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Abstract

We consider a one-dimensional second-order elliptic equation with a high-dimensional
parameter in a hypercube as a parametric domain. Such a problem arises, for ex-
ample, from the Karhunen—Loéve expansion of a stochastic PDE posed in a one-
dimensional physical domain. For the discretization in the parametric domain we
use the collocation on a tensor-product grid. The paper is focused on the tensor-
structured solution of the resulting multiparametric problem, which allows to avoid
the curse of dimensionality owing to the use of the separation of parametric variables
in the tensor train and quantized tensor train formats.

We suggest an efficient tensor-structured preconditioning of the entire multi-
parametric family of one-dimensional elliptic problems and arrive at a direct solution
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1. Introduction

We consider a multiparametric one-dimensional linear elliptic problem posed
in the physical domain D = (0,1) and the parameter domain Y = [—1, 1]M:

0 ou(x
——a(x,y)M - f(X,y), X € D) Yy S Y) (1.1)

0x 0x
u =0, x€o0D, yevY.

Here, y denotes a tuple of parameters, y = (yi,...,ym) € Y. For the solution of
(1.1), we use the classical Finite Element Method (FEM) for the discretization in
the physical domain D, and the collocation method [1] in the parameter domain Y.
More details are given in Section 3.1. For every y € Y the problem (1.1) reduces to

the form
d du(x)

_&a(x) dx

=f(x), x€D,
u =0, x € 0D.

If we consider a standard FEM discretization of (1.2) with N degrees of freedom, it
involves a tridiagonal N x N-matrix, and the discrete problem is solved easily by the
Gaussian elimination algorithm through O (N) operations.

Assume that we apply the same discretization to (1.1) and also discretize
the problem with respect to the parameters by choosing a finite set of collocation
points ys € Y, s = 1,...,S and considering a set of problems (1.2) with y = ys,
s = 1,...,S. This results in a large linear system with a block-diagonal matrix,
which consists of S blocks, each of them being the tridiagonal matrix correspond-
ing to a fixed parameter y = ys. The direct methods cannot be applied to such
a discretization straightforwardly for the solution of the whole family of problems,
parameterized by a high-dimensional parameter y € Y. The reason for that is that
the elementwise representation of the data itself suffers from the so-called “curse of
dimensionality” with respect to M, which can be beyond tens or hundreds. For ex-
ample, if the problem (1.1) approximates a stochastic PDE, the dimensionality M of
the parametric space is governed by the accuracy of this approximation and, thus,
may need to be high.

In the present paper we use the collocation on tensor-product uniform grids
in Y with S = n™ and employ the tensor-structured representation of the dis-
crete problem to extract the “effective” degrees of freedom adaptively and make
the problem tractable. A broad overview of this methodology can be seen in re-
cent surveys [33, 17, 16, 29]. This tensor approach was first applied to parametric
and stochastic PDEs in [24]| based on the canonical format and it was further ex-
tended in [34, 32, 13| to the case of Hierarchical Tucker, as well as Tensor Train [41]

(1.2)
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and Quantized Tensor Train formats. In this paper, we use the Quantized Tensor
Train (QTT) format [38, 25, 27, 39], which we describe in Section 2, and then show
that the preconditioned system can be solved efficiently either by a direct method or
by Krylov iterations demonstrating that these QT T-structured representations of the
data appear to be highly efficient for the solution of the multiparametric problem.

We notice that the favorable features in the tensor structure of the 1D-parametric
elliptic equation, leading to the explicit rank estimates of the parametric-operator
inverse, have been proven in [28]. This idea combined with the structure of the recip-
rocal preconditioner in [7] motivated the algebraic construction of the direct solution
formula in the present paper.

The sparse grid approach [37, 47, 4, 35], best N-term approximations [5] and
adaptive Galerkin discretizations [12] could be used instead of tensor-structured rep-
resentations to determine a reduced collocation set and, consequently, the complex-
ity of the resulting problem. Further cost reduction in the sparse grid collocation or
stochastic Galerkin methods can be achieved by a low-rank separation of physical
and stochastic variables [13, 36, 3|. Another state-of-the-art technique for various
high-dimensional problems, including stochastic PDEs, is the Monte-Carlo methods
|14, 15, 46].

We adhere to the collocation on full tensor-product grids and let the QTT
format select the “effective” degrees of freedom adaptively. In the extreme case,
when the QTT ranks are bounded by r uniformly in n and M, the QTT format
ensures logarithmic complexity O (1\/11‘2 log n). For parametric problems, although
the T'T ranks often exhibit the dependence r ~ M, the total storage O (M3) is still
much smaller than n™. This makes the problem tractable for high M. The QTT
representation may be used also for the physical variable x € D.

The basics of the QT T-approximation theory for function-related tensors were
given in [25, 27]. Since then, the QTT format has been successfully applied to
such problems as the solution of linear systems, eigenvalue problems, and in the
discrete Fourier analysis, see |26, 10, 31, 30, 23, 21, 9, 22|. There are also results on
the analytical QTT structure of function-related vectors and discretized operators,
see [20, 42, 19, 43].

