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Abstract

We derive reduced ODE models starting from one dimensional lubrication equa-
tions describing coarsening dynamics of droplets in nanometric polymer film inter-
acting on a hydrophobically coated solid substrate in the presence of large slippage at
the liquid/solid interface. In the limiting case of infinite slip length corresponding in
applications to free films a collision/absorption model then arises and is solved explic-
itly. The exact coarsening law is derived for it analytically and confirmed numerically.
Existence of a threshold for the decay of initial distributions of droplet distances at
infinity at which the coarsening rates switch from algebraic to exponential ones is
shown.

1 Introduction.

Dewetting processes of a liquid polymer film of nanometer thickness interacting on a hy-
drophobically coated solid substrate attracted an intensive research during last several
decades, see. e.g. a review in [1]. In general, such processes can be divided into three
stages. During the first stage a liquid polymer film is susceptible to instability due to
small perturbations of the film profile. Typically such films rupture, thereby initiating
a complex dewetting process, see e.g. [2–4]. The influence of intermolecular forces play
an important part in the rupture and subsequent dewetting process, see e.g. [5, 6] and
references therein. Typically the competition between the long-range attractive van der
Waals and short-range Born repulsive intermolecular forces reduces the unstable film to
an ultra-thin layer that connects the evolving patterns and is given by the minimum of
the corresponding intermolecular potential, i.e. the film settles into an energetically more
favorable state, see [7, 8]. The second stage is associated with the formation of regions of
this minimal thickness, bounded by moving rims that connect to the undisturbed film, see
e.g. [9–11].

In this study we are interested in the third and the last stage of the dewetting process,
namely the long-time coarsening process that originates in the breaking up of the evolving
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patterns into small droplets and is characterized by its subsequent slow-time coarsening
dynamics, which has been observed and investigated experimentally by Limary and Green
[12, 13]. They show that during the coarsening the average size of droplets increases and
the number of droplets decreases. The coarsening mechanisms that were observed in such
films are typically subsequent collapses of smaller droplets and collisions of neighboring
ones. During collapse the size of a droplet shrinks in time and its mass is distributed in the
ultra-thin layer. In turn, collisions among droplets occur due to the mass transfer through
the ultra-thin layer between them that causes a translation movement of them, droplet
migration, eventually leading to the formation of new droplets. A numerical example of
the coarsening dynamics in two-dimensional films is shown in Fig. 2.

Figure 1: Plots of intermolecular pressure Πε(h) (blue) and potential function Uε(h) (green) for
ε = 0.1

Besides intermolecular forces and surface tension at the free surface of the film the
dewetting of polymer films on hydrophobic substrates also involves such boundary effect as
slippage on a solid substrate [14]. Recently in Münch et al. [15] closed-form one-dimensional
lubrication equations over a wide range of slip lengths were derived from the underlying
equations for conservation of mass and momentum, together with boundary conditions for
the tangential and normal stresses, as well as the kinematic condition at the free boundary,
impermeability and Navier-slip condition at the liquid-solid interface. Asymptotic argu-
ments, based on the magnitude of the slip length show that within a lubrication scaling
there are two distinguished regimes, see [15].

These are the well-known weak-slip model

∂th = −∂x
(
M(h)∂x (σ∂xxh− Πε(h))

)
(1.1)

with M(h) := h3 +b h2 and b denoting the slip length parameter; and the strong-slip model

Re (ε∂t(hu) + ∂x(hu
2)) = ν∂x(h∂xu) + h∂x(σ∂xxh− Πε(h))− u

β
(1.2a)

ε∂th = − ∂x (hu) , (1.2b)

respectively. Here, u(x, t) and h(x, t) denote the average velocity in the lateral direction
and the height profile for the free surface, respectively. The positive slip length parameters
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Figure 2: Numerical solution to (1.2a)–(1.2b) with ε = 0.1, β = 2.5, Re = 1 showing an example
of a coarsening process (collapse of the 4th small droplet and collision of 2nd and 3rd ones) in
the array of five quasiequilibrium droplets.

b and β are related by orders of magnitude via b ∼ η2β, where the (small) parameter η,
0 < η � 1, refers to the vertical to horizontal scale separation of the thin film.

The high order of the lubrication equations (1.1) and (1.2a)–(1.2b) is a result of the
contribution from surface tension at the free boundary, reflected by the linearized curvature
term σ∂xxh with parameter σ ≥ 0. A further contribution to the pressure is denoted by
Πε(h) and represents that of the intermolecular forces, namely long-range attractive van der
Waals and short-range Born repulsive intermolecular forces. A commonly used expression
for it [8, 18] is given by

Πε(h) =
ε2

h3
− ε2

h4
with 0 ≤ ε� 1. (1.3)

It can be written as a derivative of the potential function Uε(h) = U(h/ε) (see Fig. 1)
where

U(H) = − 1

2H2
+

1

3H3
, (1.4)

The parameter 0 < ε � 1 is the global minimum of Uε(h) and gives to the leading order
thickness of the ultra-thin layer. Below we often use notation for the pressure and flux
functions function

p(h) := σ∂xxh− Πε(h), j(h) = hu (1.5)

Re (∂t(hu)+∂x(hu
2)) and ν∂x(h∂xu) in (1.2a)–(1.2b), with Re, ν ≥ 0 denoting the Reynolds

number and viscosity parameter, represent inertial and Trouton viscosity terms, respec-
tively.

Additionally, the weak-slip and the strong-slip models contain as limiting cases three
further lubrication models. One of them is the no-slip model, which is obtained setting
b = 0 in the weak-slip model:

∂th = −∂x
(
h3∂x (∂xxh− Πε(h))

)
. (1.6)
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The second one is obtained from the strong-slip model in the limit β → ∞ and describes
the dynamics of suspended or falling free films:

Re (ε∂t(hu) + ∂x(hu
2)) = ν∂x(h∂xu) + h∂x(σ∂xxh− Πε(h)) (1.7a)

ε∂th = − ∂x (hu) , (1.7b)

For the third limiting case the slip-length parameter βI is of order of magnitude lying in
between those that lead to the weak and the strong-slip model, i.e. b � βI � β. The
corresponding intermediate-slip model is given by

∂th = −∂x
(
h2∂x (∂xxh− Πε(h))

)
. (1.8)

It can be obtained by rescaling time in (1.1) by b and letting b→∞ or by rescaling time
and the horizontal velocity by β in (1.2a)–(1.2b) and taking the limit β → 0. Existence of
weak solutions to (1.2a)–(1.2b) and (1.7a)–(1.7b) and rigorous convergence of the former
ones to the classical solutions of (1.8) as β → 0 was shown recently in [17].

As in [17] we consider systems (1.2a)–(1.2b) and (1.7a)–(1.7b) on a bounded interval
(0, L) with the boundary conditions

u = 0, and ∂xh = 0 at x = 0, L, (1.9)

whereas equations (1.1),(1.6) and (1.8) with

∂xxxh = 0, and ∂xh = 0 at x = ±L. (1.10)

Both (1.9) and (1.10) incorporate zero flux at the boundary and as a consequence imply
the conservation of mass law

1

L

∫ L

0

h(x, t) dx = const, ∀t > 0.

Within the context of thin liquid films one of the first studies of the coarsening dynamics
can be found in Glasner and Witelski [18, 19]. The authors considered the one-dimensional
no-slip lubrication model (1.6) with (1.10). They confirmed numerically existence of the two
coarsening driven mechanisms, namely collision and collapse. One of the typical problems
considered in [18, 19] was the calculation of the coarsening rates, i.e. how fast the number
of droplets decreases due to coarsening in time. Often in order to identify the characteristic
dependence for coarsening rates one needs to model very large arrays of droplets (around
104). But due to the presence of the ultrathin-layer of order ε between droplets the problem
of numerical solution for any lubrication equation becomes very stiff in time and demands
high space resolution as the number of droplets increases. Therefore, there exists a need for
further reduction of lubrication models to more simple, possibly finite-dimensional ones.

