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Abstract

In this paper, the problem of efficient grid-based computation of the two-electron
integrals (TEI) in a general basis is considered. We introduce the novel multiple ten-
sor factorizations of the TEI unfolding matrix which decrease the computational de-
mands for the evaluation of TEI in several aspects. Using the reduced higher-order
SVD the redundancy-free product-basis set is constructed that diminishes dramatically
the initial number O(N2

b ) of 3D convolutions, defined over cross-products of Nb basis
functions, to O(Nb) scaling. The tensor-structured numerical integration with the 3D
Newton convolving kernel is performed in 1D complexity, thus enabling high resolution
over fine 3D Cartesian grids. Furthermore, using the quantized approximation of long
vectors ensures the logarithmic storage complexity in the grid-size. Finally, we present
and analyze two approaches to compute the Cholesky decomposition of TEI matrix
based on two types of precomputed factorizations. We show that further compres-
sion is possible via columnwise quantization of the Cholesky factors. Our “black-box”
approach essentially relaxes limitations on the traditional Gaussian-type basis sets, giv-
ing an alternative choice of rather general low-rank basis functions represented only by
their 1D samplings on a tensor grid. Numerical tests for some moderate size compact
molecules demonstrate the expected asymptotic performance.

Key words: Hartree-Fock equation, Coloumb and exchange matrices, two-electron integrals,
tensor-structured approximation, truncated Cholesky decomposition, reduced higher order
SVD, quantized approximation of vectors.
AMS Subject Classification: 65F30, 65F50, 65N35, 65F10

1 Introduction

Two-electron integrals (TEI) tensor, also known as the Fock integrals, is the principal in-
gredient in electronic and molecular structure calculations. In particular, the corresponding
coefficient tensor arises in ab-initio Hartree-Fock (HF) calculations, in post Hartree-Fock
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models (MP2, CCSD, Jastrow factors, etc.) as well as in the core Hamiltonian appearing in
FCI-DMRG calculations [2, 41, 34, 15, 28].

Given the finite basis set {gµ}1≤µ≤Nb
, gµ ∈ H1(R3), the associated fourth order two-

electron integrals tensor, B = [bµνκλ] ∈ RNb×Nb×Nb×Nb , is defined entrywise by

bµνκλ =

∫
R3

∫
R3

gµ(x)gν(x)gκ(y)gλ(y)

‖x− y‖
dxdy, µ, ν, κ, λ ∈ {1, ..., Nb} =: Ib. (1.1)

The fast and accurate evaluation of the 4th order TEI tensor B of size N4
b , is the challeng-

ing computational problem since it includes multiple 3D convolutions of the Newton kernel
1/‖x− y‖, x, y ∈ R3 with strongly varying product-basis functions. Hence, in the limit of
large Nb, the efficient numerical treatment and storage of the TEI tensor is considered as
one of the central tasks in electronic structure calculations.

The traditional analytical integration using the representation of electronic orbitals in a
Gaussian-type basis is the basement of most ab-initio quantum chemical packages. Hence,
the choice of a basis set, {gµ}1≤µ≤Nb

, is essentially restricted by the “analytic” integra-
bility for efficient computations of the tensor entries represented by 6D integrals in (1.1).
This approach possesses intrinsic limitations concerning the non-alternative constraint to
the Gaussian-type basis functions, which may become unstable and redundant for higher
accuracies, larger molecules or when considering heavy nuclei.

It is known since long time in quantum chemistry simulations [5, 41, 43] that, in case
of compact molecules, the (pivoted) incomplete Cholesky factorization of the N2

b ×N2
b TEI

matrix unfolding,

B = [bµν;κλ] := mat(B) over (Ib ⊗ Ib)× (Ib ⊗ Ib), (1.2)

reduces the asymptotic storage of the resultant low-rank approximation to O(N3
b ). It was

observed in numerical experiments that the particular rank-bound in the Cholesky decom-
position scales linearly in Nb, depending mildly, say logarithmically, on the error in the rank
truncation. We refer to [16, 8, 13, 4, 37, 35] for more details on the algebraic aspects of ma-
trix Cholesky decomposition and the related ACA techniques. The Cholesky decomposition
is applicable since the TEI matrix B is, indeed, the symmetric Gramm matrix of the product
basis set {gµgν} in the Coulomb metric 〈·, 1

‖x−y‖ ·〉, ensuring its positive semidefiniteness. In

some cases it is possible to reduce the storage even to O(Nb logNb) taking into account the
pointwise sparsity of the matrix B in calculation of large rather extended systems [41].

In this paper, the Cholesky decomposition of a matrix B is calculated using the precom-
puted factorizations of this matrix in two different forms. The first kind of factorizations
can be interpreted as the Galerkin representation (1.1) discretized in the complete product
basis that incorporated the full set of 3D convolutions applied to {gµgν}, 1 ≤ µ, ν ≤ Nb

over a large n × n × n 3D tensor grid. We provide the theoretical rank estimates for
the quantized-canonical approximation to large grid-supported data arrays leading to the
O(log n) storage cost. In the second approach, we construct the algebraically optimized
redundancy-free factorization to the TEI matrix B, based on the reduced higher-order SVD
[22] to obtain the low-rank separable representation of the discretized basis functions {gµgν}.
Numerical experiments show that this minimizes the dimension of dominating subspace in
span{gµgν} to RG ≤ Nb, which allows to reduce the number of 3D convolutions by the

2



order of magnitude, from O(N2
b ) to RG. Combined with the quantized-canonical tensor de-

compositions of long spacial n-vectors this leads to the logarithmic scaling in n for storage,
O(RG log n + N2

bRG). An essential compression rate is observed in numerical experiments
even for compact molecules, becoming stronger for more stretched compounds.

Computation of the rank-RB Cholesky decomposition employs only RB = O(Nb) selected
columns in the TEI matrix B calculated from precomputed factorizations of this matrix. We
show by numerical experiments that each longN2

b -vector of the L-factor in the Cholesky LLT -
decomposition can be further compressed using the quantized-TT (QTT) approximation
reducing the total storage from O(N3

b ) to O(NbN
2
orb), where the number of electron orbitals,

Norb, usually satisfies Nb ∼ 10Norb.
The presented grid-based approach benefits from the fast O(n log n) tensor-product con-

volution with the 6D Newton kernel over a large n3×n3 grid, [25], which has already proved
the numerical efficiency in the evaluation of the Hartree and exchange integrals [22, 19, 23].
In these papers, describing the numerical solution of the Hartree-Fock equation in the mul-
tilevel (multigrid) tensor-structured format, both the Coulomb and exchange operators are
calculated directly ”on the fly“ at each DIIS iteration, thus the use of TEI was avoided at
the expense of time loops. This initial approach was the crucial point to test and analyze
the validity of the tensor-structured methods in Hartree-Fock calculations.

The beneficial feature of the grid-based tensor-structured methods is a substitution of the
3D numerical integration by multilinear algebraic procedures like the scalar, Hadamard, and
convolution products, with linear 1D complexity, O(n). On the one hand, this weak depen-
dence on the grid-size is the ultimate payoff for generality, in the sense that rather general
approximating basis sets may be equally used instead of analytically integrable Gaussians.
On the other hand, the approach also serves for structural simplicity of implementation, since
the topology of the molecule is caught without any physical insight, only by the algebraically
determined rank parameters of the fully grid-based numerical scheme.

Due to O(n log n) complexity of the algorithms, there are rather weak practical restric-
tions on the grid-size n allowing calculations on really large n×n×n 3D Cartesian grids in
the range n ∼ 103÷105, avoiding the grid refinement. The latter allows high resolution of the
order of the size of atomic nuclei. For storage consuming operations, the numerical expense
can be reduced to logarithmic level, O(log n), by QTT representation of the discretized 3D
basis functions and their convolutions.