We propose two ways to solve (1.1) in the QTT representation. First, Krylov
solvers can be preconditioned by the approach introduced in [7] for problems of
the form (1.2). This preconditioner is based on the reciprocal diffusion coefficient
1/a and, in the one-dimensional case, ensures that the preconditioned matrix of
the discrete problem has only two different eigenvalues. In the present paper we
generalize this preconditioner to the multiparametric problem (1.1) and show how
it can be used to precondition tensor-structured Krylov iterative solvers of (1.1). In



particular, in our numerical experiments we consider the GMRES method.

Second, the clustering properties for the preconditioner allow to derive a direct
solution formula for (1.2), and, henceforth, for (1.1) at each fixed y. We show how
this formula can be evaluated for all y simultaneously with the use of QTT-structured
vector operations, such as the pointwise multiplication and summation.

The paper is organized as follows. In Section 2 we present a basic description
of the TT and QTT formats. In Section 3 we consider a weak formulation of (1.1),
whose QTT-structured discretization follows in Section 4. In Section 5 we present
the reciprocal preconditioner, generalize it to the parametric case, and show our
main result, how a direct resolution formula can be derived. In Section 6 we outline
technical aspects of the computation of the reciprocal coefficient, and calculation
with the preconditioner and the direct formula. Finally, Section 7 presents numerical
results obtained with the use of our approach.

2. The QTT format for the low-parametric data representation

As we outlined in the introduction, the discrete problem we proceed to from (1.1)
suffers from the “curse of dimensionality”. For example, the elementwise representa-
tion requires storing O(NnM) entries of vectors of the diffusion coefficient, right-hand
side and solution. To avoid this, we represent the vectors and matrices involved by
their low-parametric decompositions in the Tensor Train (TT) and Quantized Tensor
Train (QTT) formats. Below we give basic definitions, for further details refer to [41]
and [27, 39].

Definition 2.1. A M-dimensional Ny X ... X Ny tensor x is said to be represented

in the TT format through parametric matrices x, k = 1,...,d, which are called

TT cores, if it holds that
x(iry i) =xV ) oo x™M M) for dk=1,..0,m k=1,...,M,

where x¥ (1) is a matriz of size Te_1 X 1 for 1 < i < ny, k = 1,...,M, and
To =Twm = 1. The summation limits vy are referred to as TT ranks of this particular
decomposition of x.

The same data can be seen as a ny - - - ny-vector x, by the simple renumeration
x(1) :X(i1,...,iM), i=t...iu=im+0ima—Inm+ -+ (11 — np - Ny,

A matrix A of the same sizes as x can be represented by a similar structure. Let A be
indexed by row indices 1;...1p and column indices j;...jq. Forevery k=1,...,M
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we merge iy and jy, which yields a d-dimensional n% x ... x n%, tensor A defined as

Al civygr---im) = A(Udry -« -y mim)-

Then we apply the TT representation to A according to Definition 2.1 and, for
k=1,..., M, split back the indices i, and j, in the core, A™ (iy,jy).

The TT format allows efficient linear algebra operations. For example, the
product of an n™M x ™ matrix given in a TT decomposition of ranks 1, <, by an
nM_component vector given in a TT decomposition of ranks | < r/, is represented
in the TT decomposition with TT ranks bounded by rr’, and the complexity of this
computation is linear with respect to the dimension M and polynomial with respect
to the mode sizes n =ny = ... =np and ranks r, v’.

In order to introduce the Quantized Tensor Train (QTT) decomposition [27, 39|,
we assume that each of the indices iy, k = 1,..., M, varies in the range from 1 to
Ny = 2%. Then it can be represented in the binary coding,

e = Bir gy = T + 2000 = D4+ 257 (A = 1), B =102,

where p = 1,..., k. By such a “quantization”, the M-dimensional n; X ... X Ty
tensor x is transformed into a (1; + ...+ ly)-dimensional 2 X ... X 2 tensor,

X(i]y] . .11)11, .o ,iMJ ---iM,IM) = X(i], . .,iM).

If this tensor is decomposed in the T'T format according to Definition 2.1, this de-
composition, its T'T ranks and TT cores are called respectively QT'T decomposition,
QTT ranks and QTT cores. We emphasize that the same data is also refereed to
as a 21T tM_yector x. In the following, we will write standard vector operations
(e.g. Ax), implying the corresponding TT operations if A and x are defined by TT
formats.

For certain classes of functions such as polynomials, exponentials and trigono-
metric functions, exact and explicit QTT decompositions of low ranks are available,
see, e.g. [27]. As a result, for function-related data, the smoothness leading to the
rapid convergence of expansions in terms of such systems results in the efficiency of
the T'T or QTT approximation.