Basing on the observation that solutions of lubrication equations describing coarsen-
ing dynamics stay in time very close to a perturbed finite combination of quasistationary
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droplets and can be therefore parameterized by a finite number of parameters, namely po-
sitions and pressures of drops, in [18, 19] for the first time a reduced ODE model describing
evolution of the latter ones on the slow time scale was derived from the lubrication equation
(1.6). Using this reduced model the authors derived also the corresponding coarsening law
in the form

n(t) ∼ t−2/5, (1.11)

where n(t) denotes the number of droplets remaining at time t. Later, analogous reduced
ODE models from lubrication equation (1.1) with a general mobility M(h) = hq, q > 0 in
one and two dimensional case were derived and analyzed in [20, 21]. An step to a rigorous
justification of these models basing on a center manifold approach was made recently in [22].
For the case M(h) = h the coarsening law (1.11) was justified rigorously in [23] using the
gradient flow structure of the corresponding lubrication equation. The work of [20, 21]
concerns migration of droplet. There it was shown that the direction of the migration of
droplets governed by (1.1) with a general mobility M(h) = hq, q > 0 is opposite to the mass
flux applied to them. Moreover, for g ≤ 2 the driving coarsening mechanism is collapse
of droplets that is due to the mass diffusion in the ultra-thin layer between droplets and
similar to Ostwald ripening in binary alloys, see [24–26]. Note, that also in the no-slip case
q = 3, i.e. one described by (1.6), as was shown in [19] the coarsening rates even for the
systems coarsening solely due collisions obey the law (1.11).

Recently, in Kitavtsev and Wagner [27] it was shown that the coarsening dynamics
of quasistationary droplets governed by (1.2a)–(1.2b) with sufficiently small Re number
is driven also by collapse and collision. There reduced ODE models analogous to that
one of [18, 19] were derived for system (1.2a)–(1.2b) and its limiting case (1.7a)–(1.7b)
as well. In contrast, to the case of (1.1) it was found there that the coefficients of the
strong-slip reduced ODE model depend explicitly on the slip length β. In particular, there
exists a critical length βcr = O(ε) such that the migration of droplets proceeds in the
direction of the applied mass flux for β > βcr and opposite to it for β < βcr. Moreover, it
was shown that for moderate and large β the driving coarsening mechanism switches from
collapse to collision of droplets. Basing, on these observations it was conjectured and shown
numerically in [27] that the coarsening rates for systems (1.2a)–(1.2b) and (1.7a)–(1.7b)
can be remarkably different from ones for (1.11).

In this study we continue the research initiated in [27]. Our aim here is to derive explicit
coarsening laws for the dynamics of droplets in the strong-slip and free film regimes, i.e.
governed by lubrication system (1.2a)–(1.2b) and its limiting case (1.7a)–(1.7b). The
missing point in [27] was a derivation of flux representation between interacting droplets
for moderate and large slip lengths β which was important for closure of the derived there
reduced ODE models. Therefore, inspired with the matched asymptotics technique applied
in Glasner [20] to the lubrication equation (1.1), we present in section 2 a new closed form
derivation of reduced ODE models for (1.2a)–(1.2b) and (1.7a)–(1.7b) that incorporate the
explicit flux representation for all 0 < β ≤ ∞.

In section 3 we concentrate on the reduced ODE model corresponding to (1.7a)–(1.7b),
i.e. on the regime of free films characterized by the infinite slip length β =∞. In this case
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migration and subsequent collisions of droplets dominate completely collapse component
of the coarsening dynamics. Therefore, we look only at the migration subsystem of the
derived reduced ODE model such that droplet pressures are kept constant during evolution
of droplets and updated only after each subsequent collision event. We observe further that
for a special initial data this migration subsystem can be solved explicitly while its solution
represents subsequent collisions of N − 1 droplets with the largest last one. Therefore, we
call it as an exactly solvable collision/absorption model. It turns out that the coarsening
law for this model depends only on the initial distribution of the distances between droplets
and can be derived analytically. Finally, we derive the continuous counterpart of the
coarsening law proceeding to the limit N →∞.

In section 4 we consider several examples of initial distributions of distances between
droplets and show that the corresponding coarsening rates depend only on the distribution
decay at infinity. Moreover, for an explicit family of distributions decaying as 1/x1+α with
α > 0 we show existence of a threshold at α = 1 at which the coarsening rates switch from
algebraic to exponential ones.

In section 5.1 we justify the derived hierarchy of the reduced models by numerical
comparison of their solutions to ones of the initial PDE system (1.2a)–(1.2b) and its limiting
cases (1.8) and (1.2a)–(1.2b). We observe that the deviation between them stays O(ε)
uniformly in time. Besides we compare solutions of the collision/absorption model from
section 3 with those of the full reduced ODE system for the case β =∞. Finally, in section
5.2 we check numerically the derived coarsening law for the collision/absorption model in
the case of finite N and its continuous counterpart.

2 Derivation of reduced ODE models.

We consider a solution to (1.2a)–(1.2b) which stays close in time to a union of N + 1
droplets, which precise characterization to be described below. Similar to the derivation of
reduced coarsening models for the classical thin film equation in [20] we distinguish three
regions in our matched asymptotic analysis.

• Droplet core (DC) region: This region corresponds to droplets and is composed of
the union of disjoint intervals (Xi(t)− Ri(t), Xi(t) + Ri(t)), so that Xi(t) and Ri(t)
are the center and the radius of the i-th droplet, i = 0, ..., N . The dynamical points
Xi(t)±Ri(t) are called contact line points and are defined through the relation

h(Xi ±Ri) = εH∗, (2.1)

where H∗ is the global maximum of U ′(H) with function U(H) defined in (1.4). We
expand

Ri = Ri,0 + εRi,1 + ..., Xi = Xi,0 + εXi,1 + ... (2.2)

and denote

Ṙ =
dR

dt
, Ẋ =

dX

dt
.
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• Contact line (CL) region is a microscopic internal layer around the contact line points
where h and x scale like ε. Here we employ the moving rescaled spatial coordinate

z =
R(t)− |x−X(t)|

ε
, ∂x =

1

ε
∂z, ∂t = ∂τ −

1

ε
∂z(Ṙ0 ∓ Ẋ0), (2.3)

where in this section the sign ∓ corresponds to two CL regions around the points
X ∓R, respectively. Accordingly, by definition (2.1) we have h(z = 0) = εH∗.

• Precursor layer (PL) region is the complement (−L,L) \ ∪i(Xi − Ri, Xi + Ri). In
this region h scales like ε.

The main goal is to determine the evolution of Ri(t) and Xi(t). To do so as in [20] we
propose self-consistent asymptotic expansions in each of three regions and connect them via
matching conditions. Corrections to the leading order base solutions solve linear equations,
and Fredholm-type solvability conditions will yield information about the dynamics.

Let us first consider the motion of the i-th droplet with i ∈ 1, ..., N − 1. For a time
being we skip below the subscript i. Let us start with the CL region. Here the solution to
(1.2a)–(1.2b) is expanded as

h = εH1 + ε2H2 + ..., u = εU1 + ε2U2 + ...

We will also use the induced expansions

P = P0 + εP1 + ..., J = ε2J2 + ε3J3 + ...

for the pressure and flux functions defined in (1.5). The corresponding leading order system
in ε in this region is given by

∂z(σ∂zzH1 − U ′(H1)) = 0,

∂zH1(Ṙ0 ∓ Ẋ0) = ∓∂z(H1U1).

