
Max-Planck-Institut
für Mathematik

in den Naturwissenschaften
Leipzig

Partial evaluation of the discrete solution of

elliptic boundary value problems

by

Wolfgang Hackbusch and Florian Drechsler

Preprint no.: 59 2012

Partial evaluation of the discrete solution of elliptic boundary value

problems

Wolfgang Hackbusch
Max-Planck-Institut Mathematik in den Naturwissenschaften

Inselstr. 22, D-04103 Leipzig

Florian Drechsler
Max-Planck-Institut Mathematik in den Naturwissenschaften

Inselstr. 22, D-04103 Leipzig

Abstract

The technique of hierarchical matrices is used to construct a solution operator for a discrete elliptic
boundary value problem. The solution operator can be determined once for all from a recursive domain
decomposition structure. Then, given boundary values and a source term, the solution can be evaluated
by applying the solution operator. The complete procedure yields all components of the solution vector.
The data size and computational cost is O(n log∗ n), where n is the number of unknowns.

Once the data of the solution operator are constructed, components related to small subdomains can
be truncated. This reduces the storage amount and still enables a partial evaluation of the solution
(restricted to the skeletons of the remaining subdomains). The latter approach is in particular suited for
problems with oscillatory coefficients, where one is not interested in all details of the solution.

AMS Subject Classifications: 65F05, 65N22, 65N99
Key words: elliptic boundary value problem, finite element discretisation, hierarchical matrices, homogen-
isation

1 Introduction

Let Ax = b be a large system of equations (x, b ∈ R
I , I index set). In Linear Algebra one is used to consider

only the (complete) solution vector x ∈ R
I as the solution of the system. Similarly, only the (full) inverse

matrix A−1 ∈ R
I×I seems to be the answer for the inverse mapping.

However, if Ax = b is the discretisation of an elliptic boundary value problem Lu = f in Ω with suitable
boundary data, one is often not interested in u(ξ) at all ξ ∈ Ω. Instead, certain functionals are of interest.
Examples of functionals may be the boundary data ∂u/∂n at Γ = ∂Ω in the case of given Dirichlet data
or only one integral

∫

Γ0

∂u/∂n dΓ along a part Γ0 ⊂ Γ describing the flux through Γ0, or u at a fixed point
ξ0 ∈ Ω or at several points.

A particular situation originates from differential operators L = div a(·) grad with strongly oscillatory
coefficients (or coefficients with other small-scale behaviour). Since also the solution is strongly oscillatory,
one is usually not interested in the complicated solution with all its details, but only in local mean values ū
representing the macroscopic behaviour. In the case of periodic coefficients a(·) one can apply homogenisation
techniques leading to an approximation of ū. If the presuppositions for this technique do not hold, a numerical
homogenisation is of interest.

A model case for the previous situation might be as follows: a(·) is a given, strongly oscillatory function
describing the coefficients of L. A rather small step width h is used to resolve these oscillations. In principle,
one can solve the resulting system Ahxh = bh, but the interesting quantity is not xh but a smoothed version
xH = Rxh where R = RH←h denotes a (weighted) restriction onto a grid of the coarse step size H . In the
case of a Galerkin discretisation, VH could be a triangulation of size H and Vh ⊃ VH is a refinement of the
triangulation up to step size h ≪ H . Then xh ∈ Vh and xH ∈ VH hold, and the mapping R in xH = Rxh is
the canonical restriction as used in multi-grid methods (cf. [8, §3.6]). Hence,

xH = RA−1h bh

1

is to be solved.
One may even go a step further. In general, there is no reason to represent the right-hand side f of

the differential equation with the fine step size h, instead H may be sufficient, leading to a right-hand side
bH ∈ VH . A prolongation bh = PbH inserted into the previous equation leads to the next problem:

xH = RA−1h PbH .

The computation of A−1h is generally expensive. To reduce this cost, we develop a method where we divide
the problem recursively in subdomains and solve for the nodal values on an internal boundary γ(ω) ⊂ ω:

xH(γ(ω)) = ΦωbH , ω ⊂ Ω.

The right-hand side bH contains the boundary data on ∂ω and the discrete source term in the subdomain
ω. Solving these subproblems for all subdomains of the domain decomposition, we compute again the whole
solution xH .
The properties of this methods are the following:

• In a first phase of the computation, the matrices associated with the maps Φω are determined. The
related storage and computational cost are almost linear with respect to the total dimension of the
problem. Hence, for very fine step sizes h the costs are high, but because of the used domain decom-
position all tasks of the same level are completely independent and therefore easily parallelisable.

• In a second phase of the computation, the solution for a certain right-hand side can be computed. The
evaluation of the solution might be only partial, i.e., it stops at a certain coarser step size H ≫ h. This
reduces the storage requirements for the Φω-matrices and the computing time for the solution. Also
here all tasks of the same level can be computed in parallel. The partial evaluation does not change
the accuracy of the result, i.e., we do not compute a coarse-grid solution, but evaluate the fine-grid
solution only at coarse-grid points.

• If several linear systems are to be solved with the same matrix but different right-hand sides, the first
computing phase is to be performed only once.

• A family of local functionals of the solution is easily computable.

The basis scheme of the representation of the solution is described in §2. The mappings Φω used there
contain partial informations of the inverse A−1h and must be constructed suitably. The corresponding method
is explained in §5.1.

2 Domain decomposition tree and associated trace mappings

First, we explain the basic idea for the exact boundary value problem, i.e., without discretisation. The
situation at the start is given by the differential equation

LuΩ = fΩ in Ω ⊂ R
d (2.1a)

with Dirichlet boundary condition1

uΩ|∂Ω = g∂Ω on ∂Ω. (2.1b)

Let γ(Ω) ⊂ Ω be an open (d− 1)-dimensional manifold dividing Ω into two subdomains ω1 and ω2 with

∂ω1 ∩ ∂ω2 = γ(Ω).

(first step in Figure 2.1). In the following, we call γ(Ω) the internal boundary. The restriction of the solution
of (2.1a,b) onto γ(Ω) is the trace uΩ|γ(Ω). Since uΩ depends linearly on the right-hand side fΩ and the
boundary data g∂Ω, this defines is a linear mapping

ΦΩ : (fΩ, g∂Ω) 7→ uΩ|γ(Ω).

1The type of boundary condition is not really essential for the method. For other types, the arising boundary conditions in
the later subdomains ω will be of Dirichlet type for ∂ω ∩Ω and of the given type on ∂ω ∩ Γ.

2

Ω 1 2
12

11 21

22
ω ω

ω ω

ω ω

Figure 2.1: Sequence of domain decompositions

Ω forms the root of the domain decomposition tree GΩ from Figure 2.2, while ω1 and ω2 are the sons
of Ω. Before continuing the description of the method, we introduce some notations concerning the domain
decomposition tree GΩ.

Notation 2.1 The nodes (subdomains) of the tree GΩ are denoted by ω or ωi. The sons of a node ω form
the set S(ω). If S(ω) = ∅, ω is called a leaf of GΩ. The set of leaves forms L(GΩ) = {ω ∈ GΩ : S(ω) = ∅} . In
the case of a binary tree, we have #S(ω) = 2 for all ω ∈ GΩ\L(GΩ). ω is called the father of all ω′ ∈ S(ω).
The root is the unique node without a father.

First we discuss the situation for the sons ωi ∈ S(Ω) of the root Ω. For each ωi the differential equation
(2.1a) can be restricted onto ωi:

Luωi
= fωi

in ωi (i = 1, 2).

Note that the boundary ∂ωi is the disjoint union of ∂ωi ∩ ∂Ω and γ(ω). Hence, the boundary data

uωi
|∂ωi

= g∂ωi
on ∂ωi

are directly given on the subset ∂ωi ∩ ∂Ω, where g∂ωi
|∂ωi∩∂Ω = g∂Ω|∂ωi∩∂Ω with g∂Ω from (2.1b), while on

γ(ω) the boundary data are defined via

gωi
|γ(ω) = Φω (fω, g∂ω) .

ω1 ω2

ω11 ω21 ω12 ω22

Ω

Figure 2.2: Domain decomposition tree GΩ

Since now the boundary data on ∂ωi are determined, the method can be continued recursively in the
subdomains ωi (i = 1, 2): Boundary value problems like (2.1a,b) are defined in ωi instead of Ω. Each ωi can
be divided by an internal boundary γ(ωi) in two parts ωi1 and ωi2 (see middle part of Figure 2.1). Moreover,
the mapping

Φωi
: (fωi

, g∂ωi
) 7→ uωi

|γ(ωi)

describes the trace of the solution on γ(ωi).
After repeated application of this recursion one obtains a finer nested decomposition of Ω (as shown in

the right part of Figure2 2.1) as well as the tree from Figure 2.2. This domain decomposition tree is denoted
by GΩ and has Ω as its root. The sons of a subdomain ω ∈ GΩ of Ω are again the parts ω1, ω2 of ω produced
by the internal boundary γ(ω) (i.e., ω1 ∪ ω2 = ω, ω1 ∩ ω2 = γ(ω)). For practical reasons only binary trees
GΩ are considered. In the continuous case, the decomposition can be repeated infinitely (L(GΩ) = ∅) and
because of

⋃

ω∈GΩ
∂ω = Ω the traces u|∂ω define the complete solution u in Ω.

In the discrete case discussed below we reach the complete solution after finitely many steps.

2This illustration shows a regular decomposition. Of course, any kind of decomposition is possible.

3

3 Sketch of the discrete variant

In the following we assume that the discretisation method is the Galerkin method using finite elements of a
small size h. Details of the discretisation are given in §4.1.

In this case the domain decomposition from §2 must be consistent to the finite element triangulation
T (Ω), i.e., all subdomains ω ∈ GΩ are unions of triangles3 from T (Ω). An equivalent property is that all
internal boundaries γ(ω) coincide with edges of the triangles of T (Ω). The decomposition can be continued
until the subdomains are triangles ω ∈ T (Ω). Then, the leaves of the domain decomposition tree GΩ are the
triangles of T (Ω):

L(GΩ) = T (Ω). (3.1)

For each subdomain ω ∈ GΩ, which is not a leaf, a mapping Φω : (fh(ω), gh(∂ω)) 7→ xh|γ(ω) will be
constructed. This mapping Φω maps the nodal values fh(ω) of the right-hand side fΩ and the components
gh(∂ω) of the boundary data uh|∂ω to the coefficients xh|γ(ω) of the trace uh|γ(ω) of the discrete finite element
solution uh at γ(ω). Details concerning the underlying system and Φω will follow in §4.1 and §4.5.

The discretisation of the boundary value problem in Ω produces the data fh(Ω) and gh(∂Ω) for the
root Ω ∈ GΩ. After applying ΦΩ, the data gh(∂ω) are available for the sons ω ∈ S(Ω) of Ω. Finally,
further recursive applications of Φω (see algorithm in §5.2) yield the nodal values for all triangles from T (Ω)
and, therefore, all coefficients of the solution uh. Hence, the algorithm produces the (complete) solution of
the system of equations. Later, in §7.1, we will consider a variant in which the solution is not computed
completely but only partially.

In a prephase, the mappings Φω must be computed. The corresponding algorithm is described in §4.7.
For this purpose we needs an auxiliary mapping Ψω, which will be defined in §4.6.

