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POINCARÉ AND LOGARITHMIC SOBOLEV INEQUALITIES
BY DECOMPOSITION OF THE ENERGY LANDSCAPE

GEORG MENZ AND ANDRÉ SCHLICHTING

Abstract. We consider a diffusion on a potential landscape which is given by
a smooth Hamiltonian H : Rn → R in the regime of low temperature ε. We
proof the Eyring-Kramers formula for the optimal constant in the Poincaré (PI)
and logarithmic Sobolev inequality (LSI) for the associated generator L =

ε∆ − ∇H · ∇ of the diffusion. The proof is based on a refinement of the
two-scale approach introduced by Grunewald, Otto, Westdickenberg and Vil-
lani [GOVW09]; and of the mean-difference estimate introduced by Chafaï
and Malrieu [CM10]. The Eyring-Kramers formula follows as a simple corol-
lary from two main ingredients: The first one shows that the PI and LSI
constant of the diffusion restricted to a basin of attraction of a local mini-
mum scales well in ε. This mimics the fast convergence of the diffusion to
metastable states. The second ingredient is the estimation of a mean-difference
by a weighted transport distance. It contains the main contribution to the PI
and LSI constant, resulting from exponentially long waiting times of jumps
between metastable states of the diffusion.

1. Introduction

Let us consider a diffusion on a potential landscape which is given by a sufficiently
smooth Hamiltonian function H : Rn → R. We are interested in the regime of low
temperature ε > 0. The generator of the diffusion has the following form

L := ε∆−∇H · ∇. (1.1)

The associated Dirichlet form is given for a test function f : Rn → R by

E(f) :=

∫
(−Lf)f dµ = ε

∫
|∇f |2 dµ.

The corresponding diffusion ξt satisfies the stochastic differential equation, also
called over-damped Langevin equation (cf. e.g. [LL10])

dξt = −∇H(ξt) dt+
√

2ε dBt, (1.2)

where Bt is the Brownian motion on Rn. Under some growth assumption on H
there exists an equilibrium measure of the according stochastic process, which is
called Gibbs measure and is given by

µ(dx) =
1

Zµ
exp

(
−H(x)

ε

)
dx with Zµ =

∫
exp

(
−H(x)

ε

)
dx. (1.3)

The evolution (1.2) of the stochastic process ξt can be translated into an evolution
of the density of the process ξt. Namely, under the assumption that the law of the
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initial state ξ0 is absolutely continuous w.r.t. the Gibbs measure µ, the density ftµ
of the process ξt satisfies the Fokker-Planck equation (cf. e.g. [Øks98] or [Sch10])

∂tft = Lft = ε∆ft −∇H · ∇ft.

We are particularly interested in the case where H has several local minima. Then
for small ε, the process shows metastable behavior in the sense that there exists a
separation of scales: On the fast scale, the process converges quickly to a neigh-
borhood of a local minimum. On the slow scale, the process stays nearby a local
minimum for an exponentially long waiting time after which it eventually jumps to
another local minimum.

This behavior was first described in the context of chemical reactions. The
exponential waiting time follows Arrhenius’ law [Arr89] meaning that the mean
exit time from one local minimum of H to another one is exponentially large in the
energy barrier between them. By now, the Arrhenius law is well-understood even
for non-reversible systems by the Freidlin-Wentzell theory [FW98], which is based
on large deviations.

A refinement of the Arrhenius law is the Eyring-Kramers formula which ad-
ditionally considers pre-exponential factors. The Eyring-Kramers formula for the
Poincaré inequality (PI) goes back to Eyring [Eyr35] and Kramers [Kra40]. Both
argue that also in high-dimensional problems of chemical reactions most reactions
are nearby a single trajectory called reaction pathway. Evaluating the Hamiltonian
along this reaction coordinate gives the classical picture of a double well potential
(cf. Figure 1) in one dimension with an energy barrier separating the two local
minima for which explicit calculations are feasible.

saddle

0

energy barrier

local minima

global minima

Figure 1. General double-well potential H on R.

However, a rigorous proof of the Eyring-Kramers formula for the multidimen-
sional case was open for a long time. For a special case, where all the minima of
the potential as well as all the lowest saddle points in-between have the same en-
ergy, Sugiura [Sug95] defined an exponentially rescaled Markov chain on the set of
minima in such a way that the pre-exponential factors become the transitions rates
between the basins of the rescaled process. For the generic case, where the local
minima and saddles have different energies, the group of Bovier, Eckhoff, Gayrard
and Klein [BEGK04, BGK05] obtained first-order asymptotics that are sharp in
the parameter ε. They also clarified the close connection between mean exit times,
capacities and the exponentially small eigenvalues of the operator L given by (1.1).
The main tool of [BEGK04, BGK05] is potential theory. The small eigenvalues are
related to the mean exit times of appropriate subsets of the state space. Further,
the mean exit times are given by Newtonian capacities which can explicitly be
calculated in the regime of low temperature ε.
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Shortly after, Helffer, Klein and Nier [HKN04, HN06, HN05] also deduced the
Eyring-Kramers formula using the connection of the spectral gap estimate of the
Fokker-Planck operator L given by (1.1) to the one of the Witten Laplacian. This
approach makes it possible to get quantitative results with the help of semiclassical
analysis. They deduced sharp asymptotics of the exponentially small eigenvalues
of L and gave an explicit expansion in ε to theoretically any order. An overview on
the Eyring-Kramers formula can be found in the review article of Berglund [Ber11].

In this work, we provide a new proof of the Eyring-Kramers formula for the
first eigenvalue of the operator L, i.e. its spectral gap. The advantage of this new
approach is that it extends to the logarithmic Sobolev inequality (LSI), which was
not investigated before. The LSI was introduced by [Gro75] and is stronger than the
PI. Compared to PI, the LSI has some advantages, which we outline in Remark 1.4.
Usually, the LSI is harder to deduce than the PI due to its nonlinear structure.

By deducing the Eyring-Kramers formula for the LSI, we encounter a surprising
effect: In the generic situation of having two local minima with different energies,
the Eyring-Kramers formula for the LSI differs from the Eyring-Kramers formula
for the PI by a term of inverse order in ε. However, in the symmetric situation of
having local minima with the same energy, the Eyring-Kramers formula for the LSI
coincides with the corresponding formula for the PI (cf. Corollary 2.15).

We conclude the introduction with an overview of the article:
In Section 1.1, we introduce PI and LSI.
In Section 1.2, we discuss the setting and the assumptions on the Hamiltonian H.
In Section 2, we outline the new approach and state the main results of this work.
In Section 3 and Section 4, we proof the main ingredients of our new approach.
Namely, in Section 3 we deduce a local PI and a local LSI with optimal scaling in ε,
whereas in Section 4 we estimate a mean-difference by using a weighted transport
distance.
In the appendices, we provide for the convenience of the reader some basic but
non-standard facts that are used in our arguments.

1.1. Poincaré and logarithmic Sobolev inequality.

Definition 1.1 (PI(%) and LSI(%)). Let X be an Euclidean space. A Borel prob-
ability measure µ on X satisfies the Poincaré inequality with constant % > 0, if for
all test functions f : X → R+

varµ(f) :=

∫ (
f −

∫
f dµ

)2

dµ ≤ 1

%

∫
|∇f |2 dµ. PI(%)

In a similar way, the probability measure µ satisfies the logarithmic Sobolev inequal-
ity with constant α > 0, if for all test function f : X → R+ holds

Entµ(f) :=

∫
f log

f∫
f dµ log

(∫
f dµ

) dµ ≤ 1

α

∫
|∇f |2

2f
dµ =: I(fµ|µ), LSI(α)

where I(fµ|µ) is called Fisher information. The gradient ∇ is determined by the
Euclidean structure of X. Test functions are those functions for which the gradient
exists and the right-hand-side in PI(%) and LSI(α) is finite.

Remark 1.2 (Relation between PI(%) and LSI(α)). Rothaus [Rot78] observed that
LSI(α) implies PI(α). Therefore, we set f = 1 + ηg for η small and find

Entµ(f2) = 2η2 varµ(g) +O(η3) as well as
∫
|∇f |2 dµ = η2

∫
|∇g|2 dµ.

Hence, if µ satisfies LSI(α) then µ satisfies PI(α), which always implies α ≤ %.
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The connection of the PI to the spectral gap of the operator L in (1.1) is the
variational characterization of the latter one.

Lemma 1.3. The spectral gap %SG of the operator L has the variational character-
ization

%SG := inf
f

E(f)

varµ(f)
= ε inf

f

∫
|∇f |2 dµ
varµ(f)

, SG(%SG)

where the infimum runs over all non-constant test functions f : Rn → R.
From the defintion of PI(%) and SG(%SG) follows that the operator L has a spectral
gap of size %SG = %ε if and only if the Gibbs measure µ satisfies PI(%) with optimal
constant %.

Remark 1.4 (Difference between LSI and PI). Using a Gronwall type argument it
is easy to see that the PI and the LSI imply exponential decay of the process ξt to
equilibrium, i.e.

if µ satisfies PI(%), then varµ(ft) ≤ exp(−2%εt) varµ(f0), and
if µ satisfies LSI(%), then Entµ(ft) ≤ exp(−2%εt) Entµ(f0).

In order to give a meaning to the last two inequalites, one still has to estimate
the intial variance varµ(f0) or the initial entropy Entµ(f0). Using a simple toy
example one can see an advantage of the LSI over the PI: We choose the Gibbs
measure µ normally distributes as N (0, Id). The initially state f0µ is also choosen
to be normally distributed according to N (0, σ Id) for some σ > 0. Then direct
calculation reveals

varµ(f0) =


(

1
σ(2−σ)

)n
2 − 1 if σ < 2,

∞ if σ ≥ 2
whereas Entµ(f0) =

n

2
(σ− 1− log σ).

1.2. Setting and assumptions. This article uses almost the same setting as found
in [BEGK04, BGK05]. Before starting the precise assumptions on the Hamilton-
ian H, we introduce the notion of a Morse function.

Definition 1.5 (Morse function). A smooth function H : Rn → R is a Morse
function, if the Hessian ∇2H of H is non-degenerated on the set of critical points.
More precisely, for some 1 ≤ CH <∞ holds

∀x ∈ S := {x ∈ Rn : ∇H = 0} :
1

CH
≤ ‖∇2H(x)‖ ≤ CH . (1.4)

We make the following assumption on the Hamiltonian H which despite the non-
degeneracy matter if the domain of H is unbounded. Hereby, we have to assume
stronger properties for H if we want to proof the LSI.

Assumption 1.6 (PI). We assume that H ∈ C3(Rn,R) is a Morse function.
Further, for some constants CH > 0 and KH ≥ 0 holds

lim inf
|x|→∞

|∇H| ≥ CH . (A1PI)

lim inf
|x|→∞

|∇H|2 −∆H ≥ −KH . (A2PI)

Assumption 1.7 (LSI). We assume that H ∈ C3(Rn,R) is a Morse function.
Further, for some constants CH > 0 and KH ≥ 0 holds

lim inf
|x|→∞

|∇H(x)|2 −∆H(x)

|x|2
≥ CH . (A1LSI)

inf
x
∇2H(x) ≥ −KH . (A2LSI)
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Remark 1.8 (Discussion of assumptions). The Assumption 1.6 yields the following
consequences for the Hamiltonian H:

• The condition (A1PI) ensures that e−H is integrable and can be normalized
to a probability measure on Rn. Hence, the Gibbs measure µ given by (1.3)
is well defined.

• A combination of the condition (A1PI) and (A2PI) ensures that there exists
a spectral gap for the operator L given by (1.1). Equivalently, this means
by the variational characterization of the spectral gap of L (cf. Lemma 1.3)
that the Gibbs measure µ given by (1.3) satisfies a PI for sufficiently small ε.

• The Lyapunov-type condition (A2PI) allows to recover the Poincaré con-
stant of the full Gibbs measure µ from the Poincaré constant of the Gibbs
measure µR restricted to some ball BR with radius R > 0 (cf. Section 3).

• The Morse Assumption (1.4) together with the growth condition (A1PI)
ensures that the set S of critical points is discrete and finite. In particular,
it follows that the set of local minima M = {m1, . . . ,mM} is also finite,
i.e. M := #M <∞.

Similarly the Assumption 1.7 has the following consequences for the HamiltonianH:
• The differences between the assumptions on H for the PI and the LSI

is that (A1PI) means at least linear growth at infinity for H, whereas a
combination of condition (A1LSI) and (A2LSI) yields quadratic growth at
infinity for H; that is

lim inf
|x|→∞

|∇H(x)|
|x|

≥ CH . (A0LSI)

Moreover, quadratic growth at infinity is also a necessary condition to ob-
tain LSI (cf. [Roy07, Theorem 3.1.21.]).

• In addition, (A1LSI) and (A2LSI) imply (A1PI) and (A2PI), which is only
an indication that LSI(α) is stronger than PI(%) in the sense of Remark 1.2.
Whenever we refer to Assumption 1.6 the properties in question hold also
under the Assumption 1.7.

• The condition (A1LSI) also is a Lyapunov type condition. It only implies a
defective WI-inequality (cf. Appendix G). To deduce LSI, one additionally
has to assume the condition (A2LSI) (cf. Section 3).

The final non-degeneracy assumption is not really needed for the proof of the
Eyring-Kramers formula, but to keep the presentation feasible and clear. The saddle
height Ĥ(mi,mj) between two local minima mi,mj is defined by

Ĥ(mi,mj) := inf

{
max
s∈[0,1]

H(γ(s)) : γ ∈ C([0, 1],Rn), γ(0) = mi, γ(1) = mj

}
.

Assumption 1.9 (Non-degeneracy). There exists δ > 0 such that:
(i) The saddle height between two local minima mi,mj is attained at a unique

critical point si,j ∈ S, i.e. it holds H(si,j) = Ĥ(mi,mj). The point si,j is
called optimal or communicating saddle between the minima mi and mj.
It follows from Assumption 1.6 that si,j is a saddle point of index one, i.e.{
x ∈ Rn :

〈
∇2H(si,j)x, x

〉
≤ 0
}
is one-dimensional.

(ii) The set of local minimaM = {m1, . . . ,mM} is ordered such that m1 is the
global minimum and for all i ∈ {3, . . . ,M} yields

H(s1,2)−H(m2) ≥ H(s1,i)−H(mi) + δ.
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2. Outline of the new approach and main results

In this section we present the new approach to the Eyring-Kramers formula
and formulate the main results of this article. Because the strategy is the same
for the PI and LSI, we deal with both cases simultaneously. The approach uses
ideas of the two-scale approach for LSI [GOVW09, OR07, Lel09] and the method
by [CM10] to deduce PI and LSI estimates for mixtures of measures. However, the
heuristics outlined in the introduction provide a good orientation for our proceeding.
Remember that we have a splitting into two time-scales:

• the fast scale describes the fast relaxation to a local minima of H and
• the slow scale describes the exponentially long transitions between local

equilibrium states.
Motivated by these two time scales, we specify in Section 2.1 a splitting of the
measure µ into local measures living on the basin of attraction of the local minima
of H. This splitting is lifted from the level of the measure to the level of the
variance and entropy. In this way, we obtain local variances and entropies, which
heuristically should correspond to the fast relaxation, and coarse-grained variances
and entropies, which should correspond to the exponentially long transitions.

Now, we handle each contribution separately. The local variances and entropies
are estimated by local PI (cf. Theorem 2.6) and local LSI respectively (cf. Theo-
rem 2.7). The heuristics suggest that this contribution should be of higher order
because this step only relies on the fast scale.

Before we can estimate the coarse-grained variances and entropies, we have to
bring them in the form of mean-differences. This is automatically the case for
the variances. However, for the coarse-grained entropies one has to apply a new
weighted discrete LSI (cf. Section 2.2), which causes the difference between the
PI and LSI in the Eyring-Kramers formula. The main contribution to the Eyring-
Kramers formula (cf. Corollary 2.12 and Corollary 2.14) results from the estimation
of the mean-difference, which is stated in Theorem 2.9.

At this point let us shortly summarize the the main results of this article:
• We provide good estimates for the local variances and entropies (cf. Sec-

tion 2.3.1) and
• We provide sharp estimates for the mean-differences (cf. Section 2.3.2).
• From these main ingredients, the Eyring-Kramers formulas follow as simple

corollaries (cf. Section 2.3.3).
We close this chapter with a discussion of the optimality of the Eyring-Kramers
formula for the LSI in one dimension (cf. Section 2.4).

2.1. Partition of the state space. The inspiration to use a partition of the state
space comes from the work [JSTV04] for discrete Markov chains. Motivated by
the fast convergence of the diffusion ξt given by (1.2) to metastable states, we
decompose the Gibbs measure µ into a mixture of local Gibbs measures µi in the
following way: To every local minimum mi ∈ M for i = 1, . . . ,M we associate its
basin of attraction Ωi defined by

Ωi :=
{
y ∈ Rn : lim

t→∞
yt = mi, ẏt = −∇H(yt), y0 = y

}
.

Up to sets of Lebesgue measure zero, the set PM = {Ωi}Mi=1 is a partition of Rn.
We can associate the local Gibbs measure µi to each element of the partition Ωi as
the restriction of µ

µi(dx) :=
1

ZiZµ
1Ωi(x) exp

(
−H(x)

ε

)
dx, where Zi = µ(Ωi). (2.1)
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The marginal measure µ̄ is given by a sum of Dirac measures µ̄ = Z1δ1+· · ·+ZMδM .
We note that

∑
i Zi = 1, since {Ωi}Mi=1 is a partition of Rn and µ a probability

measure. The starting point of the argument is a representation of the Gibbs
measure µ as a mixture of the mutual singular measures µi, namely

µ = Z1µ1 + · · ·+ ZMµM . (2.2)

The decomposition of µ can be lifted to a decomposition of the variance varµ(f)
and entropy Entµ(f) by a straightforward substitution of the mixture representa-
tion (2.2) of µ. The equations below were also used in [CM10, Section 4.1].

Lemma 2.1 (Splitting of variance and entropy for partition). For all f : Rn → R

holds

varµ(f) =

M∑
i=1

Zi varµi(f) +

M∑
i=1

∑
j>i

ZiZj
(
Eµi(f)− Eµj (f)

)2 (2.3)

Entµ(f) =

M∑
i=1

Zi Entµi(f) + Entµ̄
(
f̄
)
. (2.4)

We call the terms varµi(f) and Entµi(f) local variance and local entropy. The
term

(
Eµi(f)− Eµj (f)

)2 is called mean-difference and Entµ̄(f̄), denoted by coarse-
grained entropy, is given by

Entµ̄
(
f̄
)

=

M∑
i=1

Zif̄i log
f̄i∑M

j=1 Zj f̄j
, (2.5)

where f̄(i) = f̄i = Eµi(f).

2.2. Discrete logarithmic Sobolev type inequalities. From (2.4) we have to
estimate the coarse-grained entropy Entµ̄(f̄). From the heuristic explanation, we
expect that the main contribution comes from this term, which we want to treat
further. If H has only two minima, we can use the following discrete LSI for a
Bernoulli random variable, which was found by Higuchi and Yoshida [HY95] and
Diaconis and Saloff-Coste [DSC96, Theorem A.2.] at the same time.

Lemma 2.2 (Optimal logarithmic Sobolev inequality for Bernoulli measures). A
Bernoulli measure µp on X = {0, 1}, i.e. a mixture of two Dirac measures µp =
pδ0 + qδ1 with p+ q = 1 satisfies the discrete logarithmic Sobolev inequality

Entµp(f2) ≤ pq

Λ(p, q)
(f(0)− f(1))2 (2.6)

with optimal constant given by the logarithmic mean (cf. Appendix A)

Λ(p, q) :=
p− q

log p− log q
, for p 6= q and Λ(p, p) := lim

q→p
Λ(p, q) = p.