For the efficiency of computations with the data recast in the format, it is cru-
cial that the format can be maintained through the course of computations. This
is achieved owing to that, for the TT and QTT formats, the problem of low-rank
approximation is well posed and can be solved quasi-optimally with the use of stan-
dard matrix algorithms, such as SVD and QR [41, 41]. We denote this truncation
operation by

Y= Ts(x))



where x is an input vector given in a T'T decomposition of ranks bounded from above
by R, and y is its approximation returned in a T'T' decomposition with the accuracy
¢ and nearly minimal possible ranks. The complexity of T is O(MnR?), where M is
the dimension and n is the mode size of the tensor x. In particular, in the case of
QTT approximation we have n = 2.

For the implementation we use the TT Toolbox by Ivan Oseledets (INM RAS,
Moscow) et al. It is publicly available at http://github.com/oseledets/TT-Toolbox
and provides subroutines for various linear algebra operations in the T'T format and
includes also TT-structured solvers of linear systems (e.g. TT-GMRES [8] and the
alternating DMRG [10] and AMEn [11] methods).

3. Multiparametric elliptic equation

3.1. Formulation of the problem

Let us return to the multiparametric problem (1.1). For the weak formulation of
the problem we follow [24] and consider the tensor-product Hilbert space V = V,®V,,
where V, = H}(D) and V, = L,(Y). We assume that f € H'(D) ® L,(Y) and
acC(DxY), a(,y) e C*}D)forallyecY.

For every y € Y we introduce the associated bilinear form A(y) : Vo, x Vy — R:

Alwvl(y) = Ja(x,y)vxw(x)vxv(x)dx Yw,v € V,
D

and consider the following weak formulation: find u(x,y) € V such that

Alu,vl(y) = Jf(x,y)v(x)dx Wwev, WeY. (3.1)
D

3.2. The form of the coefficient and right-hand side

The Karhunen—Loéve expansion is a very common way to proceed from a
stochastic problem to a multiparametric equation, see [24] and references therein.
The dimensionality M of the parametric domain is exactly the truncation parame-
ter of the Karhunen-Loéve expansion, which may need to be large (tens, hundreds
or even more). In the present paper, we consider the following two forms of the
coefficient a.

In the additive case we have

M
alxy) = a¥) + Y an(X)ym, (3.2)

m=1

where a, € Lo(D), m=1,..., M.


http://github.com/oseledets/TT-Toolbox

Assumption 3.1. Following [24], we assume that there exist Qnin > 0 and y €

(0,1), such that for all x € D it holds that anin < ag(x) < oo and am(x)| <

1

Mz

Y Qmin for all x € D.

Assumption 3.1 ensures the strong ellipticity of the bilinear form A(y) uniformly
in Y. As a result, the problem (3.1) has a unique solution uw € V for any f €
H (D) ® L,(Y'). Moreover, the solution is analytic w.r.t. the parameters 6], which
justifies Galerkin and collocation discretization schemes in y.

We also consider the log-additive model |24] with

M
a(x)y) — eaO(X) H eam.(x)ym. (33)
m=1

Due to the boundedness of Y, uniform upper bounds on a,,, 1 < m < M, ensure
that (3.1) has a unique solution u € V for any f € H7'(D) @ L,(Y).

Following [24, 47, 4], we assume below that in both cases the right-hand side f
is independent of the parameters, i.e. f € H™'(D).

4. Discretization of the multiparametric problem in the physical and para-
metric domains

We use the Galerkin FEM with N piecewise-linear hat functions {@;} in the
physical domain, constructed on a uniform grid with step size h = 1/(N + 1) and
nodes x; = hi, i = 1,...,N. The entries of the stiffness matrix Tj[a] at each
parameter point y read

(ry [a])i,i/ = (G(X,U)V(Pi(X% V(Pi’(x))[_z([)) ) i>i/ =1,...,N.

We use the midpoint quadrature rule. This quadrature of accuracy O (hz) yields a
tridiagonal matrix

—a1 +a; —Qy ]
1 —Qay a; + as —as
Fy[a]:}—I y (41)
—an-1 OGN+ an —an
i —aN ZCIN_
where a; = a(xi_12,y),i=1,...,N.



In the parametric domain we discretize the problem by collocation on an nM-
point full-tensor-product grid [24, 47, 4], which we denote as {1,y ojne- The
fully discrete problem reads

I'lau =f, (4.2)

where u, f € RN The matrix I'[a] is block-diagonal of size Nn™ x NnM

_ryll..J 1
FUZI.A.l
I'al = L . T, €RVN,
Y;
L rynn.un_
where j =ji,...,jm is a multi-index in the discrete parametric space, jy = 1,...,n,

k=1,...,M, and I, is the stiffness matrix (4.1) at y = y; fixed.

The entries of the right-hand side vector read fij = (f(x), @i(x)),p)-

Now let us discuss the low-rank representations of the matrix and the right-
hand side. If we can separate the physical variable and the parameters in the diffusion
coefficient, so that

ai; = a(xi_12,Y;) Z ald(i (i3), a® e RN, ¥ e R™, (4.3)

with a moderate separation rank r, then the matrix can be represented as
: (x) - (v
Ila] = Y Ty [(1(X ] ® diag (a&J ) , (4.4)
a=1

where T [a(x ] is built from ag() according to (4.1), and diag (a@) is a diagonal

matrix with the values a'?’ (j) stretched along the diagonal. Within the additive

model (3.2), the separation rank r in (4.3) is bounded by the number of parameters
M.