4 Details

4.1 Finite element discretisation and matrix formulation

The finite element discretisation in Ω is based on a triangulation T (Ω). The additional consistency property
of the domain decomposition tree GΩ reads as follows: for all ω ∈ GΩ there is a subset T (ω) ⊂ T (Ω) such
that ω =

⋃

t∈T (ω) t. The internal boundary γ(ω) necessarily consists of edges of the triangles. For practical

reasons, ω should be divided by γ(ω) into subdomains ω1 and ω2 of similar size, while the length of γ(ω)
(more precisely the number of involved nodal points) should be as small as possible. Let the leaves of the
tree GΩ be the triangles from T (Ω), i.e., the domain decomposition is continued as long as possible (see
(3.1)).

Next we describe the finite element discretisation in a subdomain ω ∈ GΩ. Note that the subset T (ω)
described above is the triangulation of ω. Let Vh ⊂ H1

0 (ω) be the finite element space for the triangulation
T (ω) with homogeneous boundary values on ∂ω. Let the space V̄h ⊃ Vh with V̄h ⊂ H1(ω) additionally
contain the triangles associated to boundary vertices. The desired finite element solution uh ∈ V̄h of (2.1a,b)
has the variational formulation4

aω(uh, vh) = fω(vh) for all vh ∈ Vh,
∫

∂ω
uhwhdΓ =

∫

∂ω
gwhdΓ for all wh ∈ V̄h.

(4.1)

The second equation5 states that uh|∂ω = gh is the L2(∂ω)-orthogonal projection of g onto V̄h|∂ω :
∫

∂ω ghwhdΓ =
∫

∂ω gwhdΓ. In the case of proper subdomains ω 6= Ω the boundary values g will already
belong to the space V̄h|∂ω = {w|∂ω : w ∈ V̄h} so that the equality uh = g holds on ∂ω. Only for ω = Ω one
has once to perform the projection of g ∈ L2(∂Ω) onto uh|∂Ω.

We denote the coefficients of the finite element function uh by xh,i, i.e., xh = (xh,i)i∈I with

uh =
∑

i∈I

xh,iφi. (4.2)

3The finite elements are called ‘triangles’, since this corresponds to the 2D figures. The method, however, can be used for
any spatial dimension.

4The notation aω and fω with the index ω emphasises the integration domain which is variable.
5The variation over wh ∈ V̄h can be replaced by the variation over wh ∈ V̄h\Vh, since for wh ∈ Vh both sides of the equation

vanish.

4

The involved index set I(ω) consists of all nodal points of the triangulation T (ω) including the boundary
points. The disjoint decomposition into internal and boundary points yields

I(ω) = I(ω) ∪ I(∂ω). (4.3a)

I = I(Ω) consist all nodal points of the triangulation T (Ω).
The system corresponding to the variational formulation (4.1) is denoted by

Ah(ω)xh(ω) = rh(ω) (4.3b)

using the subdomain ω ∈ GΩ as explicit argument. The right-hand side vector rh(ω) = (rh,j(ω))j∈I(ω)

contains the blocks rh(ω) and rh(∂ω). The components of rh(ω) = (rh,j(ω))j∈I(ω) discretise the data of fω
(right-hand side of the differential equation):

rh,j(ω) = fω(φj) =

∫

ω

fωφjdx for j ∈ I(ω), (4.3c)

while the components of rh(∂ω) = (rh,j(∂ω))j∈I(∂ω) represent the boundary data:

uh|∂ω =
∑

j∈I(∂ω)

rh,j(∂ω)φj

∣

∣

∣

∣

∣

∣

∂ω

. (4.3d)

Let Ah = Ah(ω) be the discretisation matrix corresponding to (4.1). According to the decomposition
(4.3a), Ah(ω) has the form

Ah(ω) =

[

Aω,ω Aω,∂ω

O I

]

. (4.3e)

The first equation in (4.1) yields the representation

Aω,ω
ij = aω(φj , φi) for i, j ∈ I(ω)

Aω,∂ω
ij = aω(φj , φi) for i ∈ I(ω), j ∈ I(∂ω),

(4.3f)

where {φi : i ∈ I(ω)} is a basis of Vh and {φi : i ∈ I(ω)} is a basis of V̄h.
Since rh(∂ω) already represents the coefficients of uh|∂ω explicitly (cf. (4.3d)), the second block row

[

O I
]

is obvious. Hence, the system is block-staggered: First one has to insert the boundary values
rh(∂ω), then the equation of the first row can be solved for the internal nodal values rh(ω).

It is beneficial for the multiscale version to use a projection of the right-hand side fΩ instead of the vector

rh(Ω). In the following, fh ∈ R
I(Ω) fulfils

f =
∑

i∈I

fh,iφi. (4.4)

Subvectors of fh are denoted by fh(ω) = fh|I(ω). With Mh(ω) ∈ R
I(ω)×I(ω) we denote the mass matrix with

(Mh(ω))ij =

∫

ω

φjφidx for i, j ∈ I(ω).

For later use we introduce the block structure

Mh(ω) :=

[

Mω
h

M∂ω
h

]

with Mω
h ∈ R

I(ω)×I(ω) and M∂ω
h ∈ R

I(∂ω)×I(ω). For these it holds rh(ω) = Mω
h fh(ω).

4.2 Natural boundary conditions

Replacing the Dirichlet condition by the natural boundary condition (cf. [7, §7.4]), one obtains the matrix
Anat

h (ω) with the entries
Anat

i,j (ω) = a(φj , φi) for all i, j ∈ I(ω). (4.5)

The block partition of Anat
h (ω) into

[

Anat,ω,ω Anat,ω,∂ω

Anat,∂ω,ω Anat,∂ω,∂ω

]

yields the same blocks as (4.3e) in the first

row: Aω,ω = Anat,ω,ω and Aω,∂ω = Anat,ω,∂ω, but different entries in the second block row, i.e., for (i, j) ∈
I(∂ω)× I(ω).

5

4.3 Interrelation of the matrices Ah(ω), Ah(ωi), A
nat
h (ωi)

Let the matrices Ah and Anat
h for ω, ω1, ω2 be defined as above.

Remark 4.1 The index range α ∈ I(ω) corresponds to the first block row in (4.3e). For these indices we
have

(Ah(ω))α,β =







(Ah(ωi))α,β for α ∈ I(ωi), β ∈ I(ωi), i = 1, 2,

(Anat
h (ω1))α,β + (Anat

h (ω2))α,β for α ∈ I(γ(ω)), β ∈ I(∂ω1) ∩ I(∂ω2),

0 for α ∈ I(ωi), β ∈ I(ωj), i 6= j.

In the middle case, integration involves parts of ω1 as well as of ω2 (cf. Figure 4.1). The case α ∈ I(∂ω)
(second block row in (4.3e)) is omitted because of the trivial structure.

Proof. 1) For α ∈ I(ωi) and β ∈ I(ωi) the intersection of the supports of the basis functions φα, φβ lies
completely in ωi ⊂ ω. Hence, aω(φβ , φα) and aωi

(φβ , φα) coincide.
2) For α, β ∈ I(γ(ω)) ⊂ I(∂ω1) ∩ I(∂ω2) the intersection of the supports of φα, φβ lies partly in ω1 and

partly in ω2, so that aω(φβ , φα) = aω1
(φβ , φα) + aω2

(φβ , φα).
3) For α ∈ I(ωi) and β ∈ I(ωj) (i 6= j) the supports of φα, φβ are disjoint.

4.4 Decomposition of the index set

Each subdomain ω ∈ GΩ is divided by the internal boundary γ(ω) into the subdomains ω1 and ω2, the sons
of ω. The index sets of these three subdomains are I(ω), I(ω1), I(ω2). Each of these index sets decomposes
into the disjoint subsets of inner and boundary points:

I(ω) = I(ω) ∪ I(∂ω), I(ω1) = I(ω1) ∪ I(∂ω1), I(ω2) = I(ω2) ∪ I(∂ω2).

The internal boundary γ(ω) consists of edges of the triangles of T (ω). Correspondingly, I(γ(ω)) contains
the nodal points in γ(ω). Since by definition γ(ω) ⊂ ω is open, the sets I(γ(ω)) and I(∂ω) do not intersect.
Hence, I(γ(ω)) is a proper subset of I(ω1) ∩ I(ω2):

I(γ(ω)) := (I(ω1) ∩ I(ω2)) \ I(∂ω).

For an illustration let

a a a s b b b
a 1 1 γ 2 2 b
a 1 1 γ 2 2 b
a a a s b b b

be a grid with nodal points denoted by a, b, γ, s, 1, 2.

I(ω) is the set of all points. Points named γ or s indicate the separating internal boundary γ(ω). The other
index sets are characterised as follows:

index set I(ω) I(∂ω) I(γ(ω)) I(ω1) I(ω2) I(ω1) I(ω2) I(∂ω1) I(∂ω2)
notations 1, γ, 2 a, s, b γ 1 2 a, 1, s, γ b, 2, s, γ 1, s, γ 2, s, γ

4.5 The mapping Φω

Let ω ∈ GΩ be no leaf. Then ω is associated with an internal boundary γ(ω), which determines the decompos-
ition. In §2, Φω has been defined as the mapping of the right-hand side and the boundary data into the trace
u|γ(ω). In the discrete case we use the same symbol Φω, but we replace the functions by the representing coeffi-
cients. fh(ω) is the discrete analogue of the right-hand side fω (cf. (4.4)), while gh(∂ω) replaces the boundary
values uh|∂ω (cf. (4.3d)). The trace uh|γ(ω) is represented by the coefficients xh|I(γ(ω)) = (xh,i)i∈I(γ(ω)) (cf.

(4.2)). The system (4.3e) yields the solution xh = (Aω,ω)
−1 (

Mω
h fh(ω)−Aω,∂ωgh(∂ω)

)

for the solution

vector xh ∈ R
I(ω). Partial evaluation on I(γ(ω)) yields

Φω (fh(ω), gh(ω))) := (Aω,ω)
−1 (

Mω
h fh(ω)−Aω,∂ωgh(∂ω)

)

∣

∣

∣

I(γ(ω))
. (4.6)

6

ω ω1 2

Figure 4.1: Triangles involved in the integration for the central nodal point xi.

Although (4.6) defines the mapping Φω, this equation will not be used for the practical construction of Φω

(see §4.7).
Assume that Φω is available and let ωi (i = 1, 2) denote the subdomains obtained by one domain

decomposition step (sons of ω in the tree GΩ). It is essential that for each ωi complete Dirichlet boundary
data on ∂ωi are available, which can be seen as follows. The index set I(∂ωi) is the disjoint union of
I(∂ωi)∩I(∂ω) and I(γ(ω)). On I(∂ωi) ∩ I(∂ω) the nodal values are available from the data on I(∂ω), while
on I(γ(ω)) the values are given by Φω(fh(ω), gh(ω)).

The finite element discretisation in ωi uses the triangulation T (ωi) containing all triangles in ωi. The
discretisation matrix for ωi (i = 1, 2) is Ah(ωi). It is also given by (4.3b-e), where now the bilinear form
a = aωi

uses the integration over ωi (instead of ω, see Figure 4.1) and the boundary integral on ∂ωi =
(∂ω ∩ ωi) ∪ γ(ω) instead of ∂ω.

4.6 The mapping Ψω

For the construction of the mapping Φω (cf. (4.6)) we need a further mapping

Ψω : RI(ω) × R
I(∂ω) → R

I(∂ω).

Ψω is applied to fh(ω) ∈ R
I(ω) and gh(∂ω) ∈ R

I(∂ω). We remind that fh(ω) are the nodal values rep-
resenting the right-hand side fΩ, while gh(∂ω) are the boundary values of the discrete solution xh(ω) =
(

xh|I(ω), xh|I(∂ω)

)

∈ R
I(ω), i.e.,

xh|I(∂ω) = gh(∂ω).

