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Abstract

The present paper contributes to the construction of a “black-box” 3D solver for the
Hartree-Fock equation by the grid-based tensor-structured methods. It focuses on the
calculation of the Galerkin matrices for the Laplace and the nuclear potential operators
by tensor operations using the generic set of basis functions with low separation rank,
discretized on a fine N × N × N Cartesian grid. We prove the Ch2 error estimate in
terms of mesh parameter, h = O(1/N), that allows to gain a guaranteed accuracy of
the core Hamiltonian part in the Fock operator as h → 0. However, the commonly used
problem adapted basis functions have low regularity yielding a considerable increase
of the constant C, hence, demanding rather large grid-size N of about several tens
of thousands to ensure the high resolution. Modern tensor-formatted arithmetics of
complexity O(N), or even O(log N), practically relaxes the limitations on the grid-size.
Our tensor-based approach allows to improve significantly the standard basis sets in
quantum chemistry by including simple combinations of Slater-type, local finite element
and other basis functions. Numerical experiments for moderate size organic molecules
show efficiency and accuracy of grid-based calculations to the core Hamiltonian in the
range of grid parameter N3 ∼ 1015.

AMS Subject Classification: 65F30, 65F50, 65N35, 65F10
Key words: tensor-structured methods, Hartree-Fock equation, grid-based tensor approxi-
mation, error estimates.

1 Introduction

This paper presents the method for grid-based calculations of the core Hamiltonian part of
the Fock operator in the Hartree-Fock equation. It completes the concept of the numerical
solution to the Hartree-Fock equation by the tensor-structured methods introduced in [1,
2, 3]. This approach does not assume the “sparsified” precomputation of the two-electron
integrals, but instead, the Hartree and exchange operators are calculated “on the fly”, in the
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course of a self-consistent field iteration. Tensor methods eliminate the usual restrictions of
analytical integrability for the approximating basis, hence providing the way to application
of rather general physically relevant grid-based basis sets.

Another concepts to the grid-based approximation of the Hartree-Fock equation are based
on multiresolution analysis [4, 5] that employes the separable representation to the Newton
potential in the calculation of some integrals, wavelet approximation [31] or on domain
decomposition techniques [12]. We also refer to [6] on a direct method for calculating the
Hartree potential employing the Poisson equation, with O(N4/3) complexity, where N is the
univariate grid size.

Traditionally, the solution of the Hartree-Fock problem for a general molecule by grid-
based approaches was considered untractable due to the large number of grid points in the
3D computational box required. Exceptions are the single atom [7, 8, 9], diatomic [10, 11]
and linear molecules [12], where the dimensionality of the problem can be reduced to a one-
or two-dimensional scheme, with the grid points being placed exactly at the positions of the
atomic nuclei. Therefore, for general multinuclear systems, the naturally separable bases
consisting of analytically integrable Gaussians are the cornerstone of most ab initio pack-
ages in molecular electronic structure calculations. At the same time, although building the
accurate bases has been always a prerogative of experienced specialists, there are inavoid-
able difficulties on this way further, due to instability of the natural bases when increasing
accuracy, and the steep increase in basis set size when larger molecules with heavier nuclei
are to be treated.

At present, for the solution of the multidimensional problems on large N × ... × N d-
dimensional grids, the novel tensor-structured methods are developed [1, 2, 3, 13], having
the complexity scaling O(dN). Hence the number of grid points is not an issue anymore,
and one can try to reconsider some of the numerical bottlenecks in the traditional tasks of
quantum chemistry from a different point of view. Note that using the quantized tensor
representations [14], one can expect nearly mesh-independent grid-based calculations of log-
volume complexity O(d logN) in the problems of quantum chemistry.

In this paper, the computation of the Galerkin matrices for the Laplace and the nuclear
potential operators is introduced, using a discretized representation of the molecular basis
functions on fine N ×N ×N Cartesian grids.

The Galerkin integrals for the Laplace operator are calculated numerically by the tensor-
structured operations of 1D compexity, O(N) ≪ N3, that allow extremely large grid-sizes
required for high resolution of Gaussian ”needles“ in evaluation of the 3D finite-difference
Laplacian. As a result, we obtain a fully populated Laplace matrix of size Nb × Nb for
the given set of Nb basis functions (2.6) represented by piecewise linear finite elements on
fine 3D Cartesian grids. The numerical tensor concept essentially relaxes the constraints
on the selection of basis sets, allowing rather general physically relevant functions with low
separation rank, represented by their values on the grid. This becomes possible since the
functional calculus, including numerical differentiation and integration, is performed via the
rank-structured multilinear algebra (see §4 and Appendix 1). Thus, basis sets can be im-
proved significantly, for example, by enhancement via a few local finite elements situated in
the nuclei cusps, or by including Slater-type functions representing the dominating singu-
larities, etc. In particular, we give an example of constructing a basis in a “black-box“ way
using the expansion of a Slater function by the parametric sinc-approximation, where the
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accuracy of approximation can be easily controlled by the choice of rank parameters and the
grid size N .

The tensor-structured calculation of the nuclear potential operator is reduced to 1D
Hadamard and scalar products of the grid-based basis functions and the low-rank repre-
sentation of the nuclear potential. The latter is designed by using the sinc-quadrature ap-
proximation to the Newton potential as in [15]. Applying this construction multiple times,
but shifted with respect to the coordinates of nuclei, we get the resulting operator as the
Galerkin projection of a sum of the canonical tensors approximating the individual Newton
kernels. In the case of large molecules, the ultimate tensor rank of the nuclear potential
sum can be adaptively truncated by the reduced higher order singular value decomposition
(RHOSVD) introduced in [1].

We prove the O(h2)-error effected by the piecewise linear grid interpolation with mesh
parameter h = O(1/N). Hence, choosing N large enough, one gains a guaranteed accuracy
of tensor computations for the core Hamiltonian part in the Fock operator. The numerical
complexity scales quadratically in the separation ranks of basis functions, Rb, and linearly
(log-linearly) in the grid-size N .

Our approach for fast and accurate calculation1 of the kinetic and the nuclear potential
operators is approved by the numerical tests over fine 3D Cartesian grids, with the univariate
grid-size N in the range N ≤ 219. This corresponds to the box volume with the number of
entries N3 of order 257 ∼ 1017, and with a step-size of about 10−5 Å = 10−15 m = 1 fm,
ensuring high resolution. Note that this femtometer range of the mesh size h is compatible
with the size of the atomic nucleus.

The rest of the article is organized as follows. In §2 we recall the Galerkin scheme for
the numerical approximation to the Hartree-Fock equation, with an emphasis on the ten-
sor calculus interpretation. §3 outlines the tensor-structured schemes for calculation of the
Coulomb and exchange matrices in the Fock operator reported in [2, 3]. §4 presents the main
result of this paper, the tensor numerical scheme for the core Hamiltonian part, including
the Laplace operator and the nuclear potential. §6 shows numerics on the fully discrete grid-
based calculation of the core Hamiltonian, first, on the example of the Schrödinger equation
for the hydrogen atom, using both the standard Gaussian basis with fixed accuracy, and
an automatically generated sinc-quadrature basis providing the controllable precision. We
illustrate the effect of the augmented basis by including the local piecewise linear hat func-
tions. Further, in §6 we present the numerical results for the Laplace and nuclear potential
Galerkin matrices for compact (3D) organic molecules of moderate size, and compare them
with the outputs of standard quantum chemical calculations (obtained with the Molpro

package [16]). For completeness, in §6.4 we sketch the algorithm of the tensor-structured
numerical solution to the Hartree-Fock equation [3], and the corresponding flow-chart. §6
resumes the main results. In Appendix 1 we provide the error analysis of our discretization
scheme in the case of piecewise constant/linear approximations.

