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REPRESENTATION OF MARKOV CHAINS BY RANDOM
MAPS: EXISTENCE AND REGULARITY CONDITIONS

JÜRGEN JOST, MARTIN KELL, AND CHRISTIAN S. RODRIGUES

Abstract. We systematically investigate the problem of representing
Markov chains by families of random maps, and what regularity of these
maps can be achieved depending on the properties of the probability
measures. Our key idea is to use techniques from optimal transport
to select optimal such maps. Optimal transport theory also tells us
how convexity properties of the supports of the measures translate into
regularity properties of the maps via Legendre transforms. Thus, from
this scheme, we cannot only deduce the representation by measurable
random maps, but we can also obtain conditions for the representation
by continuous random maps. Finally, we show how to construct random
diffeomorphisms from a given Markov chain.

1. Introduction

Amongst the main concerns of Dynamics, one usually wants to decide
whether asymptotic states of a given class of systems are robust under small
random fluctuations. Such randomness, corresponding to natural fluctua-
tions in physical processes, are represented by either a Markov chain model
with localised transition or by a sequence of random maps. To see how they
arise, consider a discrete-time system f from a given topological space M
into itself. Suppose at each iteration of f we allow a small mistake of size,
say, at most ε > 0. Then a Markov chain is defined by a family {pε( · |x)}
of Borel probability measures, such that every pε( · |x) is supported inside
the ε-neighbourhood of f(x). The orbit of our dynamics subject to such
small errors is thus given by sequences of independent random variables
{xj}, where each xj+1 has distribution pε( · |xj). Alternatively, one could
think of the orbit as being made by the iteration xj = gj ◦ · · · ◦g1(x0), where
each measurable gj is picked at random ε-close, in a sense to be made more
precise, from the original map f . Endowing the collection of maps {gj} with
a probability distribution νε, we say that the sequence of random maps is a
representation of that Markov chain if for every Borel subset U

pε(U |x) = νε({g : g(x) ∈ U}). (1)
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In fact, given any sequence of random maps, one can always find a Markov
chain which is represented by this scheme [BDV05, D.4], see also [ZaH07];
the Markov chain is simply given by (1), and one only needs to check that
this satisfies the Markov chain criterion. The converse problem, however,
is much more subtle, as we shall see. This is exactly the subject of this
paper. In other words, we investigate under which conditions imposed on
the Markov chain one can obtain a representation by a random map scheme
and how its regularity properties are reflected.

The study of realisations of Markov chains via random maps goes back
to Blumenthal and Corson [BlC70]. They considered the case where M is
a connected and locally connected compact metric space under some strong
requirements on the probability measures. Let us denote by P(M) the space
of all probability measures on M . In addition, suppose each x 7→ p( · |x),
acting from M to P(M), is continuous relative to the weak* topology on
P(M). Then, if for each x the support of p( · |x) is all of M , they showed that
it is possible to obtain a probability measure ν on the space of continuous
transformations of M such that condition (1) is fulfilled. Their proof is based
upon the existence of a continuous projection of the subset of P(M) whose
support is all of M onto the space of probability measures on an interval
whose support is the whole interval itself, and its continuous inverse. The
assumption of full support on the probability measures is essential to assure
the continuity of the maps. See for example [Kif86].

Weakening this condition, Kifer showed that if M is a Borel subset of
a complete separable metric space (Polish), then any Markov chain on M
can be represented by a sequence of measurable random maps [Kif86]. His
idea was to use Borel measurable isomorphisms of M to Borel subsets of
the unity interval, as it had previously been shown by Kuratowski. Later,
Quas [Qua91] tackled the case where M is a smooth compact orientable
Riemannian manifold. He showed that probability families which are abso-
lutely continuous with respect to the normalised Riemannian measure whose
density is smooth can be represented by C∞-random maps.

Afterwards, Araújo [Ara00] showed how to construct families of Cr-diffeo-
morphisms on the n-torus near an unperturbed Cr-diffeomorphism. He took
advantage of the parallelizability of this manifold and of its quotient by in-
tegers. Then he used natural projections to identify orthonormal vector
fields from which he could build these maps Cr-close to the original one;
see [Ara00, Example 1]. Using a parametrised geodesic flow, he also showed
the existence of parametrised families of diffeomorphisms, around an unper-
turbed one, of any compact boundaryless manifold; see [Ara00, Example 2].
Nevertheless, his procedures focus on uniformly continuous perturbations,
requiring the small noise to uniformly cover a ball of positive radius around
the unperturbed diffeomorphism. Furthermore, they do not yield a family
of diffeomorphisms from a given probability distribution.
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More recently, Benedicks and Viana [BeV06, Example 1.7], and [BDV05,
D.4] constructed random maps for small non-uniform noise. They lift im-
plicitly the measure to the tangent space at f(z), then try to transform the
distribution to a fixed measure on [0, 1]n. If this transformation is invertible,
its inverse regular enough, and varies smoothly with respect to z, then it is
possible to select a random continuous map representing the perturbation.
For topological reasons these constructions may fail on manifolds with non-
trivial tangent bundle. Namely, their constructions implicitly assume the
existence of global cross-section of the frame bundle.