The right-hand side is Written as f = ¥ @ e, where f* is an N-vector with
entries (f(x), @i(x)), ,(p)> and e is an nM-vector of all ones.

We represent the mdlces in physical and parametric spaces in the binary coding
to consider QT'T decompositions of the vectors and matrices involved in the discrete
problem:

J :]1,1)---,]1,1»---))M,1)--->JM,1> T=T11y...41,



where L = log, N, 1 = log, n and all jxp, 1, € {1,2}. Then the parts of the coefficient
a in (4.3) can be represented in the QTT format as follows:

P1y--sPL—1
. Ny .
a@ =D alU(y)--alh (i),
Y1y YL—1=1
T1yeeyTML—1 (4'5)
. 10 s RRIP M
a®@ =Y G ay M G el ).
Bh*“»Ble]:]

In other words, we consider a two-level structure: first we separate the spatial variable
and parameters, and then we introduce a finer structure in each of them.

The QT'T cores of the matrix I'[a] can be written similarly, recalling that the
vector is turned to the diagonal matrix without changing the TT ranks. First, define
the parameter-related QTT block of the matrix I'[a]:

(y q)

(y,9) Bg—1,B “)
rﬁzmﬁq [ e awa) (2)]> (4.6)

ﬁqfhﬁq

where we denote a¥9 = aW*P) from (4.5) for k =1,...,M, and p = 1,...,1, with
the multi-index g =p+ (k—1)1=1,..., ML

Without the quantization of the spatial index 1i, the spatial TT block of I'[a]
appears immediately as F =Ty [a“ } Therefore, the whole stiffness matrix of the
multiparametric problem writes as the following T'T format:

Ml1-1
I'la] = Z ry[afxx)] (mm <®rﬁq1f5q> rﬁiﬁﬁ)

0(,[3] v'“»Ble]

The spatial part can be brought into the QTT format by using the shift matrices
and their explicit rank-2 QTT representation [19, 20]. Let us denote the upper shift
matrix by S € RN*N, then it holds

1, V=141,
0, else,

]

Iy [al] = Sdiag(alY) + diag(al! +SalY) + diag(al)ST, Siy = {
(4.7)
with the rank estimate (F(")) < 7r(a™), induced by the QTT format of a®

The consideration given above lead to the following bound for the QT'T ranks
of the stiffness matrix.



Theorem 4.1. Consider the problem (3.1) discretized with the use of the Galerkin-
collocation method. Suppose that the diffusion coefficient a s given in a QTT de-
composition (4.5) with the following TT rank bounds: p, <Ry, forp=1,...,L—T,
<1, andrq <Ry, forq=1,...,Ml—1.

Then the matriz I'la(y)] can be represented in the Q1T format, the parameter-
related QTT ranks are bounded by Ry, the space-parameters separation rank is v, and
the space-related QTT ranks are bounded by 7R,.

5. Iterative and direct solution of the parametric elliptic equation

5.1. Preconditioning of the multiparametric problem

Let us again start the consideration from a fixed point y. For the unitary
coefficient, the matrix Iy[a] coincides with the discretized Laplace operator: T'[1] =
Ay. In [7] it was shown that

P, = AT [1/alA] (5.1)

is an efficient preconditioner for (1.2). The preconditioning relies on the multipli-
cation by the matrix I},[1/a] and the solution of two Laplace equations. The main
properties of P, are as follows.

Theorem 5.1 ([7], Thm 3.1). The preconditioner P, is spectrally equivalent to the
mverse matrix Fy[a]_1 with constants independent of h.:

min(a) max(a)

Fy [(1]7] < Pz <

Iy [a]~".

max(a) min(a)

In the presence of parameters, the preconditioner (5.1) generalizes to
P, = A;'T1/dA,, (5.2)
where Ay, = I'll] = A, ®@1®---®L Note that A,' = A @1®--- @1 is ex-
—_——

M
plicitly representable in the QTT format with the TT ranks at most 5 [20]. The
tensor-structured computation of I'[1/a] was explained in Section 4. In Section 6.1
we present QTT-structured Newton iterations, which allow to compute the QTT
decomposition of the reciprocal coefficient 1/a.

The considerations given above lead to the following QTT rank estimates.
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Theorem 5.2. Suppose that the reciprocal coefficient b = 1/a is given in a QTT
decomposition similar to (4.5) with the following TT rank bounds: p, < RFFP, for
p=T1...,L=1, a<1™P and vq <RF?, forq=1,...,MLl—1.

Then the preconditioner P, can be represented in the QTT format, the parameter-

related QTT ranks are bounded by RiFP, the space-parameters separation rank is v,
and the space-related QTT ranks are bounded by 175R*°P.