Integrating the last system and using matching conditions to the DC and PL regions

∂zH1 → 0, ∂zzH1 → 0, H1 → 1 as z → −∞
∂zzH1 → 0, H1 → +∞ as z → +∞ (2.4)

one obtains

σ

2
(∂zH1)2 = U(H1)− U(1), (2.5a)

U1 = −(1− 1

H1

)(Ṙ0 ∓ Ẋ0)∓ J2(−∞)

H1

(2.5b)

In particular,
lim

z→+∞
U1 = −(Ṙ0 ∓ Ẋ0), lim

z→−∞
U1 = ∓J2(−∞). (2.6)
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Next, in the DC region we expand the solution as

h = h0 + εh1 + ε2h2 + ..., u = u0 + εu1 + ε2u2 + ...

and correspondingly pressure as

p = p0 + εp1 + ...

In turn, the leading order system in this region is given by

σh0∂x(∂xxh0)− u0

β
= 0,

−∂x(h0u0) = 0

Integrating the system and using the matching condition

h0(X ∓R) = 0 (2.7)

one obtains its solution in the form

h0 =
1

R
√

12σ
(R2 − (x−X(t))2), u0 ≡ 0. (2.8)

Correspondingly, the leading order pressure is given by

p0 ≡
1

R
√

3σ
. (2.9)

In the PL region we expand the solution as

h = εh1 + ε2h2 + ..., u = εu1 + ε2u2 + ...

and correspondingly pressure and flux as

p = p0 + εp1 + ..., j = ε2j2 + ε3j3 + ...

The leading order system in this region is given by

h1∂x(U
′(h1)) = 0,

∂th1 = −∂x(h1u1)

Integrating the system and using the matching condition h1(X ∓R) = 1 one obtains

h1 ≡ 1, u1 = j2 ≡ const (2.10)

For the next order corrections h2, u2 in PL region one has the system

h1∂x(U
′′(h1)h2) = −u1

β
,

∂th2 = −∂x(h1u2 + h2u1)
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From the first equation and (2.10) one obtains

∂xxh2 = ∂xxp0 = 0 and j2 = −β∂xp0. (2.11)

Proceeding further in the expansion in the CL region for the second order corrections
H2, U2 one obtains the system

−ν∂z(H1∂zU1) = H1(σ∂zzH2 − U ′′(H1)H2),

0 = ∂zH2(Ṙ0 − Ẋ0)− ∂z(H1U2 +H2U1) (2.12)

Let us introduce a linear operator

L
[
H
U

]
=

[
H1∂z(σ∂zzH2 − U ′′(H1)H2))

∂z(H2(Ṙ0 − Ẋ0 − U1)−H1U2)

]
.

Formal adjoint operator to L is given by

L∗
[
g
v

]
=

[
−σ∂zzz(H1g) + U ′′(H1)∂z(H1g)− ∂zV (Ṙ0 − Ẋ0 − U1)

∂zvH1

]
.

The kernel of it contains two linear independent functions[
g1

v1

]
:=

[
1
0

]
,

[
g2

v2

]
:=

[
1/H1

0

]
. (2.13)

To derive necessary Fredholm-type solvability conditions for the system (2.12) we multiply
the first equation in (2.12) by g2 and integrate it on (−∞,+∞) to obtain

P0(+∞)− P0(−∞) =

∫ +∞

−∞

ν

H1

∂z(H1∂zU1),

where we have used that in the CL region

P0 = U ′′(H1)H2 − σ∂zzH2. (2.14)

Substituting in the previous expression (2.5b) one obtains

P0(+∞)− P0(−∞) = −νI(∓J2(−∞) + Ṙ0 ∓ Ẋ0), (2.15)

where a constant integral I is given by

I =

∫ +∞

−∞

1

H1

∂z

(
∂zH1

H1

)
dz =

1

35(3 +
√

3)
. (2.16)

and can be effectively calculated from (2.5a) (see Appendix A). Formula (2.15) is an analog
of Gibbs-Thomson boundary condition and shows that the pressure experiences a jump
at the CL region. Note, that this is a first considerable difference between the coarsening
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dynamics driven by (1.2a)–(1.2b) and (1.1). In contrast to (2.15) as was shown in [18] the
pressure is constant through the CL region in the case of (1.1).

Next, multiplying the first equation in (2.12) by g3 and integrating it on (−∞,+∞)
one obtains

0 = νH1∂zU1

∣∣∣+∞
−∞

+

∫ +∞

−∞
H1∂z(σ∂zzH2 − U ′′(H1)H2).

Integrating further three times by parts and using (2.5b), (2.14) one arrives at

0 = −ν ∂zH1

H1

(∓J2(−∞) + Ṙ0 ∓ Ẋ0)
∣∣∣+∞
−∞
−H1P0

∣∣∣+∞
−∞

− σ∂zH1∂zH2

∣∣∣+∞
−∞

+ σ∂zzH1H2

∣∣∣+∞
−∞

,

Using the matching condition (2.4) and additionally

∂zH2 → const as z → −∞,
∂zH1 → ∂xh0, ∂zH2 ∼ ∂xh1 + ∂xxh0z, H1 ∼ h1 + ∂xh0z as z → +∞ (2.17)

one arrives at

(H1P0)
∣∣∣+∞
−∞

= σ∂zH1(+∞)∂zH2(+∞).

The last expression again using (2.4) and (2.17) implies

σ∂xxh0 = −P (+∞),

σ(∂xh0∂xh1)
∣∣∣
X∓R

= P (−∞)− P (+∞)h1(X ∓R). (2.18)

Note, that the first relation in (2.18) is consistent with already derived (2.8)–(2.9), whereas
the second one is new.

Finally, let us consider the system for the first order corrections h1, u1 in the DC region
which has the form

0 = ν∂x(h0∂xu1) + σh0∂xxxh1 − u1/β, (2.19a)

∂h0

∂R
Ṙ0 −

∂h0

∂x
Ẋ0 = −∂x(h0u1) (2.19b)

Let us introduce a linear operator

L
[
h
u

]
=

[
ν∂x(h0∂xu1) + σh0∂xxxh1 − u1/β

−∂x(h0u1)

]
.

Formal adjoint operator to L is given by

L∗
[
g
v

]
=

[
ν∂x(h0∂xg)− g

β
+ h0∂xv

−σ∂xxx(h0g)

]
.
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The kernel of it contains two linear independent functions[
g1

v1

]
:=

[
0
1

]
,

[
g2

v2

]
:=

[
1∫ x

X
dτ
βh0

]
. (2.20)

To derive necessary Fredholm-type solvability conditions for the system (2.19a)–(2.19b) we
multiply (2.19b) by v1, integrate it and using the matching condition (2.7) obtain

Ṙ0 = 0. (2.21)

In turn, multiplying the right hand side of the second equation in (2.12) by v2 and inte-
grating it on (X −R, X +R) one obtains

0 = −Ẋ0

∫ X+R

X−R

∂h0

∂x
v2 dx+

∫ X+R

X−R
∂x(h0u1)v2 dx = h0u1v2

∣∣∣X+R

X−R
−
∫ X+R

X−R
h0u1∂xv2 dx−

− Ẋ0

∫ X+R

X−R

∂h0

∂x
v2 dx = Ẋ0(h0v2)

∣∣∣X+R

X−R
− 2Ẋ0R

β
− 1

β

∫ X+R

X−R
u1 dx =

= −2Ẋ0R

β
− 1

β

∫ X+R

X−R
u1 dx.