In fact, it is not clear how to choose the random maps representing a
Markov chain, and there might be many possible such choices. In such a
situation, a basic strategy of geometric analysis is to select the maps accord-
ing to some optimization principle. This typically has the advantage that
an object selected by an optimization principle is not just some solution of
the problem at hand; it typically enjoys additional properties derived from
the optimization, and these properties can typically be usefully exploited.
This is also the strategy we adopt in the present paper. Since the maps
should relate different measures, it is natural to select them by optimizing
a transportation problem between those measures. Thus, in this paper we
introduce techniques from optimal transport in order to tackle the repre-
sentation of Markov chains under different levels of regularity of the maps.
The paper is organised as follows. After presenting the main definitions in
Section 2, we review the main ingredients from optimal transport theory, in
Section 3, to be used in the remaining part of the paper. In Section 4, we
use optimal coupling to prove Theorem A, which shows how Markov chains
can be represented by measurable maps. Then, in Section 5, we use Moser’s
coupling to show how representation by continuous random maps arise; the
content of Theorem B. In the following Section 6, we discuss the regularity
of densities and how they affect the properties of the transport maps. Then
in the next Section 7, we use tangent bundle lifts of the measures and cer-
tain transformations to a fixed measure to construct continuous families of
probabilities in the bundles. To use similar ideas of Araújo we rely on the
fact that the tangent bundle of a manifold is always contained in a (smooth)
trivial bundle, what can be seen by taking an isometric (Nash) embedding
M ↪→ Rn. Then we lift (in a nice way) the measures from the tangent bundle
to this trivial bundle to get a measure family {µx}x∈M on Rn. Using optimal
transport theory and its regularity theory we get transformations to a fixed
measure varying continuously with respect to x ∈ M so that we can select
sections of this bundle varying continuously, such that the distribution at
a point x represents the measure µ̃x. (Smooth) Projections to the tangent
bundle and the exponential map then give us the random continuous maps.
Assuming further regularity, these maps are differentiable and we obtain
random maps C1-close to f , and the unperturbed map f is a diffeomor-
phism, we thus obtain a family of random diffeomorphisms. Therefore, we
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give a geometric condition for the representation of Markov chains by ran-
dom diffeomorphisms, summarised in Theorem C. In a following up work,
the methods developed here are being extended in order to study statistical
and stochastic stability.

2. Some notation and definitions

In this section we set up the notation and collect some main definitions
to be used throughout this paper. For a comprehensive presentation on
random perturbations of dynamics, see [Kif86, Kif88]. We consider here an
arbitrary manifold, say M , supposing it to be finite dimensional, equipped
with some Riemannian structure, fixed once and for all, which induces a
distance dM : M ×M → R. We call m its normalised Riemannian volume
form on M , i.e. m(M) = 1, and unless otherwise stated, we take absolute
continuity with respect to m. As before, let us denote by P(M) the space
of all Borel probability measures on M . As usual, P(M) is endowed with
the weak* topology.

Regarding measurability and continuity, we recall Lusin’s theorem to be
used in our proofs
Theorem 2.1. [Fed69, Theorem 2.3.5]. Let M be a locally compact met-
ric space, N a separable metric space, and µ a Borel measure on M . Let
f : M → N be a measurable map, and A ⊂ M a measurable set with fi-
nite measure, then for each δ > 0 there is a closed set K ⊂ A, such that
µ(A\K) < δ and the restriction of f to K is continuous.

2.1. Markov chains and random maps. Let N be another arbitrary
manifold or a separable complete metric space. We shall consider families of
probability measures (µx)x∈M in P(N) given by measurable maps x 7→ µx.
We speak of a continuous family of probability measures if the maps x 7→ µx
vary continuously from M to P(N) relative to the weak* topology. In many
cases one has N = M or N = Rn. Such families are sometimes called
continuous Markov kernels. Therefore, Markov chains are special Markov
kernels obeying some conditional probability with localised distribution.

Similarly, we can have a more general definition for our random maps.
For a probability space (Ω,A, ν), consider a measurable collection of maps
F : Ω×M → N , (ω, x) 7→ fω(x). Then, we call the family (fω : M → N)ω∈Ω

random measurable maps. If in addition each map in (fω : M → N)ω∈Ω is
continuous, or a diffeomorphism, then we say that it is a family of random
continuous maps, or random diffeomorphisms, respectively. They are also
known as random fields. Then, condition (1) says that (fω)ω∈Ω represents
(µx)x∈M if the distribution of ω 7→ fω(x) equals µx for all x ∈M .

3. On optimal transport

The remaining part of this paper is based upon techniques from optimal
transport. Our main reference is the book by Villani [Vil09]. For the sake of
completeness, we sample and collect in this section the concepts to be used
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along the way. Readers familiar with optimal transport may wish to skip
this section and only refer back to it when needed.

The basic problem in optimal transport, as introduced by Monge, con-
sisted in moving a given distribution like a pile of sand from one place to
another with a minimal cost. There are several possible ways to generalise
and tackle this problem. For example, the given mass to be transported
can be thought of as a distribution in an appropriate probability space. In
other words, given measurable spaces M,N , and probability measures µ in
P(M) and ν in P(N), we seek for a coupling, or a way to connect these two
measures. More generally, one has the following definition.