Remark 5.3. The constant 175 appears from the multiplication 5-7 -5 of the QTT
ranks of the first Afl], the stiffness matriz I'[1/a] and the second Aal , respectively. In
practice, the preconditioner (5.2) need not be assembled explicitly: it can be applied
to a vector in the factorized form as follows:

T.(Pv) = T. (A T (I[1/d] T(AL'Y))) -

Since usually each of these truncations returns the ranks to average values, the real
cost of P,v is comparable with that of I'[a]v.

5.2. Direct resolution formula

General theorem 5.1 is applicable in case of any domain D, and also in the
parametric case, if we consider the maximum and minimum of a w.r.t. both x and
y. However, for the one-dimensional D, the preconditioner (5.1) possesses a much
stronger clustering property.

Theorem 5.4 ([7], Thm 2.2). Assume D = (0,1), then P,[yla]l = I+ R, where
R = ym" is a rank-1 matriz, and the elements of the vectors P, € RN are as
follows:

N i—1
- o 1) 1 Y R
ll)l = 4 Z Zs (as+1 as) Z Zs (as+1 as) + Zi <ai aN) )

s=1 s=1
Ni = Qi — Qg
zi = ith=1/(N+1),
where 1 =1,...,N, and all coefficients a; are taken at the given point y (which we
omit for brevity).

Let us write the inverse of the stiffness matrix Iy[a] explicitly with the use
of this representation. Consider the preconditioned system P,I[alu = P,f, where

Plylal =1+ Yn". The solution is u = (I + qu)f] P,f. By the Sherman-Morrison
formula [44, 2|, we obtain

Pn'

- _ ¥
(I+yn') =1 T

11



This yields an explicit formula for the solution in terms of the reciprocal coefficient
and the matrix-vector multiplication by A

:
u, = Nla] ' = <1 - %) AT [1/alA S, (5.3)

which needs to be evaluated for all y € Y, and ¥, n are given in (5.3).

Remark 5.5. For simplicity, throughout the paper, we consider the Dirichlet bound-
ary conditions. However, analogs of (5.3) can be derived in the case of Robin bound-
ary conditions (ocu—i— Bg—}l‘) lop = 0 as well.

6. Implementation details

6.1. Tensor-structured computation of the reciprocal diffusion coefficient

The preconditioner (5.1) and the direct solution formula (5.3) involve the recip-
rocal diffusion coefficient 1/a which cannot be computed the same straightforwardly
in a tensor-structured format as in the elementwise representation. We employ the
Newton method, which is widely used for the iterative inversion of matrices [18] and
can be easily adapted to tensor-structured formats.

To compute 1/a in the TT and QTT formats, we need to multiply vectors ele-
mentwise and truncate them in these formats. We perform the s-th Newton iteration
for the computation of by ~ 1/a as follows:

Cs = Te(bsabs))
bs+1 = T&(st_cs)>

where ab denotes the Hadamard product of vectors a,b € RN The method con-
verges quadratically, provided that |1 —aby| < T for all entries. For fast computation
of the Hadamard product in the TT format, we note that ab can be written as
a matrix-vector product diag(a)b. The matrix diag(a) is representable in the TT
format with the same TT ranks as a, and we may use the DMRG algorithm for the
fast approximation of the matrix-vector product [40].

In the log-additive case (3.3) the reciprocal coefficient is computed as in [32].
The method is based on the low-rank QTT structure of a at a single spatial point.
It is formulated as follows:

1: Set a =0.
2: fori=1,...,Ndo
3:  compute the QTT format of a; = [a(Xi_vbyj)]

nM

=

12



4: add it to the representation: a = a+ I; ® aj,

5. perform the compression a = T, (a).

6: end for
Here, I; € RN is the i-th column of the identity matrix. Each term can be represented
as a rank-1 QTT tensor, since

M
a(xi—12,Y;) = exp(ao(xi-1,2)) H exp (am(Xio1/2)Ym(m)) -

m=1

see also |27, 42|. Therefore the QTT ranks of a are bounded by N. The reciprocal
coefficient in the log-additive case is computed with the same complexity through
the summation of the terms exp(—a(xi-1,2,Y;)).

6.2. Preconditioned iterative solver

The spectral properties of the preconditioner (5.1) (see Theorem 5.1) ensure
the efficiency of Krylov iterative solvers for the solution of the preconditioned prob-
lem (4.2). Moreover, the theory of inexact Krylov methods [45] controls the con-
vergence with respect to the error introduced by using low-rank approximations of
a and 1/a and allows to increase the approximation tolerance ¢ at later iterations

[8]. However, this strategy may lead to the stagnation of the residual at the level
O(cond(PA)e).