We want to handle the general case with more than two minima. Therefore, we
need to answer the question of how to generalize Lemma 2.2 to discrete measures
with a state space with more than two elements. An application of the modified
LSI for finite Markov chains of Diaconis and Saloff-Coste [DSC96, Theorem A.1.]
would not lead to an optimal results (cf. [Sch12, Section 2.3.]). Even for a generic
Markov chain on the 3-point space, the optimal logarithmic Sobolev constant is
unknown. Therefore, we will use the following direct generalization of Lemma 2.2,
which is a type of weighted LSI.
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Lemma 2.3 (Weighted logarithmic Sobolev inequality). For m ∈ N let µm =∑m
i=1 Ziδi be a discrete probability measure and assume that mini Zi > 0. Then for

a function f : {1, . . . ,m} → R+
0 holds the weighted logarithmic Sobolev inequality

Entµm(f2) ≤
m∑
i=1

∑
j>i

ZiZj
Λ(Zi, Zj)

(fi − fj)2
. (2.7)

Proof. We conclude by induction and find that for m = 2 the estimate (2.7) just
becomes (2.6), which shows the base case. For the inductive step, let us assume
that (2.7) holds for m ≥ 2. Then, the entropy Entµm+1(f2) can be rewritten as
follows

Entµm+1
(f2) = (1− Zm+1) Entµ̃m(f2) + Entν(f̃),

where the probability measure µ̃m lives on {1, . . . ,m} and is given by

µ̃m :=

m∑
i=1

Zi
1− Zm+1

δi.

Further, ν is the Bernoulli measure given by ν := (1− Zm+1)δ0 + Zm+1δ1 and the
function f̃ : {0, 1} → R is given with values

f̃0 :=

m∑
i=1

Zif
2
i

1− Zm+1
and f̃1 := f2

m+1.

Now, we apply the inductive hypothesis to Entµ̃m(f2) and arrive at

(1− Zm+1) Entµ̃m(f2) ≤ (1− Zm+1)

m∑
i=1

∑
j>i

ZiZj
(1− Zm+1)2

1− Zm+1

Λ(Zi, Zj)
(fi − fj)2

=

m∑
i=1

∑
j>i

ZiZj
Λ(Zi, Zj)

(fi − fj)2
,

where we used Λ(·, ·) being homogeneous of degree one in both arguments (cf.
Appendix A), i.e. Λ(λa, λb) = λΛ(a, b) for λ, a, b > 0. We can apply the inductive
base to the second entropy Entν(f̃), which in this case is the discrete LSI for the
two-point case (2.6)

Entν(f̃) ≤ Zm+1(1− Zm+1)

Λ(Zm+1, 1− Zm+1)

(√
f̃0 −

√
f̃1

)2

. (2.8)

The last step is to apply the Jensen inequality to recover the square differences
(fi − fm+1)2 from(√

f̃0 −
√
f̃1

)2

=

m∑
i=1

Zif
2
i

1− Zm+1
− 2

√√√√ m∑
i=1

Zif2
i

1− Zm+1︸ ︷︷ ︸
≥
∑m
i=1

Zifi
1−Zm+1

fm+1 + f2
m+1.

≤
m∑
i=1

Zi
1− Zm+1

(fi − fm+1)
2
.

We obtain in combination with (2.8) the following estimate

Entν(f̃) ≤ Zm+1

Λ(Zm+1, 1− Zm+1)

m∑
i=1

Zi (fi − fm+1)
2
.

To conclude the assertion, we first note that 1 − Zm+1 =
∑m
j=1 Zj ≥ Zj for j =

1, . . . ,m. Further, Λ(a, ·) is monotone increasing for a > 0, i.e. ∂bΛ(a, b) > 0 (cf.
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Appendix A). Both properties imply that Λ(Zm+1, 1 − Zm+1) ≥ Λ(Zm+1, Zj) for
j = 1, . . . ,m, which finally shows (2.7). �

We are now able to estimate the coarse-grained entropy Entµ̄(f2) occuring in
the splitting of the entropy (2.4) with the help of Lemma 2.3. This generalizes the
approach of [CM10, Section 4.1.] to the case of finite mixtures with more than two
components.

Lemma 2.4 (Estimate of the coarse-grained entropy). The coarse-grained entropy
in (2.5) can be estimated by

Entµ̄

(
f2
)
≤

M∑
i=1

∑
j 6=i

ZiZj varµi(f)

Λ(Zi, Zj)
+
∑
j>i

ZiZj
Λ(Zi, Zj)

(
Eµi(f)− Eµj (f)

)2 (2.9)

where f2 : {1, . . . ,M} → R is given by f2
i := Eµi(f

2).

Proof. Since µ̄ = Z1δ1 + · · ·+ ZMδM is finite discrete probability measure, we can
apply Lemma 2.3 to Entµ̄(f2)

Entµ̄(f2)) ≤
m∑
i=1

∑
j>i

ZiZj
Λ(Zi, Zj)

(√
f2
i −

√
f2
j

)2

. (2.10)

The square-root-mean-difference on the right-hand side of (2.10) can be estimated
by using the Jensen inequality(√

Eµi(f
2)−

√
Eµj (f

2)

)2

≤ Eµi(f2)− 2
√
Eµi(f

2)Eµj (f
2)︸ ︷︷ ︸

≥Eµi (f)Eµj (f)

+Eµj (f
2)

≤ Eµi(f2)− 2Eµi(f)Eµj (f) + Eµj (f
2)

= varµi(f) + varµj (f) +
(
Eµi(f)− Eµj (f)

)2
.

(2.11)

Now, we can combine (2.10) and (2.11) to arrive at the desired result (2.9). �

The combination of the splitting Lemma 2.1 with the above Lemma 2.4 results
in an estimate of the entropy in terms of local variances, local entropies and mean-
differences.

Corollary 2.5. The entropy of f with respect to µ on a partition {Ωi}Mi=1 with
restricted probability measures µi on Ωi can be estimated by

Entµ(f2) ≤
M∑
i=1

Zi Entµi(f
2) +

M∑
i=1

∑
j 6=i

ZiZj
Λ(Zi, Zj)

varµi(f)

+

M∑
i=1

∑
j>i

ZiZj
Λ(Zi, Zj)

(
Eµi(f)− Eµj (f)

)2
.

(2.12)

2.3. Main results. The main results of this work are good estimates of the single
terms on the right-hand side of (2.3) and (2.12). In detail, we need the local PI and
the local LSI provided by Theorem 2.6 and Theorem 2.7. Furthermore, we need
good control of the mean-differences, which will be the content of Theorem 2.9. Fi-
nally, the Eyring-Kramers formulas in Corollary 2.12 and Corollary 2.14 are simple
consequences of these representations and estimates.
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2.3.1. Local Poincaré and logarithmic Sobolev inequalities. Let us now turn to the
estimation of the local variances and entropies. From the heuristic understanding
of the process ξt given by (1.2), we expect a good behavior of the local Poincaré and
logarithmic Sobolev constant for the local Gibbs measures µi as it resembles the
fast convergence of ξt to a neighborhood of the next local minimum. Therefore, the
local variances and entropies should not contribute to the leading order expansion
of the total Poincaré and logarithmic Sobolev constant of µ. This idea is quantified
in the next both theorems.

Theorem 2.6 (Local Poincaré inequality). Under Assumption 1.6, the local mea-
sures {µi}Mi=1, obtained by restricting µ to the basin of attraction Ωi of the local
minimum mi (cf. (2.1)), satisfy PI(%i) with

%−1
i = O(ε).

Theorem 2.7 (Local logarithmic Sobolev inequality). Under Assumption 1.7, the
local measures {µi}Mi=1, obtained by restricting µ to the basin of attraction Ωi of the
local minimum mi (cf. (2.1)), satisfy LSI(αi) with

α−1
i = O(1).

Even if there are simple heuristics for the validity of Theorem 2.6 and Theo-
rem 2.7, the proof is not straightforward. The reason is that our situation goes
beyond the scope of the standard tools for PI and LSI:

• The Bakry-Émery criterion (cf. Theorem 3.1) cannot be applied because
we do not have a convex Hamiltonian.

• A naive application of the Holley-Stroock perturbation principle (cf. Theo-
rem 3.2) would yield an exponentially bad dependence on the parameter ε.

• One cannot apply a simple Lyapunov argument, because one cannot impose
a drift condition due to the saddles on a basin of attraction.

Therefore, we are forced to apply a more subtle Lyapunov argument, which is based
on a perturbation argument and on an explicit construction of a Lyapunov function.
We outline the argument for Theorem 2.6 and Theorem 2.7 in Section 3.

Remark 2.8 (Optimality of Theorem 2.6 and Theorem 2.7). The one-dimensional
case indicates that the results of Theorem 2.6 and Theorem 2.7 for a Gibbs measure
obtained from restricting its Hamiltonian H to the basin of attraction Ω of a local
minimum is the best behavior in ε, which one can expect in general. The optimality
in the one-dimensional case was investigated in [Sch12, Section 3.3.] by using the
Muckenhoupt functional [Muc72] and Bobkov-Götze functional [BG99].

2.3.2. Mean-difference estimate. Let us now turn to the estimation of the mean-
difference

(
Eµi(f)− Eµj (f)

)2. From the heuristics and the splitting of the vari-
ance (2.3) and entropy (2.12), we expect to see in the estimation of the mean-
difference the exponential long waiting times of the jumps of the diffusion ξt given
by (1.2) between the basins of attraction Ωi. We have to find a good upper bound
for the constant C in the inequality(

Eµi(f)− Eµj (f)
)2 ≤ C ∫ |∇f |2 dµ.

Therefore, we introduce in Section 4.1 a weighted transport distance between proba-
bility measures which yields a variational bound on the constant C. By an approx-
imation argument (cf. Section 4.2), we give an explicit construction of a transport
interpolation (cf. Section 4.3), which allows for asymptotically sharp estimates of
the constant C.



PI AND LSI BY DECOMPOSITION OF THE ENERGY LANDSCAPE 11

Theorem 2.9 (Mean-difference estimate). Under Assumption 1.6, the mean-dif-
ferences between the measures µi and µj for i = 1, . . .M − 1 and j = i+ 1, . . . ,M
satisfy(

Eµi(f)− Eµj (f)
)2
.

Zµ
(2πε)

n
2

2πε
√
|det∇2H(si,j)|
|λ−(si,j)|

e
H(si,j)

ε

∫
|∇f |2 dµ, (2.13)

where λ−(si,j) denotes the negative eigenvalue of the Hessian ∇2H(si,j) at the 1-
saddle si,j defined in Assumption ii. The symbol . means ≤ up to a multiplicative
error term of the form

1 +O(
√
ε |log ε|

3
2 ).

The proof of Theorem 2.9 is carried out in full detail in Section 4.

Remark 2.10 (Multiple minimal saddles). In Assumption 1.9, we demand that there
is exactly one minimal saddle between the local minima mi and mj . The technique
we will develop in Section 4 is flexible enough to handle also cases, in which there ex-
ists more than one minimal saddle between local minima. The according adaptions
and the resulting theorem can be found in [Sch12, Section 4.5.].

Remark 2.11 (Relation to capacity). The quantity on the right-hand side of (2.13) is
the inverse of the capacity of a small neighborhood aroundmi w.r.t. to a small neigh-
borhood around mj . The capacity is the crucial ingredient of the works [BEGK04]
and [BGK05].

2.3.3. Eyring-Kramers formulas. Now, let us turn to the Eyring-Kramers formulas.
Starting from the splitting obtained in Lemma 2.1 and Corollary 2.5, we will see
how a combination of Theorem 2.6, Theorem 2.7 and Theorem 2.9 immediately
leads to the multidimensional Eyring-Kramers formulas for the PI (cf. [BGK05,
Theorem 1.2]) and LSI.

Corollary 2.12 (Eyring-Kramers formula for Poincaré inequality). Under As-
sumption 1.6, the measure µ satisfies PI(%) with

1

%
. Z1Z2

Zµ
(2πε)

n
2

2πε
√
|det∇2(H(s1,2))|
|λ−(s1,2)|

e
H(s1,2)

ε , (2.14)

where λ−(s1,2) denotes the negative eigenvalue of the Hessian ∇2H(s1,2) at the 1-
saddle s1,2. Further, the order is given such that H(m1) ≤ H(mi) and H(s1,2) −
H(m2) is the energy barrier of the system in the sense of Assumption 1.9.

Proof. We start from the decomposition of the variance into local variances and
mean-differences given by Lemma 2.1. Then, an application of Theorem 2.6 and
Theorem 2.9 yields the estimate

varµ(f) ≤
∑
i

Zi varµi(f) +
∑
i

∑
j<i

ZiZj
(
Eµi(f)− Eµj (f)

)2
. O(ε)

+
∑
i

∑
j>i

ZiZjZµ
(2πε)

n
2

2πε
√
|det∇2H(si,j)|
|λ−(si,j)|

e
H(si,j)

ε

∫ |∇f |2 dµ. (2.15)

The final step is to observe, that by Assumption 1.9, the exponential dominating
term in (2.15) is given for i = 1 and j = 2. �

In [BGK05, Theorem 1.2]) it is also shown that the upper bound of (2.14) is
optimal by an approximation of the harmonic function. Therefore, in the following
we can assume that (2.14) holds with ≈ instead of ..
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Remark 2.13 (Higher exponential small eigenvalues). The main result of [BGK05,
Theorem 1.2] does not only characterize the second eigenvalue of L (i.e. the spec-
tral gap) but also the higher exponentially small eigenvalues. In principle, these
characterizations can be also obtained in the present approach: The dominating
exponential modes in (2.15), i.e. those obtained by setting i = 1, correspond to the
inverse eigenvalues of L for j = 2, . . . ,M . By using the variational characteriza-
tion of the eigenvalues of the operator L (cf. Lemma 1.3), the other exponentially
small eigenvalues may be obtained by restricting the class of test functions f to the
orthogonal complement of the eigenspaces of smaller eigenvalues.

Corollary 2.14 (Eyring-Kramers formula for logarithmic Sobolev inequalities).
Under Assumption 1.7, the measure µ satisfies LSI(α) with

2

α
.

Z1Z2

Λ(Z1, Z2)

Zµ
(2πε)

n
2

2πε
√
|det∇2(H(s1,2))|
|λ−(s1,2)|

e
H(s1,2)

ε ≈ 1

Λ(Z1, Z2)

1

%
, (2.16)

where λ−(s1,2) denotes the negative eigenvalue of the Hessian ∇2H(s1,2) at the 1-
saddle s1,2. Further, where we assume that the ordering is given such that H(m1) ≤
H(mi) and H(s1,2) − H(m2) is the energy barrier of the system in the sense of
Assumption 1.9.

Proof. The starting point is the estimate in Corollary 2.5 from which we are left
to bound the local entropies and variances as well as the mean-differences. The
according bounds are the statements of Theorem 2.6, Theorem 2.7 and Theorem 2.9
and lead to

Entµ(f2) ≤ O(1)

M∑
i=1

Zi

∫
|∇f |2 dµi +O(ε)

M∑
i=1

∑
j 6=i

ZiZj
Λ(Zi, Zj)

∫
|∇f |2 dµi

+

M∑
i=1

∑
j>i

ZiZj
Λ(Zi, Zj)

Zµ
(2πε)

n
2

2πε
√
|det∇2H(si,j)|
|λ−(si,j)|

e
H(si,j)

ε

∫
|∇f |2 dµ.

(2.17)

The first term on the right-hand side of (2.17) is just O(1)
∫
|∇f |2 dµ. For es-

timating the second term, we have to take care of the expression and use the
one-homogeneity of Λ(·, ·) (cf. Appendix A)

ZiZj
Λ(Zi, Zj)

= Zi
log Zi

Zj
Zi
Zj
− 1

= ZiP
(
Zi
Zj

)
, where P (x) :=

log x

x− 1
. (2.18)

The function P (x) is decreasing and has a logarithmic singularity in 0. Therefore,
we have to take care when Zi

Zj
becomes small. Let us therefore do an asymptotic

evaluation of Zi
Zj

, which can be deduced from

ZiZµ =

∫
Ωi

e−
H
ε dx =

(
(2πε)

n
2√

det∇2H(mi)
+O(ε

n+1
2 )

)
e−

H(mi)

ε . (2.19)

This formula immediately leads to the identity

Zi
Zj
≈
√
∇2H(mj)√
∇2H(mi)

e−
H(mi)−H(mj)

ε , (2.20)

which becomes exponentially small provided that H(mi) > H(mj). In particular,
using the expression (2.19) in (2.18) results in

ZiZj
Λ(Zi, Zj)

= ZiO(ε−1). (2.21)
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Hence, also the second term in (2.17) can be estimated by O(1)
∫
|∇f |2 dµ. This

shows that the third term dominates the first two on an exponential scale. This
leads to the estimate

Entµ(f2) .
M∑
i=1

∑
j>i

ZiZj
Λ(Zi, Zj)

Zµ
(2πε)

n
2

2πε
√
|det∇2H(si,j)|
|λ−(si,j)|

e
H(si,j)

ε

∫
|∇f |2 dµ.

From Assumption 1.9 together with (2.19) and (2.21) follows that the exponential
leading order term is given for i = 1 and j = 2. �

Corollary 2.15 (Comparison of % and α in special cases). Let us state two specific
cases of (2.14) and (2.16). Therefore, let

{
κ2
i

}M
i=1

denote the Hessian of H evaluated
at the minima mi, i.e.

κ2
i := det∇2H(mi).

Firstly, if H(m1) < H(m2), it holds

1

%
≈ 1

κ2

2πε
√
|det∇2(H(s1,2))|
|λ−(s1,2)|

e
H(s1,2)−H(m2)

ε , (2.22)

2

α
.

(
H(m2)−H(m1)

ε
+ log

(
κ1

κ2

))
1

%
. (2.23)

A special case occurs when H(m1) = H(m2) and the constants take the form

1

%
≈ 1

κ1 + κ2

2πε
√
|det∇2(H(s1,2))|
|λ−(s1,2)|

e
H(s1,2)−H(m2)

ε , (2.24)

2

α
.

1

Λ (κ1, κ2)

2πε
√
|det∇2(H(s1,2))|
|λ−(s1,2)|

e
H(s1,2)−H(m2)

ε . (2.25)

Proof. If H(m1) < H(m2), then holds by (2.19) Z1 = 1 + O
(
e−

H(m2)−H(m1)
ε

)
.

Therefore, the factor Z1Z2
Zµ

(2πε)
n
2

evaluates with (2.19) to

Z1Z2
Zµ

(2πε)
n
2
≈ 1√

det∇2H(m2)
e−

H(m2)
ε ,

which leads to (2.22). For the LSI, we additionally have to evaluate the factor
1

Λ(Zi,Zj)
which can be done with the help of (2.20)

1

Λ(Zi, Zj)
= log

Zi
Zj

(
1 +O

(
e−

H(m2)−H(m1)
ε

))
(2.20)
≈ log

(√
∇2H(mj)√
∇2H(mi)

e−
H(mi)−H(mj)

ε

)
.

That is already the estimate (2.23).
Let us turn now to the case H(m1) = H(m2). Then, we can evaluate Zµ like
in (2.19) and obtain by assuming H(m1) = H(m2) = 0

Zµ =

(
(2πε)

n
2

κ1
+

(2πε)
n
2

κ2
+O(ε

n+1
2 )

)
.