We summarize that the rank-O(Nb) Cholesky decomposition of B, combined with the
canonical-QTT data compression of long vectors, allows to reduce the asymptotic complex-
ity of grid-based tensor calculations in HF and some post-HF models. Notice that in the
recent years the grid-based numerical methods became attractive in electronic and molecular
structure calculations since they allow, in principle, the efficient approximation to the phys-
ical entities of interest with a controllable precision [14, 3, 23]. Alternative approaches to
optimization of the HF, MPx, CCSD and other post-HF calculations can be based on using
physical insight to sparsify the TEI tensor B by zero-out all ”small“ elements [41, 34, 2].

The tensor numerical methods are getting established for the solution of multi-
dimensional differential equations, since they allow to avoid the so-called ”curse of
dimensionality“. Some algebraic tensor algorithms for the low-rank approximation of
multivariate data have been originally worked out for the problems of chemometrics and
signal processing, see review [27] and references therein. In the recent years, the main
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theoretical concepts of the rank-structured representation to operators and functions as well
as the novel tensor-structured numerical methods designed for solving multi-dimensional
PDEs have been developed and successfully applied [26, 7, 23, 20, 21, 9].

The rest of the paper is organized as follows. Section 2 outlines the basic tensor formats
and some tensor-structured bilinear operations. Section 3 presents two approaches on the
rank-structured representation to the TEI matrix B. In §3.1, we discuss the Galerkin-type
representation to this matrix in the complete initial product-basis, and in §3.2 we provide
the theoretical rank bounds on the QTT-approximation applied to the large grid-supported
data arrays. This reduces the representation cost to the O(log n) scaling. §3.3 describes the
new redundancy-free factorization to the matrix B in the optimized product-basis reduc-
ing the number of 3D convolutions by the order of magnitude. The subsequent Cholesky
decomposition applies to both factorizations of a matrix B as above. Section 3.5 analyses
numerically the effect of QTT compression of the Cholesky factor in B, finding out that
the average QTT-rank is approximately a multiple of 3 and the number of orbitals in a
molecule, ∼ 3Norb. Hence the representation complexity can be reduced to O(NbN

2
orb). Sec-

tion 4 discusses the motivating applications of TEI tensor to electronic structure calculations
including the Hartree-Fock equations and MP2 perturbation scheme, as well as the higher
dimensional FCI-DMRG models. Given the Cholesky factor of the matrix B, the Coulomb
and exchange parts in the Fock matrix are obtained by contracted products with the density
matrix D according to (4.5), see §4.2. Calculation of the Coulomb and exchange matrices
based on the ε-truncated Cholesky factorization is illustrated on examples of some moderate
size compact molecules demonstrating the asymptotic performance of the presented schemes.

All algorithms are implemented in Matlab on a SUN station using 8 Opteron Dual-
Core/2600 processors.

2 Basic tensor formats

In this section, we sketch some tensor formats used in this paper. Tensors of order d are
defined as the elements of finite dimensional tensor-product Hilbert space Wn ≡ Wn,d of
the d-fold, n1 × ...× nd real/complex-valued arrays, and equipped with the Euclidean scalar
product 〈·, ·〉 : Wn ×Wn → R. Each tensor in Wn can be represented component-wise,

A = [a(i1, ..., id)] with i` ∈ I` := {1, ..., n`}, and n = (n1, ..., nd),

where for the ease of presentation, we mainly consider the equal-size tensors, i.e., I` = I =
{1, ..., n} (` = 1, ..., d). We call the elements of Wn = RI with I = I1 × ... × Id, as n

⊗d

tensors. The dimension of the tensor-product Hilbert space Wn scales exponentially in d,
dimWn,d = nd, implying exponential storage cost for a tensor (”curse of dimensionality“).

To get rid of the exponential scaling in the dimension, the rank-structured tensor for-
mats can be applied. The basic formats include the so-called canonical and Tucker tensor
representations, see [27] and references therein. The R-term canonical representation of a
tensor is defined as

A =
R∑

k=1

cku
(1)
k ⊗ . . .⊗ u

(d)
k , ck ∈ R, (2.1)
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where u
(`)
k ∈ RI` are normalized vectors (also called as skeleton vectors). In tensor numerical

methods the R-term sum (2.1) usually approximates the initial data array up to certain
tolerance ε > 0 providing the upper bound on the canonical ε-rank of a tensor, rankε(A) ≤
R. In a similar way, ε-rank can be estimated for any tensor format to be considered so far
in this paper (Tucker, TT, QTT, canonical-QTT, etc.).

Given the d-tuple of rank parameters, r = (r1, ..., rd), the Tucker representation of a
tensor A is defined by

A =
∑r1

ν1=1
. . .

∑rd

νd=1
βν1,...,νd v

(1)
ν1

⊗ . . .⊗ v(d)νd
,

where v
(`)
ν` ∈ RI` (1 ≤ ν` ≤ r`) are the orthonormal vectors. The parameter r = max

`
{r`}

is called the Tucker rank, and the coefficients tensor β = [βν1,...,νd ] is called the core tensor
(usually, for function related tensors, r � n).

Rank-structured tensor representations allow efficient reduction of storage and fast mul-
tilinear algebra with linear scaling in the dimension d. We illustrate how the standard
multilinear algebra operations on tensors A1, A2, represented in the canonical format (2.1),

A1 =

R1∑
k=1

cku
(1)
k ⊗ . . .⊗ u

(d)
k , A2 =

R2∑
m=1

bmv
(1)
m ⊗ . . .⊗ v(d)m , (2.2)

are reduced to independent treatment of the univariate canonical vectors. For simplicity of
notation, we assume that n` = n. For given canonical tensors A1, A2, the Euclidean scalar
product can be computed by

〈A1,A2〉 :=
R1∑
k=1

R2∑
m=1

ckbm

d∏
`=1

〈
u
(`)
k , v(`)m

〉
, (2.3)

at the expense O(dnR1R2). The Hadamard product of tensors A1,A2 given in the canonical
format (2.2) is calculated in O(dnR1R2) operations by

A1 �A2 :=

R1∑
k=1

R2∑
m=1

ckbm

(
u
(1)
k � v(1)m

)
⊗ . . .⊗

(
u
(d)
k � v(d)m

)
. (2.4)

In electronic structure calculations, the three-dimensional convolution transform with the
Newton convolving kernel, 1

‖x−y‖ , is one of the most computationally expensive operations.
We employ the tensor-structured computation of this transform over large n×n×n Cartesian
grid with O(n log n) complexity introduced in [25].

The convolution product of the canonical tensors A1, A2, is represented by the double
sum

A1 ∗A2 =

R1∑
k=1

R2∑
m=1

ckbm

(
u
(1)
k ∗ v(1)m

)
⊗ . . .⊗

(
u
(d)
k ∗ v(d)m

)
, (2.5)

where u
(`)
k ∗ v(`)m denotes the convolution product of vectors. The complexity is estimated

by O(dR1R2n log n). In our applications the tensor product convolution considerably out-
performs the conventional 3D FFT-based algorithm having the complexity O(n3 log n), see
numerics in [22].
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When using the rank-structured representations of functions and operators in the Hartree-
Fock equation, the 3D and 6D integrations are replaced by multilinear algebra operations
such as the scalar and Hadamard products, the 3D convolution transforms which are imple-
mented with an almost O(n)-complexity [22, 19]. However, the rank-structured operations
mandatory lead to increase of tensor ranks. For tensor rank reduction one can apply the
robust algorithm based on the canonical-to-Tucker and Tucker-to-canonical transforms in-
troduced in [22], which is also of linear complexity with respect to parameters of the target
3D canonical tensor, O(Rn).

The matrix product states (MPS) tensor factorization [42, 39, 38] was proved to be effi-
cient in high-dimensional electronic/molecular structure calculations, in quantum computing
and in multiparticle dynamics. In the mathematical literature the MPS-type tensor decom-
positions were recently recognized and further developed as the so-called tensor train (TT)
format [30, 32]. For a given rank parameter r = (r0, ..., rd), and the respective index sets
J` = {1, ..., r`} (` = 0, 1, ..., d), with the constraints r0 = rd = 1 (MPS with open boundary
conditions), the rank-r tensor train format contains all elements A = [a(i)], i = (i1, ..., id),
in Wn = RI that can be represented as the chain of contracted products of 3-tensors over
the d-fold product index set J := ×d

`=1J`,

a(i) =
∑
α1∈J1

· · ·
∑
αd∈Jd

G(1)(i1, α1)G
(2)(α1, i2, α2) · · ·G(d−1)(αd−2, id−1, αd−1)G

(d)(αd−1, id).