6.3. Calculations via direct solution formula

Let us show how the formula (5.3) should be evaluated in a low-rank tensor
format. Assume that a and b = 1/a are given in a separable form:

Ta To
ay = aY@)-a¥(), by=) b)) b ().
oa=1 =1

The vectors P, 1 in (5.3) are defined at every y; independently, and for all o« =
1,...,1, C=1,...,1p,and i =1,...,N we may compute

sag'(i) = a(i+1)—ag(i),

sb(i) = bg‘;(w 1) _bgﬂ(;),]

b = 2 200 (s) — L z8b(s) + 2 (00 =),

s=1
i) = sal(i);

13



and then, assemble
Tb Ta
Vi) =Y wXOPYE,  mG) =) Y D)aY (). (6.2)
=1 a=1

If a® and b™ are kept in the full format, the computation is straightforward.
In the QTT format, we may use the shift matrix (4.7) to compute

sal¥ = (S—TDal¥, b =(S—1)bl.

The polynomial vector [z;] = [i/(N + 1)] is also exactly representable in the rank-2
QTT format [27, 42]. The first sum in Pp™ in (6.1) is the scalar product of z and 5b™,
and the second sum can be efficiently computed as a multiplication of a triangular
Toeplitz matrix by a vector [19]. The most time-consuming step is therefore the
computation of a and 1/a themselves, which is, however, a precomputing step.
Let us introduce the vector v = P,f, indexed similarly to (6.2):
v=A4,'T1/a)]A;'f = MG

ij=1 *

The solution formula (5.3) for all y € Y can be now computed as follows:

Tl s [ o0 ! (oo (S s
u=rla 'f=v—1 <e ®€(9)+Z]i\l:1ﬂi-ll)i e™ ® ;nl Vi , (6.3)

where e™ and eV are vectors of all ones of sizes N and n™, respectively, and the
Hadamard products (“-”) are computed in the QTT format, which consumes the most
amount of time. We need also to perform the pointwise inversion of the denominator
e + Z{i] 1 - ;. This can be done efficiently by the Newton iterations described
in Section 6.1, as the denominator entries are usually very close to 1 (up to O(h)).

6.4. Complexity

Given the maximal rank bounds R for the coefficient a, R™ for 1/a, R for
the right-hand side, and taking into account the complexities of T'T' operations, we
may conclude that the multiplications I'[a]f and I'[1/alf in the QTT format can be
evaluated with O ((M1+L)(R'R)?) and O ((M1+ L)(R'R™P)?) costs, respectively.
However, the TT approximation of these products T, (I'[1/a]f) has the cubic com-
plexity in the rank, O ((Ml + L)(RereCPP). Recalling Remark 5.3, we can conclude
that the latter estimate also applies to the preconditioning operation P,f.

14



For Formula (6.3) we note that the rank of { is bounded by R, the rank of n
by R, and the rank bound of v appears as the product R™PRf. Therefore, the right-
most brackets in (6.3) require O ((Ml + L)(RreCPRfR)Z) operations. The denominator
can be constructed with O ((Ml + L)(RreCpR)z) cost, but we cannot generally predict
the rank of the Newton approximations in each iteration. Nevertheless, since the
denominator is close to 1, the rank of the final reciprocal denominator is usually of
the order of 10 and can be neglected. Finally, the multiplication with the leftmost 1V
in (6.3) introduces another R™P to the worst case estimate. In practice, we can make
approximations after each operation (see Remark 5.3) and reduce the complexity.

7. Numerical experiments

In our numerical experiments we consider the additive and log-additive co-
efficient a, introduced in 3.2, with the polynomial and exponential decay of the
Karhunen—Loéve expansion:

1 1
o (polynomial) am(X) = Zm Sin('ﬂmX), m = 1, ey M7
e (exponential) a,,(x) = exp(—0.7m)sin(tmx), m =1,..., M.

The tensor rounding accuracy is set equal to ¢ = 107>, and the vector of ones,
f=(1,...,1)7, is taken for the right-hand side.

7.1. FExperiments with the direct solution formula

In this series of examples, we present the time of computing the reciprocal
coefficient, of multiplying the right-hand side by P, and of performing the Sherman-
Morrison correction. For an error indicator, we use the relative residual of the pre-
conditioned system, ||P,(I'u — f)||/||P.f||, since the preconditioner P, is spectrally
equivalent to I'"', and the preconditioned residual provides relevant information on
the error in the solution.

7.1.1. Additive case, polynomial decay (Figures 7.1-7.4, Table 7.1)

In the additive case, the coefficient a is computed in seconds due to explicit
canonical format with the rank bounded by M+1. However, the pointwise coefficient
inversion is more time-consuming. Here we exploit the Newton iteration, stopped

by the criterion ||bs;7 — bs|| < €|[bs;1]l. The CPU times of this process are shown in
Figures 7.1 and 7.2.
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Time to compute b = 1/a, M = 20
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Figure 7.1: Time (sec.) of computing 1/a
versus N, n. M = 20. Additive case, poly-
nomial decay.

Time to compute b = 1/a, M = 40
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Figure 7.2: Time (sec.) of computing 1/a
versus N, n. M = 40. Additive case, poly-
nomial decay.