According to the decomposition (4.3e), the internal coefficients xh|I(ω) are the solution of Aω,ωxh|I(ω) +

Aω,∂ωxh|I(∂ω) = rh(ω), so that

xh|I(ω) = (Aω,ω)
−1 (

Mω
h fh(ω)−Aω,∂ωgh(∂ω)

)

(4.7)

follows (compare (4.6) for the further restriction on γ(ω)).
For boundary nodal indices i ∈ I(∂ω) we define the i-th component of Ψω(fh(ω), gh(∂ω)) by means of

the finite element solution uh =
∑

j∈I(ω) xh,jφj as follows:

(Ψω(fh(ω), gh(ω)))i := aω(uh, φi)− fω(φi) =
∑

j∈I(ω)

xh,j aω(φj , φi)− fω(φi) for i ∈ I(∂ω). (4.8)

Note that aω(·, ·) is the bilinear form from (4.1) with the integration restricted to ω.
The coefficients aω(φj , φi) of the latter equation represent the part

Anat,∂ω =
(

Anat,∂ω,∂ω, Anat,∂ω,ω
)

with

Anat,∂ω,∂ω :=
(

Anat
i,j

)

i,j∈I(∂ω)
, Anat,∂ω,ω :=

(

Anat
i,j

)

i∈I(∂ω),j∈I(ω)

of the matrix Anat = Anat(ω) from (4.5), so that Ψω(fh(ω, gh(∂ω))) = Anat,∂ωxh. Using the previous
equations for xh, we obtain the block representation

Ψω =
(

Ψω
ω,Ψ

∂ω
ω

)

with

{

Ψω
ω := −M∂ω

h +Anat,∂ω,ω (Aω,ω)
−1

Mh(ω),

Ψ∂ω
ω := Anat,∂ω,∂ω −Anat,∂ω,ω (Aω,ω)−1 Anat,ω,∂ω.

(4.9)

7

Remark 4.2 Let ω be a triangle of the triangulation T (Ω) and hence a leaf of the domain decomposition
tree GΩ. For such an ω the mapping Ψω is easily computable since #I(ω) = 0. In this case the formulae are
reduced to

Ψω
ω = −M∂ω

h ,
Ψ∂ω

ω = Anat,∂ω,∂ω.
(4.10)

Next, we perform the construction of Ψω recursively from the leaves of the tree GΩ to the root Ω.

4.7 Construction of Φω from Ψω1
and Ψω2

Let ω1 and ω2 be the sons of ω in the domain decomposition tree. The mappings Ψω1
and Ψω2

associated
to ω1 and ω2 are assumed to be available. The mappings Φω,Ψω are to be determined. The arguments of
the linear mapping Ψω are fh(ω) and gh(ω). These data are used in the following Steps 1a-c to formulate a
discrete boundary value problem in ω1.

Step 1a) Boundary data on ∂ω1: gh(∂ω) coincides with the boundary data xh(ω)|I(∂ω). This defines
in particular the boundary data xh(ω1)|I(∂ω)∩I(∂ω1). The boundary index set I(∂ω1) ⊂ I(ω1) can be split
disjointly into I(∂ω) ∩ I(∂ω1) and I(γ(ω)) (the latter nodal points are denoted by γ in the illustration in
§4.4). The remaining boundary data xγ := xh(ω1)|I(γ(ω)) are still to be determined.

Step 1b) Data for ω1: The restriction of fh(ω) onto the index set I(ω1) yields fh(ω1).

Step 1c) Discrete boundary value problem: The vector x(1) := xh(ω1) is written as
(

x
(1)
ω , x

(1)
∂ω , x

(1)
γ

)

using

the following block decomposition:

x(1)
ω = xh(ω1)|I(ω1), x

(1)
∂ω = xh(ω1)|I(∂ω)∩I(∂ω1), x(1)

γ = xh(ω1)|I(γ(ω)).

For given boundary data
(

x
(1)
∂ω , x

(1)
γ

)

the system for the inner nodal values x
(1)
ω reads as follows:

A(1),ω,ωx(1)
ω = M (1),ω,ωfh(ω1)−A(1),ω,∂ωx

(1)
∂ω −A(1),ω,γx(1)

γ with (4.11a)

A(1),ω,ω :=
(

(Ah(ω1))ij

)

i,j∈I(ω1)
,

A(1),ω,∂ω :=
(

(Ah(ω1))ij

)

i∈I(ω1), j∈I(∂ω)∩I(∂ω1)
,

A(1),ω,γ :=
(

(Ah(ω1))ij

)

i∈I(ω1),j∈I(γ(ω))
,

M (1),ω,ω :=
(

(Mh(ω1))ij

)

i∈I(ω1),j∈I(ω1))
. (4.11b)

Step 2) Analogous arguments for the second subdomain ω2 yield

A(2),ω,ωx(2)
ω = M (2),ω,ωfh(ω2)−A(2),ω,∂ωx

(2)
∂ω −A(2),ω,γx(2)

γ (4.11c)

with similar definitions of the block matrices.

Step 3) Equation for xγ : The components of the vector x(1) := xh(ω1) are defined for j ∈ I(ω1),
those of x(2) := xh(ω2) for j ∈ I(ω2). The domains of definition overlap in Is := I(ω1) ∩ I(ω2). For

j ∈ Is ∩ I(∂ω) = Is\I(γ(ω)) we have x
(1)
j = x

(1)
∂ω,j = (gh(∂ω))j = x

(2)
∂ω,j = x

(2)
j (cf. Step 1a). For j ∈ I(γ(ω))

we require the corresponding identity describing the coincidence of the boundary values at the internal
boundary:

x(1)
γ := x(2)

γ := xγ ∈ R
I(γ(ω)). (4.11d)

Under this consistency condition, the vectors x(1) and x(2) define a unique vector xh(ω) ∈ R
I(ω) by means

of

xh,j(ω) :=

{

x
(1)
j for j ∈ I(ω1),

x
(2)
j for j ∈ I(ω2),

(4.11e)

since x
(1)
j = x

(2)
j for j ∈ I(ω1) ∩ I(ω2). Vice versa, each xh(ω) ∈ R

I(ω) defines vectors x(i) := xh(ω)|I(ωi)

(i = 1, 2) satisfying the consistency condition (4.11d).

8

For any xγ ∈ R
I(γ(ω)), the equations (4.11a,b) determine x(1) and x(2). The latter vectors define xh(ω)

by means of (4.11e) and hence uh(ω) :=
∑

j∈I(ω) xh,j(ω)φj . To determine xγ , we use the equation

aω(uh, φj)− fω(φj) = 0 for all j ∈ I(γ(ω)). (4.11f)

The bilinear form can be written as

aω(uh, φj) = aω1
(uh, φj) + aω2

(uh, φj) (4.11g)

and the vector fω(φj) can be written as

fω(φj) = fω1
(φj) + fω2

(φj). (4.11h)

Since j ∈ I(γ(ω)) is an index of a nodal point on the internal boundary, the situation shown in Figure 4.1
holds. By definition we have

aω1
(uh, φj)− fω1

(φj) = (Ψω1
(fh(ω1), gh(∂ω1)))j ,

aω2
(uh, φj)− fω2

(φj) = (Ψω2
(fh(ω2), gh(∂ω2)))j for j ∈ I(γ(ω)).

Restriction of the range R
I(∂ω1) of Ψω1

(fh(ω1), gh(∂ω1)) onto R
I(γ(ω)) yields Ψω1

(fh(ω1), gh(∂ω1))|I(γ(ω)).

The data gh(∂ω1) ∈ R
I(∂ω1) can be written in the block form (gh(Γ1), xγ), gh(Γ1) := gh(∂ω1)|I(∂ω1)\I(γ(ω))

where we separate the fixed values gh(∂ω1)|I(γ(ω)) = xγ at the internal boundary. Hence, the linear mapping
Ψω1

(fh(ω1), gh(∂ω1))|I(γ(ω)) is of the form

Ψω1
(fh(ω1), gh(∂ω1))|I(γ(ω)) = Ψγ

1γxγ +Ψγ
1∂ωgh(Γ1) + Ψγ

1ωfh(ω1) (4.11i)

with suitable matrices

Ψγ
1γ := Ψ∂ω

ω |I(γ)×I(γ), Ψγ
1∂ω := Ψ∂ω

ω |I(γ)×I(∂ω1\γ), and Ψγ
1ω := Ψω

ω|I(γ)×I(ω1).

Analogously, Ψω2
(fh(ω2), gh(∂ω2))|I(γ(ω)) can be written in the form

Ψω1
(fh(ω2), gh(∂ω))|I(γ(ω)) = Ψγ

2γxγ + Ψγ
2∂ωgh(Γ2) + Ψγ

2ωfh(ω2). (4.11j)

Equations (4.11f,i,j) lead to
(

Ψγ
1γ +Ψγ

2γ

)

xγ = −Ψγ
1∂ωgh(Γ1)−Ψγ

2∂ωgh(Γ2)−Ψγ
1ωfh(ω1)−Ψγ

2ωfh(ω2). (4.12)

Inversion yields the representation of the trace values on I(γ(ω)):

xγ =
(

Ψγ
1γ +Ψγ

2γ

)−1 (
−Ψγ

1∂ωgh(Γ1)−Ψγ
2∂ωgh(Γ2)−Ψγ

1ωfh(ω1)−Ψγ
2ωfh(ω1)

)

. (4.13)

With
Φ∂ω

ω :=
(

Ψγ
1γ +Ψγ

2γ

)−1
(−Ψγ

1∂ω −Ψγ
2∂ω) (4.14)

and
Φω

ω :=
(

Ψγ
1γ +Ψγ

2γ

)−1
(−Ψγ

1ω −Ψγ
1ω) . (4.15)

we have found the desired mapping Φω := (Φ∂ω
ω ,Φ∂ω

ω).

Remark 4.3 The matrix representation of Φω is given by the matrix blocks

(−Ψγ
1∂ω −Ψγ

2∂ω) ∈ R
I(γ(ω))×I(∂ω), (−Ψγ

1ω −Ψγ
1ω) ∈ R

I(γ(ω))×I(ω1)

and
(

Ψγ
1γ +Ψγ

2γ

)−1
∈ R

I(γ(ω))×I(γ(ω)). However, note that the index sets I(ω1) and I(ω2) overlap (the
common indices correspond to the notation s or γ of the nodal points in §4.4). Hence, the block contributions
in the common index domain (I(ω1) ∩ I(ω2)) must be added.

Lemma 4.4 The right-hand side in (4.13) defines the desired trace mapping Φω : (fh(ω), gh(∂γ)) 7→ xγ .

Proof. Let xγ be defined by (4.13). In Step 3, the vectors x(1) and x(2) are determined by means of
(4.11a,b). uh(ω) =

∑

j∈I(ω) xh,j(ω)φj is defined via (4.11e). The equations (4.11a,b) are equivalent to

aω(uh, φj) = f(φj) for j ∈ I(ω1) and j ∈ I(ω2). The definition of xγ ensures aω(uh, φj) = f(φj) for
j ∈ I(γ(ω)). Since I(ω1) ∪ I(ω2) ∪ I(γ(ω)) = I(ω), the function uh satisfies the finite element equation
aω(uh, vh) = fω(vh) (vh ∈ Vh) in ω. The boundary values of uh are given by the nodal values rh(∂ω). Since
xγ are the nodal values of uh|γ(ω), the assertion is proved.