Definition 1. Let (M,µ) and (N, ν) be two probability spaces. We couple µ
and ν by constructing two random variables X,Y on some probability space
(Ω,P), such that law(X) = µ, law(Y ) = ν. The law or distribution of
(X,Y ) is called coupling of (µ, ν).

In our context, µ and ν are the only laws we shall be interested in, so we
choose Ω = M × N . There are several examples of couplings arising in
different contexts.

The first generalisation of Monge’s original problem we can think of is
given in terms of transport maps. That is, given measurable spaces M,N ,
probability measures µ in P(M) and ν in P(N), we seek for measurable maps
T : M → N , such that for all Borel E ⊂ N one has µ(T−1(E)) = ν(E).
This is an example of a so-called deterministic coupling. The requirement of
a transport map, however, is a strong condition, and this problem may not
have a solution unless more restrictions are made. The canonical example
is when µ is a Dirac measure and ν is not.

In order to avoid ill-posed problems, one alternatively should look for
weak solutions of the transport problem as it has been proposed by Kan-
torovich. In this case, we focus on probability measures γ in P(M × N),
whose projections (or marginals) are µ and ν. In other words, let Γ(µ, ν) :=
P(M ×N) to shorten the notation, and consider the canonical projections
πP(M) : Γ(µ, ν) → P(M) and πP(N) : Γ(µ, ν) → P(N), then the marginals
are given by the push-forward πP(M)∗γ = µ and πP(N)∗γ = ν. The Kan-
torovich minimisation problem consists in obtaining

C(µ, ν) = inf
γ∈Γ(µ,ν)

∫
M×N

c(x, y)dγ(x, y), (2)

where, for a given cost function c : M×N → [0,+∞], the infimum runs over
the joint probabilities γ in Γ(µ, ν). The joint probability measures are called
transport plans, the ones achieving the minimum, optimal transport plans,
and C(µ, ν) the optimal transport cost. Thus, this coupling is called optimal
transport coupling. Obviously, the solution of the Kantorovich minimisation
problem depends on the choice of the cost function. The following theorem
guarantees the existence of optimal coupling.
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Theorem 3.1 (Existence of optimal coupling [Vil09, Theorem 4.1]). Given
two Polish spaces (M,µ) and (N, ν), and a lower semicontinuous cost func-
tion bounded from below, then there always exist optimal couplings of (µ, ν).

Notice that any transport map T : M → N induces a transfer plan
γ defined by (Id × T )∗µ. In fact, we can also impose conditions on the
cost function such that the optimal coupling is obtained by a deterministic
coupling. The search for a deterministic coupling (transport map) T which
minimises Eq. 2 for a given cost function is called the Monge problem. The
following proposition ensures the existence of a unique transport map solving
the Monge problem.

Proposition 3.2 (Solution of the Monge problem). Let M be a Riemannian
manifold, X a closed subset of M , with dim(∂X ) ≤ n−1 and Y an arbitrary
Polish space. Let c : X ×Y → R be a continuous cost function, bounded from
below and assume that for the probability measures µ ∈ P(X ) and ν ∈ P(Y),
the optimal cost C(µ, ν) is finite. If the following conditions are fulfilled
i) c is differentiable everywhere;

ii) µ is absolutely continuous;
iii) ∇xc(x, ·) is injective where defined, i.e., if x, y, y′ are such that ∇xc(x, y) =
∇xc(x, y′), then y = y′,

then there exists a unique (in law) optimal coupling (x, y) of (µ, ν), and it
is deterministic.

Proof. The proof follows from Theorem 10.28, Proposition 10.7, and Remark
10.33 of [Vil09]. �

Corollary 3.3. Suppose that for each k ∈ N we have a sequence of contin-
uous cost functions ck : X ×Y → R converging uniformly to c : X ×Y → R,
where c is defined as above. Let (νk)k∈N be a sequence of probabilities on
Y converging weakly to ν ∈ P(Y), and assume that for each k there exist
measurable maps Tk : X → Y, such that each Tk is an optimal transport
map between µ and νk. Then Tk converges to T in probability, i.e.,

∀ε > 0 µ [{x ∈M ; d (Tk(x), T (x)) ≥ ε}] −−−→
k→∞

0.

Proof. The proof follows from Proposition 3.2 above and [Vil09, Corollary
5.23]. �

Corollary 3.4. Let M = Rn and c(x, y) = −x · y. Consider two probability
measures µ, ν on M , such that µ is absolutely continuous, then the solution
of Monge’s problem can be written as

y = T (x) = x+∇ψ(x),

where ψ is some convex, lower semicontinuous function.

Proof. The proof follows from Theorem 10.44, Particular case 10.45, and
Particular case 5.3 of [Vil09]. See also Section 6 below. �
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Remark 1. Proposition 3.2 is a slight variation of a more general theorem
about the solution of the Monge problem. Its conditions can be weakened or
replaced in a number of ways; see [Vil09, Theorem 10.28].

When the cost function is given in terms of distances in a metric space,
we can use (2) in order to define a distance between measures.