Therewith, the factor Z1Z2
Zµ

(2πε)
n
2

results with (2.19) in

Z1Z2
Zµ

(2πε)
n
2

=
(2πε)

n
2

Zµ

Z1Zµ
(2πε)

n
2

Z2Zµ
(2πε)

n
2

=
1

1
κ1

+ 1
κ2

1

κ1

1

κ2
=

1

κ1 + κ2
,
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which precisely leads to the expression (2.24). By using the homogeneity of Λ(·, ·)
(cf. Appendix A) and (2.19) follows for the LSI

Z1Z2

Λ(Z1, Z2)

Zµ
(2πε)

n
2

=
1

Λ
(

(2πε)
n
2

Z2Zµ
, (2πε)

n
2

Z1Zµ

) ≈ 1

Λ(κ2, κ1)
.

Finally, the result (2.25) is a consequence of the symmetry of Λ(·, ·). �

Remark 2.16 (Identification of α and %). Remark 1.2 shows that always α ≤ %. Let
us introduce the shorthand notation κi =

√
det∇2H(mi). We want to compare

the case when H(m1) = H(m2) where we observe by comparing (2.24) and (2.25)

1 ≤ %

α
.

κ1+κ2

2

Λ(κ1, κ2)
. (2.26)

The quotient in (2.26) consists of the arithmetic and logarithmic mean. The lower
bound of 1 can also be observed by applying the logarithmic-arithmetic mean in-
equality from Lemma A.1. Moreover equality only holds for κ1 = κ2. Hence, only
in the symmetric case with κ1 = κ2 holds % ≈ α.

Remark 2.17 (Relation to mixtures). If H(m1) < H(m2), then (2.23) gives

%

α
.

1

2
log

(
κ2

κ1
e
H(m2)−H(m1)

ε

)
≈ 1

2
|logZ2| , where Z2 = µ(Ω2). (2.27)

which shows an inverse scaling in ε. Different scaling behavior between Poincaré
and logarithmic Sobolev constants was also observed by Chafaï and Malrieu [CM10]
in a different context. They consider mixtures of probability measures ν0 and ν1

satisfying PI(%i) and LSI(αi), i.e. for p ∈ [0, 1] the measure νp given by

νp = pν0 + (1− p)ν1.

They deduce conditions under which also νp satisfies PI(%p) and LSI(αp) and give
bounds on the constants. They show in the one-dimensional case examples where
the Poincaré constant stays bounded, whereas the logarithmic Sobolev constant
blows up logarithmically, when the mixture parameter p goes to 0 or 1. The common
feature of the examples they deal with is ν1 � ν2 or ν2 � ν1. This case can
be generalized to the multidimensional case, where also a different scaling of the
Poincaré and logarithmic Sobolev constants is observed. The details can be found
in [Sch12, Chapter 6].
In the present case the Gibbs measure µ has also a mixture representation given
in (2.2). In the two-component case it looks like

µ = Z1µ1 + Z2µ2.

Let us emphasize, that µ1 ⊥ µ2. (2.27) shows also a logarithmic blow-up in the
mixture parameter Z2 for the ratio of the Poincaré and the logarithmic Sobolev
constant.

2.4. Optimality of the logarithmic Sobolev constant in one dimension. In
this section, we want to give a strong indication, that the result of Corollary 2.14
is optimal. Therefore, we will explicitly construct a function attaining equality
in (2.16) for the one dimensional case. Therefore, let µ be a probability measure on
R having as Hamiltonian H a generic double-well (cp. Figure 2). Namely, H has
two minima m1 and m2 with H(m1) ≤ H(m2) and a saddle s in-between. Then,
Theorem 2.14 shows

inf
g:
∫
g2dµ=1

∫
(g′)2dµ∫

g2 log g2dµ
&

Λ(Z1, Z2)

Z1Z2

√
2πε

Zµ

√
|H ′′(s)|
2πε

e
H(s)−H(m2)

ε . (2.28)
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m1

m2

s

0

H(m2)

H(s)

energy barrier

Figure 2. Double-well potential H on R (labeled).

We have to construct a function g attaining the lower bound given in (2.28)
satisfying H(m1) ≤ H(m2). We make the following ansatz for the function g and
firstly define it on some small δ-neighborhoods around the minima m1,m2 and the
saddle s:

g(x) :=


g(m1) , x ∈ Bδ(m1)

g(m1) + g(m2)−g(m1)√
2πεσ

∫ x
m1

e−
(y−s)2

2σε dy , x ∈ Bδ(s)
g(m2) , x ∈ Bδ(m2).

The ansatz contains the parameters g(m1), g(m2) and σ. Furthermore, we as-
sume that in-between the δ-neighborhoods g is extended to a smooth function in a
monotone fashion.

The measure µ is given by

µ(dx) =
1

Zµ
e−

H(x)
ε , where Zµ =

∫
e−

H(x)
ε dx.

We fix Zµ by assuming that H(m1) = 0. We can represent µ as the mixture

µ = Z1µ1 + Z2µ2, where µ1 = µxΩ1 and µ2 = µxΩ2,

hereby, Ω1 = (−∞, s) and Ω2 = (s,∞) and Zi = µ(Ωi) for i = 1, 2, which implies
Z1 +Z2 = 1. Then, for the ansatz g, we find via an asymptotic evaluation of

∫
g2dµ

∫
g2dµ ≈ Z1g

2(m1) + Z2g
2(m2)

!
= 1.

This motivates the choice

g2(m1) =
τ

Z1
and g2(m2) =

1− τ
Z2

=
1− τ

1− Z1
, for some τ ∈ [0, 1]

Let us now calculate the denominator of (2.28)

∫
g2 log g2dµ = τ log

τ

Z1
+ (1− τ) log

1− τ
Z2

. (2.29)
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The final step is to evaluate the Dirichlet energy
∫

(g′)2dµ. Therefore, we do a Taylor
expansion of H around s. Furthermore, since s is a saddle, it holds H ′′(s) < 0∫

(g′)2dµ ≈ (g(m2)− g(m1))2

Zµ 2πεσ

∫
Bδ(s)

e−
(x−s)2
σε −H(x)

ε dx

≈ (g(m2)− g(m1))2

Zµ 2πεσ

∫
Bδ(s)

e
− 1
ε

(
(x−s)2
σ +H(s)+H′′(s)

(x−s)2
2

)
dx

≈ (g(m2)− g(m1))2

Zµ 2πεσ
e−

H(s)
ε

∫
Bδ(s)

e−
(x−s)2

2ε ( 2
σ+H′′(s))dx

≈
(√

τ

Z1
−
√

1− τ
Z2

)2 √
2πε

Zµ
e−

H(s)
ε

1

2πε

1

σ
√

2
σ +H ′′(s)

,

(2.30)

where we assume that σ is small enough such that 2
σ+H ′′(s) > 0. The last step is to

minimize the right-hand side of (2.30) in σ, which means to maximize the expression
2σ + σ2H ′′(s) in σ. Elementary calculus results in σ = − 1

H′′(s) = 1
|H′′(s)| > 0 and

therefore∫
(g′)2dµ ≈

(√
τ

Z1
−
√

1− τ
Z2

)2 √
2πε

Zµ

√
|H ′′(s)|
2πε

e−
H(s)
ε . (2.31)

Hence, we have constructed by combining (2.29) and (2.31) an upper bound for the
optimization problem (2.28) given by a one-dimensional optimization in the still
free parameter τ ∈ (0, 1)

min
τ∈(0,1)


(√

τ
Z1
−
√

1−τ
Z2

)2

τ log τ
Z1

+ (1− τ) log 1−τ
Z2

 √
2πε

Zµ

√
|H ′′(s)|
2πε

e−
H(s)
ε .

The minimum in τ is attained according to Lemma A.3 for τ = Z2

min
τ∈(0,1)

(√
Z2

Z1
−
√

Z1

Z2

)2

Z2 log Z2

Z1
+ Z1 log Z1

Z2

=
Λ(Z1, Z2)

Z1Z2
.

3. Local Poincaré and logarithmic Sobolev inequalities

In this section, we want to proof the local PI of Theorem 2.6 and the local LSI
of Theorem 2.7. Therefore, we consider only one of the basins of attraction Ωi for
fixed i and we can omit the index i. We will write Ω and µ instead of Ωi and µi
respectively. Further, we assume w.l.o.g. that 0 ∈ Ω is the unique minimum of H
in Ω.

Let us begin with stating the two classical conditions for PI and LSI. The first
one is the Bakry-Émery criterion which states the convexity of the Hamiltonian
exhibits good mixing for the associate Gibbs measure.

Theorem 3.1 (Bakry-Émery criterion [BÉ85, Proposition 3, Corollaire 2]). Let H
be a Hamiltonian with Gibbs measure µ(dx) = Z−1

µ e−ε
−1H(x)dx and assume that

∇2H(x) ≥ λ > 0 for all x ∈ Rn. Then µ satisfies PI(%) and LSI(α) with

% ≥ λ

ε
and α ≥ λ

ε
.

The second condition is the Holley-Stroock perturbation principle, which allows
to show PI and LSI for a very large class of measures. However, in general the
constant obtained from this principle will be not optimal in terms of scaling with
the temperature ε.
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Theorem 3.2 (Holley-Stroock perturbation principle [HS87, p. 1184]). Let H be
a Hamiltonian with Gibbs measure µ(dx) = Z−1

µ e−ε
−1H(x)dx. Further, let ψ be a

bounded function and denote by µ̃ the Gibbs measure with Hamiltonian H +ψ, i.e.

µ(dx) =
1

Zµ
e−

H(x)
ε dx and µ̃(dx) =

1

Zµ̃
e−

H(x)+ψ(x)
ε dx.

Then, if µ satisfies PI(%) or LSI(α) then also µ̃ satisfy PI(%̃) or respectively LSI(α̃).
Hereby the constants satisfy the relations

%̃ ≥ e−
oscψ
ε % and α̃ ≥ e−

oscψ
ε α, (3.1)

where oscψ := supψ − inf ψ.

For the proofs relying on semigroup theory of Theorem 3.1 and Theorem 3.2 we
refer to the exposition by Ledoux [Led01, Corollary 1.4, Corollary 1.6 and Lemma
1.2]. The only difference is, that we always explicitly express the temperature ε
and consider H being ε-independent.

Let us summarize the reasons, why we cannot directly apply the above standard
criteria for the PI and LSI to a Hamiltonian restricted to the basin of attraction of
a local minimum.

• The criterion of Bakry-Émery [BÉ85] does not cover the present situation,
because in general H is not convex on the basin of attraction Ω.

• The perturbation principle of Holley-Stroock [HS87] cannot be applied
naively because it would yield an exponentially bad dependence of the
Poincaré constant % on ε.

Nevertheless, we will use both of them in the proof. The perturbation principle of
Holley-Stroock will be used very carefully. In particular, we will compare the mea-
sure µ with a measure µ̃, which is obtained from the construction of a perturbed
Hamiltonian H̃ε such that ‖H − H̃ε‖∞ = O(ε) in Ω. The condition of slight per-
turbation allows to compare the Poincaré and logarithmic Sobolev constants of µ
and µ̃ upto an ε-independent factor. The second step consists of a Lyapunov argu-
ment developed by Bakry, Barthe, Cattiaux, Guillin, Wang and Wu (cf. [BBCG08],
[BCG08], [CGW10] and [CGWW09]). The Lyapunov conditions shows similarities
to the characterization of the spectral gap by Donsker and Varadhan [DV76]. We
will state a Lyapunov function for µ̃, which will allow to compare the scaling behav-
ior for the Poincaré and logarithmic Sobolev constants with the truncated Gibbs
measure µ̂a (cf. Definition 3.5 and Lemma 3.6).

The following definition is motivated by the Holley-Stroock perturbation princi-
ple and becomes eminent from the subsequent Lemma 3.4.

Definition 3.3 (ε-modification H̃ε of H). We say that H̃ε is a ε-modification of H,
if for all ε small enough H̃ε is of class C2(Ω) ∩ C0(Ω) and satisfies the condition:
H̃ε is ε-close to H, i.e. there exists an ε-independent constant CH̃ > 0 such that

∀x ∈ Ω : |H̃ε(x)−H(x)| ≤ CH̃ε. (H̃ε)

The associated modified Gibbs measure µ̃ obtained from the ε-modified Hamilton-
ian H̃ε of H is given by

µ̃(dx) =
1

Zµ̃
e−

H̃ε
ε dx.

Lemma 3.4 (Perturbation by an ε-modification). If the ε-modified Gibbs measure
µ̃ satisfy PI(%̃) and LSI(α̃) then the associated measure µ also satisfies PI(%) and
LSI(α), where the constants fulfill the estimate

% ≥ e−2CH̃ %̃ and α ≥ e−2CH̃ α̃. (3.2)
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Proof. We just can apply Theorem 3.2 with H replaced by H̃ and ψ = H − H̃.
Finally, observe that by (H̃ε) holds

oscψ = sup(H − H̃)− inf(H − H̃) ≤ 2|H − H̃| ≤ 2CH̃ε.

Therewith, the bound (3.1) becomes (3.2). �

Definition 3.5 (Truncated Gibbs measure). To the Gibbs measure µ we associate
by µ̂a the truncated measure obtained from µ by restricting it to a ball of radius
a
√
ε around 0 for some a > 0

µ̂a(dx) =
1

Zµ̂a
1Ba√ε(x) e−

H(x)
ε dx.

Lemma 3.6 (PI and LSI for truncated Gibbs measure). The measure µ̂a satisfies
PI(%̂) and LSI(α̂) for ε small enough, where

1

%̂
= O(ε) and

1

α̂
= O(ε). (3.3)

Proof. In the local minimum 0 of Ω the Hessian of H is non-degenerated by As-
sumption 1.6 or 1.7. Therefore, for ε small enough, H is strictly convex in Ba

√
ε

and satisfies by the Bakry-Émery criterion (cf. Theorem 3.1) PI(%̂) and LSI(α̂)
with %̂ and α̂ obeying the relation (3.3). �

3.1. Lyapunov conditions . . .

3.1.1. . . . for Poincaré inequality. In this subsection, we will show that there exists
an ε-modified Hamiltonian H̃ε which ensures that the Poincaré constant of µ̃ is of
the same order as the Poincaré constant of the truncated measure µ̂a from Defini-
tion 3.5. Therefore, we will state a Lyapunov function for the measure µ̃. Firstly,
let us introduce the notion of a Lyapunov condition.

Definition 3.7 (Lyapunov condition for Poincaré inequality). Let H : Ω → R be
a Hamiltonian and let

µ(dx) =
1Ω(x)

Zµ
e−

H(x)
ε dx

denote the associated Gibbs measure µ at temperature ε. Then, W : Ω→ [1,∞) is
a Lyapunov function for H provided there exist constants R > 0, b > 0 and λ > 0
such that

1

ε
LW ≤ −λW + b 1ΩR . (3.4)

[BBCG08] is recommended for further information on the use of Lyapunov con-
ditions for deducing PI. The main ingredient of this technique is the following
statement:

Theorem 3.8 (Lyapunov condition for PI [BBCG08, Theorem 1.4.]). Suppose that
H fulfills the Lyapunov condition (3.4) and that the restricted measure µR given by

µR(dx) = µ(dx)xΩR=
1ΩR(x)

µ(ΩR)
µ(dx), where ΩR = Ω ∩BR

satisfies PI(%R). Then, µ also satisfies PI(%) with constant

% ≥ λ

b+ %R
%R.

We want to apply Theorem 3.8 to our situation. Hence, we do not only have to
verify the Lyapunov condition (3.4) but also have to investigate the dependence of
the constants R, b and λ on the parameter ε. Therefore, we will explicitly construct
an ε−modification H̃ε of H in the sense of Definition 3.3. More precisely, we deduce
the following statement:
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Lemma 3.9 (Lyapunov function for PI). Without loss of generality we may assume
that 0 ∈ Ω is the unique minimum of H in Ω. Then, there exits an ε−modification
H̃ε of H in the sense of Definition 3.3 such that for some constant a > 0 large
enough holds with λ0 > 0

1

2ε
∆H̃ε(x)− 1

4ε2
|∇H̃ε(x)|2 ≤ −λ0

ε
for all |x| ≥ a

√
ε. (3.5)

In particular, H̃ε satisfies the Lyapunov condition (3.4) with Lyapunov function

W (x) = exp

(
1

2ε
H̃ε(x)

)
and constants R = a

√
ε, b ≤ b0

ε
, and λ ≥ λ0

ε
. (3.6)

If the above lemma holds true the content of the local PI of Theorem 2.6 is just
a simple consequence of a combination of Theorem 3.8 and Lemma 3.4. We will
outline the proof in Section 3.2. Likewise, the statement of Lemma 3.9 directly
follows from the following two observations.

Lemma 3.10. Assume that the Hamiltonian H satisfies the Assumption (A2PI).
Then, there is a constant 0 ≤ CH <∞ and 0 ≤ R̃ <∞ such that

∆H(x)

2ε
− |∇H(x)|2

4ε2
≤ −CH

ε
for all |x| ≥ R̃. (3.7)

Moreover, let us assume that H is a Morse function in the sense of Definition 1.5.
Additionally, let S denote the set of all critical points of H in Ω; that is

S = {y ∈ Ω | ∇H(y) = 0} .
Then, there exists a constant 0 < cH depending only on H such for a > 0 and ε
small enough holds

|∇H(x)| ≥ cHa
√
ε for all x /∈

⋃
y∈S

Ba
√
ε(y). (3.8)

In particular, this implies that there is a constant CH > 0 such that
∆H(x)

2ε
− |∇H(x)|2

4ε2
≤ −CH

ε
for all x ∈ BR̃(0)\

⋃
y∈S

Ba
√
ε(y). (3.9)

Proof. The proof basically consists only of elementary calculations based on the
non-degeneracy assumption onH. For showing (3.7) we use the assumptions (A1PI)
and (A2PI). Therefore, we define R̃ such that

∀ |x| ≥ R̃ : |∇H| ≥ CH
2

and |∇H| −∆H(x) ≥ −2KH .

Therewith, it is easy to show, that for |x| ≥ R̃ holds

∆H(x)

2ε
− |∇H(x)|2

4ε2
≤ 1

ε

(
KH −

1

2

(
1

2ε
− 1

)
C2
H

4

)
≤ −C

2
H

32ε
,

for ε ≤ 1
4

C2
H

C2
H+8KH

, which proves the statement (3.7). The condition (3.8) is first
checked for a δ-neighborhood around the critical points y ∈ S. There, by the
Morse assumption on H (cp. Assumption 1.6 and Definition 1.5), we can do a
Taylor expansion of H around the critical point y and find for x ∈ Bδ(y)\Ba√ε(y)

|∇H(x)| ≥
∣∣λmin(∇2H(y))

∣∣ a√ε+O(δ2). (3.10)

This shows, that (3.8) holds for x ∈ Bδ(y)\Ba√ε(y). To conclude, we assume
that (3.8) does not hold for some critical point y, i.e. for every ε > 0 and cH > 0
and a > 0 we find x /∈ Ba

√
ε(y) such that |∇H(x)| ≤ cHa

√
ε, which by (3.10)

contradicts the Morse assumption (1.4) for ε small enough. Finally, (3.9) is a
conclusion of a combination of (3.7) and (3.8). �
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The second observation needed for the verification of Lemma 3.9 is given by the
following statement, which is the main ingredient for the proof of the local PI.