9

4.8 Construction of Ψω from Ψω1
and Ψω2

Let ω ∈ GΩ be a domain with the sons (subdomains) ω1 and ω2. We have to construct the mapping Ψω

which should fulfil
(Ψω(fh(ω), gh(∂ω)))i = aω(uh, φi)− fω(φi) ∀i ∈ I(∂ω).

It holds (cf. (4.11f,g,h))

aω(uh, φi)− fω(φi) = (Ψω1
((fh(ω1), gh(∂ω1))) + Ψω2

((fh(ω2), gh(∂ω2))))i ∀i ∈ I(∂ω).

The mappings Ψω1
and Ψω2

depends on the boundary data xγ , which we have to eliminate by means of the
mapping Φω. In this case we shrink the range of both mappings to R

∂ω. Thus the linear mapping Ψω1
is of

the form
Ψω1

(fh(ω1), gh(∂ω1))|I(∂ω) = Ψ
∂ω1\γ
1γ xγ +Ψ

∂ω1\γ
1∂ω gh(Γ1) + Ψ

∂ω1\γ
1ω fh(ω1) (4.16)

with suitable matrices

Ψ
∂ω1\γ
1γ := Ψ∂ω

ω |I(∂ω1\γ)×I(γ), Ψ
∂ω1\γ
1∂ω := Ψ∂ω

ω |I(∂ω1\γ)×I(∂ω1\γ), and Ψ
∂ω1\γ
1ω := Ψω

ω|I(∂ω1\γ)×I(ω1).

Analogously, Ψω2
(fh(ω2), gh(∂ω2))|I(∂ω) can be written in the form

Ψω2
(fh(ω2), gh(∂ω))|I(∂ω) = Ψ

∂ω2\γ(ω)
2γ xγ +Ψ

∂ω2\γ(ω)
2∂ω gh(Γ2) + Ψ

∂ω2\γ(ω)
2ω fh(ω2). (4.17)

Replacing xγ with Φω(fh(ω), gh(∂ω)) yields

Ψω(fh(ω), gh(∂ω)) =Ψ
∂ω1\γ(ω)
1γ xγ +Ψ

∂ω1\γ(ω)
1∂ω gh(Γ1) + Ψ

∂ω1\γ(ω)
1ω fh(ω1)

+ Ψ
∂ω2\γ(ω)
2γ xγ +Ψ

∂ω2\γ(ω)
2∂ω gh(Γ2) + Ψ

∂ω2\γ(ω)
2ω fh(ω2)

=Ψ
∂ω1\γ(ω)
1γ Φω(fh(ω), gh(∂ω)) + Ψ

∂ω1\γ(ω)
1∂ω gh(Γ1) + Ψ

∂ω1\γ(ω)
1ω fh(ω1)

+ Ψ
∂ω2\γ(ω)
2γ Φω(fh(ω), gh(∂ω)) + Ψ

∂ω2\γ(ω)
2∂ω gh(Γ2) + Ψ

∂ω2\γ(ω)
2ω fh(ω2).

This leads to Ψω = (Ψω
ω,Ψ

∂ω
ω) with

Ψω
ω =

(

Ψ
∂ω1\γ(ω)
1γ +Ψ

∂ω2\γ(ω)
2γ

)

Φω
ω +Ψ

∂ω1\γ(ω)
1ω +Ψ

∂ω2\γ(ω)
2ω (4.18)

and
Ψ∂ω

ω =
(

Ψ
∂ω1\γ(ω)
1γ +Ψ

∂ω2\γ(ω)
2γ

)

Φ∂ω
ω +Ψ

∂ω1\γ(ω)
1∂ω +Ψ

∂ω2\γ(ω)
2∂ω . (4.19)

5 Basic algorithm

In the definition phase, we determine the mappings Φω for all domains ω ∈ GΩ\L(GΩ) of the domain
decomposition tree which are no leaves. The auxiliary mappings Ψω for ω ∈ GΩ\{Ω} are determined only
for intermediate use. Afterwards, the evaluation phase can be applied once or many times for different data
(fh, gh).

5.1 Definition phase

The algorithm uses induction from the leaves of GΩ to the root.

• The start of the algorithm is the determination of

Ψω for all ω ∈ L(GΩ).

Since L(GΩ) = T (Ω) is assumed, Remark 4.2 holds: Ψω is easily computable.

• Induction (from the sons ω1, ω2 to the father ω): Ψω1
and Ψω2

are assumed to be given. We construct
Φω according to §4.7. Using Φω we can compute Ψω as described in §4.8. As soon as Ψω is determined,
Ψω1

and Ψω2
are no more needed. In a concrete implementation the storage for Ψω1

and Ψω2
can be

released.

10

For the algorithmic performance it is advantageous to split the tree GΩ into the level sets G
(ℓ)
Ω ,

0 ≤ ℓ ≤ depth(GΩ) , defined recursively by G
(0)
Ω := {Ω} and G

(ℓ)
Ω :=

{

ω ∈ GΩ : ω has a father in G
(ℓ−1)
Ω

}

for ℓ > 0. The depth depth(GΩ) of GΩ is the largest number ℓ with G
(ℓ)
Ω 6= ∅.

for ℓ := depth(GΩ)− 1 downto 0 do

begin for all ω ∈ G
(ℓ+1)
Ω ∩ L(GΩ) do compute Ψω explicitly; {see Remark 4.2}

for all ω ∈ G
(ℓ)
Ω \L(GΩ) do

begin {ω1, ω2} := SGΩ
(ω); {SGΩ

is the set of sons}
determine the matrix corresponding to Φω according to Remark 4.3;
if ℓ > 0 then determine the matrix corresponding to Ψω according to Chap. 4.8;
delete the matrices corresponding to Ψω1

and Ψω2

end end;

(5.1)

When the loop is finished, all Φω for ω ∈ GΩ\L(GΩ) are determined, but no Ψω is stored any more.

Remark 5.1 Since all matrix operations are described in exact arithmetic, the method (5.1) are well-defined
but very costly with respect to storage and computer time. The inverse matrices in (4.9) and (4.13) lead to
dense matrices representing Φω and Ψω.

These difficulties will be overcome in §6.

5.2 Evaluation phase

Starting from the boundary value formulation (2.1a,b), one has first to determine the values of
(

fh(Ω), gh(∂Ω)
)

from fΩ and g∂Ω. Both parts are determined by the L2(∂Ω)-orthogonal projection
of fΩ and gΓ onto the ansatz space (second row in (4.1)).

The previous formulation uses the input data (fh(ω), gh(∂ω)) and determines the output data xh(ω).
Because of the identity gh(ω)|I(∂ω) = xh(ω)|I(∂ω) it is more reasonable to use only fh(ω) (without gh(∂ω))
as pure input data, while the vector xh(ω) is used as in- and output vector carrying the required (input)
boundary data on ∂ω.

In the following procedure, the last two arguments f and x may be considered as vectors fh(Ω) ∈ R
I(Ω)

and x = xh(Ω) ∈ R
I(Ω) in the complete domain Ω, where however only the parts fh(ω) and xh(ω) = x|I(ω)

are used (and changed). fh(ω) is pure input. x|I(∂ω) is the input of the boundary value data, whereas
x|I(γ(ω)) is the output. The first argument ω of the procedure trace must belong to GΩ\L(GΩ).

procedure trace(ω, f, x); {ω ∈ GΩ\L(GΩ), f ∈ R
I(Ω), x ∈ R

I(Ω)}
x|I(γ(ω)) := Φω

(

f |I(ω), x|I(∂ω)

)

;
(5.2)

In order to obtain the complete solution xh(ω) in ω, one has to call trace recursively:

procedure complete evaluation(ω, f, x);
{input: boundary values x|I(∂ω) and right-hand side f |I(ω)}
begin trace(ω, f, x);

for ω′ ∈ SGΩ
(ω) do complete evaluation(ω′, f, x);

end;

(5.3)

The recursion in (5.3) terminates, when ω ∈ GΩ is a leaf and therefore the son set SGΩ
(ω) is empty. The

procedure (5.3) ensures a complete evaluation if the assumption L(GΩ) = T (Ω) from above holds. In this
case all nodal values6 in ω are determined.

The call complete evaluation(Ω, fh(Ω), xh(Ω)) produces the solution xh(Ω) of the discrete boundary value
problem in Ω.

6This holds only for finite element nodes lying on the boundary of the element. If there are inner nodes (so-called bubble
functions), one has still to solve for these degrees of freedom in all triangles. Since one can eliminate these degrees of freedom
from the beginning, one may assume without loss of generality that only boundary nodes are present.

11

Remark 5.2 ???In Chap. 3 we have remarked that the leaves of GΩ are the triangles of T (Ω). It is
beneficially that for ω ∈ L(GΩ) I(ω) > 0 holds if we want to compute the whole solution xh(Ω). In that
case we have to solve the equation system (4.7). To compute the solution for many different data (fh, gh),
we have to store the mappings of the equations system (4.7). These mappings are needed to compute the
auxiliary matrices Ψω for ω ∈ L(GΩ). We will show this in Chap. 8.

5.3 Homogeneous differential equation

The linear mapping Φω is written in (4.6) with two arguments: Φω(fh(ω), xh(∂ω)). Hence, there are two
matrices Φω

ω ∈ R
I(γ(ω))×I(ω), Φ∂ω

ω ∈ R
I(γ(ω))×I(∂ω) with

Φω(fh(ω), xh(∂ω)) = Φω
ωfh(ω) + Φ∂ω

ω xh(∂ω),

which are to be determined in algorithm (5.1). Since, in general, #I(ω) ≫ #I(∂ω), the matrix Φω
ω has a

much larger size than Φ∂ω
ω .

A special case of the general boundary value problem, which is often of interest, is the homogeneous
differential equation LuΩ = 0 in Ω. Since fΩ = 0 implies also fh(Ω) = 0 and fh(ω) = 0 in all subdomains
ω, the computation of Φω

ω can be omitted. Analogously, the computation of Ψω can be simplified: Ψω :
R

I(ω) × R
I(∂ω) → R

I(∂ω) can be reduced to Ψω : RI(∂ω) → R
I(∂ω).

6 Use of hierarchical matrices

As mentioned in Remark 5.1, the mappings Ψω and Φω correspond to dense matrices. Hence, the described
method is not practicable unless the dimension is small. However, Ψω and Φω can be represented in the
format of hierarchical matrices and all steps of the computation can be performed with the hierarchical
matrix arithmetic.

An H-matrix provides a data-sparse approximation of a dense matrix or sparse matrix by replacing blocks
by matrices of low rank which can be stored efficiently. The low rank blocks are selected from a hierarchy
of partitions organised in a so-called cluster tree that provide hierarchies of partitionings.

Definition 6.1 (Cluster tree) Let I be a finite index set and let T (I) = (V,E) be a tree with vertex set V
and edge set E. For a vertex v ∈ V , we define the set of successors of v as S(v) := {w ∈ V | (v, w) ∈ E}.
Each vertex v is associated with a subset of I via a mapping mI : V → P(I), where P(I) denotes the power
set of I. The tree T (I) is called a cluster tree of I if the following conditions are satisfied:

1. The root r of T (I) satisfies mI(r) = I, and m(v) ⊂ I, m(v) 6= ∅, for all v ∈ V .

2. For all v ∈ V , either S(v) = ∅ or m(v) =
·
⋃

w∈S(v)

m(w).

In the following, we identify V and T (I), i.e., we write v ∈ T (I) instead of v ∈ V . We also identify the
nodes v ∈ with their associated subsets m(v) and call them cluster.