Definition 2 (Wasserstein distances). Let (M,d) be a Polish metric space,
and p ∈ [0,∞). The Wasserstein distance of order p between any two prob-
ability measures µ, ν on M is given by

Wp(µ, ν) =
(

inf
γ∈Γ(µ,ν)

∫
M
d(x, T (x))pdγ(x, T (x))

)1/p

. (3)

Using the Wasserstein distances we can define a space given by the re-
striction on P(M)×P(M) on which Wp takes finite values, or the space of
probability measures with finite moment of order p.

Definition 3 (Wasserstein spaces). The Wasserstein space of order p is
given by

Pp(M) =
{
µ ∈ P(M) :

∫
M
d(x0, x)pµ(dx) <∞

}
. (4)

The choice of x0 is arbitrary and the space does not depend on this.

As a last important example we shall mention the powerful Moser cou-
pling [Mos65, Vil09].

Theorem 3.5 (Moser coupling). Consider a smooth compact Riemannian
manifold M and its volume form m. In addition, consider Lipschitz contin-
uous positive probability densities ρ0 and ρ1 on M . Then there is a deter-
ministic coupling of µ0 = ρ0m and µ1 = ρ1m. In other words, there exists a
measurable map T such that for all Borel E ⊂M , we have µ1(E) = T∗µ0(E).
Furthermore, if ρ0, ρ1 are Ck,α then T is Ck+1,α.

Remark 2. The map T is explicitly given, for each x ∈ M , in terms of a
solution of the elliptic equation

∆u(x) = ρ0 − ρ1,

where ∆ denotes the Laplace operator. The transport map is obtained by
defining the locally Lipschitz vector field

ξ(t, x) =
∇u(x)

(1− t)ρ0(x) + tρ1(x)
,

which integrates to the flow (Tt(x))0≤t≤1 with an associated family of mea-
sures (µt)0<t<1. In particular, the time-1 map pushes forward µ0 to µ1.
See [Vil09] for more details.
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4. Representation by measurable random maps

From this section we begin to apply the techniques from optimal transport
just presented. We shall start by tackling the problem of representing a
Markov chain by measurable continuous maps. Our result implies Theorem
1.1 by Kifer [Kif86, Ch. 1]. We also treat the case of maps between different
spaces. The main result of this section is

Theorem A. Let N be a manifold and consider a measurable family of
probability measures (µx)x∈M with finite p-moments for p ≥ 1, i.e. for some
y ∈ N

sup
x∈M

Wp(δy, µx) <∞.

Then there exist random measurable maps (fω : M → N)ω∈Ω representing
(µx)x∈X .

Proof. Let ν be any probability measure absolutely continuous with respect
to some volume measure on N , such that Wp(ν, δy) < ∞. Then Propo-
sition 3.2 shows that for each x ∈ M there is a unique optimal coupling
realised by a (measurable) transport map Tx : N → N , i.e.

Wp(ν, µx)p =
∫
d(y, Tx(y))pdµ0(y).

Moreover, by Lusin’s theorem and Corollary 3.3, these maps a.e. vary con-
tinuously with respect to x ∈M in the topology of convergence in probability
with respect to ν. Setting (Ω, τ) = (N, ν), we can take for some random
variable X : Ω→ N with law(X) = ν, the restriction,

fω(x) = Tx(X(ω)).

Because of continuity with respect to convergence in probability we can
assume without loss of generality that (fω)ω∈Ω is measurable and separable.

�

5. Representation by continuous random maps

In this section we apply optimal transport and regularity theory to give
conditions for the representation of Markov chains by continuous random
maps. We start with the following result.

Proposition 5.1. Let (µx)x∈M be a continuous family of probability mea-
sures. Suppose for a fixed measure ν ∈ P(N) with compact support there
exists a family of continuous maps (Tx : supp ν → N)x∈M varying continu-
ously in the C0-topology such that

(Tx)ν = µx.

Then (µx)x∈M can be represented by random continuous maps (fω)ω∈Ω such
that (Ω, τ) = (supp ν, ν).

If, in addition, Tx varies Hölder or Lipschitz continuously with respect to
x ∈M then so does fω with the same constants (resp. exponents).
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Proof. Set (Ω, τ) = (supp ν, ν) and let X : Ω → Ω be any random variable
such that lawX = ν. Define

fω(x) = Tx(X(ω)).

By construction, (fω)ω∈Ω represents (µx)x∈M . We need to show that fω :
M → N is continuous. Since Tx varies continuously with respect to the
C0-topology and its domain is compact we have for a fixed Tx

d(Tx(X(ω)), Ty(X(ω)) ≤ dC0(Tx, Ty) < ε

whenever d(x, y) < δ for sufficiently small δ = δ(ε, x) > 0. �

Remark 3. Proposition 5.1 above generalises Example 1.7 by Benedicks-
Viana [BeV06], where ν is the Lebesgue measure on [0, 1]n and Tx is the
inverse of a rearrangement Sx of the positive measure µx ∈ P([−ε, ε]n) to
[0, 1]n assuming Sx is a homeomorphism which varies continuously in C0.

