣
(ξijmn,ηijmn)

, (37)

where ξijmn, ηijmn ∈ D. It is∣∣∣∂2S
xi ∂

2S
yj

[
κl(x)κl(y)Γκ(x, y)

]∣∣∣ (38)

≤ 1

λ2
l

∫
D

∫
D

∣∣∣∂2S
xi ∂

2S
yj

[
Γκ(x, u)Γκ(y, v)Γκ(x, y)

]
κl(u)κl(v)

∣∣∣ dudv (39)

≤ 1

λ2
l

√∫
D

∫
D

∣∣∣∂2S
xi ∂

2S
yj

[
Γκ(x, u)Γκ(y, v)Γκ(x, y)

]∣∣∣2 dudv, (40)

since the eigenfunction κl is normalized in L2(D). For i = j it holds

∂2S
xi ∂

2S
yi

[
Γκ(x, u)Γκ(y, v)Γκ(x, y)

]
= Γκ(x, u)Γκ(y, v)Γκ(x, y)·

· a4S
2S∑
q=0

(
2S

q

)
(2S)!

22S−qq!
hq(axi − a

2 (yi + ui))hq(ayi − a
2 (xi + vi)). (41)

Cramér’s inequality [25, p. 208] guarantees that |hq(x)| ≤ 1.09
√
q! exp(1

4x
2) and thus

we get∣∣∂2S
xi ∂

2S
yi

[
Γκ(x, u)Γκ(y, v)Γκ(x, y)

]∣∣ ≤ (1.09)2(3
2a)4S(2S)! exp

[
1
2a

2 diami(D)2
]
. (42)

Accordingly, for i 6= j we get

∂2S
xi ∂

2S
yj

[
Γκ(x, u)Γκ(y, v)Γκ(x, y)

]
(43)

= Γκ(x, u)Γκ(y, v)Γκ(x, y)a4Sh2S(axi − a
2 (yi + ui))h2S(ayj − a

2 (xj + vj)), (44)

and this leads to∣∣∣∂2S
xi ∂

2S
yj

[
Γκ(x, u)Γκ(y, v)Γκ(x, y)

]∣∣∣
≤ (1.09)2a4S(2S)! exp

[
1
4a

2 diami(D) + 1
4a

2 diamj(D)
]
. (45)

Together these two cases applied to (38) and finally to (37) lead to the asserted inequality
(35). �

Corollary 3.4. Let D = [0, 1]d ⊂ Rd be the unit square. The approximation η has a
tensor rank bounded by R+ 1 and allows the error estimate

‖η − ξ‖2F ≤
M∑
l=1

(E ⊗ E)([κl ⊗ κl]Γκ) ≤
a4Sd((d− 1) + (3

2)2S) exp(1
2a

2)

(2S)!
·
M∑
l=1

1

λ2
l

, (46)
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where R = Sd. Further with S ≥ 3
4(ae)2 and

S >
1

2
log

[
d2

M∑
l=1

1

λ2
l

]
+
a2

4
− 1

4
log(3πa2)− log ε− 1, (47)

Stirling’s approximation shows, that the error (46) is less than ε.

Table 1 presents the necessary representation ranks of η in order to approximate ξ
to a relative accuracy of 10−4 depending on the dimension of the unit cube D and the
Karhunen-Loève truncation parameter M of κ.

Remark 3.5. 1. For higher dimensions d of the domain D, a more sophisticated
quadrature method than the d-fold product quadrature of Gaussian quadratures must
be chosen in order to overcome the exponential dependency of R on d. This method
however must provide an adequate representation of the error functional E in order
to allow the analysis of the approximation error (25).

2. Since the eigenvalues decrease exponentially (cf. [26, Proposition 2.18]), (46) re-
veals a crucial dependency on the Karhunen-Loève-truncation parameter M . A
better knowledge of the behaviour of the eigenfunctions κl would lead to a stricter
control over the error by superseding estimates like (38).