In the last equality we used that h0 ∼ O(R − |x − X|) and v2 ∼ log(R − |x − X|) as
x→ X ∓R. Next, using (2.19a) and integrating three times by parts one arrives at

2Ẋ0R

β
= − 1

β

∫ X+R

X−R
u1 dx =

∫ X+R

X−R
ν∂x(h0∂xu1) + σh0∂xxxh1 dx =

= [νh0∂xu1 + σh0∂xxh1 − σ∂xh0∂xh1 + σ∂xxh0h1]
∣∣∣X+R

X−R
(2.22)

Let us note that from (2.19a)–(2.19b) and (2.21), (2.7) it follows that

u1 ≡ Ẋ0, (2.23a)

∂xxxh1 =
Ẋ0

βσh0

(2.23b)

Hence, by (2.23a) the first term in the square brackets in (2.22) vanishes. By (2.23b) one
has ∂xxh1 ∼ log(R− |x−X|) as x→ X ±R. Due to this and (2.7)–(2.8) the second term
in the square brackets in (2.22) also vanishes. In turn, due to the matching condition

h1(X ∓R) = H1(0) (2.24)

and (2.8) the fourth fourth term in the square brackets in (2.22) vanishes. Therefore,
relation (2.22) reduces to

2Ẋ0R

β
= − [σ∂xh0∂xh1]

∣∣∣X+R

X−R
. (2.25)
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At this moment let us introduce back the droplet subscript i = 1, ..., N − 1 and denote
by Ji the flux j2 in the PL region between i − 1-th and i-th droplets. Combining (2.11)
with (2.15) and (2.21) one obtains that Ji is constant and satisfies

Ji = β
Pi − Pi−1 − 2νJiI − νI(Ẋi,0 + Ẋi−1,0)

di
. (2.26)

In the last formula we introduced two more notations: the constant leading order pressure
inside i-th droplet

Pi =
1

Ri

√
3σ
. (2.27)

according to (2.9) and the distance between the neighboring DC regions

di = Xi −Xi−1 −Ri −Ri−1.

From (2.26) one obtains an explicit expression for Ji:

Ji = β
Pi − Pi−1 − νI(Ẋi,0 + Ẋi−1,0)

di + 2νIβ
, i = 1, ..., N. (2.28)

Next, from (2.25), the matching conditions (2.18), (2.24) and equations(2.15), (2.21) one
obtains the leading order equation for i-th droplet position evolution

Ẋi,0 = − Iβν

2Ri + 2Iβν
(Ji+1 + Ji).

Substituting in the last expression the flux representation (2.28), denoting

d̃i =
di
Iνβ

, (2.29)

and using (2.27) one obtains

Ẋi,0 = − Pi

2/(
√

3σβ) + 2IνPi

(
(Pi+1 − Pi)− Iν(Ẋi+1 + Ẋi)

d̃i+1 + 2
+

(Pi − Pi−1)− Iν(Ẋi + Ẋi−1)

d̃i + 2

)
,

for i = 1, ..., N − 1. (2.30)

In turn by (2.21) and definition (2.27) one has

Ṗi,0 = 0, for i = 0, ..., N.

The derived ODE system describing the leading order in ε evolution of pressures and
positions of N + 1 droplets will be closed if we additionally prescribe that the first and the
last droplet do not move, i.e

Ẋ0,0 = ẊN,0 = 0, X0 = 0, XN = L. (2.31)
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The condition (2.31) corresponds to the situation when one extends the array on N + 1
droplets from interval (0, L) to an infinite array on the whole real line R by reflection
around the points x = 0 and x = L. It stays also in agreement with boundary conditions
(1.9) and (1.10)

Let us point out that the evolutions of pressures is slower than one of positions and
proceeds on the order ε. One can potentially obtain it by going further in the expansion
of the solution to (1.2a)–(1.2b), while an easier way is to derive it from the conservation of
droplet volume as was done in [18, 20] for the case of equation (1.1). Namely, the volume
of the i-th droplet Vi is changing due to the difference of the fluxes in the surrounding it
PL regions. Using (2.8) and (2.27) one obtains

V̇i,0 = ε
4A3

3P 3
Ṗi,1 = ε2(Ji+1 − Ji),

Substituting in the last expression the flux representation (2.28) and denoting

Ci = ε
3P 3

4A3

one obtains

εṖi,1 =
Ci
Iν

(
Pi+1 − Pi
d̃i+1 + 2

− Pi − Pi−1

d̃i + 2

)
− Ci

(
Ẋi+1 − Ẋi

d̃i+1 + 2
− Ẋi − Ẋi−1

d̃i + 2

)
, i = 1, ..., N − 1.

Finally, combining the last expression with (2.30) and (2.31) the closed ODE system for
the leading order evolution of positions and pressures in the array of N + 1 droplets takes
the following form:

Ẋi = − Pi

2/(
√

3σβ) + 2IνPi

(
(Pi+1 − Pi)− Iν(Ẋi+1 + Ẋi)

d̃i+1 + 2
+

(Pi − Pi−1)− Iν(Ẋi + Ẋi−1)

d̃i + 2

)
,

Ṗi =
Ci
Iν

(
Pi+1 − Pi
d̃i+1 + 2

− Pi − Pi−1

d̃i + 2

)
− Ci

(
Ẋi+1 − Ẋi

d̃i+1 + 2
− Ẋi − Ẋi−1

d̃i + 2

)
, i = 1, ..., N − 1;(2.32)

and

Ṗ1 + 2C1
Ẋ2

d̃1 + 2
= 2

C1

Iν

P2 − P1

d̃1 + 2
, Ẋ1 = 0,

ṖN − 2CN
Ẋ2

d̃N−1 + 2
= −2

CN
Iν

PN − PN−1

d̃N−1 + 2
, ẊN = 0. (2.33)

Let us consider certain limiting cases. In the case β →∞ the limiting system for evolution
of pressures and positions has the form

Ṗi + Ci(Ẋi+1 − Ẋi−1) =
Ci
Iν

(Pi+1 − 2Pi + Pi−1),

Ẋi+1 − 2Ẋi + Ẋi−1 =
Pi+1 − Pi−1

νI
, for i = 1, ..., N − 1; (2.34)
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and

Ṗ1 + C1Ẋ2 =
C1

Iν
(P2 − P1), Ẋ1 = 0,

ṖN − CNẊN−1 = −CN
Iν

(PN − PN−1), ẊN = 0. (2.35)

Next, rescaling the time by βν and proceeding to the limit β → 0 the limiting system for
evolution of pressures and positions takes the form

Ṗi = Ci

(
Pi+1 − Pi
di+1

− Pi − Pi−1

di

)
,

Ẋi = −Pi
√

3σI

2

(
Pi+1 − Pi
di+1

+
Pi − Pi−1

di

)
, for i = 1, ..., N − 1; (2.36)

and

Ṗ1 = 2C1
P2 − P1

d1

, Ẋ1 = 0,

ṖN = −2CN
PN − PN−1

dN
, ẊN = 0. (2.37)

Note, that the last system coincides with one derived in [20] for the intermediate-slip
equation (1.8) in the one-dimensional case. This stays in agreement with the fact that
(1.8) is the limiting case of (1.2a)–(1.2b) as β → 0 as was shown in [15, 17]. Finally, note
that after time rescaling by βν taking limits ν →∞ or ν → 0 results again in (2.34)–(2.35)
and (2.36)–(2.37), respectively. This is also natural, because (1.7a)–(1.7b) and (1.8) are
the limiting cases of (1.2a)–(1.2b) as well as ν →∞ or ν → 0, respectively.