In the matrix form we have the entry-wise MPS-type factorization

a(i1, i2, . . . , id) = A
(1)
i1
A

(2)
i2
. . . A

(d)
id
, (2.6)

where each A
(k)
ik

is rk−1 × rk matrix.
The TT representation reduces the storage complexity of n⊗d tensor to O(dr2n), r =

max rk (same for more general MPS-type formats). The important multilinear algebraic
operations with TT tensors can be implemented with linear complexity scaling in d and n.
For example, the scalar product of tensors 〈A,B〉 can be computed at the cost O(dr3n).

The novel quantics-TT (QTT) approximation method was invented by one of the authors
in 20091 (see [24]) as a fascinating tool to compress function related vectors or n⊗d-tensors
to the logarithmic amount of data, O(d log2 n). The “quantized” approximation is proven
to provide noticeable separation properties for the wide class of functions [24] including
discrete exponential, trigonometric, piecewise polynomial, and many other types of analytic
functional n-vectors that ensure the low TT-rank of 2×...×2-quantized images. This reduces
the storage cost O(n) to the logarithmic scale,

2k2L� 2L, n = 2L,

where k is the (small) QTT-rank, thus yielding the redundancy-free tensor representation of
long functional vectors. For example, a discretized exponential vector (say, signal) on a large
grid of size n = 250 (n ≈ 1015), can be stored by only 2 · 12 · 50 = 102 numbers parametrizing
the quantized image of this vector.

1B. Khoromskij, Preprint 55/2009, Max-Planck Institute for Mathematics in the Sciences, Leipzig 2009.
http://www.mis.mpg.de/publications/preprints/2009/prepr2009-55.html
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It is worth to note that the effect of low-rank numerical TT-representation to the dyad-
ically reshaped 2L × 2L-discretization of the 1D-Laplacian was, first, observed in numerical
tests [31]. This numerics and related techniques in signal processing based on folding of
vectors to 2D-arrays [36] motivated the invention of QTT-approximation theory for function
related vectors/tensors and its further generalizations [24]. We refer to survey [26] for the
state-of-the-art in the QTT method for functions and operators.

To sketch the construction, we suppose that n = 2L with some L = 1, 2, .... The quantiza-
tion of n⊗d tensor into the element of auxiliary D-dimensional tensor space with D = d log2 n
is performed by the dyadic reshaping of indexes. The respective binary folding of degree L,

Qd,L : Wn,d → Wm,dL, m = (m1, ...,md), m` = (m`,1, ...,m`,L),

with m`,ν ∈ {1, 2} for ν = 1, ..., L, (` = 1, ..., d), that reshapes the initial n1 × ...× nd tensor
in Wn,d to the elements of quantized tensor space,

Wm,dL =
d⊗

`=1

Kn` =
d⊗

`=1

L⊗
ν=1

K2, K ∈ {R,C},

is defined for d = 1 as follows: a vector X = [X(i)]i∈I ∈ Wn,1, is reshaped to the element of
W2,L by

Q1,L : X → Y = [Y (j)] := [X(i)], j = {j1, ..., jL},

with jν ∈ {1, 2} for ν = 1, ..., L. For fixed i, jν = jν(i) is defined by jν − 1 = C−1+ν , where
the C−1+ν are found from the binary representation (binary coding) of i− 1,

i− 1 = C0 + C12
1 + · · ·+ CL−12

L−1 ≡
L∑

ν=1

(jν − 1)2ν−1.

For d > 1, the construction is similar, see [24].
Now the main idea of the QTT approximation method is to solve the initial computational

problem in the quantized tensor space Wm,dL of higher dimension, where the functions and
operators allow good separation properties.

It should be noted that the simple reshaping transforms of vectors to tensors (tensoriza-
tion), or tensors to vectors or matrices (vectorization, matricization) do not hold any size-
reduction properties. They can be interpreted just as the dual isometry specified by the
commonly used schemes of reordering a multivariate index set, as, for example, in the stan-
dard “reshape” command in Matlab2. The core of the QTT approximation method [24]
applied to discrete functions and operators is the efficient low-rank TT-tensor representa-
tion (approximation) to their quantized images justified by the sound QTT-approximation
theory, where the ’indivisible’ mode size ’2’ represents a quant of information (compare with
quantum bits, i.e. qubits in quantum computations). This concept enables us to introduce
the new generation of tensor numerical methods with logarithmic complexity scaling for
solving multi-dimensional PDEs, by their approximation on the QTT-manifolds.

2In some subsequent papers the quantized approximation method was renamed as “tensorization” of
tensors, which, obviously, does not reflect the main idea of the approach, but increases the redundancy in
use of the key-word ’tensor’.
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Remark 2.1 Every 2⊗dL tensor in the quantized tensor space W2,dL can be represented (ap-
proximated) in the TT format leading to the QTT representation of high order tensors.
Assuming that rk ≤ r, k = 1, ..., dL, the complexity of QTT representation can be estimated
by O(dr2 log n), providing log-volume asymptotic in the size of initial tensor, nd. QTT rep-
resentation of skeleton vectors in the canonical format leads to the so-called canonical-QTT
(C-QTT) format to be applied below. This format is characterized by the canonical rank R
and the QTT mode ranks, r(`). Further promising generalizations can be based on a combi-
nation of the Tucker, TT and QTT formats [26, 11].

Similar to the canonical and Tucker formats, the basic multilinear algebraic operations
with TT and QTT tensors can be implemented with linear complexity scaling in n and d.
Moreover, the important classes of linear operators can be efficiently treated in the QTT
and C-QTT formats (see survey [26] and references therein). The manifold of rank-r TT
(and QTT) tensors is known to be closed in the Frobenius norm ensuring the stability of
approximation.

In our application the two-electron integrals [bµνκλ] constitute the N⊗4
b tensor of order

4, requiring N4
b storage size. Each entry is calculated as 3D tensor convolution over large

tensor grid. Hence, in the case of a large number of basis functions, Nb, the direct calculations
become prohibitive already for Nb of order few hundreds. In this way, the canonical, Tucker
and TT tensor formats can be considered only for small basis-size Nb since they rely on
the full format target TEI tensor. Another bottleneck is due to bad scaling of the rank
parameters, at least as O(Nb), that makes the representations non-tractable for Nb on the
hundred scale.

In the following we focus on the combined canonical and QTT representations which ap-
pear as the main building block in the new tensor factorization and Cholesky decomposition
of the TEI matrix.

3 TEI tensor in combined rank-structured formats

In sections 3.1 - 3.3 we describe the Galerkin-type factorizations to the full tensor TEI B
and the TEI matrix B, respectively. Sections 3.4 - 3.5 considers the approximate Cholesky
decomposition of the matrix B based only on the computation of the selected set of columns
in B.

3.1 Galerkin factorization of TEI tensor in the full product basis

In this section we describe a factorization scheme for the efficient representation of the TEI
tensor B and the respective unfolding matrix B = mat(B) in the full product basis.

Suppose that all basis functions {gµ}1≤µ≤Nb
, are supported by a finite box Ω = [−b, b]3 ⊂

R3, and assume, for ease of presentation, that rank(gµ) = 1 (see Remark 3.3). The size of
the computational box is chosen in such a way that the truncated part of the most slowly
decaying basis function does not exceed the given tolerance ε > 0. Since the exponential
decay in molecular orbitals, the parameter b > 0 is chosen to be only few times larger than
the molecular size.
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Introducing the n × n × n Cartesian grid over Ω (also denoted by n⊗3-grid) and using
the standard collocation discretization in the volume by piecewise constant basis functions,
we get a grid tensor representation of the initial basis set gµ(x), x ∈ R3, via rank-1 tensors,

gµ(x) = g(1)µ (x1)g
(2)
µ (x2)g

(3)
µ (x3) ≈ Gµ = G(1)

µ ⊗G(2)
µ ⊗G(3)

µ ∈ Rn×n×n.