Lemma 3.11. On a basin of attraction Ω there exists an ε−modification H̃ε of H
in the sense of Definition 3.3 satisfying

(i) The modification H̃ε equals H except for small neighborhoods around the
critical points except the local minimum of H, i.e.

H̃ε(x) = H(x), for all x /∈
⋃

y∈S\{0}

Ba
√
ε(y).

(ii) There are constants 0 < CH and a > 1 such that for all small ε it holds

∆H̃ε(x)

2ε
− |∇H̃ε(x)|2

4ε2
≤ −CH

ε
for all x ∈

⋃
y∈S\{0}

Ba
√
ε(y). (3.11)

Proof of Lemma 3.11. By the property (i) of Lemma 3.11, it is sufficient to con-
struct the ε-modification H̃ε on a small neighborhood of any critical point y, which
is not the global minimum of H in Ω. By translation, we may assume w.l.o.g. that
y = 0.
Because the Hamiltonian H is a Morse function in the sense of Definition 1.5, we
may assume that ui, i ∈ {1, . . . , n} are orthonormal eigenvectors w.r.t. the Hessian
∇2H(0). The corresponding eigenvalues are denoted by λi, i ∈ {1, . . . , n}. Addi-
tionally, we may assume w.l.o.g. that λ1, . . . , λ` < 0 and λ`+1, . . . , λn > 0 for some
` ∈ {1, . . . , n}. If all λi < 0, we set H̃ε(x) = H(x) on Ba√ε(0) and directly observe
the desired statement (ii).
For the construction of H̃ε, we need a smooth auxiliary function ξ : [0,∞) → R

that satisfies

ξ′(z) = −1 for |z| ≤ a

2

√
ε and − 1 ≤ ξ′(z) ≤ 0 for z ∈ [0,∞) (3.12)

as well as for some Cξ > 0 and any |z| ≤ a
√
ε

|ξ′′(z)| ≤ Cξ√
ε

and ξ(z) = ξ′(z) = ξ′′(z) = 0 for |z| ≥ a
√
ε. (3.13)

Let us choose a constant δ > 0 small enough such that

−δ̃ := (n− 2`)δ +
∑̀
i=1

λi < 0 and δ ≤ 1

2
min {λi : i = `+ 1, . . . , n} . (3.14)

Because u1, . . . , un is an orthonormal basis of Rn, we introduce a norm | · |δ on Rn
by

|x|2δ :=
∑̀
i=1

1

2
δ |〈ui, x〉|2 +

n∑
i=`+1

1

2
(λi − δ) |〈ui, x〉|2

The norm |·|δ is equivalent to the standard euclidean norm |·| and satisfies the
estimate

δ

2
|x|2 ≤ |x|2δ ≤

λ+
max − δ

2
|x|2 ≤, (3.15)

where λ+
max = max {λi : i = `+ 1, . . . , n}. With the help of the function

Hb(x) := ξ
(
|x|2δ
)
, (3.16)

we define the ε-modification H̃ε of H on a small neighborhood of the critical point
0 as

H̃ε(x) = H(x) +Hb(x).
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Note that by definition of Hb holds H̃ε(x) = H(x) for all |x|δ ≥ a
√
ε. Therefore,

the property (i) of Lemma 3.10 is satisfied by the equivalence of norms on finite
dimensional vectorspaces (3.15).
For the verification of the statement (ii) of Lemma 3.10, it is sufficient to deduce
the following two facts: The first one is the estimate

∆H̃(x) ≤ − δ̃
2

for all |x|δ ≤
a

2

√
ε. (3.17)

The second one is that there is a constant 0 < CH such that for a large a > 1 and
small enough ε holds

∆H̃ε(x)

2
− |∇H̃ε(x)|2

4ε
≤ −CH for all

a

2

√
ε ≤ |x|δ ≤ a

√
ε. (3.18)

Let us have a look at (3.17). Because the function ξ has derivative −1 for |x|δ ≤
a
2

√
ε, straightforward calculation yields

∇2H̃(x) = ∇2H(x)−
∑̀
i=1

δ ui ⊗ ui −
n∑

i=`+1

(λi − δ) ui ⊗ ui.

Taking the trace in the above identity results in

∆H̃(x) = ∆H(x)−
n∑

i=`+1

λi + (n− 2`)δ.

By the Taylor formula there is a constant 0 ≤ C <∞ such that

|∆H(x)−∆H(0)| ≤ C|x|.

Therefore, we get for |x|δ ≤ a
2

√
ε

∆H̃(x) = ∆H(0)−
n∑

i=`+1

λi + (n− 2`)δ + ∆H(x)−∆H(0)

≤
∑̀
i=1

λi + (n− 2`)δ + C
a

2

√
ε

(3.14)
≤ −δ̃ + Ca

√
ε ≤ − δ̃

2
,

for
√
ε ≤ 2δ̃

Ca , which yields the desired statement (3.17).
Let us turn to the verification of (3.18). On the one hand, straightforward calcula-
tion reveals that there exists a constant 0 < C∆ <∞ such that

∆H̃(x) ≤ C∆ for all
a

2

√
ε < |x|δ < a

√
ε. (3.19)

Indeed, we observe

∆H̃ε(x) = ∆H(x) + ξ′′(|x|2δ)
∣∣∣∇|x|2δ∣∣∣2 + ξ′(|x|2δ)︸ ︷︷ ︸

≤0

∆|x|2δ︸ ︷︷ ︸
≥0

(3.13)
≤ ∆H(x) +

Cξ√
ε

∣∣∣∣∣∑̀
i=1

δ 〈ui, x〉ui +

n∑
i=`+1

(λi − δ) 〈ui, x〉ui

∣∣∣∣∣
2

≤ ∆H(x) +
Cξ√
ε
λ+

max |x|
2 ≤ CH +

Cξ√
ε
a2ε ≤ CH + Cξa

2
√
ε ≤ C∆,

for some C∆ and ε small enough, which yields (3.19).
On the other hand, we will deduce that there is a constant 0 < c∇ < ∞ such

that
|∇H̃ε(x)|2 ≥ c∇ a2 ε for all

a

2

√
ε < |x|δ < a

√
ε. (3.20)



22 GEORG MENZ AND ANDRÉ SCHLICHTING

We want to note that the observations (3.19) and (3.20) already yield the desired
statement (3.18). Indeed, we get for a2 ≥ 4C∆

c∇

∆H̃ε(x)

2ε
− |∇H̃ε(x)|2

4ε2
≤ C∆

2ε
− c∇a

2

4ε
≤ −C∆

2ε
for all

a

2

√
ε < |x|δ < a

√
ε,

which is the desired statement (3.18). Therefore, it is only left to deduce the
estimate (3.20). By the definition of H̃ε from above, we can write

|∇H̃ε(x)|2 = |∇H(x)|2 + |∇Hb(x)|2 + 2 〈∇H(x),∇Hb(x)〉 . (3.21)

Let us have a closer look at each term on the right-hand side of the last identity
and let us start with the first term. By Taylor’s formula we obtain

|∇H(x)−∇2H(0)x| ≤ C∇|x|2δ (3.22)

where 0 < C∇ <∞ denotes a generic constant. Therefore, we can estimate

|∇H(x)|2 ≥ |∇2H(0)x|2 − C∇a4ε2 for |x|δ ≤ a
√
ε. (3.23)

By the definition of λ1, . . . λn, we also know

|∇2H(0)x|2 =

n∑
i=1

λ2
i |〈ui, x〉|

2
. (3.24)

Let us have a closer look at the second term in (3.21), namely |∇Hb(x)|2. From
the definition (3.16) of |∇Hb(x)|2 follows

|∇Hb(x)|2 = |ξ′(|x|2δ)|2
(∑̀
i=1

δ2 |〈ui, x〉|2 +

n∑
i=`+1

(λi − δ)2 |〈ui, x〉|2
)

≤ 2λ+
max |x|

2
δ .

(3.25)

Now, we turn the the analysis of the last term, namely 2 〈∇H(x),∇Hb(x)〉. By
using the estimates (3.22) and (3.25), we get for |x|δ ≤ a

√
ε.

〈∇H(x),∇Hb(x)〉 =
〈
∇2H(0)x,∇Hb(x)

〉
+
〈
∇H(x)−∇2H(0)x,∇Hb(x)

〉
(3.22)
≥
〈
∇2H(0)x,∇Hb(x)

〉
− 2C∇λmax|x|3δ (3.26)

≥ −
∑̀
i=1

λiδ
∣∣ξ′ (|x|2δ)∣∣ |〈ui, x〉|2

−
n∑

i=`+1

λi(λi − δ)
∣∣ξ′ (|x|2δ)∣∣ |〈ui, x〉|2 − 2C∇λmaxa

3ε
3
2 .

Combining now the estimates and identities (3.21), (3.23), (3.24), (3.25) and (3.26),
we arrive for |x|δ ≤ a

√
ε at

|∇H̃ε(x)|2 ≥
∑̀
i=1

(
λi − δ

∣∣ξ′ (|x|2δ)∣∣)2

|〈ui, x〉|2

+

n∑
i=`+1

(
λi − (λi − δ)

∣∣ξ′ (|x|2δ)∣∣)2

|〈ui, x〉|2 − 4C∇λ
+
maxa

3ε
3
2 .

By (3.12) holds |ξ′(|x|2δ)| ≤ 1, which applied to the last inequality yields

|∇H̃ε(x)|2 ≥ δ2
n∑
i=1

|〈ui, x〉|2 − 4C∇λ
+
maxa

3ε
3
2 .
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Because u1, . . . un is an orthonormal basis of Rn, the desired statement (3.20) fol-
lows for a

√
ε

2 ≤ |x|δ ≤ a
√
ε from

|∇H̃ε(x)|2 ≥ = δ2|x|2 − 4C∇λ
+
maxa

3ε
3
2

(3.15)
≥ 2δ2

λ+
max
|x|2δ − 4C∇λ

+
maxa

3ε
3
2

≥ δ2

2λ+
max

a2ε− 4C∇λ
+
maxa

3ε
3
2 ≥ c∇a2ε

for some c∇ < δ2

2λ+
max

and ε small enough. �

We have collected all auxiliary results needed in the proof of Lemma 3.9.

Proof of Lemma 3.9. The condition (3.5) is a consequence of (3.7) from Lemma 3.10
and of (3.11) from Lemma 3.11. Now, we verify the Lyapunov condition (3.4) and
calculate with W = exp

(
1
2εH̃ε

)
1

ε

LW

W
=

1

2ε
∆H̃ε +

1

4ε2
|∇H̃ε|2 −

1

2ε2
|∇H̃ε|2 =

1

2ε
∆H̃ε −

1

4ε2
|∇H̃ε|2.

Choosing |x| ≥ a
√
ε := R one obtains from (3.5) the estimate λ ≥ λ0

ε . If |x| ≤ a
√
ε,

we note that H̃ε = H in Ba
√
ε(0). Furthermore, H is quadratic around 0 and

therefore is bounded by H(x) ≤ CHa2ε for |x| ≤ a
√
ε. Using, this in the definition

of W , we arrive at the bound for |x| ≤ a
√
ε

W (x) = e
1
2εH(x) ≤ e

CHa
2

2 .

This yields the desired estimate on the constant b, namely for |x| ≤ a
√
ε

1

ε
LW (x) ≤ 1

2ε
∆H(x)W (x) ≤ CHe

CHa
2

2

ε
=:

b0
ε
,

which finishes the proof. �

3.1.2. . . . for logarithmic Sobolev inequality. The Lyapunov condition for proving
LSI is stronger than the one for PI. Nevertheless, the construction of the ε-modified
Hamiltonian H̃ε from the previous section carries over and we can mainly use the
same Lyapunov function as for the PI. The Lyapunov condition for LSI goes back
to the work of Cattiaux, Guillin, Wand and Wu [CGWW09]. We will apply the
results in the form of the work [CGW10]. We will restate the proofs of the main
results in [CGW10] for two reasons: Firstly, to adopt the notation to the low
temperature regime and more importantly, to work out the explicit dependence
between the constants of the Lyapunov condition, the logarithmic Sobolev constant
and especially their ε-dependence.

Theorem 3.12 (Lyapunov condition for LSI [CGW10, Theorem 1.2]). Suppose
that there exists a C2-function W : Ω→ [1,∞) and constants λ, b > 0 such that for
L = ε∆−∇H · ∇ holds

∀x ∈ Ω :
1

ε

LW

W
≤ −λ |x|2 + b. (3.27)

Further assume, that ∇2H ≥ −KH for some KH > 0 and µ satisfies PI(%), then µ
satisfies LSI(α) with

1

α
≤ 2

√√√√ 1

λ

(
1

2
+
b+ λµ(|x|2)

%

)
+
KH

2ελ
+
KH(b+ λµ(|x|2)) + 2ελ

%ελ
. (3.28)

where µ(|x|2) denotes the second moment of µ.
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Lemma 3.13 ([CGW10, Lemma 3.4]). Assume that U is a non-negative locally
Lipschitz function such that for some lower bounded function φ

LeU

eU
= LU + ε |∇U |2 ≤ −εφ (3.29)

in the distributional sense. Then for any g holds∫
φg2dµ ≤

∫
|∇g|2 dµ.

Proof. We can assume w.l.o.g. that g is smooth with bounded support and φ is
bounded. For the verification of the desired statement, we need the symmetry of L
in L2(µ): ∫

(−Lf)gdµ =

∫
f(−L)gdµ = ε

∫
∇f · ∇gdµ, (3.30)

and the simple estimate

2g∇U · ∇g ≤ |∇U |2 g2 + |∇g|2 . (3.31)

An application of the assumption (3.29) yields

ε

∫
φg2dµ

(3.29)
≤
∫ (
−LU − ε |∇U |2

)
g2dµ

(3.30)
= ε

∫ (
2g∇U · ∇g − |∇U |2 g2

)
dµ

(3.31)
≤ ε

∫
|∇g|2 dµ,

which is the desired estimate. �

The proof of Theorem 3.12 relies on an interplay of some other functional inequal-
ities, which will not occur anywhere else. Therefore, in Appendix G a condensed
summary may be found.

Proof of Theorem 3.12. The argument of [CGW10] is a combination of the Lya-
punov condition (3.27) leading to a defective WI inequality and the use of the HWI
inequality of Otto and Villani [OV00]. In the following, we will use the measure ν
given by ν(dx) = h(x)µ(dx), where we can assume w.l.o.g. that ν is a probability
measure, i.e.

∫
h dµ = 1. The first step is to estimate the Wasserstein distance in

terms of the total variation (cf. Theorem G.2 and [Vil09, Theorem 6.15])

W 2
2 (ν, µ) ≤ 2‖|·|2 (ν − µ)‖TV . (3.32)

For every function g with |g| ≤ φ(x) := λ |x|2, where λ is from the Lyapunov
condition (3.27) we get∫

g d(ν − µ) ≤
∫
φ dν +

∫
φ dµ

=

∫
(λ |x|2 − b)h(x) µ(dx) +

∫
b dν + µ(φ),

(3.33)

We can apply to
∫

(λ |x|2 − b)h dµ Lemma 3.13, where the assumption is exactly
the Lyapunov condition (3.27) by choosing U = logW and arrive at∫

(λ |x|2 − b)h dµ ≤
∫ ∣∣∣∇√h∣∣∣2 dµ =

∫
|∇h|2

4h
dµ =

1

2
I(ν|µ), (3.34)

by the definition of the Fisher information. Taking the supremum over g in (3.33)
and combining the estimate with (3.32) and (3.34) we arrive at the defective WI
inequality

λ

2
W 2

2 (ν, µ) ≤ λ‖|·|2 (ν − µ)‖TV ≤
1

2
I(ν|µ) + b+ µ(φ). (3.35)



PI AND LSI BY DECOMPOSITION OF THE ENERGY LANDSCAPE 25

The next step is to use the HWI inequality (cf. Theorem G.6 and [OV00, Theorem
3]), which holds by the assumption ∇2H ≥ −KH

Entµ(h) ≤W2(ν, µ)
√

2I(ν|µ) +
KH

2ε
W 2

2 (ν, µ).

Substituting the defective WI inequality into the HWI inequality and using the
Young inequality ab ≤ τ

2a
2 + 1

2τ b
2 for τ > 0 results in

Entµ(h) ≤ τI(ν|µ) +

(
1

2τ
+
KH

2ε

)
W 2

2 (ν, µ)

(3.35)
≤
(
τ +

1

2λ

(
1

τ
+
KH

ε

))
I(ν|µ) +

1

λ

(
1

τ
+
KH

ε

)
(b+ µ(φ)).

(3.36)

The last inequality is of the type Entµ(h) ≤ 1
αd
I(ν|µ) + B

∫
hdµ and is often

called defective logarithmic Sobolev inequality dLSI(αd, B). It is well-known, that
a defective logarithmic Sobolev inequality can be tightened by PI(%) to LSI(α) with
constant (cf. Proposition G.9)

1

α
=

1

αd
+
B + 2

%
. (3.37)

A combination of (3.36) and (3.37) reveals

1

α
= τ +

1

2λ

(
1

τ
+
KH

ε

)
+

1

%

(
1

λ

(
1

τ
+
KH

ε

)
(b+ µ(φ)) + 2

)
= τ +

1

τλ

(
1

2
+
b+ µ(φ)

%

)
+
KH

2ελ
+
KH(b+ µ(φ)) + 2ελ

%ελ
=: τ +

c1
τ

+ c2.

The last step is to optimize in τ , which leads to τ =
√
c1 and therefore 1

α = 2
√
c1 +

c2. The final result (3.28) follows by recalling the definition of φ(x) = λ |x|2. �

For proofing the Lyapunov condition (3.27) we can use the construction of an
ε-modification done in Lemma 3.11.

Lemma 3.14 (Lyapunov function for LSI). There exists an ε-modification H̃ε of
H satisfying the Lyapunov condition (3.27) with Lyapunov function

W (x) = exp

(
1

2ε
H̃ε(x)

)
and constants b =

b0
ε
, and λ ≥ λ0

ε

for some b0, λ0 > 0 and Hessian ∇2H̃(x) ≥ −KH̃ for some KH̃ ≥ 0.

The proof consists of three steps, which correspond to three regions of interests.
First, we will consider a neighborhood of ∞, i.e. we will fix some R̃ > 0 and only
consider |x| ≥ R̃. This will be the analog estimate to formula (3.7) of Lemma 3.10.
Then, we will look at an intermediate regime for a

√
ε ≤ |x| ≤ R̃, where we will

have to take special care for the neighborhoods around critical points and use the
construction of Lemma 3.11. The last regime is for |x| ≤ a

√
ε, which will be the

simplest case.
Therefore, besides the construction done in the proof of Lemma 3.11, we need

an analogous formulation of Lemma 3.10 under the stronger assumption (A1LSI).

Lemma 3.15. Assume that the Hamiltonian H satisfies Assumption (A1LSI).
Then, there is a constant 0 ≤ CH < ∞ and 0 ≤ R̃ < ∞ such that for ε small
enough

∆H(x)

2ε
− |∇H(x)|2

4ε2
≤ −CH

ε
|x|2 for all |x| ≥ R̃. (3.38)
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We skip the proof of the Lemma 3.15, because it would work in the same
way as for Lemma 3.10 and only consists of elementary calculations based on the
non-degeneracy assumption on H. The only difference, is that we now demand
the stronger statement (3.38), which is a consequence of the stronger assump-
tion (A1LSI) in comparison to assumption (A2PI).

Now, we have collected the auxiliary statements and can proof Lemma 3.14.