1Computations are implemented in Matlab.
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2 The Galerkin scheme for the Hartree-Fock equation

The Hartree-Fock equations are orbital equations obtained within a mean-field approxima-
tion to the many-electron problem [17]. They are derived from application of the variational
principle to the expectation value of the many-electron Hamiltonian over a configuration
state function (CSF) characterizing the desired state of the many-electron system under
study. In simple cases, like the ground state of a closed-shell system (nelec electrons, nelec

even) to which we restrict ourselves here, this CSF reduces to a single Slater determinant
built up from the orbitals. The Hartree-Fock equations then read (for orthonormal orbitals)

Fψi(x) = λi ψi(x),

∫

R3

ψiψjdx = δij, i, j = 1, ..., Norb= nelec/2, (2.1)

which constitutes an eigenvalue problem for the (atomic or molecular) orbitals ψi. Here F
is the nonlinear Fock operator on H1(R3),

F := −1

2
∆ + Vc + VH −K, (2.2)

with the nuclear potential

Vc(x) = −
M
∑

ν=1

Zν

‖x− aν‖
, Zν > 0, aν ∈ R

3, (2.3)

and where both the Hartree potential VH(x) and the nonlocal exchange operator K are
functions of the desired solution of (2.1),

VH(x) :=

∫

R3

ρ(y)

‖x− y‖ dy, x ∈ R
3, (2.4)

and

(Kψ) (x) :=
1

2

∫

R3

τ(x, y)

‖x− y‖ ψ(y)dy, (2.5)

such that the density matrix τ(x, y), and electron density ρ(x), are given by

τ(x, y) := 2

Norb
∑

a=1

ψa(x)ψa(y), ρ(x) := τ(x, x).

The standard Galerkin scheme applied to the initial problem in form (2.1) is posed in H1(R3)
[18]. Using expansion of the molecular orbitals in the given basis set {gm}1≤m≤Nb

,

ψa(x) =

Nb
∑

m=1

cmagm(x), a = 1, ..., Norb, (2.6)

we obtain the following representations, which happen to be useful for further tensor-
structured calculations of the density matrix,

τ(x, y) = 2

Norb
∑

a=1

ψa(x)ψa(y) = 2

Norb
∑

a=1

(

Nb
∑

m=1

cmagm(x)

)(

Nb
∑

m=1

cmagm(y)

)

,
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and the respective representation of ρ(x). Consequently, we have

VH(x) = ρ ∗ 1

‖ · ‖(x) =

∫

R3

Norb
∑

a=1

(

Nb
∑

m=1

cmagm(y)

)2

‖x− y‖ dy.

The stiffness matrix H = {hµν} of the core Hamiltonian part H = −1
2
∆ + Vc,

hµν =
1

2

∫

R3

∇gµ · ∇gνdx+

∫

R3

Vc(x)gµgνdx, 1 ≤ µ, ν ≤ Nb,

includes the kinetic energy of electrons and the nuclear-electron interaction potential.
Then, the Galerkin representation leads to the Hartree, J(C), and exchange, K(C),

matrices expressed entrywise in terms of the coefficients matrix C = {cma} as

J(C)µν =

∫

R3

VH(x)gµ(x)gν(x)dx = 〈VH, gµgν〉L2(R3) (2.7)

and

K(C)µν = −1

2

∫∫

R3

τ(x, y)

‖x− y‖ gν(y)gµ(x)dydx (2.8)

= −
Norb
∑

a=1

∫∫

R3

gν(y)

(

Nb
∑

m=1

cmagm(y)

)

‖x− y‖ gµ(x)

(

Nb
∑

m=1

cmagm(x)

)

dydx,

respectively. The complete Fock matrix F = F (C) is then given by

F (C) = H +G(C), G(C) = J(C) +K(C), (2.9)

yielding the Galerkin equation for the Hartree-Fock eigenvalue problem,

FC = SCΛ, Λ = diag(λ1, ..., λNb
), (2.10)

C∗SC = INb
, INb

∈ R
Nb×Nb

where the second equation represents the orthogonality constraints
∫

R3 ψiψj = δij and

S = {
∫

R3

gν(x)gµ(x)dx}

is the Galerkin mass matrix.

3 Rank-structured tensor formats

The core of our method is the low-rank tensor representation of arising functions and oper-
ators on N × N ×N Cartesian grid, and implementation of the corresponding multi-linear
algebraic operations in the tensor product format.
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A tensor of order d is a multidimensional array of real (complex) data whose elements
are referred by using a tensor-product index set I = I1 × . . .× Id,

A = [ai1,...,id : iℓ ∈ Iℓ] ∈ R
I , Iℓ = {1, ..., Nℓ}, ℓ = 1, ..., d.

Assume for simplicity that Nℓ = N for all ℓ = 1, ..., d, then the number of entries in A

amounts to Nd, hence increasing exponentially in d. To get rid of exponential scaling in
the dimension, one can apply the approximate rank structured representations of multidi-
mensional tensors. As the simplest rank structured ansatz, the tensor product of vectors
uℓ = {uℓ,iℓ}iℓ∈Iℓ

∈ R
Iℓ (ℓ = 1, ..., d) is used, that forms the canonical rank-1 tensor,

A ≡ [ui]i∈I = u1 ⊗ ...⊗ ud ∈ R
I with entries ui = u1,i1 · · · ud,id,

which requires only dN numbers to store it. A tensor in the canonical format is defined as

A(R) =

R
∑

k=1

cku
(1)
k ⊗ . . .⊗ u

(d)
k , ck ∈ R, (3.1)

where u
(ℓ)
k are normalised vectors, and R is called the canonical rank of a tensor. Given

the rank parameter r = (r1, ..., rd), the initial tensor A can be represented in the so-called
Tucker format

A ≈ A(r) =
∑r1

ν1=1
. . .
∑rd

νd=1
βν1,...,νd

v(1)
ν1

⊗ . . .⊗ v(d)
νd
,

with the orthonormal vectors v
(ℓ)
νℓ

∈ R
Iℓ (1 ≤ νℓ ≤ rℓ). The parameter r = max

ℓ
{rℓ} is called

the Tucker rank, and the coefficients tensor β = [βν1,...,νd
] is called the core tensor (usually

for function related tensors, r ≪ N).
Rank-structured tensor representation allows efficient reduction of storage and fast mul-

tilinear algebra, see [26] and references therein. Here we briefly recall the multilinear algebra
operations for tensors A1, A2, represented in the rank-R canonical format, (3.1),

A1 =

R1
∑

k=1

cku
(1)
k ⊗ . . .⊗ u

(d)
k , A2 =

R2
∑

m=1

bmv
(1)
m ⊗ . . .⊗ v(d)

m , (3.2)

with normalized vectors u
(ℓ)
k , v

(ℓ)
m ∈ R

Iℓ . (For simplicity of notation, we consider Nℓ = N .)
For given canonical tensors A1, A2, the Eucledian scalar product can be computed by

〈A1,A2〉 :=

R1
∑

k=1

R2
∑

m=1

ckbm

d
∏

ℓ=1

〈

u
(ℓ)
k , v(ℓ)

m

〉

,

leading to complexity O(dNR1R2). The Hadamard product of two multidimensional tensors
A1,A2 given in the canonical format (3.2) is calculated by

A1 ⊙A2 :=

R1
∑

k=1

R2
∑

m=1

ckbm

(

u
(1)
k ⊙ v(1)

m

)

⊗ . . .⊗
(

u
(d)
k ⊙ v(d)

m

)

,

with complexity O(dNR1R2).
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In electronic structure calculations, the three-dimensional convolution transform with
the Newton convolving kernel, 1

‖x−y‖ , is the most computationally expensive operation. We
employ the tensor-structured computation of this transform over large N×N×N Cartesian
grid with O(N logN) complexity introduced in [19]. Approximating the function related
tensor A1 = F in the rank-R1 canonical format (3.1), and the Newton potential A2 = P by
the canonical rank-R2 tensor enables us to compute F ∗ F in the form

F ∗ P =

R1
∑

k=1

R2
∑

m=1

ckbm

(

u
(1)
k ∗ v(1)

m

)

⊗
(

u
(2)
k ∗ v(2)

m

)

⊗
(

u
(3)
k ∗ v(3)

m

)

,

leading to complexity of the 3D convolution, O(R1R2N logN). The tensor product convo-
lution considerably outperforms the conventional 3D FFT-base algorithm having the com-
plexity O(N3 logN), see numerics in [3].