Then the entries of B can be written by using the tensor scalar product over “grid” indices,

bµνκλ = 〈Gµν ,Hκλ〉n⊗3 , (3.1)

where

Gµν = Gµ �Gν ∈ Rn⊗3

, Hκλ = PN ∗Gκλ ∈ Rn⊗3

, µ, ν, κ, λ ∈ {1, ..., Nb}, (3.2)

with the rank-RN canonical tensor PN ∈ Rn⊗3
approximating the Newton potential 1

‖x‖ (see

[6, 22] for more details). Here and in the following ∗ stands for the 3D tensor convolution
(2.5), and � denotes the 3D Hadamard product (2.4).

The element-wise accuracy of the tensor representation (3.1) is estimated by O(h2), where
h = 2b/n is the step-size of the Cartesian grid [25]. The Richardson extrapolation reduces
the error to O(h3).

Remark 3.1 It is worth to emphasize that in our scheme the n⊗3 tensor Cartesian grid does
not depend on the positions of nuclei in a molecule. Consequently, the simultaneous rotation
and translation of the nuclei positions does not effect the approximation error on the level of
O(h2). The more detailed analysis of numerical effects due to the change of coordinates will
be considered elsewhere.

Remark 3.2 The TEI tensor B has multiple symmetries,

bµνκλ = bνµκλ = bµνλκ = bκλµν , µ, ν, κ, λ ∈ {1, ..., Nb}.

The result is a direct consequence of definition (1.1) (see also (3.1)) and symmetry of the con-
volution product. The above symmetry relation allows to reduce the number of precomputed
entries in the full TEI tensor to N4

b /8.
Let us introduce the 5th order tensors

G = [Gµν ] ∈ RNb×Nb×n⊗3

and H = [Hκλ] ∈ RNb×Nb×n⊗3

.

Then (3.1) is equivalent to the contracted-product representation over n⊗3-grid indexes,

B = G×n⊗3 (PN ∗n⊗3 G) = 〈G,PN ∗n⊗3 G〉n⊗3 = 〈G,H〉n⊗3 , (3.3)

where the right-hand part is recognized as the discrete counterpart of the Galerkin represen-
tation (1.1) in the full product basis. When using the full grid calculations, the total storage

cost for the n× n× n product-basis tensor G and its convolution H amounts to 3Nb(Nb+1)
2

n

and 3RN
Nb(Nb+1)

2
n, respectively. The numerical cost of N2

b tensor-product convolutions to
compute H is estimated by O(RNN

2
b n log n) [25]. Based on representation (3.3), each entry

in the TEI tensor B can be calculated with the cost O(RNn) which might be too expensive
for the large grid-size n. In the next section we discuss the quantized representation of the
canonical factors which reduces the cost of scalar products to the logarithmic level.
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Remark 3.3 If the separation rank of a basis set is larger than 1 then the complexity of
scalar products in (3.3) will increase quadratically in this parameter, see (2.3). However,
the use of basis functions with non-unit rank (say, Slater-type functions) can be motivated
by the reduction of the basis size Nb, that has a fourth order effect on the complexity.

3.2 QTT approximation of tensors G and H

Tensor factorization (3.3) means that as far as the tensors G and H are precomputed and
stored efficiently in the canonical-QTT tensor format (can be an off-line step), further cal-
culations of tensor entries in B can be performed by using only simple QTT-tensor scalar
product multiplications with O(log n) complexity for each entry. In practical computations
the payoff for grid calculus, log n, becomes negligible and algorithms may perform, in general,
as in the special cases with (mesh-less) analytically integrable GTO basis.

We point out, however, that the super-fast 1D QTT-convolution and QTT-FFT of com-
plexity O(logp n) proposed in [10, 18] outperform the full-grid 1D-FFT based tensor algo-
rithm [25] only in asymptotical regime, i.e. for large enough vector-size n of order 106. Hence,
in our case we apply the FFT-based canonical tensor convolution of complexity O(n log n).

At this point, we notice that large grids are mandatory for high resolution of the 3D
GTO basis functions {gk(x)}, which usually have strong singularities at the positions of the
nuclei. It was demonstrated in [19, 22, 21] that the integral operators in the Hartree-Fock
equation can be approximated with the satisfactory precision on n⊗3 grids with n in the
range [104 ÷ 105].

To justify that in the case of large grids the canonical-QTT format allows the fast com-
putation and efficient storage of tensors Gµν and Hµν (µ, ν ∈ {1, ..., Nb}) with logarithmic
cost O(log n), we present the rigorous estimates on the rank parameters.

On the one hand, rank(Gµν) = 1, and the ε-rank of Hµν is small, i.e.

rank(Hµν) = rank(PN ) = O(| log ε|), (3.4)

see e.g. [12, 25, 6]. For example, RN = rank(PN ) ≈ 25 for ε = 10−6. It was proven that the
approximation error of the tensor-product convolution with the discrete Newton kernel PN
decays exponentially in the rank parameter RN and quadratically in the mesh-size, O(h2),
see [25]. Hence, this error can be effectively controlled by the choice of approximation
parameters.

On the other hand, in the case of Gaussian-type AO basis (multiple of Gaussians and

low-degree polynomials), and with fixed ε > 0, we are able to prove rankQTT (G
(`)
µ ) = const,

` = 1, 2, 3, with a small constant, and the same for the canonical vectors of Hµν as shown in
the following Lemmata 3.4, and 3.5.

Lemma 3.4 Given the rank-1 GTO basis, {gk(x)}, and ε > 0, then the QTT ε-rank of the
product basis functions is bounded by

rankQTT,ε(Gµν) ≤ C
√
| log ε|, µ, ν = 1, ..., Nb,

uniformly in the grid-size n.
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Proof. The proof is based on the observation that the product of two Gaussians is again a
Gaussian but with a shifted center,

e−λ(x−a)2e−β(x−b)2 = eσe−γ(x−c)2, σ =
λβ(a− b)2

λ+ β
, γ = λ+ β, c =

aλ+ bβ

λ+ β
.

In general, the canonical vectors generated by the resultant rank-1 function can be repre-
sented by vectors,

{e−λ(xi+δ)2} = C{e−λx2
i e−2λδxi}, δ ∈ [0, h],

where {xi} denotes the set of uniform sampling points. Since the QTT-rank of any uniformly
sampled Gaussian vector is bounded by C

√
| log ε|, see [9], and taking into account that the

second factor in the right-hand side above is an exponential vector of rank-1, see [24], we
arrive at the desired bound. In the presence of degree-p polynomial factors, their QTT rank
is bounded by p+ 1 [24] and the result follows.

Next let us estimate the canonical-QTT ranks of the tensor Hµν in (3.2).

Lemma 3.5 Given the rank-1 GTO basis, {gk(x)}, and ε > 0, then the ε-ranks in the
canonical-QTT format are bounded by

rankC(Hµν) ≤ C0| log ε| log n, rankC−QTT (Hµν) ≤ C0

√
| log ε|, µ, ν = 1, ..., Nb,

uniformly in the grid-size n.

Proof. Inspecting the constructive description of the canonical approximation PN to the
Newton potential [6], we further consider this tensor as the rank-RN sum of Gaussian tensors,
each possessing QTT-rank of order

√
| log ε|. Now we find for the canonical ranks rankC ,

rank(Hµν) ≤ rank(PN )rank(Gµν) = rank(PN ) = O(| log ε| log n),

while the QTT-rank of the canonical vectors in Hµν is bounded by the multiple of rank(PN )

and
√
| log ε|. The latter is due to the rank-multiplicativity in the Hadamard product of

tensors. Now the result follows.
Figure 3.1 illustrates the QTT-rank distribution for the precomputed canonical tensors

Gµν and Hµν (CH4 molecule) with grid-size n = 8192, Nb = 55, and N = 552 (cf. Lemmata
3.4 and 3.5). One observes the uniform bound on QTT-rank for any combination of µ, ν.
We also found the almost constant behavior of the QTT ranks along all virtual dimensions
in quantized representation of the respective n-vectors.