Let us summarize the algorithm for simulation of coarsening dynamics in large arrays
of droplets using the derived reduced ODE models. Starting with an array of N + 1
droplets after each subsequent coarsening event (i.e a collapse of one droplet or collision
of two droplets) one can model the coarsening process further by reducing the dimension
of the model by two and solving the reduced ODE model with the updated initial data.
Practically, as in [19] we say that a collapse event occurs at a moment when pressure of
one droplet increases a certain threshold, namely when

P > 0.5Pmax(ε), with Pmax(ε) :=
27

256ε
. (2.38)

Then we take the final pressures and positions for remaining droplets from the previous
run of the reduced ODE model as initial conditions for the next one. In the case of collision
in Glasner and Witelski [19] was suggested that coarsening event occurs when the distance
between two colliding i-th and i + 1-th droplets becomes smaller then a certain threshold
δ = O(ε), i.e. when

di ≤ δ, (2.39)
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After the collision we calculate the position and the pressure for the new formed droplet
by formulas

Xi,new = 1/2(Xi+1 −Ri+1 +Xi −Ri),

Pi,new =

(
1

P 2
i

+
1

P 2
i+1

)−1/2

. (2.40)

The last formula for Pi,new is based on the observation that mass of the new droplet is to
the leading order in ε given by the sum of the masses of the collided droplets (see [19]).
In section 5.1 we compare solutions of the derived reduced ODE model (2.32)–(2.33) with
those of the initial PDE system (1.2a)–(1.2b) and show that the former ones provide high
accuracy O(ε) also after subsequent coarsening events.

3 An exactly solvable collisions/absorption model

Let us consider the limiting case of infinite slip length β = ∞, namely the ODE system
(2.34)–(2.35) describing coarsening in free films. As pressure evolution proceeds on a slower
time scale then that one of positions as ε → 0 let us consider only migration of droplets.
Namely, we investigate the zero order system

Ẋ0 = ẊN = Ṗi = 0, for i = 0, ..., N,

Ẋi+1 − 2Ẋi + Ẋi−1 =
Pi+1 − Pi−1

νI
, for i = 2, ..., N − 1; (3.1)

As will be justified numerically in section 5.1 for given ε, T > 0 one can choose initial
data with sufficiently small Pi(0) � 1, i = 0, 1, ..., N such that the difference between
solutions to (3.1) and (2.34)–(2.35) stays uniformly O(ε) for all times t ∈ (0, T ]. Note that
for such initial data there is no other constraint on the location of Xi(0) other than that
di(0) should be larger then the collision threshold introduced in (2.39).

Moreover, for certain initial data one can solve (3.1) explicitly. Indeed, if

Pi(0) = p, for i = 0, 1, ..., N − 1 and PN(0) = p̄ with 1� p > p̄ (3.2)

then the solution to (3.1) is given by

Xi(t) = Xi(0) +
Bi

N
t, for i = 1, ..., N − 1; X0 = 0, XN = L, where B =

p− p̄
νI

. (3.3)

In this and the next sessions for convenience reasons we redefine the notation for the
distances between droplets from the previous section as

di(t) = Xi(t)−Xi−1(t) for i = 1, ..., N − 1 and dN(t) = L−XN−1(t)−RN(t)−RN−1(t)
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and call usually di(t) as the distance of the i-th droplet at time t. Using this notation one
can rewrite the solution (3.3) in the following form

di(t) = di(0) +
B

N
t, for i = 1, ..., N − 1

dN(t) = dN(0)− B(N − 1)

N
t for t ∈ (0, Tc), where Tc =

dNN

(N − 1)B
. (3.4)

Note, that Tc denotes the time proceeding until (N−1)-th droplet collides with the largest
last one. Iterating (3.4) one observes that first N − 1 droplets collide one after another
with the last one like rings in the famous rubber band toy. Due to (3.3) all droplets except
the first and the last ones move to the right. The last droplet consequently absorbs the
neighbor droplet, while the distance between them is uniformly distributed between the
remaining droplets. Therefore, the distances of the remaining droplets at the collision time
Tc are given by

di(Tc) = di(0) + dN(0)/(N − 1), i = 1, ..., N − 1. (3.5)

Writing the solution to (3.1) in the form (3.4) is convenient because one can substitute
di(Tc) as the initial distances for the modelling of the next collision event.

Note, that due to (3.5) distance monotonicity is preserved in time for solutions (3.4),
i.e. if dl(0) > dm(0) for some l,m ∈ 1, ..., N then dl(t) > dm(t) for all times t > 0. This
property allows us basing only on a given initial distribution of the distances in the array
of droplets to derive the coarsening laws analytically for solutions to (3.1) considered with
(3.2) and additional assumption

1 >> p >> PN . (3.6)

This assumption prescribes that the last droplet is much larger then others and allows us
to simplify further the dynamics by assuming that its pressure PN remains constant in
time. In turn, this implies that the coarsening dynamics in this case depends solely on the
evolution of droplet positions without change of their pressures after subsequent collisions.

Indeed, let initial distances be prescribed by k ∈ N families such that there are im
distances in m-th family (1 ≤ m ≤ k), all of them are equal to dm and

d1 ≥ d2 ≥ ... ≥ dk, i1 + i2 + ...+ ik = N (3.7)

holds. Additionally, let us allocate these k families in the initial configuration so that the
distances between droplets non increase coming from the first to the last droplet. Then
due to the distance monotonicity property this ordering will be preserved in time, i.e. first
the members of the family k will be absorbed by the last droplet, then those of k − 1-th
one and etc. Moreover, the distances in each family will stay equal for all t > 0. This
implies that for initial data satisfying (3.2), (3.6) and (3.7) all collision times are uniquely
determined having given k and the set {dm, im}, m = 1, ..., k. Therefore, using the explicit
solution (3.4) holding between subsequent collision events the coarsening law can be derived
analytically by a recursive procedure.

Indeed, let us fix an index 1 ≤ m ≤ k and look at the moment when all families with
the indexes m+ 1, ..., k and also l− 1 members of the m-th family have been absorbed for
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some given 1 ≤ l ≤ im. Let us calculate the time t(n) needed for the absorption of the l-th
member with n denoting the remaining number of droplets after the latter event. Using
(3.4) one can easily calculate by recursion that

t(n) =
n+ 1

nB

(
d̃m +

l−1∑
r=1

t(n+ r)B

n+ r + 1

)
=

(n+ l)d̃m
nB

, (3.8)

where by d̃m we denote the distance in the m-th family at the time when (m+1)-th family
has been absorbed. From (3.8) one can obtain the total time needed for the m-th family
to be absorbed Tm in the form

Tm =
d̃m
B

(
N −

k∑
p=m+1

ip

)
ip∑
r=1

1

N −
∑k

p=m+1 ip − r
. (3.9)

In turn, using again (3.4) one recursively finds

d̃m =
k∑

p=m+1

d̃pip

N −
∑k

p′=p ip
=

∑k
p=m+1 dpip

N −
∑k

p′=p ip
+ dm

Substituting the last expression in (3.9) one obtains

Tm =
1

B

(
Ndm +

k∑
p=m

(dp − dm)ip

)
im∑
r=1

1

N −
∑k

p=m+1 ip − r

Therefore, the total time needed for all families up to m-th to be absorbed is given by

T (dm) =
k∑

p=m

1

B

(
Ndp +

k∑
p′=p

(d′p − dp)i′p

)
ip∑
r=1

1

N −
∑k

p′=p+1 i
′
p − r

(3.10)

Let us now derive the continuum version for the discrete coarsening law in (3.10) pro-
ceeding to the limit N → ∞ and k → ∞. Suppose we are given a probability density
function f(d) on (0,+∞), i.e.∫ +∞

0

f(x) dx = 1, f(d) ≥ 0 and f(d) = 0 if d ≤ 0.

Defining di = i∆d for i ∈ N ∪{0} and a fixed ∆d� 1 we approximate f(d) by a piece-wise
constant function fa(d) as follows.

fa(d) = f(di+1) for d ∈ [di, di+1) and fa(d) = 0 if d ≤ 0.