When using the rank-structured representations of functions and operators in the Hartree-
Fock equation, the 3D and 6D integrations are replaced by multilinear algebra operations
such as the scalar and Hadamard products, the 3D convolution transforms which are imple-
mented with an almost O(N)-complexity [1, 20]. However, the rank-structured operations
mandatory lead to increase of tensor ranks. For tensor rank reduction we use the robust
algorithm based on the canonical-to-Tucker and Tucker-to-canonical transforms for 3D ten-
sors introduced in [1], which is also of linear complexity with respect to parameters of the
target canonical tensor, O(RN).

The combination of the canonical and Tucker tensor formats is useful in 3D applications.
The rank-structured tensor formats suitable for problems in higher dimensions include the
matrix-product states (MPS) [32, 33], TT format [34, 35] and the quantized-TT (QTT)
approximation which is of O(logN) complexity (see also [36]).

4 Tensor computation of the Coulomb and exchange

matrices

In this section we recall the tensor numerical scheme for calculation of the Coulomb and
exchange matrices, discussed in full detail in the previous papers [1, 2, 3].

Suppose that the initial eigenvalue problem (2.1) is posed in the finite volume box

Ω = [−b, b]3 ∈ R
3, (4.1)

subject to the homogeneous Dirichlet boundary conditions on ∂Ω. This assumption is justi-
fied by the exponential decay of the orbitals ψi(x) as ‖x‖ → ∞.

For given discretization parameter n ∈ N, introduce the equidistant tensor grid ω3,n with
the mesh-size h = 2b/n, and define the set of piecewise constant basis functions (indicator
functions) {ζi}, i ∈ I := {1, ..., n}3, associated with the respective grid-cells in ω3,n. This
allows to introduce the set of cell-centered collocation discretizations, {gk}, to the continuous
basis functions gk(x) by piecewise constant interpolation,

I0 : gk → gk :=
∑

i∈I
gk(xi)ζi(x),
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where gk(xi) is the cell-centered sampling of gk. Assuming for the ease of presentation that gk

is rank-1 separable, i.e., gk(x) =
∏3

ℓ=1g
(ℓ)
k (xℓ), one obtains the separable piecewise constant

representation to the initial basis functions,

gk(x) ≈ I0gk := gk(x) =

3
∏

ℓ=1

g
(ℓ)
k (xℓ) =

3
∏

ℓ=1

n
∑

i=1

g
(ℓ)
k (xiℓ)ζ

(ℓ)
i (xℓ), (4.2)

with the rank-1 coefficients tensor given by Gk = G
(1)
k ⊗ G

(2)
k ⊗ G

(3)
k , having the canonical

vectors G
(ℓ)
k = g

(ℓ)
k (xiℓ), obtained by the univariate cell-centered collocation.

H

H

H

H

C

z

y

x

2b

Figure 4.1: Computational box for the CH4 molecule.

The tensor-structured computational scheme for the Coulomb matrix (2.7) can be written
by the following tensor operations [2, 3]. The electron density is represented by a low-rank
canonical tensor,

ρ ≈ ρ :=

Norb
∑

a=1

(

Nb
∑

κ,λ=1

cκacλaGκ ⊙ Gλ

)

,

and the Hartree potential by the tensor-product convolution [19]

VH = ρ ∗ 1

‖ · ‖ ≈ ρ ∗PN , PN ≈ {〈 1

‖ · ‖ζi, ζj〉}, i, j ∈ I, (4.3)

where PN ∈ R
I is the low-rank representation (approximation) to the projection coefficient

tensor for the Newton potential (we denote rank(PN) = RN). The tensor calculation of the
Coulomb matrix in (2.7) is obtained by

J(C)µν = 〈gµ(x)gν(x), VH(x)〉 ≈ 〈Gµ ⊙Gν ,ρ ∗ PN〉, 1 ≤ µ, ν ≤ Nb. (4.4)

In the case of a Gaussian basis set, the canonical rank(Gµ) = 1, while, in general, we have
Rµ = rank(Gµ) ≥ 1. In turn, 3rd order tensors ρ and PN are to be approximated by
low-rank tensors.
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First, we represent the matrix K(C) using tensor operations by the following three loops,
as shown in [20, 3]. For a = 1, ..., Norb, and ν = 1, ..., Nb, compute the convolution integrals,

Waν(x) =

∫

R3

gν(y)
Nb
∑

m=1

cmagm(y)

‖x− y‖ dy (4.5)

≈W aν :=

[

Gν ⊙
Nb
∑

m=1

cmaGm

]

∗ PN ,

and then the scalar products (µ, ν = 1, ..., Nb),

Kµν,a =

∫

R3

[

Nb
∑

m=1

cmagm(x)

]

gµ(x)Waν(x)dx (4.6)

≈Kµν,a := 〈Gµ ⊙
[

Nb
∑

m=1

cmaGm

]

,W aν〉.

Finally, the entries of the exchange matrix are given by sums over all orbitals,

K(C)µν =

Norb
∑

a=1

Kµν,a, µ, ν = 1, ..., Nb. (4.7)

This scheme gains from efficient low-rank separable approximation of the Newton kernel,
the discretized electron density ρ(x), and of auxiliary potentials Waν(x) at step (4.5), that
ensures low complexity of the three-dimensional tensor-structured operations including rank
reduction algorithms.

5 Tensor calculus for core Hamiltonian

Here we present the grid-based calculation of the core Hamiltonian part in the Fock operator
(2.2),

H = −1

2
∆(3) + Vc,

with respect to the Galerkin basis {gm(x)}1≤m≤Nb
, x ∈ R

3, where Vc(x) is given by (2.3) and
∆(3) represents the 3D Laplacian.

5.1 Laplace operator

The initial eigenvalue problem is posed in the finite volume box Ω = [−b, b]3 ∈
R

3, as in (4.1), subject to the homogeneous Dirichlet boundary conditions on ∂Ω. For given
discretization parameter N ∈ N, we use the equidistant N ×N ×N tensor grid ω3,N = {xi},
i ∈ I := {1, ..., N}3, with the mesh-size h = 2b/(N + 1), which might be different from the
grid ω3,n introduced in §3 (usually, n ≤ N).
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Now, similar to Section 3, define a set of piecewise linear basis functions gk := I1gk,
k = 1, ..., Nb, by linear tensor-product interpolation via the set of product hat functions,
{ξi} = ξi1(x1)ξi2(x2)ξi3(x3), i ∈ I, associated with the respective grid-cells in ω3,N . Here the

linear interpolant I1 = I1 × I1 × I1 is a product of 1D interpolation operators, g
(ℓ)
k = I1g

(ℓ)
k ,

ℓ = 1, ..., 3, where I1 : C0([−b, b]) → Wh := span{ξi}N
i=1 is defined over the set of piecewise

linear basis functions by

(I1w)(xℓ) :=

N
∑

i=1

w(xiℓ)ξi(xℓ), xi ∈ ω3,N .

This leads to the separable grid-based approximation of the initial basis functions gk(x),

gk(x) ≈ gk(x) =

3
∏

ℓ=1

g
(ℓ)
k (xℓ) =

3
∏

ℓ=1

N
∑

i=1

g
(ℓ)
k (xiℓ)ξi(xℓ), (5.1)

where the rank-1 coefficients tensor Gk is given by Gk = G
(1)
k ⊗G(2)

k ⊗G(3)
k , with the canonical

vectors G
(ℓ)
k = {g(ℓ)

ki
} ≡ {g(ℓ)

k (xiℓ)} (see Figure 5.1 illustrating the construction of gk(x1)).

−b +b

ξ

x

g

g
(1)

gk k

k

i i+1

i−1

(x  )

ξ(x  )

ξ
1

1

(x  )1

i

i+1
i−1g k (x  )1

(1) (1)

xx1,i1,i−1 1,i+1

g
k
(x  )1

x
1

Figure 5.1: Using hat functions ξi(x1) for a single-mode basis function gk(x1), yielding the
piecewise linear representation gk(x1) of a continuous function gk(x1).