Now we summarize the complexity issues in computation the Newton potential of the
product basis, Hµν , under assumption rank(Gµν) = 1.

Remark 3.6 For a fixed accuracy ε > 0, the set of tensors Hµν (µ, ν = 1, ..., Nb) can be
precomputed in the canonical tensor format at the expense O(RNN

2
b n log n). Tensors Gµν

and Hµν can be stored in C-QTT format by O(N2
b | log ε| log n) and O(N2

b | log ε|2 log
2 n) reals,

respectively.

Proof. Follows by (3.4) and Lemmas 3.4 and 3.5.
Given tensors G and H in the canonical-QTT format, each entry in TEI tensor B can

be calculated with O(log n) complexity. However, tensor-structured convolution step H =
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Figure 3.1: CH4: average QTT ranks of product basis functions, Gµν , (left) and their Newton
potential, Hµν , (right), ε = 10−6, µ, ν = 1, ..., Nb = 55, n = 8192.

PN ∗n⊗3 G is performed as in (2.5) based on 1D FFT, since in the considered range of grid-
size n the 1D QTT convolution is less efficient than 1D FFT. Thus, this step amounts to N2

b

tensor-product convolutions, each at the expense O(RNn log n), which can be rather large
for the required n of the order 105, and Nb of the order of several hundred. Moreover, since
the matrix representation of all scalar products in (3.3) in the QTT format remains an open
question, the Matlab implementation of this scheme may be rather slow.

In the next section, we show that the number of convolutions in TEI calculations can be
reduced to the order O(Nb) since the product basis set appears to be highly redundant.

3.3 Redundancy-free factorization of the TEI matrix B

Here we introduce an alternative solution of the TEI problem by means of factorized repre-
sentation in the redundancy free modified product basis. It serves to minimize the number of
convolution products in (3.3) using the reduced HOSVD (RHOSVD) introduced in [22] for
tensor-rank optimization in the canonical format. The RHOSVD-type factorization applied
to the 3D tensor G allows us to represent it in a “squeezed”, only entanglement-based form.

Again, without loss of generality, we assume that rank(Gk) = 1, (k = 1, ..., Nb) for the

given basis functions, Gk = G
(1)
k ⊗G

(2)
k ⊗G

(3)
k ∈ Rn×n×n.

Letting G(`) =
[
G

(`)
µ �G

(`)
ν

]
1≤µ,ν≤Nb

∈ Rn×Nb×Nb be the side tensor, define the respective

unfolding matrices
G(`) = mat(G(`)) ∈ Rn×N2

b , ` = 1, 2, 3.

We denote by P (`) ∈ Rn×RN the factor matrices in the rank-RN canonical tensor PN ∈
Rn×n×n. Introduce the ε-truncated SVD-based left-orthogonal decomposition of G(`), G(`) ∼=
U (`)V (`)T , ` = 1, 2, 3, with n×R` andN×R` matrices U (`) (orthogonal) and V (`), respectively,
where N = N2

b , and where U (`), V (`) will be called left and right redundancy-free (RF) basis
sets, and denote RG = maxR`.

12



Lemma 3.7 Given ε > 0, the redundancy-free factorized ε-approximation to the matrix B,

B ∼= Bε :=

RN∑
k=1

�3
`=1V

(`)M
(`)
k V (`)T , (3.5)

where V (`) is the corresponding right RF basis and

M
(`)
k = U (`)T (P

(`)
k ∗n U (`)) ∈ RR`×R` , k = 1, ..., RN , (3.6)

stands for the Galerkin convolution matrix on the left RF basis, U (`), ` = 1, 2, 3, exhibits the
following properties:

(A) The storage demand for factorizations (3.5) and (3.6) is estimated by RN
∑3

`=1R
2
` +

N2
b

∑3
`=1R` and O((RG +RN )n), respectively. The numerical complexity of the ε-truncated

representation (3.6) is bounded by O(RNR
2
Gn+RGRNn log n).

(B) The ε-rank of the matrix Bε admits the following upper bound,

rank(Bε) ≤ min{N2
b , RN

3∏
`=1

R`}. (3.7)

(C) Let A`(k) = G(`)P
(`)
k ∗n G(`), then the error estimate in the Frobenius norm holds,

‖B −Bε‖F ≤ 6εmax
`

‖ G(`) ‖F
RN∑
k=1

max
`

‖A`(k)‖2F ‖ P (`)
k ‖F . (3.8)

(D) Assume that QTT ranks of the column vectors in P
(`)
k ∗nU (`) and U (`) are small. Then

the QTT representation of tensor factors in (3.6) amounts to O(RGRN log n) reals. The

QTT-complexity to compute matrices M
(`)
k , k = 1, ..., RN , is estimated by O(RNR

2
G log n).

Proof. (A) Using the Galerkin-type representation of the TEI tensor B as in (3.3), we obtain

B = mat(B) =

RN∑
k=1

�3
`=1G

(`)T
[
P

(`)
k ∗n G(`)

]
,

where � denotes the Hadamard product of matrices. Plugging the truncated SVD factor-
ization of G(`) in the right-hand side above leads to the desired representation,

Bε =

RN∑
k=1

�3
`=1V

(`)U (`)T
[
P

(`)
k ∗n (U (`)V (`)T )

]
(3.9)

=

RN∑
k=1

�3
`=1V

(`)
[
U `)T (P

(`)
k ∗n U (`))

]
V (`)T

=

RN∑
k=1

�3
`=1V

(`)M
(`)
k V (`)T .
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The storage cost for the above RHOSVD-type factorization (3.9) to the N2
b ×N2

b matrix B
is bounded by RN

∑3
`=1R

2
` +N2

b

∑3
`=1R` being independent on the grid-size n.

The computational complexity at this step is dominated by the cost of reduced Cholesky
algorithm to compute truncated SVD of matrices G(`), that is O(RG(N

2
b + n)), and by the

total cost of convolution products in (3.6), O(RNRGn log n).
(B) Using the rank properties of Hadamard product of matrices, it is easy to see that (3.9)

implies the direct ε-rank estimate for the matrix Bε, as in (3.7), where the rank parameters
R` characterize the entanglement of a molecule.

(C) The error bound can be derived along the line of [22], Theorem 2.5 (d), related to
the RHOSVD error analysis. In fact, the approximation error can be represented by

B −Bε =

RN∑
k=1

(
�3

`=1G
(`)P

(`)
k ∗n G(`) −�3

`=1V
(`)U (`)TP

(`)
k ∗n U (`)V (`)T

)
.

Denote Ã`(k) = V (`)U (`)TP
(`)
k ∗n U (`)V (`)T , then for each fixed k = 1, . . . RN , we have

‖A` − Ã`‖ ≤ 2ε‖P (`)
k ‖‖G(`)‖ (3.10)

since the stability in the Frobenius norm ‖U (`)V (`)T‖ ≤ ‖G(`)‖ holds. Now, for fixed k, we
obtain

A1 � A2 � A3 − Ã1 � Ã2 � Ã3 = A1 � A2 � A3 − Ã1 � A2 � A3

+ Ã1 � A2 � A3 − Ã1 � Ã2 � A3

+ Ã1 � Ã2 � A3 − Ã1 � Ã2 � Ã3.

Summing up the above representation over k = 1, . . . RN , and taking into account (3.10), we
arrive at the bound

‖B −Bε‖F ≤ 6εmax
`

‖G(`)‖F
RN∑
k=1

max
`

‖A`(k)‖2F‖P
(`)
k ‖F , (3.11)

which proves the result.
(D) The complexity bound is the direct consequence of assumptions on the QTT-ranks

(see numerics below).
Proof of Lemma 3.7 is constructive and outlines the way to an efficient implementation of

(3.5), (3.6). Some numerical results on performance of the corresponding black-box algorithm
are shown in Sections 3.4 and 4.2. Here the algebraically optimized separation ranks R` are
only determined by the entanglement properties of a molecule, while the number N − RG

indicates the measure of redundancy in the product basis set. In numerical experiments we
observe R` ≤ Nb and R` � n for large n.