Remark 4. To get random continuous maps it is actually enough to assume
that x 7→ Tx is pointwise continuous ν-a.e, i.e. if x → y then for ν-a.e. ω
we have Tx(ω)→ Ty(ω).

Remark 5. Notice that the assumption on the continuity of each Tx could
be relaxed by using Lusin’s theorem. Furthermore, using a general version
of the Kolmogorov-Chentsov continuity lemma for random fields obtained
in [Pot09], a similar result holds if we only assume that each Tx is Borel
measurable converging fast enough as x → y in the topology of convergence
in probability with respect to (Ω, τ).

For the following main theorem we apply Moser’s coupling. Our theorem
directly implies the main result of Quas [Qua91].

Theorem B. Assume N is a compact Riemannian manifold without bound-
ary with normalised volume measure m. Let (µx)x∈M be a continuous family
of probability measures such that each µx, absolutely continuous with respect
to m, has a positive Hölder continuous (for some exponent α > 0) probability
density varying continuously with respect to x ∈M .

Then (µx)x∈M can be represented by random continuous maps (fω)ω∈Ω.

Proof. Let µx = ρ(x)dm. Then, by Theorem 3.5, there exists a coupling of
(m,µx) induced by the time-1 map of a Lipschitz continuous vector field
varying continuously with respect to x ∈ M . It is given by the solution of
the following elliptic equation on N

∆u(x) = 1− ρ(x).

By elliptic regularity theory, u(x) is C2,α so we can define the vector field on
N

ξx(t, y) =
∇u(x)(y)

(1− t) + tρ(x)(y)
.
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According to our assumptions it is well-defined and Lipschitz continuous
and thus integrates to a flow Tx,t : N → N . Furthermore, we have

(Tx,1)∗m = µx.

Since the densities vary continuously, so does the vector field and thus the
map Tx,1 which implies by Proposition 5.1 that (µx)x∈M can be represented
by random continuous maps (fω)ω∈Ω. �

6. Regularity of densities

The next step is to establish conditions on representations of Markov
chains by random diffeomorphisms. Before that, we shall again take up
the discussion on optimal transport and its regularity properties applied to
the regularity of the densities of Markov chains. We will focus on families
of probabilities on Rn. After that, we show how to use the results of this
section on Riemannian manifolds via lifting and embedding techniques. We
start by showing how convexity of the support of measures is related to the
regularity of the transport maps.

Consider a potential φ : U ⊂ Rn → R∪{+∞}, and define at y ∈ U ′ ⊂ Rn

φc = sup
x∈U

(−c(x, y)− φ(x)).

Furthermore, let us define

Gφ(x) = {y ∈ U ′ : φ(x) + φc(y) = −c(x, y)},

then we can state the following general result, taken from [Loe09, Theorem
2.7].

Theorem 6.1. Let U,U ′ ⊂ Rn be bounded domains of Rn, and c(x, y) =
−x · y. let µ, and ν be probability measures on U , and U ′. Assume that
µ does not give mass to sets of Hausdorff dimension less than or equal to
n − 1. Then there exist a µ-a.e. unique T solving the Monge problem for
this cost function c. Moreover, there is a convex potential φ on U , such that
T = Gφ. Finally, if ψ is convex and satisfies (Gψ)∗µ = ν, then ∇ψ = ∇φ,
µ-a.e.

In fact, for the cost function c(x, y) = −x · y, one can show that φ = ψc,
and that they are Legendre transforms of each other. See Particular case
5.3, and Definition 5.7 in [Vil09].

Regarding the regularityf of φ, Loeper proves the following result that we
shall use in the sequel.

Theorem 6.2 ([Loe09, Theorem 3.4]). Let U,U ′ ⊂ Rn be bounded, strictly
convex with respect to each other. Suppose µ and ν are probability measures
on U and V

′ ⊂ U ′, respectively, with V ′ being convex with respect to U .

µ(Bε(x)) ≤ Cµεn(1− 1
p

) for all ε > 0 and x ∈ U
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and ν ≥ κmn on V
′

for some κ > 0. Assume that for the convex potential
φ and cost function c(x, y) = −x · y we have (Gφ)∗µ = ν.

Then φ is continuously differentiable on Uδ = {x ∈ U | d(x, ∂U) > δ} with
Hölder continuous derivatives for δ > 0. In particular, for some β ∈ (0, 1)
and C depending only on U , U ′, m > 0, δ > 0, p and Cµ0

‖φ‖C1,β(Uδ)
≤ C.

If, furthermore, µ is supported on some V̄ compactly contained in U then
Gφ is a Hölder continuous map with Hölder norm bounded by C.

Consider some compact K ⊂ Rn, and assume (µx)x∈K to be a family of
measures, such that each µx satisfies the assumption of µ in Theorem 6.2.
Then it follows that we can define optimal transport maps Sx between µx and
ν = m|[0,1]n . These maps are Hölder continuous with Hölder norm bounded
by a constant only depending on some compact convex neighbourhood Ωx

of the support of µx. In particular, by uniqueness of the optimal transport
map, we have

Lemma 6.3. Let (µx)x∈K be a continuous family of probability measures on
some compact set K ⊂ Rn. Suppose that each µx satisfies the assumptions
of Theorem 6.2 with C = Cµx independent of µx and all supports contained
in some convex U ⊂ Rn. If we assume that the supports of µx are contained
in D = cl(Uδ) for some δ > 0 then the optimal transport maps Sx between
µx and ν vary uniformly, that is if xn → x then Sx : D → U

′
varies in the

uniform topology of C0(D,U
′
).