We approximate the exact Galerkin matrix Ag ∈ R
Nb×Nb,

Ag = {akm} := {〈−∆(3)gk, gm〉} ≡ {〈∇(3)gk,∇(3)gm〉}, k,m = 1, . . . Nb,

using the piecewise linear representation of the basis functions, gk(x) ∈ R
3, see (5.1), con-

structed on N ×N ×N Cartesian grid (see [30] for general theory of finite element approxi-
mation). Here ∇(3) denotes the 3D gradient operator. The approximating matrix AG is now
defined by

Ag ≈ AG = {akm} := {〈−∆(3)gk, gm〉} ≡ {〈∇(3)gk,∇(3)gm〉}, AG ∈ R
Nb×Nb. (5.2)

The accuracy of this approximation is of order ‖akm − akm‖ = O(h2), where h is the mesh
size, see Theorem 8.4 and numerics in §6.
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Recall that the Laplace operator applies to a separable function η(x), x = (x1, x2, x3) ∈
R

3, having a represention η(x) = η1(x1)η2(x2)η3(x3), as follows

∆(3)η(x) =
d2η1(x1)

dx2
1

η2(x2)η3(x3) +
d2η2(x2)

dx2
2

η1(x1)η3(x3) +
d2η3(x3)

dx2
3

η1(x1)η2(x2), (5.3)

which ensures the rank-3 tensor representation of the respective Galerkin stiffness matrix A3

in the tensor basis {ξi(x1)ξj(x2)ξk(x3)}, i, j, k = 1, . . .N ,

A3 := A(1) ⊗ S(2) ⊗ S(3) + S(1) ⊗ A(2) ⊗ S(3) + S(1) ⊗ S(2) ⊗A(3) ∈ R
N⊗3×N⊗3

.

Here the 1D stiffnesss and mass matrices A(ℓ), S(ℓ) ∈ R
N×N , ℓ = 1, 2, 3, are given by

A(ℓ) := {〈∇(1)ξi(xℓ),∇(1)ξj(xℓ)〉}N
i,j=1 =

1

h
tridiag{−1, 2,−1},

S(ℓ) = {〈ξi, ξj〉}N
i,j=1 =

h

6
tridiag{1, 4, 1},

respectively, and ∇(1) = d
dxℓ

. Since {ξi}N
i=1 are the same for all modes ℓ = 1, 2, 3, for

simplicity of notation, we further assume, A(ℓ) = A1, and S(ℓ) = S1.

Lemma 5.1 (Galerkin matrix AG). Assume that the basis functions {gk(x)}, x ∈ R
3,

k = 1, . . . Nb, are rank-1 separable, i.e., gk(x) = g
(1)
k (x1)g

(2)
k (x2)g

(3)
k (x3). Then the matrix

entries of AG have the representation,

akm = 〈A1G
(1)
k , G(1)

m 〉〈S1G
(2)
k , G(2)

m 〉〈S1G
(3)
k , G(3)

m 〉 (5.4)

+ 〈S1G
(1)
k , G(1)

m 〉〈A1G
(2)
k , G(2)

m 〉〈S1G
(3)
k , G(3)

m 〉
+ 〈S1G

(1)
k , G(1)

m 〉〈S1G
(2)
k , G(2)

m 〉〈A1G
(3)
k , G(3)

m 〉
= 〈A3Gk,Gm〉,

where G
(ℓ)
k , G

(ℓ)
m ∈ R

N (k,m = 1, . . . , Nb), are the vectors of collocation coefficients of

{g(ℓ)
k (xℓ)}, ℓ = 1, 2, 3, and Gk are the corresponding rank-1 3-tensors Gk = G

(1)
k ⊗G(2)

k ⊗G(3)
k ,

cf. (5.1).

Proof. By definition, we have

akm = 〈∇(3)gk,∇(3)gm〉 = 〈∇(3)(g
(1)
k g

(2)
k g

(3)
k ),∇(3)g

(1)
m g(2)

m g(3)
m 〉.

Taking into account the representation (5.3), this implies,

akm = 〈∇(1)g
(1)
k ,∇(1)g

(1)
m 〉〈g(2)

k , g(2)
m 〉〈g(3)

k , g(3)
m 〉 (5.5)

+ 〈g(1)
k , g(1)

m 〉〈∇(1)g
(2)
k ,∇(1)g

(2)
m 〉〈g(3)

k , g(3)
m 〉

+ 〈g(1)
k , g(1)

m 〉〈g(2)
k , g(2)

m 〉〈∇(1)g
(3)
k ,∇(1)g

(3)
m 〉.
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Simple calculations show that for ℓ = 1,

〈−∆(1)g
(1)
k , g(1)

m 〉 = 〈∇(1)

N
∑

i=1

gkiξi(x1),∇(1)

N
∑

j=1

gkjξj(x1)〉

= 〈
n
∑

i=1

gki∇(1)ξi(x1),

N
∑

j=1

gkj∇(1)ξj(x1)〉

=

N
∑

i=1

gki

N
∑

j=1

gkj〈∇(1)ξi(x1),∇(1)ξj(x1)〉 = 〈A1G
(1)
k , G(1)

m 〉,

and
〈g(1)

k , g(1)
m 〉 = 〈S1G

(1)
k , G(1)

m 〉,
and similar for the remaining modes ℓ = 2, 3. These representations imply

akm = 〈A3Gk,Gm〉,

which completes the proof.

Remark 5.2 Agglomerating rank-1 vectors Gk ∈ R
N⊗3

, (k = 1, ..., Nb) in a matrix G ∈
R

N⊗3×Nb, the entrywise representation (5.4) can be written in a matrix form

AG = GTA3G ∈ R
Nb×Nb ,

corresponding to the standard matrix-matrix transform under the change of basis.

Lemma 5.1 now implies that in case of basis functions having ranks larger than one,

gm(x) =

Rm
∑

p=1

ηp(x), Rm ≥ 1, (5.6)

where ηp(x) is the rank-1 separable function. Hence (5.4) takes form

akm =
Rk
∑

p=1

Rm
∑

q=1

[〈A1G
(1)
k,p, G

(1)
m,q〉〈S1G

(2)
k,p, G

(2)
m,q〉〈S1G

(3)
k,p, G

(3)
m,q〉 (5.7)

+〈S1G
(1)
k,p, G

(1)
m,q〉〈A1G

(2)
k,p, G

(2)
m,q〉〈S1G

(3)
k,p, G

(3)
m,q〉

+〈S1G
(1)
k,p, G

(1)
m,q〉〈S1G

(2)
k,p, G

(2)
m,q〉〈A1G

(3)
k,p, G

(3)
m,q〉],

where Rm, m = 1, ..., Nb, denote the rank parameters of the Galekin basis functions gm.
Representation (5.4) can be simplified by the standard lumping procedure preserving the

same approximation error O(h2),

akm = 〈A1G
(1)
k , G(1)

m 〉〈G(2)
k , G(2)

m 〉〈G(3)
k , G(3)

m 〉
+ 〈G(1)

k , G(1)
m 〉〈A1G

(2)
k , G(2)

m 〉〈G(3)
k , G(3)

m 〉
+ 〈G(1)

k , G(1)
m 〉〈G(2)

k , G(2)
m 〉〈A1G

(3)
k , G(3)

m 〉
= 〈A3,FDGk,Gm〉,
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where A3,FD denotes the finite difference (FD) discrete Laplacian,

A3,FD := A(1) ⊗ I(2) ⊗ I(3) + I(1) ⊗ A(2) ⊗ I(3) + I(1) ⊗ I(2) ⊗A(3),

with I(ℓ) being the N ×N identity matrix.
It is worth to note that the extension of Lemma 5.1 to the case of d-dimensional Laplacian,

akm = 〈AdGk,Gm〉,

leads to the similar d-term sum representation.