The times of the multiplication v = P,f are not greater than 4 seconds (for the
worst case N = n = 256, M = 40, corresponding to NnM ~ 10% degrees of freedom
in total), and are negligible with respect to the other solution steps.

The last step is the Sherman-Morrison correction (Figures 7.3, 7.4). The times
are large due to large QTT ranks (of about 70) of the Hadamard products.

Time to compute u = (I + ™) v, M =20
65 T T T T

CPU Time (sec.)

Figure 7.3: Time (sec.) of computing u =
(I+ym ")~ "v versus N, n. M = 20. Additive
case, polynomial decay.

Time to compute u = (I +1n”) v, M = 40

CPU Time (sec.)

5 55 6 6.5 7 75 8
logy(n)

Figure 7.4: Time (sec.) of computing u =
(I+ym ")~ "v versus N, n. M =40. Additive
case, polynomial decay.

In Table 7.1 we present the preconditioned residual corresponding to the solu-
tion obtained by the explicit formula. We note that the residual stays at the level



1P (I — )|

Table 7.1: Preconditioned residuals versus N, n and M. Additive case, polynomial

|| P 1]l
decay.
M 20 40
N T 32 64 | 128 | 256 32 64 | 128 | 256
32 4.8e-5 | 4.9e-5 | 4.8e-5 | 4.9e-5 || 4.3e-5 | 5.4e-5 | 4.5e-5 | 6.9e-5
64 2.5e-5 | 4.9e-5 | 4.8¢-5 | 3.1e-5 || 4.0e-5 | 3.3e-5 | 3.6e-5 | 4.0e-5
128 3.3e-5 | 3.8e-5 | 5.2e-5 | 5.1e-5 || 4.2e-5 | 4.3e-5 | 4.4e-5 | 4.2¢-5
256 4.2e-5 | 4.2e-5 | 5.0e-5 | 4.7e-5 || 4.1e-5 | 4.5e-5 | 3.9e-5 | 4.9¢-5

5¢ independently on n, N and M.

7.1.2. Log-additive case, polynomial decay (Figures 7.5-7.8)

To compute both a and 1/a in this example, we use the add-and-compress
procedure over the x-index, described in Section 6.1. As the ranks of a and 1/a are
approximately the same, so is the time needed to compute them. In Figures 7.5 and
7.6 we present the time of computing 1/a only.

Time to compute b = 1/a, M =20 Time to compute b = 1/a, M =40
40 T T T T T 80 T
—*—n =232

35 70

30f 60
g 25 /g 50 1
% 20F £ w0
5l =
15 £ sof
@] @]

10 20}

5r 10

0 ‘ ‘ ‘ ‘ P PN ‘ ‘ ‘ ‘

0 50 100 150 200 250 300 0 50 100 150 200 250 300
N N

Figure 7.5: Time (sec.) of computing 1/a Figure 7.6: Time (sec.) of computing 1/a
versus N, n. M = 20. Log-additive case, versus N, n. M = 40. Log-additive case,
polynomial decay. polynomial decay.

Compared to the previous example, the complexity is almost cubic (not loga-
rithmic) with respect to N. The reason is that within this procedure we compress
tensors with ranks of order N.
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Figure 7.7: Time (sec.) of computing u =
(I+yn")"v versus N, n. M = 20. Log-
additive case, polynomial decay.
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Figure 7.8: Time (sec.) of computing u =
(I+4yn")~"v versus N, n. M = 40. Log-
additive case, polynomial decay.

The time needed to compute the Sherman-Morrison correction is also large (see
Figure 7.7, Figure 7.8) due to the slow decay of the expansion (3.3) that results in

large T'T ranks.

7.1.3. Additive case, exponential decay (Figures 7.9-7.10)

Time to compute u = (I +yn’) v, M = 20
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Figure 7.9: Time (sec.) of computing u =
(I+ym ")~ "v versus N, n. M = 20. Additive
case, exponential decay.
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Figure 7.10: Time (sec.) of computing u =
(I+ym")~"v versus N, n. M =40. Additive
case, exponential decay.

The exponential decay in (3.2) ensures lower QTT ranks of a, and the Newton
iterations for the computation of 1/a and the Sherman-Morrison correction are much



faster than for the polynomial decay, see Figures 7.9 and 7.10.

As explained in Section 7.2.2, the (relatively low) exponential rate 0.7 yields
even larger variance of the coefficient with respect to y, than in the polynomial case.
Thus, the condition number of the stiffness matrix is larger, and the Krylov solver re-
quires more iterations to converge. This leads to a larger computation time consumed
by the GMRES method (see Figures 7.17 and 7.18), while the Sherman-Morrison ap-
proach does not depend on the condition number and performs remarkably faster.