Proof. Because the ‖ · ‖C1,β -norm of {φx}x∈K is uniformly bounded, the set
is pre-compact in C1(D). Since up to a constant the potentials are unique
we can assume φx(y0) = 0 for all x ∈ K and some y0 ∈ D. The limit
of limn→∞ φxn → φ̃x0 for some xn → x0 is also a convex potential solving
the optimal transport problem with φ̃x0(y0) = 0 which implies φ̃x0 = φx0 .
Therefore {φx}x∈K is already closed and thus compact and Sx : D → U ′

varies continuously in the C0-topology as x varies in K. �

Proposition 6.4. Let (µx)x∈K ⊂ P(Rn) be as above. In addition, assume
each µx is supported on a convex set and has strictly positive Lebesgue density
on its support, i.e. µx ≥ κ ·m for some κ > 0 independent of x, then

Sx| suppµx : suppµx → [0, 1]n

is continuously invertible. Furthermore, if the supports vary continuously
with respect to the Hausdorff metric on (compact) subsets of Rn then the
inverse Tx = S−1

x : [0, 1]n → suppµx ⊂ U varies continuously in the
C0([0, 1]n, U). In addition, such a family (µx)x∈X can be represented by
random continuous maps.

Remark 6. If we do not assume that the supports vary continuously then
it is still possible to show that the maps Tx converge pointwise on [0, 1]n to
Ty as x converges to y in K.
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Proof. By the previous result Sx varies continuously in C0(D,Rn). Then
Theorem 6.1 implies that the optimal transport problem from ν to µx has
a unique continuous optimal transport map Tx : [0, 1]n → suppµx which,
by Corollary 3.4, is the derivative of a differentiable convex potential ψx.
Because ψx is (up to a constant) the Legendre transform of the potential
φx, whose derivative is Sx, we necessarily have Tx = S−1

x on [0, 1]n.
To prove that x 7→ Tx is continuous it is sufficient to show that the

graphs converge with respect to the Hausdorff metric. Because x 7→ Sx is
continuous and the supports of µx vary continuously with respect to the
Hausdorff metric, the restricted graph

g̃r(Sx) = {(y, Sx(y)) ∈ suppµx × [0, 1]n}
is continuous with respect to the Hausdorff metric on subsets of Rn × Rn.
But this implies

x 7→ gr(Tx) = (g̃r(Sx))−1

is continuous and thus x 7→ Tx is continuous as well.
In particular, Proposition 5.1 implies that any such family (µx)x∈K can

be represented by random continuous maps.
�

Proposition 6.5. Suppose that µ is absolutely continuous with respect to
Lebesgue measure m, and ν = m|[0,1]n. Suppose further that both satisfy
the assumptions of µ and ν, respectively, as in Proposition 5.1. Then S is
continuously invertible on U , where U is the set of point z which admit a
(convex) neighbourhood where the density of µ is strictly positive. In partic-
ular, this holds in {ρ > 0} = int(suppµ) if the density ρ of µ is continuous.

Proof. Let S be the (Hölder) continuous optimal transport map from Re-
mark 3 of Proposition 5.1. Since S and T = S−1 (as multi-valued map) are
the gradients of convex potentials φ and ψ, which are the Legendre trans-
forms of each other, it suffices to show that T is single-valued on S(U). By
definition we have

S(x) = {y |φ(x) + ψ(y) = x · y}
and

ψ(y) = sup{xy − φ(x)},
which implies that S−1(S(x)) is convex. So if we show that T is one-to-
one on S(Vx) for some small neighbourhood x ∈ U then it implies that
S−1(S(x))∩Vx = x, i.e. S and T are both single-valued and thus continuous
on resp. U and S(U).

Let π be the optimal transport plan between ν and µ, in particular we
have

(id×T )∗ν = π.

Let x be a point in U and Vx be a closed neighbourhood with the pre-
scribed property. By the restriction property for optimal transport plans
[Vil09, Theorem 4.6] the plan π̃|Rn×Vx is an optimal transport plan between
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its marginal, i.e. between some ν̃ ≤ ν and µ̃ = µ|Vx . Obviously this plan is
also induced by T , i.e.

(id×T∗)ν̃ = π̃.

The measures ν̃ and µ̃ satisfy the assumptions of Proposition 5.1, which
implies that T is (Hölder) continuous. Therefore T is one-to-one on supp ν̃ =
S(Vx). �

Corollary 6.6. Let µ and ν be as above. Assume the support of µ is strictly
convex and

U = {ρ > 0} = int(suppµ)
where ρ is the continuous density of µ. Then the optimal transport map T
from ν to µ is a continuous map from supp ν to suppµ.

Proof. Restrict S to suppµ. By the previous theorem S is injective in the
interior of its domain. Furthermore, S−1(S(x)) is convex. Because the
support of µ is strictly convex this also implies S is injective on the boundary,
i.e. if x′ ∈ S−1(S(x)) for x ∈ ∂ suppµ then λx′ + (1− λ)x ∈ ∂ suppµ which
implies x = x′.