In previous papers (cf. [5, 6, 12, 4]) a geometric and a black box approach have been described for the
construction of a cluster tree. The geometric approach requires geometric information that are associated
with the indices. For finite element methods we usually use the support of the basis functions φi ∈ Vh of
a finite dimensional test space Vh as geometric information. The black box approach needs a matrix graph
which represents the connectivity of the indices. For example, for a finite element problem, this matrix graph
can be constructed from the stiffness matrix [5].

The definition of a cluster tree allows an arbitrary number of successors for a cluster. The standard
cluster strategies create cluster trees with only up to three successors. We use in this paper the domain-
decomposition clustering from [5], where a cluster has no, one, two or three successors. The concept originates
from a domain decomposition approach where an index set is divided into three separated subsets, like in
our domain decomposition tree. In Sect. 6.1 we will see that the use of the domain decomposition clustering
has benefits for our basis algorithm performed with H-matrices.

12

Ω ω1 ω2 ω3 ω4

ω5 ω6γ

γ2

γ3

γ4γ5

I(Ω)

I(ω1) I(ω2)

I(ω3) I(ω4)I(ω5) I(ω6) I(γ)

I(γ)

I(γ2) I(γ3)

I(γ4)I(γ5)

Figure 6.1: Example for domain decomposition clustering for the unit square (0, 1)2.

We give an overview about the domain decomposition clustering of [5] and we adapt this approach to
our algorithm in Sect. 6.1.

The domain decomposition approach for the cluster tree construction is based on the decomposition of
a subindex set I(ω), ω ⊂ Ω open, into three parts. Thereby, the open subdomain ω is divided in the open

subdomains ω1, ω2, and the separator γ such that ω = ω1

·
∪ω2

·
∪γ holds. With the separation of ω we obtain

the decomposition of I(ω) in I(ω1), I(ω2), and I(γ). I(ω1) and I(ω2) are called domain clusters and are
decomposed again in three parts. I(γ) is decomposed via a bisection, such that both parts are of similar size.
These interface clusters are not divided on every step. The clusters for open subdomains are usually bigger
than the interface clusters. Hence, the subdivision is delayed every d-th step, where d is the dimension of
the finite element problem, in order to avoid an imbalance of the cluster size on a level of the cluster tree
([5]). In Figure 6.1 we show an example for the domain decomposition clustering of the domain Ω = (0, 1)2.

Following [6, 12], the construction of a cluster tree T (I(Ω)) has the complexity (i.e., computational cost)
of O (#I · depth(T (I(Ω)))) and the depth of T (I(Ω)) is bounded by O (log#I(Ω)).

Cluster trees are used for the construction of block cluster trees which are defined next.

Definition 6.2 (block cluster tree) Let T (I), T (J) be cluster trees for the index set I and J . A cluster
tree T (I × J) is called a block cluster tree (based upon T (I) and T (J)) if for all v ∈ T (I ×J) exists s ∈ T (I)
and t ∈ T (J) such that v = s× t and level(s× t) = level(s) = level(t). The nodes v ∈ T (I × J) are called
block clusters.

By the construction of a block cluster tree we stop the subdividing of a block if we can represent the
matrix block with a low rank matrix. Thereby, we use an admissibility condition to decide which blocks can
be replaced by a low rank matrix. The admissibility condition is a boolean function Adm : P(I)× P(J) →
{true, false} which is based on the underlying problem and the clustering strategy. Only clusters s× t with
Adm(s× t) = false will be further subdivided.

So, block cluster trees T (I × J) fulfil the condition Adm(father(v)) = false for all v ∈ L(T (I × J)).
Furthermore, we demand #s ≤ nmin or #t ≤ nmin for s × t ∈ L(T (I × J)), s × t not admissible, with

13

Figure 6.2: Block structure given by a block cluster tree constructed via the cluster tree from Figure 6.1

nmin > 0, to avoid very small blocks which we cannot handle efficiently. The leaves of a block cluster
T (I × J) tree form a partition of the product index set I × J .

In [6, 12, 4] the admissibility condition

AdmDD(s× t) = true :⇔

{

(s 6= t, s, t ∈ Cdom) or
AdmS(s× t) = true

is used for finite element problems in combination with domain decomposition clustering to compute the
LU -factorisation of a stiffness matrix. Thereby, Cdom is the set of domain clusters. AdmS(·) is the stand-
ard admissibility condition. The standard admissibility condition uses a geometric distance and geometric
diameter ([12]) or a graph distance and graph diameter for a black box version ([6]).

For example, the geometric standard admissibility condition for a block s× t ∈ T (I × J) is

min{diameter(Bs), diameter(Bt)} ≤ η · distance(Bs, Bt), η > 0.

Bs, Bt are bounding boxes which contain the support of the corresponding basis functions of the clusters:

⋃

i∈s

supp(φi) ⊂ Bs and
⋃

i∈t

supp(φi) ⊂ Bt.

Figure 6.2 shows the block partition which we expect from the block cluster tree T (I(Ω)× I(Ω)) constructed
via AdmDD and the domain decomposition cluster tree T (I(Ω)) from Figure 6.1.

Remark 6.3 The construction of a block cluster tree T (I×J) for a finite product index set I×J , #I ≥ #J ,
costs O(#I ·depth(T (I×J)) ([6, 12, 4]). The depth of T (I×J) is limited by max{depth(T (I)), depth(T (J))}.

The admissible blocks are approximated by a low rank matrix in the following Rk-matrix representation.

Definition 6.4 (Rk-Matrix representation) Let k ∈ N and let I, J be two index sets. Let M ∈ R
I×J be

a matrix of at most rank k. A representation of M in factorised form

M = ABT , A ∈ R
I×{1,...,k}, B ∈ R

J×{1,...,k}, (6.1)

is called an Rk-matrix representation of M , or, in short, we call M an Rk-matrix.

Definition 6.5 (H-matrix) Let k, nmin ∈ N0. The set of H-matrices induces by a block cluster tree T (I×J)
with blockwise rank k and minimal block size nmin is defined as

H(T (I × J), k) := {M ∈ R
I×J | ∀s× t ∈ L(T (I × J)) : rank(M |s×t) ≤ k or #s ≤ nmin or #t ≤ nmin}.

A matrix M ∈ H(T (I × J), k) is said to be given in H-matrix representation if for all leaves s × t with
#s ≤ nmin or #t ≤ nmin the corresponding matrix block M |s×t is given in full matrix representation and in
Rk-matrix representation for the other leaves.

14

Operation Operands Complexity

y := y +Mx y, x ∈ R
I ,M ∈ H(T, k) O(k#I · depth(T))

M := M +M1 M,M1 ∈ H(T, k) O(k2#I · depth(T))
M := M +M1 ·M2 M,M1,M2 ∈ H(T, k) O(k2#I · depth(T)2)
M−1 (Inversion) M,M−1 ∈ H(T, k) O(k2#I · depth(T)2)

M = LU (LU -decomposition) M,L,U ∈ H(T, k) O(k2#I · depth(T)2)
M = LLT (Cholesky-decomposition) M,L ∈ H(T, k) O(k2#I · depth(T)2)

Table 6.1: Complexity for the formated H-matrix operations

Remark 6.6 (storage) Let T := T (I × J) be a block cluster tree based on the cluster trees T (I) and
T (J) and minimal block size nmin. Then the storage requirement for a matrix M ∈ H(T, k) is bounded by
O(max{k, nmin}depth(T) · (#I +#J) ([4]).

For the H-matrices we can perform several operations in an almost linear complexity. These operations
are the matrix-vector multiplication, matrix addition, matrix multiplication, matrix inversion, LU decom-
position and Cholesky decomposition. All operations except the matrix-vector multiplication are performed
approximately. This means the Rk-matrices are truncated to the rank k or by the use of an adaptive arith-
metic with respect to a given error bound ([12]). Therefore we call these operations formatted operations.
The matrix-vector multiplication is performed exactly.

In [12, 6, 4] we find the definitions and estimates for the complexity. The complexity is shown for the
special case where all matrices depend on the same block cluster tree T (I × I). In Table 6.1 we give an
overview about the different complexity estimations. For Table 6.1 we assume that all H-matrices depend
on the block cluster tree T := T (I × I) with rank k > 0 for all Rk-matrices and minimal leave size nmin.

6.1 Modifications

For our algorithm (cf. Chap. 5) we have to compute several matrices for every node of the domain decom-
position tree GΩ. For ω ∈ GΩ, ω1, ω2 being the sons of ω, we compute (cf. Chap. 4)

Φω
ω =

(

Ψγ
1γ +Ψγ

2γ

)−1
(−Ψγ

1ω −Ψγ
1ω) ,

Φ∂ω
ω =

(

Ψγ
1γ +Ψγ

2γ

)−1
(−Ψγ

1∂ω −Ψγ
2∂ω) ,

Φω
ω =

(

Ψ
∂ω1\γ(ω)
1γ +Ψ

∂ω2\γ(ω)
2γ

)

Φω
ω +Ψ

∂ω1\γ(ω)
1ω +Ψ

∂ω2\γ(ω)
2ω ,

Φ∂ω
ω =

(

Ψ
∂ω1\γ(ω)
1γ +Ψ

∂ω2\γ(ω)
2γ

)

Φ∂ω
ω +Ψ

∂ω1\γ(ω)
1∂ω +Ψ

∂ω2\γ(ω)
2∂ω .

We can perform all the additions in these formulae as follows. Given are a target matrix C ∈ R
I3×J3 and

the two terms of the addition A ∈ R
I1×J1 and B ∈ R

I2×J2 with I1, I2, I3 ⊂ I and J1, J2, J3 ⊂ J .

1. Calculate Ã ∈ R
I3×J3 with Ãij =

{

Aij : (i, j) ∈ I1 × J1
0 : otherwise.

2. Calculate B̃ ∈ R
I3×J3 with B̃ij =

{

Bij : (i, j) ∈ I2 × J2
0 : otherwise.

3. C = Ã+ B̃.

???Because of the product form of an Rk-matrix, the addition of an entry (i, j) ∈ I3 × J3 is expensive
because of additional conversions if it belongs in A to an Rk-matrix and in B not to a Rk-matrix. We have
now the possibility to convert the hierarchical structure of A and B to the hierarchical structure of A or we
choose a hierarchical structure of A and B always suitable for C.

We achieve this by constructing one cluster tree for the index set I(Ω) and restricting this cluster tree
for all other occurring subindex sets. Due to the restriction we have to adjust the cluster tree T (I(Ω)) to

15

the structure of GΩ to avoid too many extremely small blocks in the H-matrices which occur because of the
restriction to the cluster tree.

In the following, we first construct a cluster tree for the index set I(Ω). Secondly, we restrict this cluster
tree to an index set J ⊂ I(Ω). Last, we explain the addition of H-matrices with different product index sets.
After these three extensions we can perform the basic algorithm via H-matrices.

As mentioned above, we use the domain decomposition approach to construct a cluster tree for I(Ω). In
[5, 6] a cluster tree is constructed for the index set I(Ω) and finite element problems. We adapt the algorithm
from [5, 6] to our problem. In the following we assume that the domain decomposition tree T (Ω) is given.