Proof of Lemma 3.14. First, let us check the lower bound on the Hessian of H̃. We
will use the same construction as of the PI in Lemma 3.11. Therefore, the support
of H̃ −H is compact and H̃ is composed only of smooth functions, which already
implies the lower bound on the Hessian for compact domains. Outside a sufficient
large domain, the lower bound is just the Assumption (A2LSI). Now we can turn
to verify the Lyapunov condition (3.27) and calculate with W = exp( 1

2εH̃ε)

1

ε

LW

W
=

1

2ε
∆H̃ε +

1

4ε2
|∇H̃ε|2 −

1

2ε2
|∇H̃ε|2 =

1

2ε
∆H̃ε −

1

4ε2
|∇H̃ε|2.

If |x| ≥ R̃ with R̃ given in Lemma 3.15, we apply (3.38) and have the Lyapunov
condition fulfilled with constant λ = CH

ε . This allows us to only consider x ∈ BR̃∩Ω,
which is of course bounded. In this case, Lemma 3.9 yields for a

√
ε ≤ |x| ≤ R̃ the

estimate
1

ε

LW

W
≤ −λ0

ε
≤ − λ0

R̃2ε
|x|2 . (3.39)

For |x| ≤ a
√
ε holds by the representation (3.39) since H is smooth and strictly

convex in Ba√ε the bound

1

ε

LW

W
≤ 1

2ε
∆H(x) ≤ b0

ε
. (3.40)

A combination of (3.39) and (3.40) is the desired estimate (3.27). �

3.2. Proof of the local inequalities. In the previous Section 3.1, we were able
to construct Lyapunov functions for the Hamiltonian restricted to the basin of
attraction for each minimum. This is sufficient to finally prove the local PI and
LSI of Theorem 2.6 and Theorem 2.7, which consist of mainly checking, whether
the constants in the Lyapunov conditions show the right scaling behavior in ε. Let
us start by restating the local PI.

Theorem 2.6 (Local Poincaré inequality). Under Assumption 1.6, the local mea-
sures {µi}Mi=1, obtained by restricting µ to the basin of attraction Ωi of the local
minimum mi (cf. (2.1)), satisfy PI(%i) with

%−1
i = O(ε).

Proof. We prove the theorem for each µi individually and omit the index i. The first
step is the application of the Holley-Stroock perturbation principle in Lemma 3.4,
which ensures that whenever H̃ε is an ε-modification of H, i.e. supx∈Ω|H̃ε(x) −
H(x)| ≤ CH̃ε, the Poincaré constants are of the same order in terms of scaling in
ε, i.e.

% ≥ e−2CH̃ %̃. (3.41)

In the next step, we construct an explicit ε-modification H̃ satisfying the Lyapunov
condition Definition 3.7. Therefore, we can apply Theorem (3.8) with constant λ
and b satisfying the bounds (3.6) from Lemma 3.9. This leads to a lower bound for
%̃ by

%̃ ≥ λ%R
b+ %R

≥ λ0%R
b0 + ε%R

. (3.42)
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The final step is to observe that, since R = a
√
ε, we can assume that the measure

µ̃R = µ̃xBa√ε is just the measure µ̂a. Therefore, it holds %−1
R = O(ε) by Lemma 3.6,

which leads by combining the estimates (3.41) and (3.42) to the conclusion %−1 =
O(ε). �

Before continuing with the proof of the local LSI of Theorem 2.7, we want to
remark, that the Lyapunov condition for the PI and in particular for the LSI imply
an estimate of the second moment of µ.

Lemma 3.16 (Second moment estimate). If H fulfills the Lyapunov condition (3.4),
then µ has finite second moment and it holds∫

|x|2 µ(dx) ≤ 1 + bR2

λ
(3.43)

Proof. As it is outlined in [BBCG08], the Lyapunov condition (3.4) yields the fol-
lowing estimate: for any function f and m ∈ R it holds∫

(f −m)
2 dµ ≤ 1

λ

∫
|∇f |2 dµ+

b

λ

∫
ΩR

(f −m)
2 dµ.

We set f(x) = |x| and m = 0 to observe the estimate (3.43). �

As a direct consequence, we get the desired estimate on the second moment.

Corollary 3.17. If H fulfills the assumptions (A1PI) and (A2PI), then µ has finite
second moment and it holds ∫

|x|2 µ(dx) = O(ε).

Proof. We cannot apply the previous Lemma 3.16, but first have to do a change of
measure to a measure µ̃, where µ̃ comes from an ε-modified Hamiltonian H̃ε of H∫

|x|2 dµ ≤ e2CH̃

∫
|x|2 dµ̃.

Moreover, Lemma 3.9 ensures that H̃ε satisfies the Lyapunov condition (3.4) with
constants λ ≥ λ0

ε , b ≤
b0
ε and R = a

√
ε. Now, we can apply the previous

Lemma 3.16 and immediately observe the result. �

Theorem 2.7 (Local logarithmic Sobolev inequality). Under Assumption 1.7, the
local measures {µi}Mi=1, obtained by restricting µ to the basin of attraction Ωi of the
local minimum mi (cf. (2.1)), satisfy LSI(αi) with

α−1
i = O(1).

Proof. For the same reason as in the proof of Theorem 2.6, we omit the index i.
The first step is also the same as in the proof of Theorem 2.6. By Lemma 3.4 we
obtain that, whenever H̃ε is an ε-modification of µ in the sense of Definition 3.3,
the logarithmic Sobolev constants α and α̃ of µ and µ̃ satisfy α ≥ exp(−2CH̃)α̃.
The next step is to construct an explicit ε-modification H̃ satisfying the Lyapunov
condition (3.27) of Theorem 3.12, which is provided by Lemma 3.14.
Additionally, the logarithmic Sobolev constant α̃ depends on the second moment
of µ̃. Since H̃ε satisfies by Lemma 3.9 in particular the Lyapunov condition for
PI (3.4) with constants λ ≥ λ0

ε , b ≤
b0
ε and R = a

√
ε, we can apply Lemma 3.16

and arrive at ∫
|x|2 dµ̃ ≤ 1 +R2b

λ
≤ 1 + b0a

2

λ0
ε = O(ε).
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Now, we have control on all constants occurring in (3.28) and can determine the
logarithmic Sobolev constant α̃ of µ̃. Let us estimate term by term of (3.28) and
use the fact from Theorem (2.6), that µ̃ satisfies PI(%̃) with %̃−1 = O(ε)

2

√√√√ 1

λ

(
1

2
+
b+ λµ̃(|x|2)

%

)
≤ 2

√
ε

λ0

(
1

2
+O(1)

)
= O(

√
ε).

The second term evaluates to KH
2ελ = O(1) and finally the last one

KH(b+ λµ̃(|x|2)) + 2ελ

%ελ
= O(ε)

(
KH

(
b0
ε

+O(ε)

)
+O(1)

)
= O(1).

A combination of all the results leads to the conclusion α̃−1 = O(1) and since H̃ε

is only an ε-modification of H also α−1 = O(1). �

4. Mean-difference estimates – weighted transport distance

This section is devoted to the proof of Theorem 2.9. We want to estimate the
mean-difference

(
Eµif − Eµjf

)2 for i and j fixed. The proof consists of four steps:
In the first step, we introduce the weighted transport distance in Section 4.1.

This distance depends on the transport speed similarly to the Wasserstein distance,
but in addition weights the speed of a transported particle w.r.t. the reference
measure µ. The weighted transport distance allows in general for a variational
characterization of the constant C in the inequality(

Eµi(f)− Eµj (f)
)2 ≤ C ∫ |∇f |2 dµ.

The problem of finding good estimates of the constant C is then reduced to the
problem of finding a good transport between the measures µi and µj w.r.t. to the
weighted transport distance.

For measures as general as µi and µj , the construction of an explicit transport
interpolation is not feasible. Therefore, the second step consists of an approxima-
tion, which is done in Section 4.2. There, the restricted measures µi and µj are
replaced by simpler measures νi and νj , namely truncated Gaussians. We show in
Lemma 4.6 that this approximation only leads to higher order error terms.

The most import step, the third one, consists of the estimation of the mean-
difference w.r.t. the approximations νi and νj . Because the structure of νi and νj is
very simple, we can explicitly construct a transport interpolation between νi and νj
(see Lemma 4.11 in Section 4.3). The last step consists of collecting and controlling
the error (cf. Section 4.4).

4.1. Mean-difference estimates by transport. At the moment let us consider
two arbitrary measures ν0 � µ and ν1 � µ. The starting point of the estimation
is a representation of the mean-difference as a transport interpolation. This idea
goes back to Chafaï and Malrieu [CM10]. However, they used a similar but non-
optimal estimate for our purpose. Hence, let us consider a transport interpolation
(Φs : Rn → Rn)s∈[0,1] between ν0 and ν1, i.e. the family (Φs)s∈[0,1] satisfies

Φ0 = Id, (Φ1)]ν0 = ν1, and (Φs)]ν0 =: νs.

The representation of the mean-difference as a transport interpolation is attained
by using the fundamental theorem of calculus, i.e.

(Eν0
(f)− Eν1

(f))
2

=

(∫ 1

0

∫
〈∇f(Φs), Φ̇s〉 dν0 ds

)2

.
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At this point it is tempting to apply the Cauchy-Schwarz inequality in L2(dν0×ds)
leading to the estimate of Chafaï and Malrieu [CM10]. However, this strategy
would not yield the pre-exponential factors in the Eyring-Kramers formula (2.14)
(cf. Remark 4.2). On Stephan Luckhaus’ advice the authors realized the fact that
it really matters on which integral you apply the Cauchy-Schwarz inequality. This
insight lead to the following proceeding

(Eν0(f)− Eν1(f))
2

=

(∫ 1

0

∫
〈∇f, Φ̇s ◦ Φ−1

s 〉 dνs ds
)2

=

(∫ 〈
∇f,

∫ 1

0

Φ̇s ◦ Φ−1
s

dνs
dµ

ds
〉

dµ
)2

≤
∫ ∣∣∣∣∫ 1

0

Φ̇s ◦ Φ−1
s

dνs
dµ

ds
∣∣∣∣2dµ ∫ |∇f |2 dµ. (4.1)

Note that in the last step we have applied the Cauchy-Schwarz inequality only in
L2(dµ) and that the desired Dirichlet integral

∫
|∇f |2 dµ is already recovered.

The prefactor in front of the the Dirichlet energy on the right-hand side of (4.1)
only depends on the transport interpolation (Φs)s∈[0,1]. Hence, we can infimize
over all possible admissible transport interpolations and arrive at the following
definition.

Definition 4.1 (Weighted transport distance Tµ). Let µ be an absolutely continu-
ous probability measure on Rn with connected support. Additionally, let ν0 and ν1

be two probability measures such that ν0 � µ and ν1 � µ, then define the weighted
transport distance by

T 2
µ (ν0, ν1) := inf

Φs

∫ ∣∣∣∣∫ 1

0

Φ̇s ◦ Φ−1
s

dνs
dµ

ds
∣∣∣∣2 dµ. (4.2)

The family (Φs)s∈[0,1] is chosen absolutely continuous in the parameter s such
that Φ0 = Id on supp ν0 and (Φ1)]ν0 = ν1. For a fixed family and (Φs)s∈[0,1] and a
point x ∈ suppµ the cost density is defined by

A(x) :=

∣∣∣∣∫ 1

0

Φ̇s ◦ Φ−1
s (x) νs(x) ds

∣∣∣∣ . (4.3)

Remark 4.2 (Relation of Tµ to [CM10]). The transport distance Tµ(ν0, ν1) is always
smaller than the constant obtained by Chafaï and Malrieu [CM10, Section 4.6].
Indeed, applying the Cauchy-Schwarz inequality on L2(ds) in (4.2) yields

T 2
µ (ν0, ν1) ≤ inf

Φs

∫ ∫ 1

0

|Φ̇s ◦ Φ−1
s |2

dνs
dµ

ds
∫ 1

0

dνs
dµ

ds dµ

≤ inf
Φs

(
sup
x

(∫ 1

0

dνs
dµ

(x) ds
)∫ ∫ 1

0

|Φ̇s|2 ds dν0

)
,

where we used the assumption that νs � µ for all s ∈ [0, 1] in the last L1-L∞-
estimate.

Remark 4.3 (Relation of Tµ to the L2-Wasserstein distanceW2 ). If the support of µ
is convex, we can set the transport interpolation (Φs)s∈[0,1] to the linear interpola-
tion map Φs(x) = (1− s)x+ sU(x). Assuming that U is the optimal W2-transport
map between ν0 and ν1, the estimate in Remark 4.2 becomes

T 2
µ (ν0, ν1) ≤

(
sup
x

∫ 1

0

dνs
dµ

(x) ds
)
W 2

2 (ν0, ν1).



30 GEORG MENZ AND ANDRÉ SCHLICHTING

Remark 4.4 (Invariance under time rescaling). The cost density A given by (4.3)
is independent of rescaling the transport interpolation in the parameter s. Indeed,
we observe that

A(x) =

∣∣∣∣∫ 1

0

Φ̇s ◦ Φ−1
s (x) νs(x) ds

∣∣∣∣ =

∣∣∣∣∣
∫ T

0

Φ̇Tt ◦ (ΦTt )−1(x) νTt (x) dt

∣∣∣∣∣ ,
where ΦTt = Φt/T and νTt = νt/T .

Remark 4.5 (Relation to negative Sobolev-norms). The weighted transport distance
is a dynamic formulation for the negative Sobolev norm H−1(dµ) like Benamou
and Brenier did for the Wasserstein distance [BB00]. Precisely, for ν0 = %0µ and
ν1 = %1µ holds

Tµ(ν0, ν1) = ‖%0 − %1‖H−1(dµ) = inf
J

{∫
|J |2 dµ : ε∇ · J −∇H · J = %0 − %1

}
.

In fact, it is possible to define a whole class of weighted Wasserstein type distances
interpolating between the negative Sobolev norm and the Wasserstein distance.
Theses transports were found by Dolbeault, Nararet and Savaré [DNS09]. However,
the authors were unaware of their work during the preparation of this article.

4.2. Approximation of the local measures µi. In this subsection we show that
it is sufficient to consider only the mean-difference w.r.t. some auxiliary measures νi
approximating µi for i = 1, . . . ,M . More precisely, the next lemma shows that
there are nice measures νi which are close to the measures µi in the sense of the
mean-difference.

Lemma 4.6 (Mean-difference of approximation). For i = 1, . . . ,M let νi be a
truncated Gaussian measure centered around the local minimum mi with covariance
matrix Σi = (∇2H(mi))

−1, more precisely

νi(dx) =
1

Zνi
e−

Σ
−1
i

[x−mi]
2ε 1Ei(x) dx, where Zνi =

∫
Ei

e−
Σ
−1
i

[x−mi]
2ε dx, (4.4)

where we write A[x] := 〈x,Ax〉. The restriction Ei is given by an ellipsoid

Ei = {x ∈ Rn : |Σ−
1
2

i (x−mi)| ≤
√

2ε ω(ε)}. (4.5)

Additionally, assume that µi satisfies PI(%i) with %−1
i = O(ε).

Then the following estimate holds

(Eνi(f)− Eµi(f))
2 ≤ O(ε

3
2ω3(ε))

∫
|∇f |2 dµ, (4.6)

where the function ω(ε) : R+ → R+ in (4.5) and (4.6) is smooth and monotone
satisfying

ω(ε) ≥ |log ε|
1
2 for ε < 1.

The first step towards the proof of Lemma 4.6 is the following statement.

Lemma 4.7. Let νi be a probability measure satisfying νi � µi. Moreover, if µi
satisfies PI(%i) for some %i > 0, then the following estimate holds

(Eνi(f)− Eµi(f))
2 ≤ 1

%i
varµi

(
dνi
dµi

)∫
|∇f |2 dµi. (4.7)
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Proof of Lemma 4.7. The result is a consequence from the representation of the
mean-difference as a covariance. Therefore, we note that dνi = dνi

dµi
dµi since

νi � µi and use the Cauchy-Schwarz inequality for the covariance

(Eνi(f)− Eµi(f))
2

=

∫
f

dνi
dµi

dµi −
∫
fdµi

∫
dνi
dµi

dµi

= cov2
µi

(
dνi
dµi

, f

)
≤ varµi

(
dνi
dµi

)
varµi(f).

Using the fact that µi satisfies a PI results in (4.7). �

The above lemma tells us that we only need to construct νi approximating µi in
variance for i = 1, . . .M . The following lemma provides exactly this.

Lemma 4.8 (Approximation in variance). Let the measures νi be given by (4.4).
Then the partition sum Zνi satisfies for ε small enough

Zνi = (2πε)
n
2

√
det Σi (1 +O(

√
ε)). (4.8)

Additionally, νi is a good approximation in variance of µi, i.e.

varµi

(
dνi
dµi

)
= O(

√
ε ω3(ε)). (4.9)

Proof of Lemma 4.8. The proof of (4.8) reduces to an estimate of a Gaussian inte-
gral on the complementary domain Rn\Ei

Zνi =

∫
Ei

e−
Σ
−1
i

[x−mi]
2ε dx

= (2πε)
n
2

√
det Σi

(
1− 1

(2πε)
n
2

√
det Σi

∫
Rn\Ei

e−
Σ
−1
i

[x−mi]
2ε dx

)
.

The integral on the complementary domain Rn\Ei evaluates by the change of vari-
ables x 7→ y = (2εΣi)

− 1
2 (x−mi) to

1

(2πε)
n
2

√
det Σi

∫
Rn\Ei

e−
Σ
−1
i

[x−mi]
2ε dx =

1

π
n
2

∫
Rn\Bω(ε)

e−y
2

dy

=
n

Γ(n2 + 1)

∫ ∞
ω(ε)

rn−1e−r
2

dr =
Γ(n2 , ω

2(ε))

Γ(n2 )
,

where Γ(n2 , ω
2(ε)) is the complementary incomplete Gamma function. It has the

asymptotic expansion [Olv97, p. 109-112] given by

Γ
(n

2
, ω2(ε)

)
= O(e−ω

2(ε)ωn−2(ε)), for ω(ε) ≥
√
n.

We obtain (4.8) by the choice of ω(ε) ≥ |log ε|
1
2 , since the error becomes

O(e−ω
2(ε)ωn−2(ε)) = O(ε |log ε|

n
2−1

) = O(
√
ε), for ε ≤ e−n.

For the proof of (4.9), we compare the asymptotic expression for Zµi = ZiZµe
ε−1mi

from (2.19) and Zνi and obtain

Zµi = Zνi +O(
√
ε). (4.10)

The relative density of νi w.r.t. µi can be estimated by Taylor expanding H
around mi. By the definition of νi given in (4.4), we obtain that Σ−1

i [y − mi] −
Hi(y) = O(|y −mi|3). This observation together with (4.10) leads to

dνi
dµi

(y) =
Zµi
Zνi

e−
1
2εΣ−1

i [y−mi]+ 1
2εHi(y)1Ei(y) =

Zµi
Zνi

e
O(|y−mi|3)

ε 1Ei(y)

= 1 +O(
√
ε ω3(ε)).
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Now, the conclusion directly follows from the definition of the variance

varµi

(
dνi
dµi

)
=

∫
Ei

(
dνi
dµi

)2

dµi −
(∫

dνi
dµi

dµi
)2

=

∫
Ei

1 +O(
√
ε ω3(ε)) dµi −

(∫
Ei

dνi
)2

= 1 +O(
√
ε ω3(ε))− 1.