Because S is one-to-one on its (convex) domain suppµ and S(suppµ) =
supp ν, so is its inverse T on supp ν. Thus T is continuous. �

The two previous results show that problems happen if the supports are
not strictly convex or not positive everywhere. Furthermore, if the support
of µ is not simply connected (e.g. has a hole) then this hole is an isolated
singularity of T in the interior of the support of ν. Other phenomena like
disjoint support might look like complete cut of the support of ν.

Proposition 6.7. Let K be some (compact) set and B1 be the closed unit
ball in Rn and (fx : B1 → fx(B1) ⊂ Rn)x∈K be a family of diffeomorphisms
(onto their images) varying continuously in C1 w.r.t. x. Assume (µx)x∈K
is a continuously varying family of measures supported on the images of fx,
i.e.

suppµx = fx(B1).
If each µx is Lebesgue regular with L∞ (resp. continuous) density then
there is a (unique) continuously varying family (νx)x∈K of Lebesgue regular
measures with L∞ (resp. continuous) densities with (fx)∗νx = µx.

Furthermore, if every point in the interior of the support of µx admits a
neighbourhood such that the Lebesgue density of µx is strictly positive in the
interior of the support then the same holds for νx.

Proof. Assume dµx = ρxdm and there is some (Lebesgue regular) family
dνx = ϑxdm such that (fx)∗νx = µx. By the Jacobian equations we have

ϑx(z) = ρx(fx(z)) · Jfx(z).

So defining ϑx(z) as above gives us νx.
Because (fx)x∈K are continuously varying diffeomorphisms the Jacobians

Jfx(z) vary continuously with respect to (x, z) ∈ K ×B1 which implies the
statement of the proposition. �



14 JÜRGEN JOST, MARTIN KELL, AND CHRISTIAN S. RODRIGUES

Corollary 6.8. Assume (µx)x∈K is a continuous family of measures and
the supports admit diffeomorphisms as above. Then there exists a family
of continuous maps Tx : [0, 1]n → Rn varying in the C0-topology and the
following holds

(Tx)∗m|[0,1]n = µx.

In particular, all such families (µx)x∈K can be represented by random
continuous maps (fω)ω∈Ω.

Proof. Follows from Proposition 6.4, Corollary 6.6 and the previous propo-
sition. Finally the last statement follows from Proposition 5.1. �

Remark 7. The corollary can be applied if the supports are star-shaped with
differentiably varying centre and radial function, i.e. there are zx ∈ Bx =
suppµx and differentiable maps

rx : Sn−1 → (0,∞)

such that x 7→ (zx, rx) is continuous from K to Rn×C1(Sn−1, (0,∞)) (con-
tinuity of x 7→ zx is enough to show that Jfx(z) is continuous in x).

The diffeomorphisms fx : B1 → Rn are constructed via

fx((α, ρ)) = zx + (α, rx(α) · ρ).

(For simplicity we mixed polar coordinates (α, ρ) with Cartesian zx).

7. Lifting measures

In the previous section we constructed random maps for a family of mea-
sures on Rn. In order to use this result also for a family of measures on
a manifold we need to lift these measures to measures on Rn. The idea is
to use the local equivalence via the exponential map of a neighbourhood
of a point p ∈ N and a neighbourhood of 0 of the tangent space at that
point [Jos11]. In other words, the map

x 7→ µx ∈ P(N),

implicitly lifts to a map

x 7→ µ̃x ∈ P(Tf(x)N),

for some continuous map f : M → N , e.g. the centre of mass. In general,
f is given by the unperturbed system if one considers a (bounded) random
perturbation such that

(exp−1
f(x))∗µx = µ̃x.

In [Ara00, Example 1] Araújo used a similar construction for uniformly
distributed perturbations and in case the tangent bundle is parallelizable,
i.e.

TN ∼= N × Rn.

Notice in that case x 7→ µ̃x can be considered as a pair of maps

x 7→ (f(x), µ̃x) ∈ N × Rn.
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For the second factor there is a random variable X such that the exponential
map gives naturally the distribution of random maps around f on N , i.e.

fω(x) = expf(x)(Xω(x)).

More generally, if there is a trivial bundle F ∼= N × Rk with a local
equivalence ρ : F → N of a neighbourhood of 0 of Ff(x) to the manifold (or
the tangent bundle at Tf(x)N) such that we can lift the measures to

x 7→ µ̂x ∈ P(Ff(x))

with (µ̂x)x∈M satisfying the assumptions of the previous section and

ρ∗µ̂x = µx

then there is a family of random maps representing (µx)x∈M .
Since the exponential map at a point p ∈ N is a local diffeomorphism

between a neighbourhood of that point and a neighbourhood of 0 in the
tangent space at p, we get the following lemmata.

Lemma 7.1. Let (µx)x∈M be a continuous family of probability on a mani-
fold N . Suppose that there is a Cr-map f : M → N , for r ≥ 0, such that for
each x the support of µx is contained in a sufficiently small neighbourhood
Uf(x) of f(x).