First, we split I(Ω) into the subsets I(Ω) and I(∂Ω). We associate I(Ω) and I(∂Ω) to the root of T (Ω).
I(ω) is a domain cluster and I(∂Ω) is a boundary cluster. For the construction of the cluster tree we have
to consider the following cases:

• Domain Cluster: If a domain cluster is associated to an ω ∈ T (Ω) with sons ω1, ω2, we split the
domain cluster into the three parts I(ω1), I(ω2), and I(γ(ω)). Thereby, I(ω1), I(ω2) are new domain
clusters and I(ω1) is associated with ω1 and I(ω2) with ω2. I(γ(ω)) is associated with ω1 and is a
boundary cluster. If the domain cluster is not associated with a ω ∈ T (Ω), we split the cluster via the
domain decomposition approach again into three parts. In this case the interface cluster belongs to
our boundary clusters.

• Boundary Cluster: We split a boundary cluster v only if #v > avgdom/2 holds. avgdom is the average
size of all domain clusters on the same level like v. If a boundary cluster v is associated to ω ∈ T (Ω)
with sons ω1, ω2, we split the domain cluster into the parts v1 = v \ I(ω2) and v2 \ v1. v1 is associated
with ω1 and v2 is associated with ω2. If a boundary cluster is not associated to an ω ∈ T (Ω), we use
the bisection strategy of the domain decomposition cluster strategy.

Note that we have to subdivide clusters v only if #v ≥ nmin.
For our basis algorithm we have to construct many matrices. The block index sets of these matrices

depend on index sets of the form I(ω), I(γ), I(∂ω) for ω ∈ T (Ω). With our cluster tree construction we can
find one cluster v ∈ T (I) with v = I(ω). Additionally, we need only few clusters to put together I(∂ω) and
γ. This is necessary to avoid to many small clusters in the restricted cluster trees.

After constructing the cluster tree T (I(Ω)), we have to restrict it to subsets of I(Ω).

Definition 6.7 (restricted cluster tree) Let T (I) := (V,E) be the cluster tree for the index set I with
the mapping m. Let K ⊂ I. The restricted cluster tree T (I × J)|K×L = (VK , EK) is defined by

VK := {v ∈ V | m(v) ∩K 6= ∅} EK := {(v, w) ∈ E | v, w ∈ VK} (6.2)

with the mapping mk : VK → P(K) satisfying

mK(v) = m(v) ∩K for all v ∈ VK . (6.3)

Remark 6.8 L(T (I)|K) ⊂ L(T (I)) and depth(T (I)|K) ≤ depth(T (I)) holds for all K ⊂ I.

Remark 6.9 We can construct the restricted cluster tree T (I)|K with a complexity of O(#K · depth(T (I)))
([3]). The algorithm uses that we sort the index sets in the same way and use the special storage structure
([12]) of the cluster tree.

With T (I) and the admissibility condition AdmDD we construct the block cluster tree T (I × I). Now
we restrict this block cluster tree.

Definition 6.10 (restricted block cluster tree) Let T (I×J) = (V,E) be a minimal block cluster tree to
admissibility condition Adm upon the cluster trees T (I) = (VI , EI) and T (J) = (VJ , EJ). Let K×L ⊂ I×J
and T (I)|K = (VK , EK), T (J)|L = (VL, EL) be restricted cluster trees. The restricted block cluster tree
T (I × J)|K×L = (V1, E2) is defined by V1 := {(v, w) ∈ V | v ∈ VK , w ∈ VL} and E2 := {(v, w) ∈ E | v, w ∈
V1}.

For a restricted block cluster tree T (I × J)|K × L we define that all v ∈ T (I × J)|K×L are admissible if
and only if v ∈ T (I × J) is admissible.

16

Remark 6.11 The complexity of the restriction of a block cluster tree T (I × I) depends on the
number of nodes of this block cluster tree. Following [12], the number of nodes is bounded by
O(#I · depth(T (I × I)). In [3] it is shown that the complexity of the block cluster tree restriction
T (I × I)|K×L is O (max{#K,#L}depth(T (I × I))).

The additions to compute Φω, ω ∈ GΩ have the form C = A + B with A ∈ H(T (I × I)|I1×J1
, k),

B ∈ H(T (I× I)|I2×J2
, k), C ∈ H(T (I× I)|I3×J3

, k) with I1, I2, I3, J1, J2, J3 ⊂ I. In this case we can perform
the addition blockwise and obtain the complexityO(k2 max{#I3,#J3}·depth(T (I×I)) like for the formatted
addition ([3]).

We assume for the following bounds a fixed arithmetic with rank k and I(Ω) = I.

Remark 6.12 If ω ∈ L(Gω) with I(ω) 6= ∅, we have to solve the system (4.7). For that purpose we
store the Cholesky decomposition of Aω,ω and the sparse matrices Mω

h and Aω,∂ω. The computational cost
of these matrices is bounded by O(k2#I(ω) · depth(T (I × I))2) and the storage complexity is bounded by
O(k#I(ω) · depth(T (I × I))).

For ω ∈ Gω, ω being not a leaf, we have to compute Φω, Ψω and to store Φω. The computation complexity
is dominated by multiplications (multiplications by matrices with the index set I(ω)) such that it is bounded
by O(k2#I(ω) · depth(T (I × I))2). The storage complexity is bounded by O(k#I(ω) · depth(T (I × I))).

Remark 6.13 The total storage requirement and the complexity to compute a solution is proportional to

k
∑

ω∈GΩ

#I(ω) log(#I(ω) ≤ k log(#I(Ω))
∑

ω∈GΩ

#I(ω) ≤ k#I(Ω)LGΩ
log(#I(Ω)),

where LGΩ
is the depth of the tree: GΩ =

⋃

0≤ℓ≤LGΩ

G
(ℓ)
Ω . The total computation requirement is proportional

to
k2
∑

ω∈GΩ

#I(ω) log2(#I(ω) ≤ k2 log2(#I(Ω))
∑

ω∈GΩ

#I(ω) ≤ k2#I(Ω)LGΩ
log2(#I(Ω)).

The (possibly large) factor #I(Ω) holds for the matrix blocks Ψω
ω,Φ

ω
ω : RI(ω)×I(∂ω) (summed over all

ω ∈ G
(ℓ)
Ω). The matrices Ψ∂ω

ω ,Φ∂ω
ω ∈ R

I(γ(ω))×I(∂ω) are much smaller. Since the manifolds γ(ω) and ∂ω

have one dimension less, one expects #γ(ω) ∼ #∂ω ∼ (#ω)
(d−1)/d

. However, as the union of all ∂ω for
ω ∈ Gcoarse

Ω covers the whole grid, the storage is at least proportional to #I(Ω).

7 Homogenisational aspects

Now we assume that the differential equation contains coefficients with small-scale behaviour. Let for instance
the bilinear form aω(uh, vh) be

aΩ(uh, vh) =

∫

Ω

〈A(x) graduh, gradvh〉 dx (7.1)

(A(x) ∈ R
d×d, 〈·, ·〉 Rd-scalar product, d: spatial dimension, i.e., Ω ⊂ R

d), where the matrix-valued function
A(x) is highly oscillatory, jumping or non-smooth in another way. A further possibility is that (independently
of the behaviour of A(x)) the domain Ω is complicated, e.g., it may contain many holes of different sizes.
In order to discretise such problems by a finite element method, one must use a fine grid resolution. In the
case of highly oscillating coefficients the grid size should small enough so that the variation in one element
is sufficiently small. In the case of a complicated geometry one needs a fine triangulation to approximate
the boundaries of the domain by, e.g., isoparametric7 elements.

Even if the discretisation requires a fine grid, one is not necessarily interested to represent the finite
element solution uh by the same fine mesh. Oscillations or jumps of the coefficients lead to oscillations or
kinks in the solution uh, but often one is only interested in the mean behaviour, not in the details. In the case
of periodically oscillating coefficients A(x/ε) of frequency 1/ε, so-called homogenisation methods are well-
known which lead to a “homogenised” bilinear form. Since its coefficients are smoother, the homogenised

7For isoparametric finite elements compare [9, §8.5.3].

17

problem can be solved with essentially coarser step size than the original problem. The computation of the
homogenised coefficients requires to solve the original problem in one periodicity cell. This can be achieved
only by a numerical solution so that also here we have to assume that the periodic problem can be resolved
by a sufficiently small grid size h ≪ 1/ε.

7.1 Basic method

The standard homogenisation method is not applicable in irregular situations. Instead we will exploit the
partial evaluation of the inverse. For this purpose we divide the domain decomposition tree GΩ in a coarse
part Gcoarse

Ω and a fine part Gfine
Ω :

GΩ = Gcoarse
Ω ∪Gfine

Ω (disjoint union),

where Gcoarse
Ω 6= ∅ is a subtree of Gfine

Ω with the same root Ω, while Gfine
Ω = GΩ\Gcoarse

Ω represents the
remaining set (Gfine

Ω is not a tree).
For a given step size H ∈ (0, diam(Ω)] , a possible criterion for determining the coarse part may look as

follows:
Gcoarse

Ω = Gcoarse
Ω,H := {ω ∈ Gcoarse

Ω : diam(ω) ≥ H} . (7.2)

The basic method reads:

1. Definition phase as in §5.1: application of (5.1).

2. The evaluation phase is restricted to G = Gcoarse
Ω . The procedure from (5.3) gets a further parameter

G (subtree of GΩ with same root8). The first parameter ω of the following procedure must belong to
G\L(G):

procedure partial evaluation(ω,G, f, x);
{input: boundary values x|I(∂ω) and right-hand side f |I(ω)}
begin trace(ω, f, x);

for ω′ ∈ SG(ω) do partial evaluation(ω′, f, x)
end;

(7.3)

Since the son set SG(ω) of G is used, the recursion terminates at the leaves of G.

The computational cost of the definition phase is still the same, but since the evaluation phase can
be called several times for different f, x, the reduction of the cost of partial evaluation is important. In
particular, the reduction of the storage requirement is essential.

Remark 7.1 a) For the partial evaluation in the subtree G only the corresponding mappings

Φω for ω ∈ G\L(G)

need to be stored.
b) In spite of the reduced data, one obtains unchanged results at all nodal points of

∂G :=
⋃

ω∈G
∂ω.

c) Using the definition (7.2) for Gcoarse
Ω,H , one obtains a grid ∂Gcoarse

Ω,H of step size9 ≤ H.

The storage requirements and the complexity for the computation of a solution is reduced by the lower
depth of the domain decomposition tree (Lcoarse

GΩ
:= depth(Gcoarse

Ω):

k#I(Ω)Lcoarse
GΩ

log(#I(Ω))

8complete evaluation(ω, r, x) is equivalent to partial evaluation(ω, GΩ, r, x).
9For all x ∈ Ω the closed ball centred at x with radius H/2 contains at least one point of ∂Gcoarse

Ω,H
.

18

7.2 Coarsening of the ansatz space for the right-hand side

The fine step size h is caused by the small-scale behaviour of A(x) in (7.1) or by the complicated geometry.
In general, however, the right-hand side fh is expected to be approximable by a coarser step size H ≫ h. In
the following we distinguish the grids Ωh and ΩH and we only create a domain decomposition tree Gcoarse

Ω

for the coarse grid ΩH .
By J(Ω) we denote the index set for the coarse grid ΩH and by I(Ω) the index set for the fine grid Ωh.