Accordingly to this approximation suppose we are given an array of N + 1 droplets with
N � 1 such that the number of droplets with the distances lying in the interval [di, di+1)

17



is equal to [Nf(di+1)∆d]. As before we suppose that droplets are allocated so that the
distances between them are non increasing and (3.2), (3.6) hold. Then using (3.10) one
obtains

T∆d,N(dm) =
m∑
p=0

1

B

(
Ndp +

k∑
p′=p

(d′p − dp)Nf(d′p)∆d

)
Nf(dp)∆d∑

r=1

1

N −
∑k

p′=p+1 Nf(d′p)∆d− r
+O(∆d, 1/N)

=
m∑
p=0

1

B

(
dp +

k∑
p′=p

(d′p − dp)f(d′p)∆d

)
Nf(dp)∆d∑

r=1

1

1−
∑k

p′=p+1 f(d′p)∆d− r/N
+O(∆d, 1/N)

=
m∑
p=0

N

B

(
dp +

k∑
p′=p

(d′p − dp)f(d′p)∆d

)
f(dp)∆d∑
s=1/N

∆s

1−
∑k

p′=p+1 f(d′p)∆d− s
+O(∆d, 1/N)

Taking the limit N → +∞ in the last expression and introducing

T∆d(d) = lim
N→+∞

T (d)∆d,N

N

one obtains

T∆d(d) =
m∑
p=0

N

B

(
dp +

k∑
p′=p

(d′p − dp)f(d′p)∆d

)∫ f(dp)∆d

s=0

ds

1−
∑k

p′=p+1 f(d′p)∆d− s
+O(∆d).

(3.11)
Applying the Taylor expansion to the last integral in (3.11) one finds∫ f(dp)∆d

s=0

ds

1−
∑k

p′=p+1 f(d′p)∆d− s
=

f(dp)∆d

1−
∑k

p′=p f(d′p)∆d
+O(∆d2)

Inserting this into (3.11) one obtains

T∆d(d) =
1

B

m∑
p=0

(
dp +

k∑
p′=p

(d′p − dp)f(d′p)∆d

)
f(dp)∆d

1−
∑k

p′=p f(d′p)∆d
+O(∆d).

Finally, taking the limit ∆d→ 0 and introducing

T (d) = lim
∆d→0

T∆d(d)

N

one arrives at

T (d) =
1

B

∫ d

0

(
x+

∫ x

0

(y − x)f(y) dy

)
f(x)

1−
∫ x

0
f(y) dy

dx (3.12)

Introducing function n(d) as the relative number of droplets with initial distances larger
or equal d, i.e. as

n(d) = 1−
∫ d

0

f(x) dx (3.13)
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one obtains from (3.12) that

T (d) =
1

B

∫ d

0

(
−x+

∫ x

0

(y − x)n′(y) dy

)
n′(x)

1−
∫ x

0
n(y) dy

dx =

=
1

B

∫ d

0

n(x) ln

[
n(x)

n(d)

]
dx. (3.14)

The last expression provides an exact coarsening law, i.e. it tells what time T (d) is needed
until all droplets having initially distances smaller then d are absorbed by the last large
droplet.

In appendix B, we show that the discrete coarsening law (3.10) can be recovered back
from (3.14) if the initial distribution f(x) has the form

f(d) =
k∑

m=1

i′mδ(d− dm), (3.15)

i.e. if initial distance distribution is represented by k ∈ N families as in (3.7) while the
number of droplets N → ∞. Moreover, we justify the connection between (3.14), (3.10)
and the starting ODE system (3.1) as well numerically in the section 5.2.

4 Examples of coarsening rates

a) We consider an explicit family of initial distributions f(x) and show that depending
on their decay as x → +∞ the coarsening rates reproduce all possible algebraic decays.
Moreover, there is a certain threshold after which the decay becomes exponential. Namely,
let us consider a family

f(x) =
1

x1+α

/∫ +∞

A

dx

x1+α
=

Aα

x1+α
with α, A > 0. (4.1)

From (3.13) it follows that

n(x) =

(
A

x

)α
. (4.2)

Substituting this in (3.14) one obtains

T (d) =
αA

B(α− 1)

(
1

α− 1

[(
d

A

)1−α

− 1

]
+ α ln

[
d

A

])
if α 6= 1, (4.3a)

T (d) =
A

B

([
ln

(
d

A

)]2

/2 + ln

(
d

A

))
if α = 1. (4.3b)

Combining (4.3b) and (4.2) one obtains the exact coarsening law for the case α = 1

n(t) = exp
[
1−

√
1 + 2Bt/A

]
(4.4)
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In the case α 6= 1 one obtains from (4.3a) and (4.2)

T (n) =
αA

B(α− 1)

(
1

1− α

[
n
α−1
α − 1

]
+ ln(n)

)
.

For the latter exact law one obtains the following asymptotics

n(t) ∼



(
tB(α− 1)2

αA

) α
α−1

, if α < 1

exp

{
−tB(α− 1)

αA

}
, if α > 1

as t→∞. (4.5)

Therefore, from (4.4)–(4.5) one finds out that for 0 < α < 1 the coarsening rates are
algebraic at least for large times, while at α = 1 they become exponential and stay so for
α ∈ (1, +∞).

b) Consider f(x) = exp(−x). Substituting it in (3.13) and (3.14), consequently, one
obtains the exact law

T (n) =
1

B
(n− 1− ln(n)).

Thus, in this case the following asymptotics holds

n(t) ∼ exp(−Bt) as t→∞. (4.6)

c) Consider a Gaussian distribution f(x) = 2/
√
π exp(−x2). In this case by (3.13) one

has n(x) = erfc(x). Substituting it in (3.14) one obtains

T (d) =
1

B

∫ d

0

[∫ x

0

n(y) dy

]
n′(x)

n(x)
dx =

=
1

B
√
π

∫ d

0

(
(1− exp(−x2)) exp(−x2)∫ +∞

x
exp(−x2) dt

− 2x exp(−x2)

)
dx

=
1

B
√
π

(
−C +O

(
exp(−d2)

)
+

∫ d

0

exp(−x2)∫ +∞
x

exp(−x2) dt
dx

)
=

1

B
√
π

(−C − lnn(d)) +O(exp(−d2)),

where constant C ≈ 0.74. Therefore the following asymptotics holds

n(t) ∼ exp{−C −B
√
πt} as t→∞. (4.7)

and the coarsening rates show an exponential decay as in the example b).
d) Finally let us show that the coarsening rates for large times depend only on how fast

the initial distribution f(x) decays as x→ +∞ and not its behavior for moderate x. In this
and the next example we consider non-monotone distributions having a local maximum
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Figure 3: Initial distributions in the example d) (left) and the example e) with α = 2
(right)

at x > 0. Consider f(x) = (1 − x)2 exp(−x) (see Fig. 3) with n(x) = (1 + x2) exp(−x),
correspondingly. By (3.14) one obtains

BT (d) =

∫ d

0

(1 + x2) exp(−x) ln(1 + x2) dx−
∫ d

0

x(1 + x2) exp(−x) dx

− (ln(1 + d2)− d)

∫ d

0

(1 + x2) exp(−x) dx

=

∫ d

0

(1 + x2) exp(−x) ln(1 + x2) dx− 7 + 3(d− ln(1 + d2)) +O(exp(−d)).(4.8)

The first integral in the last expression can be estimated as follows.∫ d

0

(1 + x2) exp(−x) ln(1 + x2) dx ≤ ln(1 + d2)

∫ d

0

(1 + x2) exp(−x) dx

= ln(1 + d2)(3 +O(exp−d))

Combining this with (4.8) one obtains

T (d) =
3d

B
+ o(d)

and hence the following asymptotics holds

n(t) ∼
(

1 +
9

B2
t2
)

exp(−Bt) as t→∞.

Therefore, the coarsening rates show an exponential decay as in the example b).
e) Consider distributions

α

α + 1

[
(1− x)2 exp(−x) + 1/(1 + x)1+α

]
with α > 0, α 6= 1. (4.9)
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They have a local maximum at x > 0 and a decay ∼ 1/x1+α as x → ∞ (see Fig. 3).
Correspondingly, one has

n(x) =
1

1 + α

[
(1 + x)−α + α exp−x(1 + x2)

]
.