Figure 3.2, left, represents the ε-rank R`, ` = 1, 2, 3, and RB, computed on the examples
of some compact molecules with ε = 10−6. We observe that the Cholesky rank of B, RB, is
a multiple of Nb with a factor ∼ 6, see also Fig. 3.3. Remarkably, the RHOSVD separation
ranks R` ≤ Nb remain to be very weakly dependent on Nb, but primarily depend on the
topology of a molecule.
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Molecules NH3 H2O2 N2H4 C2H5OH

Nb;Norb 48; 5 68; 9 82; 9 123; 13

Av. QTT rank of U (1) 7.3 7.9 7.5 7.6

Av. QTT rank of V (1) 15 21 24 37

(Av. QTT rank of V (1))/Norb 3 2.3 2.6 2.85

Table 3.1: Average QTT ε-ranks of U (1) and V (1) in G(1)-factorization, ε = 10−6.

Figure 3.2, right, provides average QTT ranks of column-vectors in U (1) ∈ Rn×R1 for
NH3, H2O2, N2H4 and C2H5OH molecules. Again, surprisingly, the rank portraits appear to
be nearly the same for different molecules, and the average rank over all indices m = 1, ..., R1

is a small constant at about r0 w 7. The more detailed results are listed in Table 3.1.
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Figure 3.2: Left: ε-ranks R` and RB for HF, NH3, H2O2, N2H4 and C2H5OH molecules, with the
number of basis functions Nb = 34, 48, 68, 82 and 123, respectively. Right: Average QTT ε-ranks
of column-vectors in U (1) ∈ Rn×R` for NH3, H2O2, N2H4 and C2H5OH molecules, ε = 10−6.

The a priori rank estimate (3.7) looks too pessimistic compared with the results of nu-
merical experiments. However, in the case of flattened or extended molecules (some of the
directional ranks are small) this estimate provides a much sharper bound.

The RHOSVD factorization (3.5), (3.6) is a reminiscent of the exact Galerkin represen-

tation (3.3) in the right RF basis, while matricesM
(`)
k play the role of ”directional“ Galerkin

projections of the Newton kernel onto the left RF basis. This factorization can be applied di-
rectly to fast calculation of the reduced Cholesky decomposition of the matrix B considered
in the next section.

Finally, we point out that our RHOSVD-type factorization can be viewed as the algebraic
tensor-structured counterpart of the density fitting scheme commonly used in quantum chem-
istry [1]. The robust error control in the proposed basis optimization approach is based on
purely algebraic SVD-like procedure that allows to eliminate the redundancy in the product
basis set up to given precision ε > 0.
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3.4 Low-rank Cholesky decomposition of the TEI matrix B

In this section, we present the economical truncated Cholesky decomposition scheme of
complexity O(N3

b ) providing the O(Nb)-rank factorization of the TEI matrix B. Then we
describe how the complexity can be reduced to O(N2

orbNb) using the quantized representa-
tion of the Cholesky vectors. The Cholesky scheme requires only O(Nb) adaptively chosen
columns in B calculated on-line using the off-line precomputed data either in the form of
one-electron integral tensor H, or the redundancy-free factorization (3.5).

We denote the long indexes in the N ×N (N = N2
b ) matrix unfolding B by

i = vec(µ, ν) := (µ− 1)Nb + ν, j = vec(κ, λ), i, j ∈ IN := {1, ..., N}.

Lemma 3.8 The unfolding matrix B is symmetric and positive semidefinite.

Proof. The symmetry is enforced by the definition (see Lemma 3.2). The positive semi-
definiteness follows from the observation that the matrix B can be viewed as the Galerkin
matrix 〈−∆−1ui, uj〉, i, j ∈ IN , in the finite product basis set {ui} = {gµgν}, where ∆−1 is
the inverse of the self-adjoint and positive definite in H1(R3) Laplacian operator subject to
the homogeneous Dirichlet boundary conditions at x→ ∞.

We consider the ε-truncated Cholesky factorization of B ≈ Bε = LLT , where

‖B − LLT‖ ≤ Cε, L ∈ RN×RB .

Based on the previous observation (see Introduction), we will postulate rather general ε-rank
estimate (in electronic structure calculations this conventional fact traces back to [5]), see
numerics on Fig. 3.3.

Conjecture 3.9 Fixed truncation error ε > 0, for the Gaussian-type AO basis functions
there holds, RB = rank(LLT ) ≤ CNb, where the constant C > 0 is independent of Nb.

Clearly, the fastest version of the numerical Cholesky decomposition is possible in the
case of given full TEI tensor B. In this case the CPU time for the Cholesky decomposi-
tion becomes negligible compared with those to compute the TEI tensor B. However, the
practical use of algorithm is limited to the small basis sets because of the large storage
requirements, N4

b .
In what follows, we describe the two approaches to compute the truncated Cholesky

decomposition with reduced storage demands based on different types of precomputed input:
(A) one-electron integrals tensor H (see §3.1) or
(B) the redundancy-free factorization of B in form (3.5).
In case (A), we propose the optimized two-step approximation method to compute the

ε-truncated Cholesky factorization that operates on the input of the ”one-electron“ tensors
Gµν and Hµν , both represented in the mixed canonical-QTT data format.

The complexity optimization is based on the idea to recognize the finer data structure by
quantization of long n-vectors in precomputing stage using merely the algebraic algorithms
with controlled approximation error via the adaptive choice of separation rank parameters.

Suppose that n = 2L, then the rank-1 canonical tensorGµν = G(1)⊗G(2)⊗G(3) ∈ Rn×n×n,
with G(`) ∈ Rn, is mapped to its quantized image in dimension D,

Gµν 7→ Q(Gµν) = Q(G(1))⊗Q(G(2))⊗Q(G(3)) ∈
D⊗

ν=1

R2,
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Figure 3.3: Singular values of LLT for NH3, H2O2, N2H4 and C2H5OH molecules, with the
number Nb of basis functions 48, 68, 82 and 123, respectively.

with D = 3L and maximal QTT-rank rQ (for GTO basis we have rQ ≤ 4). Similar quanti-
zation transform applies to each rank-1 term representing rank-RN tensor Hµν .

Quantization of the column N -vectors in the Cholesky factor L applies to their zero
extension to the size NQ = 2M ≥ N , that is nearest close to N = N2

b .

Algorithm (A). Given tensors Gµν and Hµν (µ, ν ∈ {1, ..., Nb}) stored in the canonical-
QTT format. Compute the optimized ε-truncated Cholesky decomposition in two steps:

(A.I) The Cholesky factorization calculates RB = O(Nb) required column vectors of size
O(N), to be marked by indices j∗ = vec(κ∗, λ∗), by using scalar products in the QTT-
canonical format

bµνκ∗λ∗ = 〈Gµν ,Hκ∗λ∗〉 ∈ RN .

Numerical cost for each N -vector amounts to 3 · 2r3Q log2 nN
2
b operations.

(A.II) Apply the rank-RL QTT approximation of dimension M ≈ log2N to the column
vectors (skeletons) of Cholesky factorization generating the mixed canonical-QTT tensor
decomposition of the matrix B.

Fixed ε > 0, our numerical tests indicate the following asymptotic behavior (see Table
3.3),

RL w 3Norb ≤
3

10
Nb,

that is to be postulated in the following. Hence, the total numerical cost to represent the
LLT Cholesky decomposition is estimated by O(NbN

2
orb log2Nb).

Table 3.2 provides the CPU times to calculate the convolution tensor H and then full
TEI tensor B on the example of the NH3 molecule (Nb = 48), ε = 10−6. It can be seen that
in the case of small molecules the precomputing step dominates over the direct evaluation
of full tensor B and may quickly become a bottleneck for larger compounds. The CPU-time
for ε-Cholesky decomposition is about 1 sec., ε = 10−5.
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n3 20483 40963 81923 163843

3D-Conv, H (sec) 8 41 112 182
B (sec) 16 19 23 28

Table 3.2: NH3 molecule: CPU times for H and B vs. grid-size n3.