We assume that the fine grid is a refined grid of the coarse grid and that J(Ω) ⊂ I(Ω). fH ∈ R
J(Ω) is the

L2(Ω)-orthogonal projection of f .
Let Pω

h←H ∈ R
a be a prolongation matrix for ω ∈ L(Gcoarse

Ω). It holds fh(ω) = Pω
h←HfH(ω) with

fh(ω) ∈ R
I(ω) and fH(ω) ∈ R

J(ω).
For ω ∈ L(Gcoarse

Ω) we have to solve the system

xh|I(ω) = (Aω,ω)
−1 (

Mω
h P

ω
h←HfH(ω)−Aω,∂ωgh(∂ω)

)

. (7.4)

For ω ∈ L(Gcoarse
Ω), the auxiliary matrices are obtained by (compare Sect. 4.6)

Ψω =
(

Ψω
ω,Ψ

∂ω
ω

)

with

{

Ψω
ω := −M∂ω

h Pω
h←H +Anat,∂ω,ω (Aω,ω)−1 Mh(ω)P

ω
h←H ,

Ψ∂ω
ω := Anat,∂ω,∂ω −Anat,∂ω,ω (Aω,ω)−1 Anat,ω,∂ω.

(7.5)

For ω ∈ Gcoarse
Ω , ω 6∈ L(Gcoarse

Ω), the recursion formulae of Ψω = (Ψω
ω,Ψ

∂ω
ω) and Φω = (Φω

ω,Φ
∂ω
ω) still hold.

Only the size changes for Ψω
ω ∈ R

I(∂ω)×J(ω) and Φω
ω ∈ R

I(γ(ω))×J(ω).
For ω ∈ L(Gcoarse

Ω), the computational complexity is O(k2#I(ω) · depth(T (I × I))2) and the storage
complexity is bounded by O(k#I(ω) · depth(T (I × I))) (cf. Remark 6.12).

For ω 6∈ L(Gcoarse
Ω), we could reduce the complexity. We assume c · #J(ω) > #I(∂ω) for all ω 6∈

L(Gcoarse
Ω . Like in Remark 6.12, the cost is O(k2#I(ω) · depth(T (I × I))2), while the storage is bounded by

O(k#I(ω) · depth(T (I × I))).
The whole complexity for the computation is

k2(#I(Ω) + #J(Ω)(Lcoarse
GΩ

− 1)) log2(#I(Ω)) (7.6)

(cf. 6.13). The complexity for storage and computation of a solution is

k(#I(Ω) + #J(Ω)(Lcoarse
GΩ

− 1)) log(#I(Ω)). (7.7)

If we are only interested in the solution for the coarse grid, the complexity for storage and computation of
a solution is reduced to

k#J(Ω)(Lcoarse
GΩ

) log(#I(Ω)). (7.8)

7.3 Computation of functionals

According to §7.1 the partial evaluation yields the original values at the finite element nodes of ∂Gcoarse
Ω =

⋃

ω∈Gcoarse

Ω

∂ω (up to rounding errors due to the hierarchical matrix arithmetic). It may be more reasonable

to ask for means values of a neighbourhood of the node. Such mean values are examples of a linear functional

J(uh) =
∑

α∈IJ

Jαxh,α (7.9)

(xh,α are the coefficients of uh, cf. (4.2)). The support of J is denoted by IJ ⊂ I(Ω) (i.e., Jα 6= 0 for α ∈ IJ).
Restricting the sum

∑

α∈IJ
to the subsets I(ω) with ω ∈ Gcoarse

Ω , one obtains functionals Jω(uh). In order
to ensure additivity,

Jω(uh) =
∑

ω′∈SGcoarse
Ω

(ω)

Jω′(uh). (7.10)

over the son-subdomains, one must take care for the correct definition at overlapping boundary nodes. A
possible recursive definition of its coefficients is: Jα,Ω := Jα for the root Ω ∈ Gcoarse

Ω . For ω ∈ Gcoarse
Ω let

{ω1, ω2} = SGcoarse

Ω
(ω) be the son set. Then the definition

Jα,ω1
:=

{

Jα,ω for α ∈ I(ω1)
0 otherwise

}

, Jα,ω2
:=

{

Jα,ω for α ∈ I(ω2)\I(ω1)
0 otherwise

}

19

leads to property (7.10).
In the next step, we represent Jω as a function of fh(ω) and gh(∂ω):

Jω(fh(ω), gh(∂ω)) := Jω (uh(fh(ω), gh(∂ω))) .

The concrete problem is to determine the corresponding matrices Jω
ω , J

∂ω
ω with

Jω(fh(ω), gh(∂ω)) = Jω
ω fh(ω) + J∂ω

ω gh(∂ω).

This will be performed during the definition phase from §5.1 in recursion (5.1) from the leaves to the root. For
ω ∈ L(Gcoarse

Ω), the vector rh(ω) of the corresponding solution xh(ω) and thus Jω can be determined directly.
Now let {ω1, ω2} = SGcoarse

Ω
(ω) be the son set of ω ∈ Gcoarse

Ω \L(Gcoarse
Ω), and assume that Jω1

,Jω2
are known.

The arguments fh(ωi) and gh(∂ωi) of Jωi
(i = 1, 2) can be split into (fh(ωi), gh(∂ωi\γ(ω)), gh(γ(ω))):

Jωi
(fh(ωi), gh(∂ω)) = Jωi

(rh(ωi), gh(∂ωi\γ(ω)), gh(γ(ω))) .

The data gh(γ(ω)) are the boundary values xh|γ(ω) which result from (fh(ω), gh(∂ω)) via Φω. Together with
the additivity (7.10) we obtain the equation

Jω(fh(ω), gh(∂ω)) =
∑

i=1,2

Jωi
(fh(ωi), gh(∂ωi\γ(ω)),Φω(gh(ω)))

determining the matrices Jω
ω , J

∂ω
ω .

Remark 7.2 a) In the practical realisation, Jω
ω , J

∂ω
ω are to be represented in the hierarchical matrix format.

b) As soon as Jω is computed, the data of Jωi
, ωi ∈ SGcoarse

Ω
(ω), can be deleted.

c) As soon as ω ∈ Gcoarse
Ω contains the support of J , i.e., IJ ⊂ I(ω), the recursion can be terminated10.

After the determination of xh(∂ω) the data (fh(ω), gh(∂ω) = (fh(ω), gh(∂ω)) are known because of gh(∂ω) =
xh(∂ω) and can be used for the evaluation of Jω(fh(ω), gh(∂ω)).

8 Numerics

In this section we show that our algorithm, mentioned as DD algorithm, in combination with the H-matrix
technique works like expected. First, we use the Laplace problem to show the correct behaviour of our
algorithm. Second, we present an application of our algorithm for a multiscale problem. For all experiments
we choose nmin = 32.

8.1 Laplace Problem

The Laplace problem with Dirichlet boundary conditions is defined by

L = −∆, (8.1)

Lu = f in Ω, (8.2)

u = g on ∂Ω. (8.3)

We use the 2D and 3D Laplace problem to present the correct behaviour of the DD algorithm. As domain
we use the unit square (0, 1)d, d ∈ {2, 3}, and discretise this domain only with square and cube elements
whereby h denotes the length of the edges of these elements. As error measurement we use the L2(Ω) error
‖u − umh‖L2 := ‖u − umh‖L2(Ω). Here, u is the exact solution of the Laplace problem and umh, m ∈ N,

the solution computed by our DD algorithm with the right-hand side vector fmh(Ω). For example uh is the
solution of the DD algorithm which uses only one scale.

First, we show the effects of the fixed rank arithmetic with increasing rank and the effects of the adaptive
rank arithmetic with decreasing error bound in Table 8.1. We use the 2D Laplace problem to show the
effects of increasing k for the fixed rank arithmetic in the left part of the Table 8.1. For these calculation the

10When we proceed to larger subdomains or even to Ω, the storage requirement may increase.

20

k ‖u− uh‖L2 ‖u− u2h‖L2 ‖u− u4h‖L2 ε ‖u− uh‖L2 ‖u− u2h‖L2 ‖u− u4h‖L2

2 0.228 0.228 0.228258 10e-01 8.018e-2 8.142e-2 8.254e-2
4 4-236e-2 4.238e-2 4.24e-2 10e-02 3.707e-3 4.173e-3 5.342e-3
8 5.538e-5 5.618e-5 5.87403e-05 10e-03 3.662e-4 5.818e-4 1.646e-3
12 2.759e-6 2.571e-6 3.44661e-06 10e-04 3.305e-4 3.558e-4 1.318e-3
16 2.830e-6 2.527e-6 3.01929e-06 10e-05 3.381e-4 3.474e-4 1.299e-3
20 2.837e-6 2.530e-6 3.00364e-06 10e-06 3.388e-4 3.469e-4 1.297e-3

Table 8.1: The left part of the table shows the convergence behaviour for fixed rank arithmetic with increasing
k and the 2D Laplace problem with h = 1

512 . The right part of the table shows the convergence behaviour
for adaptive rank arithmetic for the 3D Laplace problem with h = 1

64 .

u ‖u− uh‖L2 ‖u− u2h‖L2 ‖u− u4h‖L2 ‖u− u8h‖L2 ‖u− u16h‖L2

x2 − y2 1.608e-6 1.608e-6 1.608e-6 1.608e-6 1.608e-6
x3 − y3 4.330e-6 4.330e-6 4.331e-6 4.330e-6 4.331e-6
x4 − y4 8.034e-6 7.927e-6 9.364e-6 2.635e-5 1.061e-4
x5 − y5 1.135e-5 1.012e-5 1.201e-5 5.172e-5 2.254e-4

sin(x) cos(y) 1.221e-6 1.435e-6 2.377e-6 6.419e-6 2.285e-5

Table 8.2: The L2(Ω)-Error for the two dimensional Laplace problem with step size h = 1
256 and adaptive

arithmetic with an error bound of 1e− 16.

solution is u(x, y) = x5−y5. The results shows, that the errors are decreasing for increasing k. Also we have
the effects that the error is bigger if we use coarse ansatz spaces for the right-hand side. This results from
the additional error of the approximation of the right-hand side by the prolongation matrix. The right-hand
side of Table 8.1 shows the effects of decreasing error bounds for the adaptive arithmetic of the H-matrices.
In this case we solve the 3D Laplace problem for u(x, y, z) = x5 − y5. Like for the fixed rank arithmetic
we observe decreasing errors for decreasing error bounds. Also we have slightly growing errors for coarse
ansatz spaces of the right-hand side. Additionally, we see convergence??? to the discretisation error for the
fixed rank arithmetic and the adaptive arithmetic, because for the last rows of Table 8.1 the errors are not
decreasing any more.

All following tests are performed with the adaptive arithmetic. If we want to show properties of the
DD algorithm without the additional errors of the non-exact arithmetic of the H -matrices we use the error
bound 10−16. With this error bound the arithmetic operations are performed almost exact. Otherwise, we
use the error bound 10−4.

We show the influence for using different coarse ansatz spaces for the right-hand side and different
functions u. We use functions u such that f is a polynomial of degree 0 to 3. Additionally, we compute the
solution for a function u(x, y) = sin(x) cos(y). In Table 8.2 we present the L2(Ω) errors, where we use an
almost exact arithmetic. For the results in Table 8.2 we use the step size h = 1

256 . uh have the smallest
errors because of the not coarsened ansatz space for the right-hand side. For constant and linear f we also
have the same error sizes for coarse ansatz spaces for the right-hand side. In this cases we avoid errors for
the approximation of f by the prolongation: fh(Ω) = PΩ

h←mhfmh(Ω). If f is not constant or linear, the
errors increase for coarser ansatz spaces for the right-hand side.

Next, we show convergence of our method for decreasing h. In this case we also use an almost exact error
bound. Table 8.3 shows convergence for decreasing h for the 2D Laplace problem with u = x5−y5. Again we
see the convergence behaviour of the DD algorithm in presence of small increasing errors for coarser ansatz
spaces for the representation of f .