�

Proof of Lemma 4.6. A combination of Lemma 4.7 and Lemma 4.8 together with
the assumption %−1

i = O(ε) immediately reveals

(Eνi(f)− Eµi(f))
2

(4.7),(4.9)
≤ O(ε

3
2ω3(ε))

∫
|∇f |2 dµi.

�

4.3. Affine transport interpolation. The aim of this section is to estimate(
Eνi(f)− Eνj (f)

)2 with the help of the weighted transport distance Tµ(νi, νj) in-
troduced in Section 4.1. The main result of this section estimates the weighted
transport distance Tµ(νi, νj) and is formulated in Lemma 4.11. For the proof of
Lemma 4.11, we construct an explicit transport interpolation between νi and νj
w.r.t. the measure µ. We start with a class of possible transport interpolations and
optimize the weighted transport cost in this class.

Let us state the main idea of this optimization procedure. Therefore, we recall
that the measures νi and νj are truncated Gaussians by the approximation we have
done in the previous Section 4.2. Hence, the measures νi and νj are characterized
by their mean and covariance matrix. We will choose the transport interpolation
(cf. Section 4.3.1) such that the push forward measures νs := (Φs)]ν0 are again
truncated Gaussians. Hence, it is sufficient to optimize among all paths γ connect-
ing the minima mi and mj and all covariance matrices interpolating between Σi
and Σj .

4.3.1. Definition of regular affine transport interpolations. Let us state in this sec-
tion the class of transport interpolation among we want to optimize the weighted
transport cost.

Definition 4.9 (Affine transport interpolations). Assume that the measures νi
and νj are given by Lemma 4.6. In detail, νi = N (mi, ε

−1Σi)xEi and νj =
N (mj , ε

−1Σj)xEj are truncated Gaussians centered in mi and mj with covariance
matrices ε−1Σi and ε−1Σj . The restriction Ei and Ej are given for l = 1, . . . ,M
by the ellipsoids

El = {x ∈ Rn : |Σ−
1
2

l (x−ml)| ≤
√

2ε ω(ε)}, where ω(ε) ≥ |log ε|
1
2 .

A transport interpolation Φs between νi and νj is called affine transport interpola-
tion if there exists

• an interpolation path (γs)s∈[0,T ] between mi = γ0 and mj = γT satisfying

γ = (γs)s∈[0,T ] ∈ C2([0, T ],Rn) and ∀s ∈ [0, T ] : γ̇s ∈ Sn−1, (4.11)

• an interpolation path (Σs)s∈[0,T ] of covariance matrices between Σi and Σj
satisfying

Σ = (Σs)s∈[0,T ] ∈ C2([0, T ],Rn×nsym,+), Σ0 = Σi and ΣT = Σj ,
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such that the transport interpolation (Φs)s∈[0,T ] is given by

Φs(x) = Σ
1
2
s Σ
− 1

2
0 (x−m0) + γs. (4.12)

Since the cost density A given by (4.3) is invariant under rescaling of time (cf. Re-
mark 4.4), one can always assume that the interpolation path γs is parameterized
by arc-length. Hence, the condition γ̇s ∈ Sn−1 (cf. (4.11)) is not restricting.

We want to emphasize that for an affine transport interpolation (Φs)s∈[0,T ] the
push forward measure (Φs)]ν0 = νs is again a truncated GaussianN (γs, ε

−1Σs)xEs,
where Es is the support of νs being again an ellipsoid in Rn given by

Es = {x ∈ Rn : |Σ−
1
2

s (x− γs)| ≤
√

2ε ω(ε)}. (4.13)

Therewith, the partition sum of νs is given by (cf. (4.8))

Zνs = (2πε)
n
2

√
det Σs(1 +O(

√
ε)). (4.14)

By denoting σs = Σ
1
2
s and using the definition (4.12) of the affine transport inter-

polation (Φs)s∈[0,T ], we arrive at the relations

Φ̇s(x) = σ̇sσ
−1
0 (x−m0) + γ̇s,

Φ−1
s (y) = σ0σ

−1
s (y − γs) +m0,

Φ̇s ◦ Φ−1
s (y) = σ̇sσ

−1
s (y − γs) + γ̇s.

Among all possible affine transport interpolations we are considering only those
satisfying the following regularity assumption.

Assumption 4.10 (Regular affine transport interpolations). An affine transport
interpolation (γs,Σs)s∈[0,T ] belongs to the class of regular affine transport inter-
polations if the length T < T ∗ is bounded by some uniform T ∗ > 0 large enough.
Further, for a uniform constant cγ > 0 holds

inf {r(x, y, z) : x, y, z ∈ γ, x 6= y 6= z 6= x} ≥ cγ , (4.15)

where r(x, y, z) denotes the radius of the unique circle through the three distinct
points x, y and z. Furthermore, there exists a uniform constant CΣ ≥ 1 for which

C−1
Σ Id ≤ Σs ≤ CΣ Id and ‖Σ̇s‖ ≤ CΣ. (4.16)

(i)

(ii)

(iii)

γ0

γT

Figure 3.
Global radius
of curvature

The infimum in condition (4.15) is called global radius of curva-
ture (cf. [GMSvdM02]). It ensures that a small neighborhood of
size cγ

2 around γ is not self-intersecting, since the infimum can only
be attained for the following three cases:

(i) All three points in a minimizing sequence of (4.15) coalesce
to a point at which the radius of curvature is minimal.

(ii) Two points coalesce to a single point and the third converges
to another point, such that the both points are a pair of
closest approach.

(iii) Two points coalesce to a single point and the third converges
to the starting or ending point of γ.

In the following calculations, there often occurs a multiplicative error of the
form 1+O(

√
ε ω3(ε)). Therefore, let us introduce for convenience the notation “≈”

meaning “=” up to the multiplicative error 1 +O(
√
ε ω3(ε)). The symbols “.” and

“&” have the analogous meaning.
Now, we can formulate the key ingredient for the proof of Theorem 2.9, namely

the estimation of the weighted transport distance Tµ(νi, νj).
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Lemma 4.11. Assume that νi and νj are given by Lemma 4.6. Then the weighted
transport distance Tµ(νi, νj) can be estimated as

T 2
µ (νi, νj) = inf

Φs

∫ (∫ 1

0

|Φ̇s ◦ Φ−1
s |

dνs
dµ

ds
)2

dµ

≤ inf
Ψs

∫ (∫ 1

0

|Ψ̇s ◦Ψ−1
s |

dνs
dµ

ds
)2

dµ

.
Zµ

(2πε)
n
2

2πε

(√
|det(∇2H(si,j)|
|λ−(si,j)|

+
T (CΣ)

n−1
2

√
2πε

e−ω
2(ε)

)
e
H(si,j)

ε ,

(4.17)

where the infimum over Ψs only considers regular affine transport interpolations Ψs

in the sense of Assumption 4.10.
In particular, if we choose ω(ε) ≥ | log ε| 12 , which is enforced by Lemma 4.6, we get
the estimate

T 2
µ (νi, νj) ≤

Zµ
(2πε)

n
2

2πε
√
|det(∇2H(si,j)|
|λ−(si,j)|

e
H(si,j)

ε

(
1 +O(

√
ε ω3(ε))

)
. (4.18)

Before turning to the proof of Lemma 4.11, we want to anticipate the structure of
the affine transport interpolation (γ,Σ) which realizes the desired estimate (4.18):
Having a closer look at the structure of the weighted transport distance T 2

µ (νi, νj), it
becomes heuristically clear that the mass should be transported from Ei to Ej over
the saddle point si,j into the direction of the eigenvector to the negative eigenvalue
λ−(si,j) of ∇2H(si,j). There, only the region around the saddle gives the main
contribution to the estimate (4.18). Then, we only have one more free parameter
to choose for our affine transport interpolation (γ,Σ): It is the covariance structure
Στ∗ of the interpolating truncated Gaussian measure ντ∗ at the passage time τ∗
at the saddle point si,j . In the proof of Lemma 4.11 below, we will see by an
optimization procedure that the best Στ∗ is given by Σ−1

τ∗ = ∇2H(si,j), restricted
to the stable manifold of the saddle point si,j .

The proof of Lemma 4.11 presents the core of the proof of the Eyring-Kramers
formulas and consists of three steps carried out in the following sections:

• In Section 4.3.2, we carry out some preparatory work: We introduce tube
coordinates on the support of the transport cost A given by (4.3) (cf.
Lemma 4.12), we deduce a pointwise estimate on the transport cost A
and we give a rough a priori estimate on the transport cost A.

• In Section 4.3.3, we split the transport cost into a transport cost around
the saddle and the complement. We also estimate the transport cost of the
complement yielding the second summand in the desired estimate (4.17).

• In Section 4.3.4, we finally deduce a sharp estimate of the transport cost
around the saddle yielding the first summand in the desired estimate (4.17).

4.3.2. Preparations and auxiliary estimates. The main reason for making the reg-
ularity Assumption 4.10 on affine transport interpolations is that we can introduce
tube coordinates around the path γ. In these coordinates, the calculation of the
cost density A given by (4.3) becomes a lot handier.

We start with defining the caps E−0 and E+
T as

E−0 := {x ∈ E0 : 〈x− γ0, γ̇0〉 < 0} and E+
T := {x ∈ ET : 〈x− γT , γ̇T 〉 > 0},

The caps E−0 and E+
T have no contribution to the total cost but unfortunately need

some special treatment. Further, we define the slices Vs with s ∈ [0, T ]

Vs = {x ∈ span {γ̇s}⊥ : |Σ−
1
2

s x| ≤
√

2ε ω(ε)}.
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In spanVs we can choose a basis e2
s, . . . , e

n
s smoothly depending on the parameter s.

In particular, there exists a family (Qs)s∈[0,T ] ∈ C2([0, T ], SO(n)) satisfying the
same regularity assumption as the family (Στ )τ∈[0,T ] such that

Qse
1 = γ̇s, Qse

i = eis, for i = 2, . . . , n, (4.19)

where (e1, . . . , en) is the canonical basis of Rn.
Let use now define the tube E as

E =
⋃

s∈[0,T ]

(γs + Vs) .

The support of the cost density A given by (4.3) is now given by

suppA = E−0 ∪ E ∪ E
+
T . (4.20)

By the definition (4.13) of Es and the uniform bound (4.16) on Σs holds

diamVs ≤ 2
√

2εCΣ ω(ε). (4.21)

Therewith, we find

suppA ⊂ B2
√

2εCΣ ω(ε)((γτ )τ∈[0,T ]) :=
{
x ∈ Rn : |x− γτ | ≤ 2

√
2εCΣ ω(ε)

}
.

The assumption (4.13) ensures that B2
√

2εCΣ ω(ε)((γτ )τ∈[0,T ]) is not self-intersecting
for any ε small enough. The next lemma just states that by changing to tube
coordinates in E one can asymptotically neglect the Jacobian determinant det J .

Lemma 4.12 (Change of coordinates). The change of coordinates (τ, z) 7→ x =
γτ + zτ with zτ ∈ Vτ satisfies for any function ξ on E∫

E

ξ(x) dx ≈
∫ T

0

∫
Vτ

ξ(γτ + zτ ) dzτ dτ.

Proof of Lemma 4.12. We use the representation of the tube coordinates via (4.19).
Therewith, it holds that x = γτ+Qτz, where z ∈ {0}×Rn−1. Then, the Jacobian J
of the coordinate change x 7→ (τ,Qτz) is given by

J = (γ̇τ + Q̇τz, (Qτ )2, . . . , (Qτ )n) ∈ Rn×n,

where (Qτ )i denotes the i-th column of Qτ . By the definition (4.19) of Qτ follows
γ̇τ = (Qτ )1. Hence, we have the representation J = Qτ+Q̇τz⊗e1. The determinant
of J is then given by

det
(
Qτ + Q̇τz ⊗ e1

)
= det(Qτ )︸ ︷︷ ︸

=1

det
(

Id +(Q>τ Q̇τz)⊗ e1

)
= 1 +

(
Q>τ Q̇τz

)
1
.

By Assumption 4.10 holds ‖Q̇τ‖ ≤ CΣ implying (Q>τ Q̇τz)1,1 = O(z). Since Qτz ∈
Vτ , we get O(z) = O(

√
ε ω(ε)) by (4.21). Hence we get

det J = 1 +O(
√
ε ω(ε)),

which concludes the proof. �

An important tool is the following auxiliary estimate.

Lemma 4.13 (Pointwise estimate of the cost-density A). For x ∈ suppA we define

τ = arg min
s∈[0,T ]

|x− γs| and zτ := x− γτ . (4.22)

Then the following estimate holds

A(x) . (2πε)−
n−1

2

√
det1,1(Q>τ Σ̃−1

τ Qτ ) e−
Σ̃−1
τ [zτ ]

2ε =: Pτ e
− Σ̃−1

τ [zτ ]

2ε , (4.23)
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E−0

E+
T

γ0

γT
γτ

zτ

E

Vτ

z0

Figure 4. The support of A in tube coordinates.

where Qτ is defined in (4.19) and Σ̃−1
τ is given by

Σ̃−1
τ = Σ−1

τ −
1

Σ−1
τ [γ̇τ ]

Σ−1
τ γ̇τ ⊗ Σ−1

τ γ̇τ . (4.24)

Further, det1,1A is the determinant of the matrix obtained from A removing the
first row and column.

Remark 4.14. With a little bit of additionally work, one could show that (4.23) holds
with “≈” instead of “.”. It follows from (4.24) that the matrix Σ̃−1

τ is positive
definite. Hence, A is an Rn−1-dimensional Gaussian on the slice γτ + Vτ up to
approximation errors.

Proof of Lemma 4.13. We start the proof with some preliminary remarks and re-
sults. By the regularity Assumption 4.10 on the transport interpolation, we find
that for all x ∈ suppA holds uniformly

IT (x) := {s : Es 3 x} satisfies H1(IT (x)) = O(
√
ε ω(ε)).

This allows to linearize the transport interpolation around τ given in (4.22). It
holds for s such that x ∈ Es

Σ−1
s [x− γs] = Σ−1

τ [γτ + zτ − γs] +O(ε
3
2ω3(ε))

= Σ−1
τ [(τ − s)γ̇τ + zτ ] +O(ε

3
2ω3(ε)).

(4.25)

For similar reasons, we can linearize the determinant det Σs and have det Σs =
det Στ +O(

√
ε ω(ε)). Finally, we have the following bound on the transport speed

|Φ̇s ◦ Φ−1
s (x)|1Es(x) =

∣∣σ̇sσ−1
s (x− γs) + γ̇s

∣∣1Es(x)

≤
(∣∣σ̇sσ−1

s (x− γs)
∣∣+ |γ̇s|

)
1Es(x)

≤ (CΣ |x− γs|+ 1)1Es(x) =
(
1 +O(

√
ε ω(ε))

)
1Es(x).

(4.26)

Let us first consider the case x ∈ E. We use (4.14), (4.25) and (4.26) to arrive with
x = γτ + zτ where zτ ∈ Vτ at

A(x) =

∫
IT (x)

|Φ̇s ◦ Φ−1
s (x)| 1

Zνs
exp

(
− 1

2ε
Σ−1
s [x− γs]

)
1Es(x) ds

≤ 1

(2πε)
n
2

∫
IT (x)

1 +O(
√
ε ω(ε))√

det Σs
exp

(
− 1

2ε
Σ−1
s [x− γs]

)
ds

.
1

(2πε)
n
2

√
det Στ

∫
R

exp

(
− 1

2ε
Σ−1
τ [(τ − s)γ̇τ + zτ ]

)
ds

=

√
det Σ−1

τ

(2πε)
n
2

√
2πε√

Σ−1
τ [γ̇τ ]

exp

(
− 1

2ε
Σ̃−1
τ [zτ ]

)(
1 +O(

√
ε ω3(ε)

)
,
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where the last step follows by an application of a partial Gaussian integration (cf.
Lemma B.1). Finally, by using the relation (C.2), we get that

Σ−1
τ

Σ−1
τ [γ̇τ ]

= det1,1(Q>τ Σ̃−1
τ Qτ ),

and conclude the hypothesis for this case.
Let us now consider the case x ∈ E−0 ∪ E

+
T . For convenience, we only consider the

case x ∈ E−0 . By the definition of E−0 holds τ = 0. The integration domain IT (x)
is now given by

IT (x) = [0, s∗) with s∗ = O(
√
ε ω(ε)). (4.27)

Therewith, we can estimate A(x) in the same way as for x ∈ E and conclude the
proof. �

We only need one more ingredient for the proof of Lemma 4.11. It is an a priori
estimate on the cost density A.

Lemma 4.15 (A priori estimates for the cost density A). For A it holds:∫
A(x) dx . T, and (4.28)

A(x) .

(
CΣ

2πε

)n−1
2

for x ∈ suppA. (4.29)

Proof of Lemma 4.15. Let us first consider the estimate (4.28). It follows from the
characterization (4.20) of the support of A that∫

A(x) dx =

∫
E

A(x) dx+

∫
E−0 ∪E

+
T

A(x) dx. (4.30)

Now, we estimate the first term on the right-hand side of the last identity. Using the
change to tube coordinates of Lemma 4.12 and noting that the upper bound (4.23)
is a (n − 1)-dimensional Gaussian density on Vτ for τ ∈ [0, T ], we can easily infer
that ∫

E

A(x) dx . |γ| = T

Let us turn to the second term on the right-hand side of (4.30). For convenience,
we only consider the integral w.r.t. the cap E−0 . It follows from (4.26) and (4.27)
that ∫

E−0

A(x) dx .
∫
E−0

∫ 1

0

νs(x) ds dx =

∫ s∗

0

∫
E−0

νs(x) dx ds

.
∫ s∗

0

∫
νs(x) dx ds = s∗ = O(

√
ε ω(ε)),

which yields the desired statement (4.28).
Let us now consider the estimate 4.29. Note by Remark 4.14 the matrix Σ̃−1

τ given
by (4.24) is positive definite and the matrix we subtract is also positive definite.
Therefore, it holds in the sense of quadratic forms

0 < Σ̃−1
τ = Σ−1

τ −
1

Σ−1
τ [γ̇τ ]

Σ−1
τ ⊗ Σ−1

τ ≤ Σ−1
τ .

Now, the uniform bound (4.16) yields√
det1,1(Q>τ Σ̃−1

τ Qτ ) ≤ C
n−1

2

Σ .

Then, the desired statement (4.29) follows directly from the estimate (4.23). �
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4.3.3. Reduction to neighborhood around the saddle. Firstly, observe that from
(4.29) follows the a priori estimate

A2(x)

µ(x)
.

(
CΣ

2πε

)n−1

Zµ e
1
εH(x). (4.31)

Hence, on an exponential scale, the leading order contribution to the cost comes
from neighborhoods of points where H(x) is large. Therefore, we want to make the
set, where H is comparable to its value at the optimal connecting saddle si,j , as
small as possible. For this purpose, let us define the following set

Ξγ,Σ :=
{
x ∈ suppA : H(x) ≥ H(si,j)− εω2(ε)

}
. (4.32)

Therewith, we obtain by denoting the complement Ξcγ,Σ := suppA\Ξγ,Σ the split-
ting

T 2
µ (νi, νj) ≤

∫
Ξγ,Σ

A2(x)

µ(x)
dx+

∫
Ξcγ,Σ

A2(x)

µ(x)
dx.