Then (µx)x∈M lifts to a continuous family of probability measures (µ̃x)x∈M
on TN with µ̃x supported on Tf(x)N (considered as a subset of TN).

Lemma 7.2. If, in addition to the assumptions above, µx is absolutely con-
tinuous with respect to a volume form on N then µ̃x is absolutely continuous
with respect to the Lebesgue measure on Tf(x)N (and by equivalence to the
standard Lebesgue measure on Rn).

Also, if N is compact then the the Lebesgue densities of µx and µ̃x are
comparable in the sense that they have the same growth conditions, Lipschitz-
or Hölder-constants or positivity properties of the density in the interior of
their support. And, in particular, (strict) convexity of the support of µx is
preserved if the support is contained in a ball around f(x) with radius less
than the convexity radius of N .

As a final step we need to construct a trivial bundle with a natural projec-
tion and show that the measures lift again. As it is well know, the tangent
bundle TN is a sub-bundle of the trivial bundle F = N ×Rk for some k ≥ n
with a natural projection

π : F → TN,

which is a linear projection from Rk to Rn at each fibber at p ∈ N [Jos11].
Suppose we have a fixed measure ν on Rk which has a smooth density with

respect to the Lebesgue measure on Rk, such that for any linear projection
r : Rk → Rn the measure

ν(r) = r∗ν

is absolutely continuous with respect to the Lebesgue measure on Rn with
positive density inside the interior of its support. Then we claim that we
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can lift any Lebesgue regular measure µ̃ on Rn with support in the interior
of the support of r∗ν to a Lebesgue regular measure µ̂ on Rk.

To show this, notice that µ̃ is absolutely continuous with respect to ν(r),
i.e.

dµ̃(x) = g(x)dν(r)(x)
then defining

dµ̂(y) = g(r(y))dν
gives the required measure µ̂. Obviously if the support of µ̃ is convex so is
the support of µ̂ and positivity in the interior also lifts in this way.

8. Representation by random diffeomorphisms

As a result of the conditions of representation of measures by continuous
maps, and the lifting properties of measures, we have proved the following
theorem giving conditions to represent Markov chains by a family of random
diffeomorphisms.

Theorem C. Let M and N be compact Riemannian Cr-manifolds without
boundary, and let m be the normalised volume measure on N . Let (µx)x∈M
be a continuous family of probability measures on N such that each µx is
absolutely continuous with respect to m, has positive density and convex
support. Suppose that there is a Cr-diffeomorphism f : M → N , for r ≥ 1,
such that for each x, the support of µx is contained in a sufficiently small
neighbourhood Uf(x) of f(x). Then (µx)x∈M can be represented by a family
(fω)ω∈Ω of Cr-random diffeomorphisms.

Recall that the space Diffr(M,N) of diffeomorphisms is open in Cr(M,N),
for r ≥ 1 [Hir76]. Therefore, what we need to do is to perturb f in the Cr

topology in a controlled way, according to our measure µx. Indeed, as dis-
cussed in Section 7, it is possible to lift the measures on N to its tangent
bundle via the exponential map and we can identify TN with a subbundle
of a trivial bundle N × Rl [Jos11]. Then Lemma 7.1, and Lemma 7.2 pro-
vide a natural way of constructing a continuous family of probabilities on
the bundles according to (µx)x∈M on N . Furthermore, the construction of
a trivial bundle shows a natural way of embedding, thus lifting again this
measures to some Rk, such that the results of Section 6 can be applied. In
other words, we can continuously select sections of the bundles. Thus, we
choose maps Cr-close to f according to µx. This completes our argument.
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1988.
[Loe09] G. Loeper, On the regularity of solutions of optimal transportation problems,

Acta Mathematica 202 (2009), no. 2, 241–283.
[Mos65] J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc.,

120 (1965), 286–294.
[Pot09] J. Potthoff, Sample properties o random fields II: continuity, Communications

in stochastic analysis, 3 (2009), no. 3, 331–348.
[Qua91] A. N. Quas, On representation of Markov chains by random smooth maps,

Bulletin of the London Mathematical Society 23 (1991), no. 5, 487–492.
[Vil09] C. Villani, Optimal transport: old and new, Grundlehren der Mathematischen

Wissenschaften, vol. 338, Springer, Berlin, 2009.
[ZaH07] H. Zmarrou and A.J. Homburg, Bifurcations of stationary measures of random

diffeomorphisms, Ergodic Theory and Dynamical Systems 27 (2007), no. 5,
1651–1692.

Jürgen Jost, Max-Planck-Institute for Mathematics in the Sciences, Insel-
str. 22, 04103 Leipzig, Germany, and Department of Mathematics, University
of Leipzig, 04081 Leipzig, Germany

E-mail address: jost@mis.mpg.de

Martin Kell, Max-Planck-Institute for Mathematics in the Sciences, In-
selstr. 22, 04103 Leipzig, Germany

E-mail address: mkell@mis.mpg.de

Christian S. Rodrigues, Max-Planck-Institute for Mathematics in the Sci-
ences, Inselstr. 22, 04103 Leipzig, Germany

E-mail address: christian.rodrigues@mis.mpg.de