5.2 Nuclear potential and identity operators

We consider the nuclear (core) potential operator describing the Coulomb interaction of the
electrons with the nuclei,

Vc(x) = −
M
∑

ν=1

Zν

‖x− aν‖
, Zν > 0, aν ∈ R

3, (5.8)

where M is the number of nuclei, and aν , Zν , represent the corresponding coordinates and
charge numbers. Thus, the core potential for the molecule is represented by a tensor

Pc =
M
∑

ν=1

ZνPc,ν,

where Pc,ν are the single Coulomb potentials shifted according to the coordinates of the
corresponding nuclei. For the grid-based representation of the Newton potentials, Pc,ν, we
return to the piecewise constant discretization on the equidistant tensor grid ω3,n, (4.2),
introduced in §3, where, in general, the univariate grid size n can be noticeably smaller than
the size N used for the piecewise linear discretization.

Remark 5.3 It should be noted, that since we remain in the concept of global basis functions
for the Galerkin approximation to the eigenvalue problem, the grid-based representation of
these basis functions can be different in the calculation of the kinetic and potential parts in the
Fock operator. The corresponding choice is the only controlled by the respective approximation
error and by the numerical efficiency.

For the core potential operator, Vc in (5.8), the entries of the respective Galerkin matrix,
VG = {vkm}, are calculated (approximated) by the following tensor operation,

vkm =

∫

R3

Vc(x)gk(x)gm(x)dx ≈ 〈Gk ⊙ Gm,Pc〉, 1 ≤ k,m ≤ Nb, (5.9)

where {gk} denotes the piecewise constant representations to the respective Galerkin basis
functions.

The error ε > 0 arising due to the separable approximation of the nuclear potential is
controlled by the rank parameter RP = rank(Pc). Now letting rank(Gm) = Rm implies
that each matrix element is to be computed with linear complexity in n, O(RkRmRP n).
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The almost exponential convergence of the rank approximation in RP allows us the choice
RP = O(| log ε|).

Finally, we note that the Galerkin tensor representation of the identity operator leads to
the following mass matrix, S = {skm},

skm =

∫

R3

gk(x)gm(x)dx ≈ 〈Gk,Gm〉, 1 ≤ k,m ≤ Nb.

To conclude this section we note that the error bound ‖Vg − VG‖ ≤ Ch2 can be proven
along the line of the discussion in [19].

6 Numerical results

6.1 Laplace operator in Gaussian basis

We consider the evaluation of a Galerkin matrix entry for the identity and Laplace operators,

〈g, g〉 =

∫

R3

g(x)2dx, 〈−∆g, g〉 =

∫

R3

∇g(x) ·∇g(x)dx, g(x) = e−α‖x‖2

, x ∈ R
3,

for a single Gaussian with sufficiently large α and using large N × N × N Cartesian grids.
Functions are discretized according to (5.1) in the computational box [−b, b]3, with b =
14.6 au ≈ 8 Å.

For a single Gaussian, we compare Jh computed as in Lemma 5.1 with the exact ex-
pression

J =

∫

R3

∇g(x) ·∇g(x)dx = 3J1 J
2
01,

where

J1 = 4α2

∫ ∞

−∞
x2e−2αx2

dx =

√

π

2

√
α, J01 =

∫ ∞

−∞
e−αx2

dx =

√
π√
α
.

Table 6.1 shows the approximation error |J − Jh| versus the grid size, where Jh is the
grid-based evaluation of the matrix element on the corresponding grid, for α = 2500, 4 · 104,
and 1.2 · 105, which exceed the largest exponents α in the conventional Gaussian sets for
hydrogen (α = 1777), carbon (α = 6665), oxygen (α = 11720) and mercury (α = 105)
atoms. Computations confirm the results of Theorem 8.4 on the error bound, O(h2). It
is easily seen that the errors reduce by a distinct factor of 4 for the grids corresponding to
every next power of 2. Therefore, in spite of sharp “needles” of Gaussians due to large α, the
Richardson extrapolation [29] (RE column) on a sequence of large grids provides a higher
accuracy of the order O(h3) ÷ O(h4).

In Table 6.1, the largest grid size N = 219 − 1 corresponds to the computational box
Ω ∈ R

3 with the huge number of entries of order 257 ≈ 1017. The corresponding mesh-size
is of order h ∼ 10−5 Å. Computing times in Matlab range from several milliseconds up to
1.2 sec for the largest grid.

Notice that the integral 〈g, g〉 =
∫

R3 e
−2α‖x‖2

dx = J3
01(α) involved in the calculation of

the mass-matrix Sg, is approximated with the same accuracy.
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α = 2.5 · 103 α = 4 · 104 α = 1.2 · 105

p N3 |J − Jh| RE |J − Jh| RE |J − Jh| RE

12 40953 0.0037 - 0.0058 - 0.025 -
13 81913 9.3 · 10−4 1.0 · 10−5 0.0034 0.0026 2.4 · 10−5 -
14 163833 2.3 · 10−4 1.2 · 10−6 9.1 · 10−4 9.1 · 10−5 0.0015 -
15 327673 5.8 · 10−5 7.6 · 10−8 2.3 · 10−4 4.8 · 10−6 4.03 · 10−4 3.8 · 10−5

16 655353 1.4 · 10−5 4.7 · 10−9 5.8 · 10−5 3.0 · 10−7 1.0 · 10−4 1.6 · 10−6

17 1310713 3.6 · 10−5 2.4 · 10−10 1.5 · 10−5 1.9 · 10−8 5.5 · 10−5 1.0 · 10−7

18 2621433 9.1 · 10−7 3.1 · 10−11 3.6 · 10−6 1.2 · 10−9 6.4 · 10−6 6.5 · 10−9

19 5242873 2.2 · 10−7 5.4 · 10−13 9.1 · 10−7 7.3 · 10−11 1.6 · 10−6 4.0 · 10−10

Table 6.1: Approximation error |J − Jh| for the grid-based evaluation of the Laplacian
Galerkin matrix entry for a Gaussian g(x) = e−α‖x‖2

, x ∈ R
3, N = 2p − 1.

6.2 Grid-based Schrödinger equation for the hydrogen atom

In this section, we verify the proposed algorithms by the grid-based solution of the Hartree-
Fock equation for the hydrogen atom,

Hψ = λψ, H = −1

2
∆ +

1

‖x‖ , x ∈ R
3, (6.1)

which has an exact solution ψ = e−‖x‖ /
√
π , λ = −1/2.

Example 1. Consider the traditional expansion of the solution using the ten s-type
primitive Gaussian functions from the cc-pV6Z basis set [21, 23],

ψ(x) ≈
Nb
∑

k=1

ckϕk(x), Nb = 10, x ∈ R
3,

which leads to the Galerkin equation (2.10) corresponding to (6.1), with

F = 〈Hgk, gm〉 := −1

2
〈∆gk, gm〉 + 〈 1

‖x‖gk, gm〉, k,m = 1, . . .Nb,

with respect to the Galerkin basis {gk}. We choose the appropriate size of the computational
box (4.1) as b ≈ 8 Å and discretize {gk} using N × N × N Cartesian grid, obtaining the
canonical rank-1 tensor representation Gk of the basis functions. Then, the kinetic energy
and the nuclear potential parts of the Fock operator are computed by (5.4), (5.9) from §5.

Table 6.2, line (1), presents numerical errors in energy, |λ − λh|, of the grid-based cal-
culations using the cc-pV6Z basis set of Nb = 10 Gaussians generated by Molpro [16],
providing an accuracy of order ∼ 10−6. Notice that this accuracy is achieved already at the
grid-size N = 8192, hence, further grid refinement does not improve the results.

Example 2. Here we study the effect of basis optimization by adding an auxiliary basis
function to the Gaussian basis set from the previous example, thus increasing the number
of basis functions to Nb = 11. The second line (2) in Table 6.2 shows improvement of
accuracies for the basis augmented by a rank-1 approximation to the Slater function given
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N3 5123 10243 20483 40963 81923 163843 327683

(1) |λ− λh| 0.0015 4.1 · 10−4 1.0 · 10−4 2.7 · 10−5 7.5 · 10−6 2.4 · 10−6 1.0 · 10−6

(2) |λ− λh| 9.7 · 10−5 1.5 · 10−5 7.2 · 10−6 2.7 · 10−6 1.1 · 10−6 8.0 · 10−7 7.8 · 10−7

(3) |λ− λh| 4.3 · 10−4 1.0 · 10−4 2.7 · 10−5 6.8 · 10−6 1.7 · 10−6 4.3 · 10−7 -

Table 6.2: Examples 5.1 – 5.3 for hydrogen atom: |λ− λh| vs. grid size N3, for (1) the dis-
cretized basis ofNb = 10 Gaussians, (2) 11 basis functions consisting of Gaussians augmented
by a rank-1 function ϕ0, (3) discretized single Slater function of rank Rb.