Case (B). In the situation with the precomputed RHOSVD-type factorization (3.5) one
can compute the truncated Cholesky decomposition using the column and diagonal elements
of matrix B calculated on the fly as in the following

Algorithm (B). Given the redundancy-free factorization (3.5).
(B.I) Implement the Cholesky factorization where the column and diagonal elements in

the TEI matrix B are represented by the following tensor operations

B(:, j∗) =

RN∑
k=1

�3
`=1V

(`)M
(`)
k V (`)(:, j∗)

T
,

and

B(i, i) =

RN∑
k=1

�3
`=1V

(`)(i, :)M
(`)
k V (`)(:, i)

T
,

respectively.
(B.II) Repeat Step (A.II) in Algorithm (A).
The factorization (3.5) applied at Step (B.I) essentially reduces the amount of work on

the ”preprocessing“ stage in the limit of large Nb (see Lemma 3.7) since the number of
convolutions is now estimated by CNb (usually, C ≤ 1) instead of N2

b .
The cost to compute the column vector at Step (BI) is estimated by 3N2

bRG. Taking into
account that rQ ≈ 4 and RG ≤ Nb we conclude that in the range of grid-size n ≤ 214, Step
(A.I) in Algorithm (A) outperforms Algorithm (B) if 2 · log2 n · r3Q = 2 · 14 · 43 ≤ Nb, i.e. for
large enough Nb & 2000. The total numerical complexity of Step (BI) in Algorithm (B) is
dominated by O(RGN

3
b ).

3.5 Analyzing QTT compression to the Cholesky factor L

This section collects the important observations obtained in numerical experiments. In the
QTT analysis of the TEI matrix B for several moderate size compact molecules, we revealed
that, with fixed approximation error ε > 0, the average QTT ranks of the Cholesky vectors
have the following behavior rQTT ∼ kcholNorb, with kchol ≤ 3. From this numerics we make
a conclusion that factor kchol = 3 is due to the spatial dimensionality of the considered
molecular system (or problem) observed for compact compounds and it becomes closer to 2
for more stretched molecules, see Table 3.3 below.

Based on this numerical experiments we formulate our hypothesize:

Hypothesize 3.10 The structural complexity of the Cholesky factor L of matrix B in the
QTT representation is characterized by the rank parameter

RL
∼= 3Norb.
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Molecule HF H2O NH3 H2O2 N2H4 C2H5OH

Norb 5 5 5 9 9 13
rQTT 12 13.6 15 21 24 37

kchol = rQTT/Norb 2.4 2.7 3 2.3 2.6 2.85

Table 3.3: Average QTT ranks of the Cholesky vectors vs. Norb for some molecules.

The effective representation complexity of the Cholesky factor L ∈ RN×RB is estimated by

9RBN
2
orb � RBN

2
b .

Assuming that the conventional relation Nb ≈ 10Norb is fulfilled, we conclude that the
reduction factor in the storage size with QTT representation of L is about 10−1.

Similar rank characterizations have been observed by the QTT analysis of U (`) and V (`)

factors in the rank factorization of the initial product bases tensors G(`), ` = 1, 2, 3 (see
Table 3.1).

It is interesting to note, that the average QTT ranks of the reduced higher order SVD
factors V (`) ∈ RN2

b×R` in the rank factorization of the initial product bases tensors G(`),
` = 1, 2, 3, have almost the same rank scaling, rQ(V

(`)) ≤ 3Norb, as a factor kchol ≈ 3 in the
Cholesky decomposition of the matrix B (see Table 3.1). Hence, the QTT representation
complexity for the factor V (`) in (3.5) can be reduced to

10N2
orbRG ≈ 1

10
N2

bRG.

4 Applications to electronic structure calculations

4.1 TEI tensor in the Hartree-Fock calculations

The numerical treatment of the two-electron integrals (TEI) is the main bottleneck in the fast
solution of the Hartree-Fock equation and in DFT calculations for large molecules. The 2N -
electrons Hartree-Fock equation for pairwise L2-orthogonal electronic orbitals, ψi : R3 → R,
ψi ∈ H1(R3), reads as

Fψi(x) = λi ψi(x),

∫
R3

ψiψjdx = δij, i, j = 1, ..., Norb (4.1)

with F being the nonlinear Fock operator

F := −1

2
∆ + Vc + VH +K.

Here the nuclear potential takes the form

Vc(x) = −
M∑
ν=1

Zν

‖x− aν‖
, Zν > 0, aν ∈ R3,
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while the Hartree potential VH(x) and the nonlocal exchange operator K read as

VH(x) := ρ ?
1

‖ · ‖
=

∫
R3

ρ(y)

‖x− y‖
dy, x ∈ R3, (4.2)

and

(Kψ) (x) := −
Norb∑
i=1

(
ψ ψi ?

1

‖ · ‖

)
ψi(x) = −1

2

∫
R3

τ(x, y)

‖x− y‖
ψ(y)dy, (4.3)

respectively. Conventionally, we use the definitions

τ(x, y) := 2

Norb∑
i=1

ψi(x)ψi(y), ρ(x) := τ(x, x),

for the density matrix τ(x, y), and electron density ρ(x).
Usually, the Hartree-Fock equation is approximated by the standard Galerkin projec-

tion of the initial problem (4.1) posed in H1(R3) (see [29] for more details). For a given
finite Galerkin basis set {gµ}1≤µ≤Nb

, gµ ∈ H1(R3), the occupied molecular orbitals ψi are
represented (approximately) as

ψi =

Nb∑
µ=1

Cµigµ, i = 1, ..., Norb. (4.4)

To derive an equation for the unknown coefficients matrix C = {Cµi} ∈ RNb×Norb , first, we
introduce the mass (overlap) matrix S = {Sµν}1≤µ,ν≤Nb

, given by

Sµν =

∫
R3

gµgνdx,

and the stiffness matrix H = {hµν} of the core Hamiltonian H = −1
2
∆ + Vc (the single-

electron integrals),

hµν =
1

2

∫
R3

∇gµ · ∇gνdx+
∫
R3

Vc(x)gµgνdx, 1 ≤ µ, ν ≤ Nb.

The core Hamiltonian matrix H can be precomputed in O(N2
b ) operations, see [21] for the

detailed description of the grid-based approach.
In computational quantum chemistry the nonlinear terms representing the Galerkin ap-

proximation to the Hartree and exchange operators are calculated traditionally by using the
two-electron integrals tensor B = [bµνκλ] as defined in (1.1), that initially has the computa-
tional and storage complexity of order O(N4

b ).
Introducing the Nb ×Nb matrices J(D) and K(D),

J(D)µν =

Nb∑
κ,λ=1

bµν,κλDκλ, K(D)µν = −1

2

Nb∑
κ,λ=1

bµλ,νκDκλ, (4.5)

where D = 2CCT ∈ RNb×Nb is the low-rank symmetric density matrix, such that

rank(D) = Norb � Nb,
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one then represents the complete Fock matrix F by

F (D) = H + J(D) +K(D). (4.6)

The resultant Galerkin system of nonlinear equations for the coefficients matrix
C ∈ RNb×Norb , and the respective eigenvalues Λ, reads as

F (D)C = SCΛ, Λ = diag(λ1, ..., λNb
), (4.7)

CTSC = IN ,

where the second equation represents the orthogonality constraints
∫
R3 ψiψjdx = δij. Here

IN denotes the Nb ×Nb identity matrix.
In the standard quantum chemical implementations based on the analytically precom-

puted set of two-electron 3D convolution integrals, the numerically confirmed rank bound
rank(B) ≤ CBNb (CB ∼ 10), allows to reduce the complexity of building up the Fock matrix
F to O(N3

b ), which is by far dominated by computational cost for the exchange term K(D).
In the following we will show how this cost can be reduced further using certain low-rank
structures in matrices B and D.