The integral on Ξcγ,Σ can be estimated with the a priori estimate (4.31) and Lem-
ma 4.15 as follows∫

Ξcγ,Σ

A2(x)

µ(x)
dx

(4.32)
≤ Zµe

H(si,j)
ε −ω2(ε)

∫
Ξcγ,Σ

A2(x) dx

(4.29)
. Zµe

H(si,j)
ε −ω2(ε)

(
CΣ

2πε

)n−1
2
∫
A(x) dx

(4.28)
. Zµe

H(si,j)
ε −ω2(ε)

(
CΣ

2πε

)n−1
2

T.

(4.33)

We observe that estimate (4.33) is the second summand in the desired bound (4.17).

4.3.4. Cost estimate around the saddle. The aim of this subsection is to deduce the
estimate ∫

Ξγ,Σ

A2(x)

µ(x)
dx .

Zµ
(2πε)

n
2
e
H(si,j)

ε
2πε
√
|det(∇2H(si,j)|
|λ−(si,j)|

. (4.34)

Note that this estimate would yield the missing ingredient for the verification of
the desired estimate (4.17).

By the non-degeneracy Assumption 1.9, we can assume that ε is small enough
such that E−0 ∪E

+
T ⊂ Ξcγ,Σ. It follows that Ξγ,Σ ⊂ E. We claim that the transport

interpolation Φs can be chosen such that there exists a connected interval IT ⊂ [0, T ]
satisfying

Ξγ,Σ ⊂
⋃
s∈IT

(Vs + γs) and H1(IT ) = O(
√
ε ω(ε)). (4.35)

Indeed, the level set
{
x ∈ Rn : H(x) ≤ H(si,j)− εω2(ε)

}
consists of at least two

connected components Mi and Mj such that mi ∈ Mi and mj ∈ Mj . Further, it
holds

dist(Mi,Mj) = inf
x∈Mi,y∈Mj

|x− y| = O(
√
ε ω(ε)),

which follows from expanding H around si,j in direction of the eigenvector cor-
responding to the negative eigenvalue of ∇2H(si,j). We can choose the path γ
in direction of this eigenvector in a neighborhood of size O(

√
ε ω(ε)) around si,j ,

which shows (4.35).
Combining the covering (4.35) and Lemma 4.12 yields the estimate∫

Ξγ,Σ

A2(x)

µ(x)
dx ≤

∫
IT

∫
Vs

A2(γs + zs)

µ(γs + zs)
dzs ds. (4.36)
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Recalling the definition (4.19) of the family of rotations (Qτ )τ∈[0,T ], it holds that
zτ = Qτz with z ∈ {0} ×Rn−1. Hence, the following relation holds∫

IT

∫
Vτ

A2(γτ + zτ )

µ(γτ + zτ )
dzτ dτ =

∫
{0}×Rn−1

∫
IT

1Vτ (Qτz)
A2(γτ +Qτz)

µ(γτ +Qτz)
dτ dz.

(4.37)
The next step is to rewrite H(γτ + Qτz). We can assume, that γ actually passes
the saddle si,j at time τ∗ ∈ (0, T ). Then, by the reason that |zτ | = O(

√
ε ω(ε))

for zτ ∈ Vτ and the global non-degeneracy assumption (1.4), we can Taylor expand
H(γτ + zτ ) around si,j = γτ∗ for τ ∈ IT and zτ = Qτz ∈ Vτ . More precisely, we
get

H(γτ +Qτz)−H(si,j)

=
1

2
∇2H(si,j)[γτ +Qτz − si,j ] +O(|γτ +Qτz − si,j |3)

=
1

2
∇2H(si,j)[γτ − γτ∗ ] +

1

2
∇2H(si,j)[Qτz]

+
〈
Qτz,∇2H(si,j)(γτ − γτ∗)

〉
+O(|γτ +Qτz − γτ∗ |3)

Now, further expanding γτ and Qτ in τ leads to

γτ = γτ∗ + γ̇τ∗(τ − τ∗) +O(|τ − τ∗|), and
Qτz = Qτ∗z +O(|τ − τ∗| |z|).

For the expansion of H, we arrive at the identity

H(γτ +Qτz)−H(si,j) =

1

2
∇2H(si,j)[γ̇τ∗(τ − τ∗) +O(|τ − τ∗|2)] +

1

2
∇2H(si,j)[Qτ∗z +O(|τ − τ∗| |z|)]

+
〈
Qτ∗z +O(|τ − τ∗| |z|),∇2H(si,j)

(
γ̇τ∗(τ − τ∗) +O(|τ − τ∗|2)

)〉
+O(|γτ +Qτz − γτ∗ |3)

=
1

2
∇2H(si,j)[γ̇τ∗ ] (τ − τ∗)2 +

1

2
∇2H(si,j)[Qτ∗z]

+
〈
Qτ∗z,∇2H(si,j)γ̇τ∗

〉
(τ − τ∗)

+O(|τ − τ∗|3 , |z| |τ − τ∗|2 , |z|2 |τ − τ∗| , |z|3).

Using |τ − τ∗| = O(
√
ε ω(ε)) and |z| = O(

√
ε ω(ε)) we obtain for the error the

estimate

O(|τ − τ∗|3 , |z| |τ − τ∗|2 , |z|2 |τ − τ∗| , |z|3) = O(ε
3
2 ω3(ε)).

The term
〈
Qτ∗z,∇2H(si,j)γ̇τ∗

〉
(τ − τ∗) in the expansion of H has no sign and has

to vanish. This is only the case, if we choose γ̇τ∗ as an eigenvector of ∇2H(si,j) to
the negative eigenvalue λ−(si,j), because then〈

Qτ∗z,∇2H(si,j)γ̇τ∗
〉

(τ − τ∗) = λ−(si,j) 〈Qτ∗z, γ̇τ∗〉 = 0.

Additionally, by this choice of γ̇τ∗ the quadratic form ∇2H(si,j)[γ̇τ∗ ] evaluates to

∇2H(si,j)[γ̇τ∗ ] = λ−(si,j)|γ̇τ∗ |2 = λ−(si,j).

Therefore, we deduced the desired rewriting of H(γτ +Qτz) as

H(γτ +Qτz) = H(si,j)− |λ−(si,j)|(τ − τ∗)2 +
1

2
∇2H(si,j)[Qτ∗z] +O(ε

3
2 ω3(ε)).

(4.38)
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From the regularity assumptions on the transport interpolation we can deduce that

Σ̃−1
τ [Qτz] = Σ̃−1

τ∗ [Qτz] +O(|τ − τ∗| |z|2)

= Σ̃−1
τ∗ [Qτ∗z +O(|τ − τ∗| |z|)] +O(|τ − τ∗| |z|2)

= Σ̃−1
τ∗ [Qτ∗z] +O(ε

3
2ω3(ε)).

Then, it follows easily from the definition (4.23) of Pτ that

Pτ ≈ Pτ∗ for τ ∈ IT . (4.39)

Applying the cost estimate (4.23) of Lemma 4.13, the representation (4.38) and the
identity (4.39) yields the estimate for γτ +Qτz)inΞγ,Σ

A2(γτ +Qτz)

µ(γτ +Qτz)
. Zµe

H(si,j)

ε P 2
τ∗e
−

(2Σ̃
−1
τ∗ −∇

2H(si,j))[Qτ∗z]
2ε −

|λ−(si,j)|(τ−τ∗)2

2ε . (4.40)

The exponentials are densities of two Gaussian, if we put an additional constraint
on the transport interpolation. Namely, we postulate

2Σ̃−1
τ∗ −∇2H(si,j) > 0 on spanVτ∗

in the sense of quadratic forms. It holds that spanVτ∗ = Qτ∗({0} × Rn−1) =

span {γ̇τ∗}⊥ is the tangent space of the stable manifold in the 1-saddle si,j . With
this preliminary considerations we finally are able to estimate the right-hand side
of (4.37) as follows∫

{0}×Rn−1

∫
IT

1Vτ (Qτz)
A2(γτ +Qτz)

µ(γτ +Qτz)
dτ dz

(4.40)
. Zµ e

H(si,j)

ε

∫
{0}×Rn−1

∫
IT

P 2
τ∗ e

−
(2Σ̃
−1
τ∗ −∇

2H(si,j))[Qτ∗z]
2ε − |λ

−(si,j)|(τ−τ∗)2
2ε dτ dz

≤ Zµ e
H(si,j)

ε

√
2πε√

|λ−(si,j)|

∫
{0}×Rn−1

P 2
τ∗ e

−
(2Σ̃
−1
τ∗ −∇

2H(si,j))[Qτ∗z]
2ε dz

= Zµ e
H(si,j)

ε

√
2πε√

|λ−(si,j)|
P 2
τ∗

(2πε)
n−1

2√
det1,1

(
Q>τ∗(2Σ̃−1

τ∗ −∇2H(si,j))Qτ∗
)

=
Zµ

(2πε)
n
2
e
H(si,j)

ε
2πε√
|λ−(si,j)|

det1,1(Q>τ∗Σ̃
−1
τ∗ Qτ∗)√

det1,1

(
Q>τ∗(2Σ̃−1

τ∗ −∇2H(si,j))Qτ∗
)

︸ ︷︷ ︸
to optimize!

.

(4.41)

The final step consists of optimizing the choice of Σ̃τ∗ . Let us use the notation
A = Q>τ∗Σ̃

−1
τ∗ Qτ∗ and B = Q>τ∗H(si,j)Qτ∗ . Then the minimization problem has the

structure

inf
A∈Rn×nsym,+

{
det1,1A√

det1,1 (2A−B)
: 2A−B > 0 on {0} ×Rn−1

}
. (4.42)

In the appendix, we show in Lemma D.1 that the optimal value of (4.42) is attained
at Σ̃−1

τ∗ = ∇2H(si,j) restricted Vτ∗ . The optimal value is given by
det1,1A√

det1,1 (2A−B)
=
√

det1,1(Q>τ∗∇2H(si,j)Qτ∗).

Because Vτ∗ is the tangent space of the stable manifold of the saddle si,j , it holds

det1,1(Q>τ∗∇2H(si,j)Q
>
τ∗) =

det(∇2H(si,j))

λ−(si,j)
=
|det(∇2H(si,j))|
|λ−(si,j)|

. (4.43)
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The final step is a combination of (4.36), (4.37), (4.41) and (4.43) to obtain the
desired estimate (4.34).

For the verification of Lemma 4.11, it is only left to deduce the estimate (4.18).
For that purpose we analyze the error terms in the estimate (4.17) i.e.

T 2
µ (νi, νj) .

Zµ
(2πε)

n
2
e
H(si,j)

ε 2πε

(√
|det(∇2H(si,j)|
|λ−(si,j)|︸ ︷︷ ︸

=O(1)

+
T (CΣ)

n−1
2

√
2πε

e−ω
2(ε)︸ ︷︷ ︸

=O(ε−
1
2 e−ω2(ε))

)
.

By the choice of ω(ε) ≥ |log ε|
1
2 , enforced by Lemma 4.6, we see that

O(ε−
1
2 e−ω

2(ε)) = O(
√
ε).

Recalling, that “.” means “≤” up to a multiplicative error of order 1+O(
√
ε ω3(ε))

we get

T 2
µ (νi, νj) .

Zµ
(2πε)

n
2
e
H(si,j)

ε 2πε

√
|det(∇2H(si,j)|
|λ−(si,j)|

(
1 +O(

√
ε ω3(ε))

)
.

The last inequality already yields the desired estimate (4.18) by using the observa-
tion (

1 +O(
√
ε ω3(ε))

) (
1 +O(

√
ε)
)

=
(
1 +O(

√
ε ω3(ε))

)
.

4.4. Conclusion of the mean-difference estimate. With the help of Lemma 4.6
and Lemma 4.11 the proof of Theorem 2.9 is straightforward. We can estimate
the mean-differences w.r.t. to the measure µi by introducing the means w.r.t. the
approximations νi and νj .(

Eµi(f)−Eµj (f)
)2

=
(
Eµi(f)−Eνi(f) + Eνi(f)−Eνj (f) + Eνj (f)−Eµj (f)

)2
We apply the Young inequality with a weight that is motivated by the final total
multiplicative error term R(ε) in Theorem 2.9. More precisely,(

Eµi(f)− Eµj (f)
)2 ≤ (1 + ε

1
2ω3(ε))

(
Eνi(f)− Eνj (f)

)2
+

+ 2(1 + ε−
1
2ω−3(ε))

(
(Eµi(f)− Eνi(f))

2
+
(
Eµj (f)− Eνj (f)

)2)
.

Then, the estimate (4.6) of Lemma 4.6 yields(
Eµi(f)− Eµj (f)

)2 ≤ (1 +
√
ε ω3(ε))

(
Eνi(f)− Eνj (f)

)2
+O(ε)

∫
|∇f |2 dµ,

(4.44)
which justifies the statement, that the approximation only leads to higher-order
error terms in ε. An application of (4.1) to the estimate (4.44) transfers the mean-
difference to the Dirichlet form with the help of the weighted transport distance(

Eµi(f)− Eµj (f)
)2 ≤ ((1 +

√
ε ω3(ε)

)
T 2
µ (νi, νj) +O(ε)

) ∫
|∇f |2 dµ,

The weighted transport distance Tµ(νi, νj) is dominating the above estimate. Fi-
nally, we arrive at the estimate(

Eµi(f)− Eµj (f)
)2
. T 2

µ (νi, νj)

∫
|∇f |2 dµ.

Now, the Theorem 2.9 follows directly from an application of the estimate (4.18)
of Lemma 4.11 and setting ω(ε) = |log ε|

1
2 .
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Appendix A. Properties of the logarithmic mean Λ

In this part of the appendix, we collect some properties of the logarithmic
mean Λ(·, ·). Let us start with a collection of some essential properties for this sec-
tion. A more complete study can be found in [Car72] and the recent review [Bha08].

Let us first recall the definition of Λ(·, ·) : R+ ×R+ → R+

Λ(a, b) =
a− b

log a− log b
, a 6= b and Λ(a, a) = a.

The value of Λ(a, b) is also given by the logarithmic average of a and b

Λ(a, b) =

∫ 1

0

as b1−s ds =
1

log a− log b

[
asb1−s

]1
s=0

. (A.1)

The equation (A.1) justifies the statement, that Λ(·, ·) is a mean, since one imme-
diately recovers the simple bounds min {a, b} ≤ Λ(a, b) ≤ max {a, b}. Furthermore,
the following representations hold for 1/Λ(·, ·)

1

Λ(a, b)
=

∫ 1

0

dτ
τa+ (1− τ)b

=

∫ ∞
0

dτ
(a+ τ)(b+ τ)

(A.2)

Some immediate properties are:
• Λ(·, ·) is symmetric
• Λ(·, ·) is homogeneous of degree one, i.e. for λ > 0 holds Λ(λa, λb) =
λΛ(a, b).

The derivatives of Λ(·, ·) are given by straight-forward calculus

∂aΛ(a, b) =
1

log a− log b

(
1− Λ(a, b)

a

)
> 0 and

∂bΛ(a, b) =
1

log b− log a

(
1− Λ(a, b)

b

)
> 0.

Hence Λ(·, ·) is strictly monotone increasing in both arguments.
The following result is almost classical.

Lemma A.1. The logarithmic mean can be bounded below by the geometric mean
and above by the arithmetic mean

√
ab ≤ Λ(a, b) ≤ a+ b

2
, (A.3)

with equality if and only if a = b.

There exists at least four proofs of the inequality A.3
• [Car72, Theorem 1] uses the representation (A.2)
• [Mie11, Appendix A] starts with (A.1) and uses the convexity of s 7→ asb1−s

• [Bha08] gives an argument by simple calculus.
• Again [Bha08] relates the terms in question to hyperbolic trigonometric

functions, which allow for a quantification of the error, in the case with no
equality. We will present his proof here.

Proof. Since w.l.o.g. a, b > 0, we can switch to exponential variables and set a = ex

and b = ex. Therewith we arrive for the quotient of geometric and logarithmic mean
at √

ab

Λ(a, b)
= e

x+y
2

x− y
ex − ey

=
x− y

e
x−y

2 − e y−x2

=
x−y

2

sinh
(
x−y

2

) . (A.4)

It is easy to verify, that the function t 7→ t
sinh t is symmetric and strictly decreasing

in |t|, hence it has a unique maximum for t = 0 with 1. This proves
√
ab ≤ Λ(a, b)

with equality only if a = b.
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By the same reasoning, we obtain for the quotient of arithmetic and logarithmic
mean in exponential variables

a+b
2

Λ(a, b)
=

x−y
2

tanh
(
x−y

2

) .
Again, one can check that the function t 7→ t

tanh t is symmetric and strictly in-
creasing in |t|, hence it has a unique minimum for t = 0 with value 1. This proves
a+b

2 ≥ Λ(a, b) with equality only if a = b. �

The bounds in (A.3) are good, if a is of the same order as b, whereas the following
bound is particular good if ab becomes very small or very large.

Lemma A.2. It holds for p ∈ (0, 1) the following bound

Λ(p, 1− p)
p(1− p)

< min

{
1

p log 1
p

,
1

(1− p) log 1
1−p

}
. (A.5)

Proof. Let us first consider the case 0 < p < 1
2 . Then, it is enough to show, that

Λ(p, 1− p)
p(1− p)

p log
1

p
=

(1− 2p) log 1
p

(1− p) log 1−p
p

!
< 1. (A.6)

This follows easily from the following lower bound on the denominator

(1− p) log
1− p
p

= (1− 2p) log
1

p
+ p log

1

p
− (1− p) log

1

1− p
> (1− 2p) log

1

p
,

since p log 1
p − (1 − p) log 1

1−p > 0 for 0 < p < 1
2 . The case 1

2 < p < 1 follows by
symmetry under the variable change p 7→ 1−p. It remains to check the case p = 1

2 .
The left-hand side of (A.6) evaluates for p = 1

2 to

lim
p→ 1

2

Λ(p, 1− p)
p(1− p)

p log
1

p
= log 2 < 1.

�

The logarithmic mean also occurs in the following optimization problem, which
appears in the proof of the optimality of the Eyring-Kramers formula for the loga-
rithmic Sobolev constant in one dimension (cf. Section 2.4).

Lemma A.3. For p ∈ (0, 1) and t ∈ (0, 1) we define the function hp(t) according
to

hp(t) =

(√
t
p −

√
1−t
1−p

)2

t log t
p + (1− t) log 1−t

1−p
.

Then it holds

min
t∈(0,1)

hp(t) =
Λ(p, 1− p)
p(1− p)

. (A.7)

The minimum in (A.7) is attained for t = 1− p.

Proof. Let us introduce the function fp : (0, 1) → R and gp : (0, 1) → R given by
the nominator and denominator of (A.7), namely

fp(t) :=
(√

t
p −

√
1−t
1−p

)2

and gp(t) := t log t
p + (1− t) log 1−t

1−p .
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It is easy to verify, that the following relations for the derivatives hold true

f ′p(t) =
(√

t
p −

√
1−t
1−p

)(
1√
tp

+ 1√
(1−p)(1−t)

)
, g′p(t) = log t

p − log 1−t
1−p , (A.8)

f ′′p (t) =
√

(1−t)t
(1−p)p

1
2(1−t)2t2 > 0, g′′p (t) = 1

(1−t)t > 0.