N3 5123 10243 20483 40963 81923 163843 327683

(1): RE - 5.0 · 10−5 5.1 · 10−6 5.3 · 10−7 7.8 · 10−7 7.4 · 10−7 7.6 · 10−7

(3): RE - 1.0 · 10−6 2.3 · 10−7 1.9 · 10−8 1.7 · 10−8 1.5 · 10−8 -

Table 6.3: The Richardson extrapolation (RE) for Examples 5.1 and 5.3.

by the grid representation of ϕ0 = e−(|x1|+|x2|+|x3|). Augmenting by a piecewise linear hat
function of the type ξi centered at the origin gives similar results as for ϕ0.

Example 3. Here we present computations with the controlled accuracy using a single
rank-Rb basis function generated by the sinc-approximation to the Slater function. Using
the Laplace transform,

G(ρ) = e−2
√

αρ =

√
α√
π

∫ ∞

0

τ−3/2exp(−α/τ − ρτ)dτ,

the Slater function can be represented as a rank-R canonical tensor by computing the sinc-
quadrature decomposition [13], and setting ρ = x2

1 + x2
2 + x2

3,

G(ρ) ≈
L
∑

k=−L

√
α√
π
wkτ

−3/2
k exp(−α/τk)

3
∏

ℓ=1

exp(−τkx2
ℓ),

where τk = ekhL, wk = hLτk, hL = C0 logL/L. The accuracy of the approximation, ε > 0,
is controlled by choosing the number of quadrature points L. In this example, we have only
one basis function in a set, an approximate Slater function, but represented by the canonical
tensor of rank Rb ≤ 2L + 1. Thus, each of the matrices AG computed by (5.7), and VG are
of size 1 × 1. Table 6.2 (3) shows accuracy of the solution to the Hartree-Fock equation for
the hydrogen atom, using one approximate Slater basis function.

Table 6.3 presents the Richardson extrapolation for Examples 1 and 3. Due to noticable
convergence rate of order O(h2) the Richardson extrapolation gives further improvement of
the accuracy up to O(h3). It is seen in Table 6.3, line (3), that the Richardson extrapolation
for the results of Example 3 gives accuracy of the order 10−7 beginning from the grid size
4096. Note that with the choice L = 60, the accuracies are one order of magnitude better
than those obtained for the standard gaussian basis set in Example 1.

16



6.3 Numerics for the grid-based core Hamiltonian matrix

Tables 6.4 – 6.8 present the numerical examples of the grid-based approximation to the
Galerkin matrices for the Laplace, AG, and nuclear potential, VG, operators using (5.4) and
(5.9) from §5.1 and §5.2 for the molecules HF (hydrogen fluoride), H2O, NH3, CH4, H2O2,
N2H4 and C2H5OH. The same computational box [−b, b]3 with b = 14.6 au is used for all
considered molecules. Mesh size of the N × N × N Cartesian grid ranges from h = 0.0036
au (atomic units) corresponding to N = 8192, up to h = 2.2 · 10−4 au for N = 131072.

Figure 6.1 shows the structure of C2H5OH molecule. In our calculations the atomic nuclei
are placed arbitrarily with respect to the grid points of the uniform 3D Cartesian grid.

The maximum computational time for N3 = 1310723 is of the order of hundred seconds
in Matlab for AG, and hundred minutes for VG. For N3 = 81923 computations are in the
range of several seconds for both AG and VG.

Tables 6.4 – 6.8 show the relative Frobenius norm of the differences in the corresponding
Galerkin matrix entries for the Laplace Er(AG) and nuclear potential Er(VG) operators,
where

Er(AG) =
‖Ag − AG‖

‖Ag‖
, Er(VG) =

‖Vg − VG‖
‖Vg‖

.

The quadratic convergence of both quantities along the line of dyadic grid refinement is in
good agreement with the theoretical error estimates in §8. Therefore the employment of the
Richardson approximation providing the error

ERi,2h,h = Er

(

4 ∗ VG,h − VG,2h

3

)

gives further improvement of the accuracy up to order of O(h4) for the Laplace operator.
The “RE” lines in Tables 6.4 – 6.8 demonstrate the results of the Richardson extrapolation
applied to corresponding quantities at the adjacent grids. Lines |a11 − a11| and |v11 − v11|
show the absolute accuracy of calculating the first (largest) components of the matrices Ag

and Vg, respectively.
Figure 6.2 shows absolute error for the grid-based computation of matrix entries for the

Laplace (left) and nuclear potential (right) operators corresponding to H2O, with respect to
the matrices from Molpro. The Richardson extrapolation is applied to grids of size 215·3

and 216·3. Note, that the values of the largest entries of these matrices are a11 = 17580 and
v11 = 1385, respectively. We observe the relative computation errors of order of 10−7 using
the efficient tensor methods on uniform 3D Cartesian grids.

6.4 Grid-based numerical solution of the Hartree-Fock equation

Here, we sketch the general scheme for the multilevel numerical solution of the Hartree-Fock
equation by tensor-structured methods introduced in [3, 2]. The main difference from the
standart numerical approach is that it does not use the two-electron integrals, and instead
the Coulomb and exchange operators are computed “on the fly” during the DIIS iterations.

Figure 6.3, (see [3]) shows the flow-chart of the “black-box” 3D solver for the Hartree-
Fock equation. Here N = N0 · 2p is the univariate size of the N ×N ×N 3D Cartesian grid,
where N0 is the size of the coarsest grid, and p indicates the grid level. k is the iteration
number, and k0 (usually k0 = 4) indicates the grid level to begin the DIIS [25] scheme.
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Figure 6.1: The molecular structure of ethanol (C2H5OH). Figure is generated using the
MOLDEN program [24].

p 13 14 15 16 17
N3 = 23p 81923 163843 327683 655363 1310723

Er(AG) 0.032 0.0083 0.0021 5.2 · 10−4 1.3 · 10−4

RE - 4.0 · 10−4 3.3 · 10−5 6.0 · 10−6 5.0 · 10−8

|a11 − a11| 208 52 13 3.3 0.82
RE 11 0.72 0.045 0.0028 1.3 · 10−4

Er(VG) 0.024 0.0083 0.0011 3.1 · 10−4

RE - 0.0031 0.0013 5.9 · 10−5

|v11 − v11| 14 5.4 0.8 0.3
RE 11 0.72 0.045 0.0028

Table 6.4: Ethanol (C2H5OH): accuracy of the Galerkin matrices corresponding to the
Laplace, Er(AG), and the nuclear potential operators, Er(VG), using the discretized ba-
sis of 123 primitive Cartesian Gaussians (from the cc-pVDZ set [22, 23]).

p 13 14 15 16 17
N3 = 23p 81923 163843 327683 655363 1310723

Er(AG) 0.027 0.0069 0.0017 4.3 · 10−4 1.08 · 10−4

RE 1.08 · 10−4 3.0 · 10−5 1.3 · 10−5 3.6 · 10−8

|a11 − a11,h| 382 97 24 6 1.5
RE 2 0.3 0.0 0.0

Er(VG) 0.022 0.0064 0.001 3.6 · 10−4 8.9 · 10−5

RE 0.0012 8.0 · 10−4 1.5 · 10−4 9.0 · 10−8

|v11 − v11,h| 29 8.5 1.4 0, 48 0.11
RE 1.6 0.99 0.18 3.9 · 10−3

Table 6.5: Hydrazine (N2H4): accuracy of the Laplace-Galerkin matrix, Er(AG), and the
nuclear potential operators, Er(VG), using the discretized basis of 82 primitive Cartesian
Gaussians (from the cc-pVDZ set [22, 23]). a11 = 13569, v11 = 1063.
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p 13 14 15 16 17 18
N3 = 23p 81923 163843 327683 655363 1310723 2621443