4.2 The Hartree-Fock calculus using tensor structure in B

In this Section we consider in more detail the multilinear algebraic calculation of the Coulomb
and exchange matrices in the Fock operator. One can use the canonical-QTT structure of
the target tensor and low-rank structure of the matrix D to evaluate and represent matrices
J(D) and K(D) efficiently.

Remark 4.1 (The Coulomb matrix). Precomputed tensors Gµν ,Hκλ, in view of (3.1), we
have

J(D)µν =

Nb∑
κ,λ=1

bµν,κλDκλ =

Nb∑
κ,λ=1

〈Gµν ,Hκλ〉Dκλ. (4.8)

Vectorizing matrices J = vec(J), D = vec(D), we arrive at the simple matrix representation,

J = BD ≈ L(LTD), (4.9)

which can be easily evaluated taking into account the rank structure of B as well as the
QTT-structure in vectors D and in the column vectors of L.

The straightforward calculation by (4.9) amounts to O(RBN
2
b ) operations where RB is the

ε-rank of B. Our analysis indicates that imposing the QTT-structure of the matrix L may
reduce this cost to O(RBNorb).

Remark 4.2 (The HF exchange). Tensor evaluation of the exchange matrix K(D) is much
more involved since in this case it reduces to a summation over permuted indices,

K(D)µν = −1

2

Nb∑
κ,λ=1

bµλ,νκDκλ = −1

2

Nb∑
κ,λ=1

〈Gµλ,Hνκ〉Dκλ. (4.10)
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Figure 4.1: N2H4 molecule: error in the Coulomb (left) and exchange (right) matrices, using
the Richardson extrapolation on n⊗3 grids with n = 8192 and n = 16384.
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Figure 4.2: C2H5OH molecule: accuracy of the exchange matrices on n⊗3 grids with n = 8192
and n = 16384 (the decay ratio 1 : 4 is well suited for the Richardson extrapolation).
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Introducing the permuted tensor B̃ = permute(B, [2, 3, 1, 4]), and the respective accompany-

ing matrix B̃ = mat(B̃), we then obtain

vec(K) = K = B̃D. (4.11)

The calculation by (4.11) amounts to O(RBN
3
b ) operations. However, using the rank-Norb

decomposition of D = 2CCT allows to reduce the cost to O(RBNorbN
2
b ), by the representation,

K(D)µν = −
Norb∑
i=1

(
∑

LµλCλi)(
∑

LκνCκi)
T ,

where Lµν = reshape(L, [Nb, Nb, RB]) ∈ RNb×Nb×RB is the Nb × Nb × RB-folding of the
Cholesky factor L.

In this work the numerical illustrations are performed using the grid representation of Gaus-
sian AO bases merely to have means to compare the accuracy of the resulting Galerkin Fock
matrix with a standard output from the MOLPRO package [40], where the entries of TEIs
are computed analytically.

Figure 4.1 represents the error portrait corresponding to the Coulomb and exchange
matrices computed via rank-RB LLT approximation to B as above, in the case of N2N4

molecule. Figure 4.2 shows the absolute error in the exchange matrix of C2H5OH molecule
calculated on n⊗3 grids with n = 8192 and n = 16384. The numerical error scales quadrati-
cally in the grid size, O(h2), and can be improved to O(h3) by the Richardson extrapolation.
The observed decay ratio 1 : 4 indicates the applicability of Richardson extrapolation to the
results on a pair of diadically refined grids.

4.3 MP2 perturbation theory

The various degrees Møller-Plesset perturbation theory (in particular, second-order MP2
model) significantly improves the HF correlation energy and other molecular characteriza-
tions in the case of large basis sets [41]. However, the numerical payoff scales as N5

b . Our
tensor-structured representations of the matrix B allows to reduce this cost by some orders
of magnitude. Here we sketch the main idea.

First, one has to transform the TEI tensor B = [bµνκλ], from the initial AO basis set to
the MO-basis represented by (4.4),

V = [viajb] : viajb =

Nb∑
µ,ν,λ,σ=1

CµiCνaCλjCσbbµνλσ, i, a, j, b ∈ {1, ..., Nb},

that makes the dominating impact to the overall numerical cost of order O(N5
b ). Given the

tensor V = [viajb], then the second order MP2 perturbation to the HF energy is calculated
by

EMP2 = −
∑

a,b∈Ivir

∑
i,j∈Iocc

viajb(2viajb − vibja)

εa + εb − εi − εj
,

where Iocc := {1, ..., Norb}, Ivir := {Norb + 1, ..., Nb}, and εk, k = 1, ..., Nb, represent the HF
eigenvalues.
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It can be shown that the rank-O(Nb) approximation to the TEI matrix B and to the
matrix unfolding of V, V = [via;jb], combined with the low-rank approximation to the
unfolding matrix E of a tensor

E = [
1

εa + εb − εi − εj
], i, a, j, b ∈ {1, ..., Nb}, (4.12)

reduces the total cost by the order of magnitude (we suppose that the so-called homo-lumo
gap is larger than some fixed constant δ > 0). In this aspect, the rank-| log ε log δ| approx-
imation to the unfolding matrix E = [ek`,mn] follows by the well-known sinc-approximation
to the Hilbert matrix { 1

i+j
}, [12].

Further reduction of the numerical complexity can be based on more specific properties
of the matrix unfolding V when using a physical insight to the problem.

4.4 Multidimensional Hamiltonian in FCI models

In the formulation of second quantization, the Hamiltonian operator for the high-dimensional
electronic Schrödinger equation

HΨ = EΨ

is given by

H =
∑
pq

hpqa
+
q ap +

1

2

∑
pq,rs

vqspra
+
r a

+
s a

−
p a

−
q ,

where the single-electron integrals correspond to the core Hamiltonian in HF operator (see
§4.1), and vqspr represents the TEI in the MO basis (the so-called canonical molecular or-
bitals). The symbols a+ and a− denote creation and annihilation operators of second quan-
tization. The details on electronic structure calculations via FCI models, particularly based
on DMRG optimization over MPS-type tensor manifolds, can be found in the seminal paper
[42].

5 Conclusions

In this paper, we present a new grid-based tensor-structured method for the efficient cal-
culation of the TEI tensor in a general low-rank basis. The approach is based on the
tensor-product numerical integration, redundancy-free matrix factorizations on the opti-
mized product-basis, and, finally, the pivoted Cholesky decomposition of the TEI matrix B
accomplished by the QTT-recompression of the column vectors in the Cholesky factor.

Due to the O(n log n) complexity scaling of the tensor-structured numerical convolution
over n× n× n Cartesian grids, and, hence, the possibility to imply fine spatial meshes, we
achieve high accuracy in the Coulomb and exchange matrices on examples of several organic
molecules. The computational error is of the order O(h2), where h is the mesh-size, and it
can be reduced to O(h3) by using the Richardson extrapolation. Making use of the quantized
representation to grid functions allows to reduce the storage complexity to the logarithmic
scaling in n, O(log n).

The main theoretical results of the paper are concerned with the QTT rank bounds
proven for the GTO basis tensor G and for its Newtonian convolution H, see Lemmas 3.4

24



and 3.5, and summarized in Remark 3.6 in the form of rigorous complexity bounds. These
results justify the logarithmic complexity scaling in the mesh parameter n of the important
precomputing step as in §3.2. We also prove the complexity and error estimates for the
redundancy-free factorization of the TEI matrix, presented in Lemma 3.3.

We revealed in numerical tests that the separation ranks of the redundancy-free factor-
ization to the matrix B remain to be bounded by Nb, while the ε-rank of the TEI matrix B
itself has clear linear scaling in Nb. The structural complexity of the quantized representa-
tion to the Cholesky vectors, measured by the QTT-ranks, is close to 3Norb. The important
numerical observation in the paper is that the storage complexity of Cholesky decomposi-
tion scales as O(32N2

orbNb), reducing at about a factor of 10−1 the traditional scaling O(N3
b ),

since, conventionally, Nb w 10Norb.
The presented method has a good potential for the post-HF models, since the higher

dimensionality of tensor data makes the effect of multilinear algebra even more essential.
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