4 Numerical experiences

4.1 Recompression of the η

In order to test how conservative the obtained approximations η are, we approximate
them in a low rank representation, i.e. perform a recompression. The general setup is
the following: The eigenvalues and eigenfunctions of the covariance operator of κ and γ
are approximated as described in [15, Chapter 3]. The used mesh consists in the one-
dimensional case of 1001 points and in the two-dimensional case of 2113 points and 4096
triangles. The number of random variables K is fixed to 20 and the maximal degrees of
the multivariate Hermite polynomials to p = (10, . . . , 10, 0, . . .). The Karhunen-Loève
truncation parameter M is chosen accordingly, in order to obtain a relative error of
at most 10−4 for the truncated Karhunen-Loève expansion. The approximations η ob-
tained by the Gaussian quadrature are approximated in the canonical tensor format
with small ranks, in order to estimate the real tensor ranks of ξ. The ALS method (see
e.g. [12] or [7]) provides an effective and easy to implement method for this purpose.
The relative difference between ‖κ‖L2(Ω×D) and ‖η‖F is a lower bound of the overall
error. Usually this lower bound can be observed in the low-rank approximation as a
threshold, where the ratio between gained error reduction to the rank increase dimin-
ishes. In the Figures 1 we see the relative error between the best approximation in the
canonical tensor format as a function of the representation rank. A dashed line marks
the representation rank reaching the error bound of 10−4. Clearly, the ranks obtained
by the quadrature approximation are usually too high, especially in the two-dimensional
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Figure 1: Relative error between η and its recompression with a given representation
rank.
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a M K p S R |‖η‖F−‖κ‖|
‖κ‖

1 10 20 10 13 196 (31) 1.027 · 10−4

1/2 20 20 10 19 400 (63) 1.988 · 10−4

1/3 50 20 10 31 1024 (81) 13.427 · 10−4

(a) D = [0, 1]2

a M K p S R |‖η‖F−‖κ‖|
‖κ‖

1 5 20 10 12 12 (8) 2.868 · 10−6

1/2 5 20 10 19 19 (14) 2.512 · 10−5

1/3 7 20 10 32 32 (17) 6.357 · 10−4

1/4 10 20 10 51 51 (21) 3.158 · 10−4

(b) D = [0, 1]1

Table 1: Number of nodes S depending on the given correlation length a in order to
achieve a relative error less than 10−4. M denotes the Karhunen-Loève trunca-
tion parameter, K the number of random variables, and p the maximal degree
of the multivariate Hermite polynomials. S is the number of quadrature nodes
of the Gaussian quadrature and R the representation rank of the approxima-
tion. The values in the brackets are the suspected canonical tensor rank found
by the recompression of η with a relative error of at most 10−4.

case. As Remark 3.5 already mentioned a more sophisticated quadrature method than
the product quadrature of two Gaussian quadratures might lead to better ranks.

4.2 Comparison with other tensor formats

Different tensor formats have different storage requirement and complexities for oper-
ations like inner products or point-wise evaluations (cf. [12]). Nevertheless even more
complex formats than the canonical format can lead to a significant reduction of the
involved ranks and thus to a much better performance. In order to test this possibil-
ity, we approximate the canonical tensor obtained by the quadrature method in the
TT and the hierarchical tensor format. The TT approximation is accomplished by the
TT-Toolbox 2.2 (see [22]), the approximation in hierarchical format by the Hierarchical
Tucker Toolbox (see [27]). In both cases the given canonical tensor has to be approx-
imated with a relative accuracy of 10−4, just as the low-rank approximation in the
canonical tensor format. In order to compare the different approximations we computed
the storage requirements as well as the complexity of the scalar product 〈Lv,v〉 as an
overall complexity measure. The matrix L denotes the approximation of the stiffness
matrix K

L =

M∑
l=1

∑
ι∈J2p

ξ̃
(ι)
l ·

(
K⊗
k=1

∆ιk

)
⊗K l,
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a
CP TT HT

Storage 〈Lv,v〉 Storage 〈Lv,v〉 Storage 〈Lv,v〉
1 1,640 3,279 905 1,721 637 1,317
1/2 2,870 5,739 1,585 3,013 1,242 2,622
1/3 3,519 7,037 3,425 6,509 1,937 4,113
1/4 4,410 8,819 10,430 19,826 7,024 14,829

(a) D = [0, 1]1

a
CP TT HT

Storage 〈Lv,v〉 Storage 〈Lv,v〉 Storage 〈Lv,v〉
1 6,510 13,019 15,570 29,592 9,826 20,627
1/2 13,860 27,719 155,310 295,128 148,252 303,673
1/3 20,250 40,499 458,210 870,848 490,780 999,616

(b) D = [0, 1]2

Table 2: Storage requirements and number of arithmetic operations of the given scalar
product in the different tensor formats.

where ξ̃ is the approximation in the according tensor format and v = v0⊗ v1⊗ · · · ⊗ vK
an elementary tensor. Since

〈Lv,v〉 =
M∑
l=1

∑
ι∈J2p

ξ̃
(ι)
l ·

K∏
k=1

〈∆ιkvk, vk〉 · 〈K lv0, v0〉, (48)

the complexity of this operation corresponds to the scalar product of the approximation
ξ̃ with an elementary tensor. Table 2 gathers the obtained results.
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