Er(AG) 0.0083 0.0021 5.2 · 10−4 1.3 · 10−4 3.2 · 10−5

RE - 3.3 · 10−5 6.0 · 10−6 5.0 · 10−8 2.0 · 10−9

|a11 − a11,h| 162 40 10 2.55 0.6
RE - 0.6 0.0154 9.3 · 10−4 6.6 · 10−5

Er(VG) 0, 025 0.0066 0.0025 2.9 · 10−4 8.75 · 10−5

RE 4.6 · 10−4 0.001 4.0 · 10−4 2.0 · 10−5

|v11 − v11,h| 41 10.9 4.2 0.49 0.144
RE - 0.8 1.9 0.7 0.028

Table 6.6: Hydrogen peroxide (H2O2): accuracy of the Laplace-Galerkin matrix, Er(AG),
and the nuclear potential operators, Er(VG), using the discretized basis of 68 primitive
Cartesian gaussians (from the cc-pVDZ set [22, 23]). a11 = 17580, v11 = 1385.

p 13 14 15 16 17
N3 = 23p 81923 163843 327683 655363 1310723

h(in au) 0.0036 0.0018 8.9 · 10−4 4.4 · 10−4 2.2 · 10−4

Er(AG) 0.02 0.052 0.0013 3.2 · 10−4 8 · 10−5

RE - 2.6 · 10−4 0 2.0 · 10−6 1.7 · 10−8

Er(VG) 0.012 0.0029 7.0 · 10−4 1.7 · 10−4 4.3 · 10−5

RE - 2.6 · 10−4 2.0 · 10−5 3.0 · 10−6 1.2 · 10−7

Table 6.7: Methane (CH4): accuracy of the Galerkin matrices corresponding to the Laplace,
Er(AG), and the nuclear potential operators, Er(VG), using the discretized basis of 55
primitive Cartesian Gaussians (from the cc-pVDZ set [22, 23]).

p 13 14 15 16 17
N3 = 23p 81923 163843 327683 655363 1310723

Er(AG) 0.0439 0.0112 0.0028 7.0 · 10−4 1.7 · 10−4

RE 3.0 · 10−4 0.0 0.0 8 · 10−8

|a11 − a11,h| 999 255 64 16 4
RE 7 0.3 0.0 0.0

Er(VG) 0.029 0.0065 0.0016 4.0 · 10−4 1.18 · 10−4

RE 0.0012 3.3 · 10−5 0.0 2.3 · 10−5

Table 6.8: Hydrogen fluoride (HF): accuracy of the Laplace-Galerkin matrix, Er(AG), and
the nuclear potential operators, Er(VG), using the discretized basis of 34 primitive Cartesian
Gaussians (from the cc-pVDZ set [22, 23]). a11 = 22065
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Figure 6.2: Absolute error of grid-based computation of matrix entries for the Laplace (left)
and nuclear potential (right) operators for H2O, compared to data from Molpro. The
Richardson extrapolation is applied on grids 245 and 248.

First, the (solution independent) core Hamiltonian part, H0, of the Fock operator is
computed as discussed above for a given basis set. Note, that the size of the 3D Cartesian
grids used at this step may be much different (larger) from those used further in calculations
of the Hartree and exchange potentials.

Then, the EVP (2.10) is solved with the zero initial guess, JN0
(C) = 0, KN0

(C) = 0.
The DIIS iteration on N3 3D Cartesian grid, is started on a coarse grid, say, with N0 = 64,
and proceed using the dyadic grid refinement up to N3 = 81923 or N3 = 163843. The mesh

size at fine grids is of the order h ≈ 9 · 10−4
◦
A. At every iteration step, the Coulomb and

exchange parts of the Fock matrix F are updated by the tensor-structured computations
in O(N logN) complexity. A grid dependent termination criterion is used for switching
iterations to the next level of grid refinement. For example, as the termination criterion,
we control the norms of the differences for the virtual orbitals taken as the residual over
subsequent iterations.

The multilevel strategy provides fast and robust convergence of the SCF DIIS iteration
in spite of zero initial guess for JN0

(C), KN0
(C), since the results on the coarse grids serve as

a good initial guess for iterations on time consuming finer grids. The improved asymptotical
approximation O(h3) is obtained due to the Richardson extrapolation over a sequence of
grids [29].

Figure 6.4 shows iterations history of the solver for NH3 molecule. Red line shows the
convergence of the residual, the blue line is the difference of the first (largest by absolute
value) eigenvalue from the value from MOLPRO.

7 Conclusions

Here we present a fast and accurate grid-based method for calculation of the Galerkin ma-
trices for the Laplace and nuclear potential parts in the Fock operator. It is based on tensor
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Figure 6.3: Flow-chart of the “black-box” Hartree-Fock solver.
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operations of complexity O(N), applied to the generic set of basis functions with low sepa-
ration rank, and discretized on fine N ×N ×N Cartesian grids thus ensuring high precision.
The discretization error estimate of order O(h2) is proven. The Richardson extrapolation
is shown to provide the improved approximation of order O(h3)-O(h4). The efficiency and
accuracy of the approach is demonstrated by numerical tests on some moderate size compact
organic molecules.

Note that in the grid-based evaluation of the Fock operator we use two levels of basis
functions. The Galerkin scheme for the Hartree-Fock eigenvalue problem is treated in the
AO global basis, while the global basis functions are represented on the grid, using the
piecewise linear or piecewise constant finite elements of the second representation level.
Such separation provides the choice of optimal grid sizes in computation of different parts
of the Fock operator, being controlled only by the respective approximation error.

The reported results for the core Hamiltonian and already mentioned method for the
Coulomb and exchange matrices provide an approach to the numerical solution of the
Hartree-Fock equation by efficient recomputation of the Fock matrix “on the fly” [3] in
the case of multiply changing and rather general basis sets specified, in particular, by their
grid representation. These arise, for example, in the potential energy surface calculations
in molecular dynamics. Other possible advantageous application areas include semiperi-
odic systems [27, 28] and the grid-based evaluation of the two-electron integrals tensor in
Hartree-Fock and post Hartree-Fock calculations.

Acknowledgements. The authors are grateful to Prof. Dr. Reinhold Schneider (TU
Berlin) and Dr. Heinz-Juergen Flad (TU Berlin) for valuable discussions and useful com-
ments.

8 Appendix 1: error control

In this section we prove the asymptotic estimate, O(h2), for the numerical errors ‖Sg −SG‖,
‖Ag −AG‖ and ‖Vg − VG‖ in the max- and Frobenius norms effected by the piecewise linear
interpolation of the initial basis functions I1 : gk(x) → gk(x). The numerical illustrations
for these results are presented in Section 6.

First, consider the approximation error in the Galerkin stiffness matrix, ‖Ag − AG‖,
corresponding to the Laplacian. Recall, that in this case g

(ℓ)
k = I1g

(ℓ)
k , ℓ = 1, ..., 3. We begin

from some auxiliary error bounds in 1D case. Though these estimates are apparently known
in the FEM community, for the convenience we present complete proofs. Denote Ω = (−b, b),
and u = I1u.

Lemma 8.1 Let u ∈ H1
0 (Ω) ∩H2(Ω), then

|〈u′, u′〉 − 〈(I1u)′, (I1u)′〉| ≤ Ch2‖u′′‖2
0, (8.1)

|‖u‖2
0 − ‖I1u‖2

0| ≤ Ch2‖u′′‖0‖u‖0, (8.2)

where C is independent of h and u.
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Proof. Recall the standard FEM error bounds [30],

‖u− I1u‖0 ≤ Ch2‖u′′‖0, ‖u′ − (I1u)
′‖0 ≤ Ch‖u′′‖0. (8.3)

It is easy to check the identity

〈a, a〉 − 〈b, b〉 = −〈a− b, a− b〉 + 2〈a, a− b〉 ∀a, b ∈ L2(Ω). (8.4)

Plugging a = u′, b = (I1u)
′ in (8.4), taking into account the equation

〈u′, (u− I1u)
′〉 = −〈u′′, u− I1u〉,

and bounds (8.3), we arrive at (8.1).
Now replacing in (8.4) a = u, b = I1u, and making use of (8.3) yields (8.2).