Substituting it in (3.14) one obtains

BT (d) =

∫ d

0

[∫ x

0

n(y) dy

]
n′(x)

n(x)
dx =

=

∫ d

0

[
1

1− α
(
(1 + x)1−α − 1

)
+ α (3− exp(−d)(3 + d(2 + d)))

]
×

× (1− x)2 exp(−x) + (1 + x)−1−α

(1 + x)−α + α exp(−x)(1 + x2)
dx.

The last integral can be bounded from below and from above by integrals of the following
type

I∗ =

∫ d

0

[
1

1− α
(
(1 + x)1−α − 1

)
+ C1

]
C2 exp(−x/2) + (1 + x)−1

1 + C3

with some nonnegative constants Ci, i = 1, 2, 3. Integrals in (4) have the following asymp-
totics:

I∗ = C3

(
1

1− α
[
(d+ 1)1−α − 1

]
− C4 ln(d+ 1)

)
+O(1) as d→∞

with some positive constants C3, C4. Therefore, using the asymptotics

n(d) ∼ 1

1 + α
(1 + d)−α as d→∞ (4.10)

one obtains that the asymptotics of the coarsening law for (4.9) coincides up to mul-
tiplicative constants with (4.3a) already obtained in the example a) for the monotone
distributions. Consequently, we conclude that as in the example a) the coarsening rates
are algebraic with power α/(α− 1) for α < 1 and exponential for α > 1.

A more simple but rather formal proof of this fact is as follows. Let us fix a large
number A such that asymptotics (4.10) holds for all d > A with a good precision. The one
has

BT (d) =

∫ A

0

n(x) ln

[
n(x)

n(d)

]
dx+

∫ d

A

n(x) ln

[
n(x)

n(d)

]
dx

∼ O(1) + α ln(d+ 1)×O(1) +

∫ d

A

n(x) ln

[
n(x)

n(d)

]
dx.

The last integral in view of (4.10) is of the type considered already in example a). Therefore,
the term O(1) + α ln(d + 1) × O(1) produces no change in the asymptotics of T (d) and,
consequently, the coarsening law coincides up to multiplicative constants with (4.3a).
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Figure 4: Comparison of droplet position evolution obtained from the ODE model (dots)
and the lubrication model (solid line) in the strong-slip case with ε = 0.025, Re = 0,
β = 10. Initial profile of four droplets presented on the top-left plot of Fig. 5 was used.
Subsequent collisions of the second (left) and the third (right) droplets with the first one
are shown.

5 Numerics

In the last two sections starting from the system (1.2a)-(1.2b) we first derived a closed
ODE model (2.32)–(2.33) describing coarsening dynamics in an array of initially N + 1
metastable droplets. Then we looked at its limiting case β → ∞ described by (2.34)–
(2.35) and more precisely on its leading order version as ε → 0 given by (3.1). Next, we
found out that for a special initial data satisfying (3.2) one can obtain the explicit solution
to (3.1) given by (3.4). Assuming additionally (3.6) and that the distances in the array are
ordered decreasingly we derived an explicit coarsening law (3.10). Finally, we obtained its
continuous counterpart (3.14). In this section we systematically compare numerically the
solutions of subsequent models in the derived model hierarchy and check coarsening laws
(3.10), (3.14).

5.1 Comparison between models

Here we compare solutions to the full ODE system (2.32)–(2.33) with those of the strong-
slip system (1.2a)-(1.2b) and its limiting cases (1.8) and (1.7a)-(1.7b) as β → 0 and
β → +∞, respectively. For the solution of PDE systems we used a fully implicit fi-
nite difference scheme derived and applied already to (1.2a)-(1.2b) and its limiting cases
in [15, 28–30]. The numerical solutions for (2.32)–(2.33) were obtained applying a fourth-
order adaptive time step Runge-Kutta method and using updating rules (2.38)–(2.40) after
each subsequent coarsening event. In the case of PDE system the corresponding pressure
evolution was calculated using finite-difference discretization of the term Πε(h)− ∂xxh.

In Fig. 4 starting from an array of four droplets we compare evolution of positions
resulting from PDE and ODE models for two subsequent collisions. Fig. 4 shows that
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Figure 5: Comparison of droplet evolution obtained from the ODE model (dots) and the
lubrication model (solid line) in the strong-slip case with ε = 0.025, Re = 0, and different
β. Upper row: Initial profile of four droplets (left) and their pressure evolution in the
intermediate-slip case until collapse of the second droplet (right). Lower row: Starting
from the same initial profile position evolution until collision of the second droplet with
the first one for β = 5 (left) and β =∞ (right) is shown.

the absolute deviation between results stays uniformly O(ε) also after subsequent collision
events.

In Fig. 5 starting from the same array of four droplets we compare solutions for
different slip lengths β. In the cases β = 0 and β =∞ we compared solutions to (1.8) and
(1.7a)-(1.7b) and those of (2.36)–(2.37) and (2.34)–(2.35), respectively. Again for all β the
absolute deviation between PDE and ODE results is O(ε). Note, Fig. 5 demonstrates the
fact pointed already in [21, 27] that in the intermediate-slip case the coarsening dynamics
is governed mostly by collapse mechanism while in the strong-slip case with moderate and
large β by collisions.

Finally, Fig. 6 shows that for arrays being taken initially with sufficiently small pres-
sures the migration subsystem (3.1) approximates with a high accuracy (at least O(ε))
the full ODE system (2.34)–(2.35) describing the case β = ∞. Note, that the migration
path of the fourth droplet Fig. 6 is considerably large ≈ 50. Hence, the reduction from
(2.34)–(2.35) to (3.1) does not constrains the initial distances to be small.
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Figure 6: Comparison of droplet position evolution obtained from the ODE model (2.34)–
(2.35) (dots)with ε = 0.025 and its leading order subsystem (3.1) (solid line). Left plot:
The initial profile of five droplets. Pressure of the first four and the last droplet are 0.01
and 0.001, respectively. Right plot: Collision of the fourth droplet with the largest last
one.

5.2 Coarsening rates

Here using the explicit solution (3.4) for the system (3.1) we check numerically the discrete
and continuous coarsening laws (3.10) and (3.14). In Fig. 7 we take k = 20 families of
initial distances as prescribed in (3.7) with the corresponding pressures satisfying (3.2),
(3.6) and order them non increasingly in space. Next, we compare the subsequent times
for each m-th family (1 ≤ m ≤ k) to be absorbed given on one hand by the analytical
law (3.10) and by iterative calculation using (3.4),(3.5) between each subsequent collision
on the other. Naturally, one finds out the exact coincidence between them. Note, as each
collision is comprised of an absorption by the largest droplet of a smaller one one do not
need to update the position and pressure of the former one. This is because its position is
fixed due to (2.31) to x = L and the pressure to the leading order does not change due to
(3.6).

In Fig. 8 we show numerical results for continuous coarsening rates for three initial
distributions taken from the family (4.1) with different α and one Gaussian distribution
considered in examples a) and c) of the previous section, respectively. To obtain the
coarsening rates numerically we first sampled N � 1 distances according to the given
initial distribution. After ordering them non increasingly in the initial configuration we
substitute them as initial data into (3.1) and solve the latter one iteratively using (3.4).
Note, that due to an extremal simplicity of (3.4) one can effectively model numerically a
huge number of droplets N ≈ 107 just using capabilities of a personal computer.