Hence, both functions fp an gp are strictly convex and have a unique minimum for
t = p, where they are both zero. The derivative of the quotient of fp and gp has
the form

h′p(t) :=

(
fp(t)

gp(t)

)′
=

1

g2
p(t)

(
f ′p(t)gp(t)− fp(t)g′p(t)

)
(A.9)

The representation (A.8) for g′p leads to

h′p(t)g
2
p(t) =

(
tf ′p(t)− fp(t)

)
log t

p +
(
(1− t)f ′p(t) + fp(t)

)
log 1−t

1−p . (A.10)

Now, we can use (A.8) for f ′p to find

tf ′p(t)− fp(t) =
(√

t
p −

√
1−t
1−p

)(√
t
p + t√

(1−p)(1−t)
−
√

t
p +

√
1−t
1−p

)
= 1√

(1−p)(1−t)

(√
t
p −

√
1−t
1−p

) (A.11)

and likewise
(1− t)f ′p(t) + fp(t) = 1√

tp

(√
t
p −

√
1−t
1−p

)
. (A.12)

Using (A.11) and (A.12) in (A.10) leads by (A.9) to

h′p(t) =
1

g2
p(t)

(√
t

p
−
√

1− t
1− p

)
︸ ︷︷ ︸

=:vp(t)

(
log t

p√
(1− p)(1− t)

+
log 1−t

1−p√
tp

)
︸ ︷︷ ︸

=:wp(t)

.

Since gp(p) = g′p(p) = 0 and g′′p (p) > 0, the function 1
g2
p(t) has a pole of order 4

in t = p. Moreover, the function vp(t) has a simple zero in t = p. We have to do
some more investigations for the function wp(t). First, we observe that wp(t) can
be rewritten as

wp(t) =
t− p√

(1− t)t(1− p)p︸ ︷︷ ︸
=:ŵp(t)

(√
tp log t

p

(t− p)
−

√
(1− t)(1− p) log 1−t

1−p

(p− t)

)
︸ ︷︷ ︸

:=w̃p(t)

.

The function w̃p(t) can be expressed in terms of the logarithmic mean

w̃p(t) =

√
tp

Λ(t, p)
−
√

(1− t)(1− p)
Λ(1− t, 1− p)

(A.13)

and is measuring the defect in the geometric-logarithmic mean inequality (A.3).
Let us switch to exponential variables and set

x(t) := log

√
t

p
and y(t) := log

√
1− t
1− p

.

Note, that either x(t) ≤ 0 ≤ y(t) for t ≤ p or y(t) ≤ 0 ≤ x(t) for t ≥ 0 with equality
only for t = p. Therewith, (A.13) becomes with the same argument as in (A.4)

w̃p(t) =
x(t)

sinh (x(t))
− y(t)

sinh (y(t))
.

By making use of the fact, that the function x 7→ x
sinh x is symmetric, monotone

decreasing in |x| and has a unique maximum in 1, we can conclude that

w̃p(t) = 0 if and only if x(t) = −y(t).
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The solutions to the equation x(t) = −y(t) are given for t ∈ {p, 1− p}. Let us first
consider the case t = p, then x(t) = y(t) = 0 and wp(p) is a zero of order 2, since
the function x 7→ x

sinh(x) is strictly concave for t = 0. Now, we can go back to h′p(t)
and argue with the representation

lim
t→p

h′p(t) = lim
t→p

vp(t)ŵp(t)w̃p(t)

g2
p(t)

!

6= 0.

This is a consequence of counting the zeros for t = p in the nominator and denomi-
nator according to their order. For the denominator g2

p(p) is a zero of order 4. For
the nominator we have vp(p) is a zero of order 1, ŵp(p) is a zero of order 1 and
w̃p(p) is a zero of order 2, which leads in total again to a zero of order 4 exactly
compensating the zero of the denominator.
The other case is t = 1− p. Let us evaluate hp(1− p), which is given by

hp(1− p) =

1
p(1−p) (p− (1− p))2

(1− p) log 1−p
p + p log p

1−p

=
1

p(1− p)
(p− (1− p))2

(p− (1− p)) log p
1−p

=
Λ(p, 1− p)
p(1− p)

.

Since, t = 1 − p is the only critical point of hp(t) inside (0, 1), it remains to check
whether the boundary values are larger than hp(1− p). They are given by

lim
t→0

hp(t) =
1

(1− p) log 1
1−p

and lim
t→1

hp(t) =
1

p log 1
p

.

We observe, that the demanded inequality to be in a global minimum

hp(1− p) =
Λ(p, 1− p)
p(1− p)

!
< min

{
1

p log 1
p

,
1

(1− p) log 1
1−p

}

is just (A.5) of Lemma A.2. �

Appendix B. Partial Gaussian integrals

This section is devoted to proof the representation for partial or incomplete
Gaussian integrals. Lemma (B.1) is an ingredient to evaluate the weighted transport
cost in Section 4.3.

Lemma B.1 (Partial Gaussian integral). Let Σ−1 ∈ Rn×nsym,+ be a symmetric positive
definite matrix and let η ∈ Sn−1 be a unit vector. Therewith,

{
rη + z⊥

}
r∈R is for

z⊥ ∈ span {η}⊥ an affine subspace of Rn. The integral of a centered Gaussian
w.r.t. to this subspace is given by∫

R

exp

(
−1

2
Σ−1[rη + z⊥]

)
dr =

√
2π√

Σ−1[η]
exp

(
−Σ̃−1[z⊥]

)
,

with Σ̃−1 = Σ−1 − Σ−1η ⊗ Σ−1η

Σ−1[η]
.
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Proof. To evaluate this integral on an one-dimensional subspace of Rn, we have to
expand the quadratic form Σ−1[rη + z⊥] and arrive at the relation∫

R

exp

(
−1

2
Σ−1[rη + z⊥]

)
dr

= exp

(
−1

2
Σ−1[z⊥]

)∫
R

exp

(
−r

2

2
Σ−1[η] + r

〈
η,Σ−1z⊥

〉)
dr

= exp

(
−1

2
Σ−1[z⊥]

) √
2π√

Σ−1[η]
exp

(〈
η,Σ−1z⊥

〉2
2Σ−1[η]

)

=

√
2π√

Σ−1[η]
exp

(
−1

2

(
Σ−1 − Σ−1η ⊗ Σ−1η

Σ−1[η]

)
[z⊥]

)
,

which concludes the hypothesis. �

Appendix C. Subdeterminants, adjugates and inverses

Let A ∈ Rn×nsym,+, then define for η ∈ Sn−1 the matrix

Ã := A− Aη ⊗Aη
A[η]

. (C.1)

The matrix Ã has at least rank n−1, since we subtracted from the positive definite
matrix A a rank-1 matrix. Further, from the representation it is immediate, that
Ã has rank n−1 if and only if η is an eigenvector of A. In this case kerA = span η.
It is easy to show that

Ã > 0 on span {η}⊥ .

Let V = span {η}⊥ be the (n− 1)-dimensional subspace perpendicular to η. Then
for a matrix A ∈ Rn×nsym,+ we want to calculate the determinant of A restricted to
this subspace V . This determinant is obtained by first choosing Q ∈ SOn such that
Q({0} × Rn−1) = V and then evaluating the determinant of the minor consisting
of the (n− 1)× (n− 1) lower right submatrix of Q>AQ denoted by det1,1(Q>AQ)
. Hence, we have

det1,1(Q>AQ), with Q ∈ SO(n) : Q>η = e1 = (1, 0, . . . , 0)>.

Since V = span {η}⊥, it follows that the first column of Q is given by η and we can
decompose Q>AQ into

Q>AQ =

(
A[η] Q̂>Aη

Q̂>Aη
>

Q̂>AQ

)
,

where for a matrix M , M̂ is the lower right (n− 1)× (n− 1) submatrix of M and
for a vector v, v̂ the (n − 1) lower subvector of v. Therewith, we find a similarity
transformation which applied to Q>AQ results in

detA = detQ>AQ = det

((
A[η] Q̂>Aη

Q̂>Aη
>

Q̂>AQ

)(
1 − Q̂>AηA[η]

0 Idn−1

))

= det

(
A[η] 0

Q̂>Aη
>

Q̂>AQ− Âη⊗Âη
A[η]

)

= A[η] det1,1

(
Q>AQ− Q>Aη ⊗Q>Aη

A[η]

)
.
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The determinant of the minor is given by

det1,1

(
Q>AQ− Q>Aη ⊗Q>Aη

A[η]

)
= det1,1

(
Q>

(
A− Aη ⊗Aη

A[η]

)
Q

)
.

Hence, by the definition (C.1) of Ã and the subdeterminant we found the identity

detA = A[η] det1,1(Q>AQ). (C.2)

Appendix D. A matrix optimization

Lemma D.1. Let B ∈ Rn×nsym,+, then it holds

inf
A∈Rn×nsym,+

{
detA√

det (2A−B)
: 2A > B

}
=
√

detB

and for the optimal A holds A = B.

Proof. We note that
detA√

det (2A−B)
=

1√
det(A−1) det(2 Id−A− 1

2BA−
1
2 )
.

Therewith, it is enough to maximize the radical of the root. Therefore, we substitute
A−

1
2 = CB−

1
2 with C > 0 not necessarily symmetric and observe that A−

1
2 =

B−
1
2C>. We obtain

det(A−1) det(2 Id−A− 1
2BA−

1
2 ) = det(B−1) det(CC>) det(2 Id−CC>).

Note, that CC> ∈ Rn×nsym,+ and it is enough to calculate

sup
C̃∈Rn×nsym,+

{
det(C̃) det(2 Id−C̃) : C̃ < 2 Id

}
.

From the constraint 0 < C̃ < 2 Id we can write C̃ = Id +D, where D is symmetric
and satisfies − Id < D < Id in the sense of quadratic forms. From here, we finally
observe

det(C̃) det(2 Id−C̃) = det(Id +D) det(Id−D) = det(Id−D2).

Since D2 ≥ 0, we find the optimal C̃ given by Id, which yields that A = B. �

Appendix E. Jacobi’s formula

Lemma E.1 (Jacobi’s formula). Let R 3 t 7→ Φt ∈ {A ∈ Rn×n : detA 6= 0} be a
differentiable function, then

d
dt

log det Φt = tr
(

Φ−1
t Φ̇t

)
.

Proof. We first note that the determinant of Φ(t) is a multilinear function d of the
columns φ1

t , . . . , φ
n
t , i.e. det Φt = d(φ1

t , . . . , φ
n
t ) Then, it follows

d
dt

det Φt = d(φ̇1
t , φ

2
t , . . . , φ

n
t ) + · · ·+ d(φ1

t , . . . , φ
n−1
t , φ̇nt ).

Now, the proof consists of two steps. We first proof the identity (E.1) for Φt = Id
and then generalize this result. If we assume w.l.o.g. that Φ0 = Id. By expanding
the determinant d(φ̇1

t , φ
2
t , . . . , φ

n
t ) along its first column it immediately follows that

d(φ̇1
t , φ

2
t , . . . , φ

n
t ) = φ̇1,1

t .

From here we conclude that
d
dt

det Φt = tr Φ̇t.
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Now, let Φt = A be a general invertible matrix. Hence, we can apply the result
from the first step to A−1Φt and arrive at

d
dt

det
(
A−1Φt

)
= tr

(
A−1Φ̇t

)
.

The results follows by substituting A back. �

Appendix F. Jacobi matrices

For a smooth function f : Rn → Rn denotes Df(x) the Jacobi matrix of the
partial derivatives of f in x ∈ Rn given by

Df(x) :=

(
dfi
dxj

(x)

)n
i,j=1

.

Lemma F.1. Let A,B ∈ Rn×n, then it holds

∇ |Ax+ f(Bx)| = (A+Df(x)B)>
Ax+ f(Bx)

|Ax+ f(Bx)|
, (F.1)

D
f(x)

|f(x)|
=

1

|f(x)|

(
Id− f(x)

|f(x)|
⊗ f(x)

|f(x)|

)
Df(x). (F.2)

Proof. Let us first check the relation (F.1) and calculate the partial derivative

d |Ax+ f(Bx)|
dxi

=
1

2 |Ax+ f(Bx)|
∑
j

d
dxi

(∑
k

Ajkxk + fj(Bx)

)2

(F.3)

The inner derivative of (F.3) evaluates to

d
dxi

(∑
k

Ajkxk + fj(Bx)

)2

= 2

(∑
k

Ajkxk + fj(Bx)

)(
Aji +

dfj(Bx)

dxi

)
.

(F.4)
The derivative of fj(Bx) becomes

dfj(Bx)

dxi
=

dfj (
∑
k B1kxk, . . . ,

∑
k Bnkxk)

dxi

=

n∑
k=1

∂kfj(Bx)Bki = (Df(Bx)B)ji.

(F.5)

Hence, a combination of (F.3), (F.4) and (F.5) leads to
d |Ax+ f(Bx)|

dxi
=

1

|Ax+ f(Bx)|
∑
j

((Ax)j + fj(Bx)) (Aji(Df(Bx)B)ji)

=
∑
j

(A+Df(Bx)B)>ij
(Ax+ f(Bx))j
|Ax+ f(Bx)|

,

which shows (F.1). For the equation (F.2), let us first consider the Jacobian of the
function F (x) = x

|x| , which is given by

DF (x) =
1

|x|

(
Id− x

|x|
⊗ x

|x|

)
.

Then, by the chain rule, we observe that

D
f(x)

|f(x)|
= D(F ◦ f)(x) = DF (f(x))Df(x),

which is just (F.2). �
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Appendix G. Some more functional inequalities

We already introduced in Section 1.1 the both functional inequalities PI(%) and
LSI(α). The inequalities PI(%) and LSI(α) can be thought as the extremes of a
whole family of inequalities, from which we want introduce at least two more in
this short section.

G.1. Horizontal, vertical and infinitesimal distances. Let us introduce a new
functional inequality incorporating the Wasserstein transportation distance. The
interplay of the different functional inequalities was discovered by Otto and Vil-
lani [OV00].

Definition G.1 (Wasserstein distance). For any two probability measures µ, ν on
an Euclidean space X, the Wasserstein distance of between µ and ν is defined by
the formula

W 2
2 (ν, µ) = inf

π∈Π(µ,ν)

∫
Rn×Rn

|x− y|2 π(dx, dy),

where Π(ν, µ) is the set of all couplings, i.e. all measures π on Rn ×Rns with first
marginal ν and second marginal µ, i.e.

∫
Rn
π(·, dy) = ν(·) and

∫
Rn
π(dx, ·) = µ(·).

Since the Wasserstein distance measures the displacement between two measure,
it can be thought as a horizontal distance1 on the space of probability measures.
On the contrary, classical distances like the total variation, variance or relative
entropy are vertical distances, since they measure the pointwise difference of the
densities between two measures. Often, one is interested in the interplay between a
horizontal and vertical distances and how a distance of the one kind can be bounded
by a distance of the other kind. The following theorem provides a simple and in
general rough bound of the Wasserstein distance between two measures in terms of
the second moment of the total variation of the difference of the two measures.

Theorem G.2 (Control by total variation [Vil09, Theorem 6.15]). Let µ and ν be
two probability measures on an Euclidean space X, then

W 2
2 (ν, µ) ≤ 2

∫
|x|2 |ν − µ|(dx) = 2

∥∥∥|·|2 (ν − µ)
∥∥∥
TV

.

More difficult is the question, whether a horizontal distance can be estimated
by an infinitesimal distance, like the Dirichlet energy or Fisher information, which
somehow measure the local relative fluctuations between two measures. The proto-
type and extensively studied inequality of this type is the transportation-information
inequality.

Definition G.3 (Transportation-information inequality WI). A probability mea-
sure µ on an Euclidean space X satisfies WI(ρ) with constant ρ > 0, if for all test
functions f > 0 with

∫
fdµ = 1 holds

W 2
2 (fµ, µ) ≤ 1

ρ2

∫
|∇f |2

f
dµ. WI(ρ)

In the abbreviation WI, W stands for the Wasserstein distance and I stands for the
Fisher information.

It turns out, that the WI inequality is just in-between the PI and LSI.

Lemma G.4 (Relation between LSI(ρ),WI(ρ) and PI(ρ)). Let µ be a probability
measure on an Euclidean space X. Then the following implications hold

µ satisfies LSI(ρ) ⇒ µ satisfies WI(ρ) ⇒ µ satisfies PI(ρ),

1The notion of horizontal and vertical distances is adopted from a talk of Nicola Gigli on the
recent preprint [AGS12]
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where all of the implications are strict.

Remark G.5. The first implication in WI(ρ) is on of the result in [OV00]. An
example satisfying WI(ρ) but not LSI(ρ) was constructed in [CG06]. For the
second implication, one uses a linearization argument, like we already presented
in Remark 1.2. To proof that the implication is sharp, consider the measure
µ(dx) = Z−1 exp(− |x|) dx on the real line. Then, the condition [Goz07, Theo-
rem 6] states that µ does not satisfy WI(ρ), but for instance by the Muckenhoupt
functional [Muc72] one can check (cf. [Sch12, Section 5.3.]), that µ satisfies PI(ρ).

PI as well as LSI are also in this class and bound a vertical distance, i.e. the vari-
ance respectively the relative entropy, by an infinitesimal distance, i.e. the Dirichlet
form respectively the Fisher information. An inequality showing the interplay be-
tween all three kinds of distances, i.e. vertical, horizontal and infinitesimal, was
discovered by Otto and Villani [OV00]. The name HWI-inequality comes from the
quantities in question, since the inequality bounds the relative entropy H in terms
of the Wasserstein distance W and the Fisher information I.

Theorem G.6 (HWI inequality [OV00, Theorem 3]). Let µ(dx) = e−H(x)dx a
probability measure on Rn, with finite moments of order 2, such that H ∈ C2(Rn),
∇2H ≥ KH , KH ∈ R (not necessarily positive). Then, for all test functions f with∫
fdµ = 1 holds

Entµ(f) = H(fµ|µ) ≤W2(fµ, µ)
√

2I(fµ|µ)− KH

2
W 2

2 (fµ, µ). HWI

Remark G.7 (A covariance estimate in terms of Tµ). A special case of the “mean-
difference” estimate occurs, by setting ν0 = gµ and ν1 = µ, where g ≥ 0 and∫
g dµ = 1, then we arrive at the following covariance estimate

cov2
µ(f, g) = (Egµ(f)− Eµ(f))

2 ≤ T 2
µ (gµ, µ)

∫
|∇f |2 dµ.

Finally, setting f = g results in

varµ(f) ≤ Tµ(fµ, µ)

√∫
|∇f |2 dµ. (G.1)

The estimate (G.1) has the same structure as the HWI inequality in the sense, that
it connects a vertical with the product of a horizontal and the square root of an
infinitesimal distance. However, the estimate (G.1) does not demand a lower bound
on the Hessian of the exponential density of µ.

G.2. Defective logarithmic Sobolev inequality. Let us present how a defective
LSI can be tightened to LSI with the help of PI.

Definition G.8 (Defective logarithmic Sobolev inequality dLSI(αd, B)). A mea-
sure µ on Rn satisfies the defective logarithmic Sobolev inequality dLSI(αd, B) with
constants αd, B > 0, if for all test function f : Rn → R+ holds

Entµ(f) ≤ 1

αd

∫
|∇f |2

2f
dµ+B

∫
fdµ. dLSI(αd, B)

Proposition G.9 (dLSI(αd, B) and PI(%) imply LSI(α)). Assume that µ satisfies
dLSI(αd, B) and PI(%), then µ satisfies LSI(α) with

1

α
=

1

αd
+
B + 2

%
.
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Proof. The argument is from [Led99] and is a simple consequence of the estimate

Entµ(f2) ≤ Entµ
(
(f − Eµ(f))2

)
+ 2 varµ(f),

which is due to [Rot86] and [DS89]. An application of dLSI(αd, B) leads to

Entµ(f2) ≤ 1

αd

∫
2 |∇f |2 dµ+ (B + 2) varµ(f).

The result follow from applying PI(%) to the variance in the last term. �
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