Lemma 8.2 Let u, v ∈ H1
0 (Ω) ∩H2(Ω), then

|〈u′, v′〉 − 〈(I1u)′, (I1v)′〉| ≤ Ch2‖u′′‖0‖v′′‖0,

|〈u, v〉 − 〈I1u, I1v〉| ≤ Ch2‖u′′‖0‖v′′‖0,

where C is independent of h and u.

Proof. To prove the first assertion, we apply Lemma 8.1, (8.1), to the identity

〈a, b〉 − 〈a, b〉 = 〈a, a〉 − 〈a, a〉 + 〈b, b〉 − 〈b, b〉 − 〈a− b, a− b〉 − 〈a− b, a− b〉,
where a = u′, b = v′, a = (I1u)

′, b = (I1v)
′. The second estimate follows from (8.2) by

substitution a = u, b = v, a = I1u, b = I1v.
Next, we prove the simple technical lemma.

Lemma 8.3 Given d ∈ N, and aℓ, aℓ ∈ R, such that for some constants C,E > 0 we have
|aℓ − aℓ| ≤ E, |aℓ|, |aℓ| ≤ C for ℓ = 1, 2, . . . d. Then it holds

∣

∣

∣

∣

∣

d
∏

ℓ=1

aℓ −
d
∏

ℓ=1

aℓ

∣

∣

∣

∣

∣

≤ dECd−1.

Proof. The result can be proven by induction in d. Introduce the notation

E(k) = max
1≤n≤d+1−k

{
∣

∣

∣

∣

∣

n+k−1
∏

ℓ=n

aℓ −
n+k−1
∏

ℓ=n

aℓ

∣

∣

∣

∣

∣

}

, k = 1, . . . , d,

and prove that E(k) ≤ kECk−1. Notice that by assumptions, E(1) ≤ E, and E(d) coincides
with the target quantity. Now assuming that for the dimension d − 1 the estimate is valid,
we get

∣

∣

∣

∣

∣

d
∏

ℓ=1

aℓ −
d
∏

ℓ=1

aℓ

∣

∣

∣

∣

∣

= |a1(a2 · · ·ad − a2 · · ·ad) + (a1 − a1)a2 · · ·ad|

≤ CE(d− 1) + E(1)Cd−1

= C(d− 1)ECd−2 + ECd−1

= dECd−1,

which completes our proof.
We further denote by ∇(d) the d-dimensional gradient operator. Now we are in a position

to prove the basic approximation result.
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Theorem 8.4 (d-dimensional approximation). Let u(x) =
∏d

ℓ=1 uℓ(xℓ), v(x) =
∏d

ℓ=1 vℓ(xℓ),
where uℓ, vℓ ∈ H1

0 (Ω) ∩H2(Ω), ℓ = 1, . . . , d, then

∣

∣〈∇(d)u,∇(d)v〉 − 〈∇(d)I1u,∇(d)I1v〉
∣

∣ ≤ dCd−1
0 (E1 + E0(d− 1)C1/C0), (8.5)

|〈u, v〉 − 〈I1u, I1v〉| ≤ d2E0C
d−1
0 , (8.6)

where C0 = max
ℓ

{|〈uℓ, vℓ〉|, |〈I1uℓ, I1vℓ〉|}, C1 = max
ℓ

{|〈u′ℓ, v′ℓ〉|, |〈(I1uℓ)
′, (I1vℓ)

′〉|},
E0 = max

ℓ
{|〈uℓ, vℓ〉 − 〈I1uℓ, I1vℓ〉|}, and E1 = max

ℓ
{|〈u′ℓ, v′ℓ〉 − 〈(I1uℓ)

′, (I1vℓ)
′〉|}.

Proof. The result follows by Lemmas 8.2, 8.3. In fact, it is easy to see that

〈∇(d)u,∇(d)v〉 − 〈∇(d)I1u,∇(d)I1v〉

=
d
∑

k=1

[

〈u′k, v′k〉
d
∏

ℓ=1,ℓ 6=k

〈uℓ, vℓ〉 − 〈(I1uk)
′, (I1vk)

′〉
d
∏

ℓ=1,ℓ 6=k

〈I1uℓ, I1vℓ〉
]

=

d
∑

k=1

〈u′k, v′k〉
(

d
∏

ℓ=1,ℓ 6=k

〈uℓ, vℓ〉 −
d
∏

ℓ=1,ℓ 6=k

〈I1uℓ, I1vℓ〉
)

+

d
∑

k=1

(〈u′k, v′k〉 − 〈(I1uk)
′, (I1vk)

′〉)
d
∏

ℓ=1,ℓ 6=k

〈I1uℓ, I1vℓ〉

≤ d(C1E0(d− 1)Cd−2
0 + E1C

d−1
0 ),

which proves the first assertion by applying Lemmas 8.2 and 8.3 with respective notations.
The second assertion is proven in a similar way.

In the following, we assume without loss of generality that supp(gk) = Ω, k = 1, ..., Nb.

Corollary 8.5 Let d = 3 and the separable basis set {gk} satisfy the conditions of Theorem
8.4. Then the error estimates hold:

‖Ag − AG‖∞ ≤ Ch2, ‖Sg − SG‖∞ ≤ Ch2. (8.7)

Proof. Under the assumptions of Theorem 8.4, we have E0 = O(h2), and E1 = O(h2). Now
setting in Theorem 8.4 d = 3, and denoting u = gk, v = gm, one derives from (8.5) the first
estimate in (8.7),

‖Ag − AG‖∞ = max
k,m

‖akm − akm‖ ≤ Ch2.

Similarly, (8.6) proves the second bound in (8.7).
The above estimates are confirmed by the numerical illustrations in §6.

9 Appendix 2

For the readers convenience, Table 9.1 presents the nuclear coordinates used in computations
of the core Hamiltonian for the molecules considered in this study: C2H5OH, N2H4, H2O2,
CH4, NH3, H2O and HF.
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Molecule, Element Nuclear Coordinates of nuclei
number of symbol charge X Y Z

basis functions number

C2H5OH, C 6 0.0 −1.073130810 −0.034788912
123 C 6 0.0 0.460542651 2.379525493

O 8 0.0 0.608614000 −2.085184857
H 1 0.0 −0.317955927 −3.611373598
H 1 1.669357848 −2.299425057 −0.091952187
H 1 −1.669357848 −2.299425057 −0.091952187
H 1 1.670642597 1.667565381 2.461670355
H 1 −1.670642597 1.667565381 2.461670355
H 1 0.0 −0.779241493 4.030057328

N2H4, N 7 0.0 1.367699039 0.0
82 N 7 0.0 −1.367699039 0.0

H 1 1.841335527 1.859207422 0.0
H 1 −1.841335527 −1.859207422 0.0
H 1 −0.572853975 1.859207422 1.749958527
H 1 0.572853975 −1.859207422 −1.749958527

H2O2, O 8 1.315741179 0.0 0.0
68 O 8 −1.315741179 0.0 0.0

H 1 1.699070297 1.476608885 0.939962179
H 1 −1.699070297 −1.476608885 0.939962179

CH4, C 6 0.0 0.0 0.0
55 H 1 1.18600000 1.18600000 1.18600000

H 1 −1.18600000 −1.18600000 1.18600000
H 1 −1.18600000 1.18600000 −1.18600000
H 1 1.18600000 −1.18600000 −1.18600000

NH3, N 7 0.0 0.0 0.0
48 H 1 1.755448702 0.0 −0.738303718

H 1 −0.877724351 1.520263171 −0.738303718
H 1 −0.877724351 −1.520263171 −0.738303718

H2O, O 8 0.0 0.0 0.0
41 H 1 0.0 0.0 1.809413

H 1 0.0 1.751699 −0.453346

HF, F 9 0.0 0.0 0.0
34 H 1 0.0 0.0 1.703600

Table 9.1: Cartesian coordinates of nuclei (in a.u.) used in the molecular electronic structure
calculations.
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