Fig. 8 shows that thus obtained numerical coarsening rates coincide for large times very
well with the analytical ones prescribed by the law (3.14) and found out in examples a) and
c) of the section 4. In the case of (4.1) with α = 1 one has the exact coarsening law (4.4) and
therefore a good coincidence for all times. In the case of (4.1) with α 6= 1 we compared our
numerical results with the asymptotic law (4.5), while for the Gaussian initial distribution
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Figure 7: Comparison of the subsequent collision/absorption times for each m-th family
(1 ≤ m ≤ 20) given by the discrete coarsening law (3.10) (dots) and iterative calculation
using the solution (3.4) (solid line). Left plot: A part of a typical initial profile under
consideration. Right plot: plot of the absorption times versus the family number.

with (4.7). Note that a certain deviation between numerics and analytical laws starting
at the very end of the considered time interval is caused by a numerical error increase in
sampling of large distances according to initial probability distributions.

6 Conclusions and discussion

In this paper we started from the lubrication equations (1.2a)–(1.2b) describing dewetting
process in nanometric polymer film interacting on a hydrophobically coated solid substrate
in the presence of large slippage at the liquid/solid interface. This model describes a dis-
tinguished and important regime within a lubrication scaling. In particular, it incorporates
as a limiting case of the infinite slip length the well-known model of free films (1.7a)–(1.7b)
studied intensively in applications [16, 31]. Note, that a similar to (1.7a)–(1.7b) system
appears in the study of viscoelastic threads for which coarsening dynamics of interacting
droplets was observed also at the experiments, see e.g. [32].

Motivated by this we derived the reduced ODE models (2.32)-(2.37) describing coars-
ening dynamics of droplets governed by (1.2a)–(1.2b) and its limiting cases. In the limiting
case β = ∞ we observed that the migration subsystem (3.1) can be solved explicitly for
special initial data satisfying (3.2), (3.6). By (3.4)-(3.5) the dynamics of droplets consists of
sequential collisions of smaller ones with the largest one while their distance is distributed
uniformly between the remaining drops.

Similar models were suggested for collapse/collision dynamics of breath figures by Der-
rida et al. [33] basing on heuristic arguments. There authors considered the ’cut-in-two’
and ’past-all’ models where the distance of the smallest droplet was divided between two
neighbors or pasted as a whole to one of them, respectively. The breath figures of [33] found
later interesting analogs in the reduced coarsening models arising from the Allen-Cahn and
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Figure 8: Comparison of numerical coarsening rates using sampling of the initial data with
N � 1 and subsequent iterative calculation using (3.4) (solid line) with those provided
by the analytical law (3.14) (dots). Upper row: loglog and semilog plots for the initial
distribution (4.1) with α = 1/2 (left) and α = 1 (right), respectively. Lower row: semilog
plots for (4.1) with α = 20 (left) and for the Gaussian initial distribution (right). According
to (4.5) and (4.7) in the chosen axe scales the dots reproduce the linear functions except
for the upper-right plot where they represent the law (4.4)
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Ginsburg-Landau equations,see e.g. a review article [34]. A recent generalization of these
models and rigorous analysis of their self-similar solutions can be found in [35]. Note that
(3.1) can be classified due to (3.5) as a ’cut uniformly between all’ type model. We are not
aware if any heuristic or rigorous analog of it was considered so far in the literature.

Remarkably, our model (3.1) appears as a reduction of a complicated dynamics gov-
erned by a high-order lubrication system (1.7a)–(1.7b). Moreover, in contrast to stochastic
in nature models of [33] if the initial distances in (3.1) are ordered non increasingly then
they coarse in a deterministic and exactly solvable scenario. For the latter case we derived
the coarsening laws (3.10) and (3.14) analytically and confirmed them numerically. Inter-
estingly, the derived law (3.14) have a form similar to the Shannon’s entropy with respect
to a certain normalization of the droplet number function n(x). The explanation of this
fact from the statistical point of view will be presented elsewhere.

Surprisingly, in contrast to the coarsening dynamics governed by reduced ODE models
arising from (1.1) which obey always the law (1.11) our simple model (3.1) can repro-
duce any algebraic coarsening rates between zero and infinity as well as exponential ones.
Moreover, for a family of initial distributions (4.1) we showed existence of a threshold for
their decay at infinity at which the corresponding coarsening rates switch from algebraic
to exponential ones. Note, that a similar situation was accounted recently for self-similar
solutions to Smoluchowski coagulation equation with certain kernels, see [36, 37].

In view of the above observations it would be natural to extend our deterministic
collision/absorption model to its stochastic variant withdrawing the non increasing order
of the distances and thus allowing collisions of random droplets with the largest one. As
in [33] one could probably look for self-similar solutions of the mean-field approximations
for thus arising stochastic collision models. A further generalization of the model could be
a withdrawal of the constraints on the initial data (3.2), (3.6) and thus allowing droplets to
collide and collapse inside of the domain. Note, that an additional difficulty to handle the
pressure and position update according to the coarsening rules (2.38)–(2.40) would appear
then.

Finally, it could be possible to derive two-dimensional analogs of the reduced ODE
models (2.32)-(2.37) describing physically coarsening of three dimensional droplets on a
plane substrate. The two dimensional reduced ODE models arising from (1.1) were derived
in [20, 21]. In [20] a mean-filed approximation for the fluxes between droplets was suggested
under an assumption of well separation of droplets that is unfortunately not suitable for the
modelling of droplet collisions because the distance between them tends to zero then. In
this case one should face a problem of solving a Laplace equation (counterpart to equation
(2.11) in two dimensions) in a complex domain between droplets occupied by the PL
region. We expect the same problem to appear for the two-dimensional reduced ODE
models corresponding to (1.2a)–(1.2b).
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A Integral I

Here we show that integral I defined in (2.16) converges and integrate it explicitly. Chang-
ing variable in (2.16) according to the explicit solution (2.5a) in the CL region, and using
matching conditions (2.4) one obtains

I =

∫ +∞

−∞

1

H1

∂z

(
∂zH1

H1

)
dz =

∫ +∞

1

[
U ′(H)

H2
− 2(U(H)− U(1))

H3

]
dH√

2(U(H)− U(1))

=

∫ +∞

1

−5/3 + 2H − 1/3H3√
2/3−H +H3/3H9/2

dH.

Let us make a further change of variables t = 1/H and integrate I explicitly as follows.

I =

∫ 1

0

−5/3t4 + 2t3 − 1/3√
2/3t3 − t2 + 1/3

dt =

∫ 1

0

5t3 − t2 − t√
6t+ 3

dt =
1

35(3 +
√

3)
.

B Connection between discrete and continuous

coarsening laws

Here we show that the discrete coarsening law (3.10) can be recovered back from (3.14) if
the initial distribution f(x) has the form (3.15) i.e. if it is represented by k ∈ N families
as in (3.7) where we denote

i′m = lim
N→∞

im
N
.

In this case (3.13) implies

n(d) = 1−
k∑

p=m

i′m if d ∈ [dm, dm−1).
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Substituting the last expression in (3.14) implies

BT (dm) = dk ln

[
1

1−
∑k

p=m i
′
m

]
+ (dk−1 − dk) ln

[
1− i′k

1−
∑k

p=m i
′
m

]
+ ...+

+ (dm+1 − dm) ln

[
1−

∑k
p=m+1 i

′
m

1−
∑k

p=m i
′
m

]
= BT (hm+1) +

+

(
Ndm +

k∑
p=m

(dp − dm)ip

)
ln

[
1−

∑k
p=m+1 i

′
m

1−
∑k

p=m i
′
m

]
Therefore,one obtains recursively that

T (dm) =
k∑

p=m

1

B

(
Ndp +

k∑
p′=p

(d′p − dp)i′p

)
ln

[
1−

∑k
p=m+1 i

′
m

1−
∑k

p=m i
′
m

]
(B.1)

On the other hand dividing (3.10) by N and proceeding to the limit N →∞ with k fixed
one obtains exactly (B.1).
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