7.1.4. Log-additive case, exponential decay (Figures 7.11-7.1/)

Time to compute b = 1/a, M =20 Time to compute b = 1/a, M = 40
40 : 70 : ‘+
—k—n =232 —*k—n =32 B
——n =064 ——n =064
35H —o—n=128 : > : 60
—+—n =256
30
50
g 2 g
Z 2 ol
g (<)
E 20 E
j=] - > 301
o, 15 ¥
@] @]
201
10
51 101
P PN ‘ ‘ ‘ ‘ P PN ‘ ‘ ‘ ‘
0 50 100 150 200 250 300 0 50 100 150 200 250 300
N N
Figure 7.11: Time (sec.) of computing 1/a Figure 7.12: Time (sec.) of computing 1/a
versus N, n. M = 20. Log-additive case, versus N, n. M = 40. Log-additive case,
exponential decay. exponential decay.

Again, in the log-additive case the times to compute a and 1/a are approx-
imately the same. As in Section 7.1.2, we observe a sublinear complexity of the
add-and-compress technique (Fig. 7.11 and Fig. 7.12). The log-additive coefficient
model also leads to a faster rank growth in M: for M = 20, the times are smaller
than in the additive case (see N = 256 and n = 128, 256), while for M = 40 the com-
plexity becomes larger. However, the computation time for the Sherman-Morrison
correction is the smallest in this series of experiments (Fig. 7.13,7.14).

7.2. Preconditioned TT-GMRES

In this section we consider the TT-GMRES method [8], preconditioned with
P,. We track the computation time of the TT-GMRES and the residual of the
preconditioned problem.
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Figure 7.13: Time (sec.) of computing u =
(I+Yyn")~'v versus N, n. M = 20. Log-
additive case, exponential decay.
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Figure 7.14: Time (sec.) of computing u =
(I+4yn")~"v versus N, n. M = 40. Log-
additive case, exponential decay.

7.2.1. Additive case, polynomial decay (Figures 7.15-7.16, Table 7.2)

First, we present the computation time of the GMRES solver. For M = 40, the
GMRES is generally faster than the Sherman-Morrison correction. This is because
the variations in the coefficient are small, the condition number is low and the con-
vergence of the GMRES solver is fast. Contrarily, the Sherman-Morrison approach
faces Hadamard products of vectors with large T'T ranks.

Time to compute u via TT_GMRES, M = 20
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Figure 7.15: Time (sec.) of the TT-GMRES
versus n. M = 20. Additive case, polyno-
mial decay.

Time to compute u via TT_GMRES, M = 40
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Figure 7.16: Time (sec.) of the TT-GMRES
versus 1. M = 40. Additive case, polyno-
mial decay.

In all tests the TT-GMRES converged in 3 iterations with the computed resid-
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ual below ¢. However, the actual residual might be larger, up to O(cond(P,I")e).
This can be seen in Table 7.2: the residuals differ by an order of magnitude for
different parameters. Recall that the direct solver is free from this effect (Table 7.1).

Table 7.2: Residual W of the preconditioned problem versus N, n and M. Additive
case, polynomial decay. :
M 20 40
N B2 64 | 128 | 256 | 32 64 | 128 | 256
32 2.3e-6 | 2.4e-6 | 2.5e-6 | 2.6e-6 || 1.8e-5 | 2.0e-5 | 2.4e-5 | 2.2e-5
64 2.8e-6 | 3.0e-6 | 2.7e-6 | 3.7e-6 || 1.9e-5 | 1.7e-5 | 2.1e-5 | 2.2e-5
128 3.0e-6 | 3.0e-6 | 3.3e-6 | 4.9e-6 || 1.9e-5 | 1.9e-5 | 2.0e-5 | 1.9e-5
256 3.2e-6 | 3.3e-6 | 3.0e-6 | 4.2e-6 || 1.9e-5 | 1.9e-5 | 1.8e-5 | 2.3e-5

7.2.2. Additive case, exponential decay (Figures 7.17-7.18)

For the exponential decay we observe a different picture. Despite the expo-
nential decay of the coefficient, the quotient max(a)/ min(a) is greater than in the
polynomial case. So is the condition number, and hence the number of GMRES iter-
ations grows. This affects the computation times, which are larger by a factor of 10,
compared to the Sherman-Morrison correction (Figures 7.9 and 7.10). It shows the
obvious advantages of the direct formula in the cases when the coefficient a varies
significantly, but has relatively low TT ranks.

8. Conclusion

We introduced a tensor-structured preconditioned iteration scheme and a direct
solution method for a discretized one-dimensional second-order elliptic problem with
a high-dimensional parameter. The use of the TT and QTT formats for the data-
sparse representation within the GMRES solver and the explicit solution formula
based on the Sherman-Morrison inversion, applied to the preconditioned equation,
was shown to circumvent the “curse of dimensionality” and solve the problem ef-
ficiently. In our numerical experiments we compared the GMRES solver and the
Sherman-Morrison inversion and found the latter competitive when the diffusion
coefficient varies significantly and the conditioning of the problem is worse.
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Figure 7.17: Time (sec.) of the TT-GMRES
versus N, n. M = 20. Additive case, expo-
nential decay.
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versus N, n. M = 40. Additive case, expo-
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