Table 8.4 shows convergence for decreasing h for the 3D Laplace problem. The setup of these experiments
is the same like for Table 8.3 and the interpretation of the results is identical. The exact calculation of uh

on the two finest meshes is omitted since it is too expensive.
???Up to now we present the convergence behaviour of the DD algorithm if we use almost exact accuracy

21

h #I(Ω) ‖u− uh‖L2 ‖u− u2h‖L2 ‖u− u4h‖L2 ‖u− u8h‖L2

1
64 4225 1.815e-04 1.618e-04 6.213e-04 8.357e-04
1

128 16641 4.539e-05 4.047e-05 4.805e-05 2.072e-04
1

256 66049 1.134e-05 1.012e-05 1.201e-05 5.172e-05
1

512 263169 2.837e-06 2.530e-06 3.003e-06 1.292e-05
1

1024 1050625 7.093e-07 6.325e-07 7.509e-07 3.230e-06

Table 8.3: Convergence for decreasing step size of the 2D Laplace problem with an adaptive arithmetic
accuracy of ε = 10−16 and analytic solution u(x, y) = x5 − y5.

h #I(Ω) ‖u− uh‖L2 ‖u− u2h‖L2 ‖u− u4h‖L2

1
20 9261 3.468e-3 3.55e-3 1.334e-2
1
40 68921 8.674e-4 8.879e-4 3.324e-3
1
60 226981 3.855e-4 3.946e-4 1.476e-3
1
80 531441 not calc. 2.22e-4 8.304e-4
1

100 1030301 not calc. 1.421e-4 5.314e-4

Table 8.4: Convergence for decreasing step size of the 3D Laplace problem with an adaptive arithmetic
accuracy of ε = 10−16 and analytic solution u(x, y, z) = x5 − y5.

and show the influence of the coarse ansatz space for f . Therefore we observe convergence for decreasing h.
In Table 8.5 we calculate the same problems like in Table 8.2, but with the error bound ε = 10−4 for the
adaptive arithmetic. As result we obtain errors of the order ε.

The last experiments for the Laplace problem show the error, run time and storage behaviour with an
adaptive error bound 10−4. We expect a logarithmic behaviour for the run time and storage consumption.
Table 8.6 shows the results for the 2D Laplace problem and Table 8.7 for the 3D Laplace problem. In both
tables we present results for our DD algorithm using one or two scales. Therefore we specify the error,
the time for the setup, which includes the construction of the DD tree and the calculation of the solution
matrices, the needed memory to save all necessary data and the average time to solve a boundary problem.
One advantage of our solver is the application to different boundary value problems with identical differential
operator. Also almost exact arithmetic is used in Tables 8.3 and 8.4.Comparing the results of these tables,
we see that the errors are now bounded by the error bound of the adaptive arithmetic. The time for the
setup, the memory consumption and the solving time shows a logarithmic behaviour. For the 3D case the
run time and storage consumption is much greater because of the greater boundary compared with the inner
nodes of the grid. Additionally, the admissible condition for 3D problems creates partitions with less and
smaller admissible blocks ([5, 6]).

u ‖u− uh‖L2 ‖u− u2h‖L2 ‖u− u4h‖L2 ‖u− u8h‖L2 ‖u− u16h‖L2

x2 − y2 8.807e-5 8.807e-5 8.807e-5 4.745e-5 9.892e-4
x3 − y3 6.161e-5 6.164e-5 6.170e-5 3.226e-5 7.077e-4
x4 − y4 3.980e-5 4.072e-5 4.443e-5 4.268e-5 5.538e-4
x5 − y5 2.053e-5 2.296e-5 3.312e-5 6.588e-5 5.087e-4

sin(x)cos(y) 1.221e-4 1.224e-4 1.234e-4 7.219e-5 1.37e-3

Table 8.5: The L2(Ω)-error for the 2D Laplace problem with step size h = 1
256 , different ansatz spaces for f,

and adaptive arithmetic with an error bound of 10−4.

22

h ‖u− uh‖L2 Setup Memory Solve ‖u− u4h‖L2 Setup Memory Solve
1
64 1.814e-4 1s 8MB <5ms 1.922e-4 1s 5MB <5ms
1

128 4.423e-5 6s 38MB 0.02s 4.896e-5 4s 25MB 0.02s
1

256 1.225e-5 32s 174MB 0.12s 2.361e-5 20s 104MB 0.1s
1

512 5.356e-5 150s 772MB 0.52s 5.691e-5 99s 454MB 0.45s
1

1024 2.325e-4 745s 3443MB 2.47s 2.336e-4 532s 1984MB 1.85s

Table 8.6: Errors, run time and storage behaviour for 2D Laplace with adaptive arithmetic error bound 10−4

and u(x, y) = x5 − y5.

h ‖u− uh‖L2 Setup Memory Solve ‖u− u4h‖L2 Setup Memory Solve
1
20 3.468e-3 52s 75MB 0.03s 1.334e-2 21s 37MB 0.02s
1
40 8.644e-4 810s 867MB 0.39s 3.333e-3 279s 392MB 0.19s
1
60 3.751e-4 3849s 3716MB 1.59s 1.502e-3 1339s 1668MB 0.80s
1
80 2.013e-4 9812s 8946MB 3.95s 8.713e-4 3388s 3882MB 2s
1

100 8.691e-5 23006s 19.5GB 8.85s 6.014e-4 8212s 8589MB 4s

Table 8.7: Errors, run time and storage behaviour for 3D Laplace with adaptive arithmetic error bound 10−4

and u(x, y, z) = x5 − y5.

8.2 Multiscale Problems

Our DD algorithm is also applicable and useful for multiscale problems and now we introduce one possible
application of our DD algorithm for the following multiscale problem. The following problem is solved by a
multiscale finite element method in [16]:

L = ∇aǫ(x)∇, (8.4)

Lu = g, (8.5)

u(x) =

√

2d − 1.8d

2

(

d
∑

i=1

(xi)
d

)

on ∂Ω, (8.6)

with

aǫ(x) =
1

2d + 1, 8
∑d

i=1 sin(2πxi/ǫ)
, x = (x1, . . . , xd)

and a small parameter ǫ. For example, such equations arises in composite materials and flows in porous
media. The multiscale method used in [15, 16] incorporates the local micro-structures of the differential
operator into the finite element base functions.

For this problem we compute the values on the nodal points of the grid ΩH . For the error calculation
we compute a reference solution uD with the software package deal.II ([18]). The reference solution is
computed for a grid with step size h = 1

4096 . As error measurement we use ‖uD(J(Ω)) − umh(J(Ω))‖2.

uJ
D := uD(J(Ω)) ∈ R

J(Ω) is the solution restricted to the index set J(Ω). uJ
mh := umh((Ω)) ∈ R

J(Ω) is the

solution for the indices J(Ω) computed by the DD algorithm with the right-hand side vector fmh(Ω) ∈ R
J(Ω).

The results of Table 8.8 show also a convergence??? and the solution time for one boundary problem. It
is necessary that ε > h holds to discretise the small scale behaviour of the differential operator. The DD
algorithm was performed with an error bound of 10−6 such that the solving time is bigger than in Table 8.6.

References

[1] M. Bebendorf and W. Hackbusch: Existence of H-matrix approximants to the inverse FE-matrix of
elliptic operators with L∞-coefficients. Numer. Math. 95 (2003) 1-28.

23

ε h ‖uJ
D − uJ

2h‖2 Solve ‖uJ
D − uJ

4h‖2 Solve
1
10

1
32 2.658e-2 >5ms 2.658e-2 >5ms
1
64 6.068e-3 0.01s 6.068e-3 0.01s
1

128 1.511e-3 0.04s 1.511e-3 0.03s
1

256 3.721e-4 0.19s 3.721e-4 0.21s
1

512 8.777e-5 1.14s 8.777e-5 0.77s
1

1024 7.168e-6 4.52s 7.165e-6 3.72s
1

100
1

128 6.047e-2 0.04s 6.047e-2 0.03s
1

256 2.757e-2 0.25s 2.757e-2 0.17s
1

512 7.986e-3 1.05 7.986e-3 0.86s
1

1024 1.978e-3 4.70s 1.978e-3 3.21s
1

200
1

256 5.913e-2 0.17s 5.913e-2 0.22s
1

512 2.688e-2 1.01s 2.688e-2 0.76s
1

1024 7.514e-3 4.41s 7.514e-3 3.32s

Table 8.8: 2D multiscale results

[2] S. Börm, L. Grasedyck, and W. Hackbusch: Introduction to hierarchical matrices with applications.
Eng. Anal. Boundary Elements, 27 (2003) 405-422.

[3] F. Drechsler: Über die Lösung von elliptischen Randwertproblemen mittels Gebietszerlegungstechniken,
Hierarchischer Matrizen und der Mehtode der finiten Elemente. Doct. thesis, Universität Leipzig (2011).

[4] L. Grasedyck and W. Hackbusch: Construction and arithmetics of H-matrices. Computing 70 (2003),
295-334.

[5] L. Grasedyck, R. Kriemann, and Sabine Le Borne: Domain decomposition based H-LU preconditioners.
In: O.B. Widlund and D.E. Keyes (eds.), Domain Decomposition Methods in Science and Engineering
XVI. Lect. Notes in Computational Science and Engineering 55, Springer-Verlag, Berlin, 2006; pages
661-668.

[6] L. Grasedyck, R. Kriemann, and Sabine Le Borne: Parallel black box H-LU preconditioning for elliptic
boundary value problems. Comput. Vis. Sci. 11 (2008) 273-291.

[7] W. Hackbusch: Elliptic differential equations. Theory and numerical treatment, Springer, Berlin, 2nd
edition, 2003. (Third Germany edition: Lecture Notes 28/2005, Max-Planck-Institut für Mathematik,
Leipzig, 2005).

[8] W. Hackbusch: Multi-grid methods and applications. Springer, Berlin, 2nd printing, 2003.

[9] W. Hackbusch: Elliptic differential equations. Theory and numerical treatment, Vol. 18 of SCM.
Springer, Berlin, 2nd edition, 2003.

[10] W. Hackbusch: A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-matrices.
Computing 62 (1999) 89-108.

[11] W. Hackbusch: Direct domain decomposition using the hierarchical matrix technique. In: I. Herrera,
D.E. Keyes, O.B. Widlund, and R.Yates (eds.), Domain decomposition methods in science and engin-
eering. Fourteenth international conference on domain decomposition methods, pages 39-50. National
Autonomous University of Mexico, Mexico City, 2003.

[12] W. Hackbusch: Hierarchische Matrizen – Algorithmen und Analysis. Spinger-Verlag, Heidelberg, 2009.

[13] W. Hackbusch, B. Khoromskij, and R. Kriemann: Hierarchical matrices based on a weak admissibility
criterion. Computing 73 (2004) 207-243.

[14] W. Hackbusch, B.N. Khoromskij, and R. Kriemann: Direct Schur complement method by domain de-
composition based on H-matrix approximation. Comput. Vis. Sci. 8 (2005) 179-188.

24

[15] T. Y. Hou, X.-H. Wu: A multiscale finite element method for elliptic problems in composite materials
and porous media. Journal of Computational Physics, 134 (1997) 169-189

[16] T. Y. Hou, X.-H. Wu, Z. Cai: Convergence of a multiscale finite element method for elliptic problems
with rapidly oscillating coefficients. Math. Comp., 68 (1999) 913-943

[17] A.G. Litvinenko: Application of hierarchical matrices for solving multiscale problems. Doct. thesis,
Universität Leipzig (2007).

[18] www.dealii.org: A Finite Element Differential Equations Analysis Library

25

