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ROBUSTNESS, CANALYZING FUNCTIONS AND SYSTEMS DESIGN

JOHANNES RAUH AND NIHAT AY

Abstract. We study a notion of robustness of a Markov kernel that describes
a system of several input random variables and one output random variable.
Robustness requires that the behaviour of the system does not change if one or
several of the input variables are knocked out. If the system is required to be
robust against too many knockouts, then the output variable cannot distinguish
reliably between input states and must be independent of the input. We study how
many input states the output variable can distinguish as a function of the required
level of robustness.

Gibbs potentials allow a mechanistic description of the behaviour of the system
after knockouts. Robustness imposes structural constraints on these potentials.
We show that interaction families of Gibbs potentials allow to describe robust
systems.

Given a distribution of the input random variables and the Markov kernel
describing the system, we obtain a joint probability distribution. Robustness
implies a number of conditional independence statements for this joint distribution.
The set of all probability distributions corresponding to robust systems can be
decomposed into a finite union of components, and we find parametrizations of
the components. The decomposition corresponds to a primary decomposition of
the conditional independence ideal and can be derived from more general results
about generalized binomial edge ideals.

1. Introduction

Consider a stochastic system of n input nodes and one output node:

input: X1 X2 X3 · · · Xn

system

output: Y

As shown in [1], there are two ingredients to robustness:
(1) If one or several of the input nodes are removed, the system behaviour

should not change too much (“small exclusion dependence”).
(2) A causal contribution of the input nodes on the output nodes.

The second point is strictly necessary: If the behaviour of the output does not depend
on the inputs at all, then it is usually not affected by a knockout of a subset of the
inputs, but this exclusion independence is trivial.

In this paper we do not use the information theoretic measures proposed in [1].
Instead, we start with a simple model of exclusion independence: We study systems
in which the behaviour of the output node does not change when one or more of the
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input nodes are knocked out. We formalize our robustness requirements in terms of
a robustness specification R, which consists of pairs (R, xR), where R is a subset of
the inputs and xR is a joint state of the inputs in R. Let S be a set of possible states
of the input nodes. The system is R-robust in S, if the behaviour of the system does
not change if the inputs not in R are knocked out, provided that the inputs in R are
in the state xR and the current state of all inputs belongs to S.

If the robustness specification R is too large, or if the set S is too large, then
in any R-robust system the output does not depend on the input at all. In general,
the behaviour of the system is restricted by robustness requirements. Therefore, to
study the causal contribution of the input nodes on the output nodes, we investigate
how varied the behaviour of a system can be, given both R and S. More precisely,
robustness specifications imply that the system cannot distinguish all input states,
and we may ask how many states the system can discern. This question is related to
the topic of error detecting codes, see Remark 6.

This paper is organized as follows: Section 2 contains our basic setting and
definitions. We find several equivalent formulations of our notion of robustness.
Moreover, we study the question how many states an R-robust system can distin-
guish. Section 3 shows that our definitions generalize the notions of canalyzing [9]
and nested canalyzing functions [8], which have been studied before in the context
of robustness. Section 4 proposes to model the different behaviours of a system
under various knockouts using a family of Gibbs potentials. Robustness implies var-
ious constraints on these potentials. Section 4 discusses the probabilistic behaviour
of the whole system, including its inputs, when the input variables are distributed to
some fixed input distribution. The set of all joint probability distributions is found
such that the system is R-robust for all input states with non-vanishing probability.

Some of our results in Section 5 can also be derived from recent algebraic results
in [13] about generalized binomial ideals. These ideals generalize the binomial edge
ideals of [6] and [12]. Similar ideals have recently been studied in the paper [14],
which discusses what we call (n − 1)-robustness in Section 6. In this paper we
give self-contained proofs that are also accessible to readers not acquainted to the
language of commutative algebra. We comment on the relation to the algebraic
results in Remark 25.

2. Robustness and canalyzing functions

We consider n input nodes, denoted by 1, 2, . . . , n, and one output node, denoted
by 0. For each i = 0, 1, . . . , n the state of node i is a discrete random variable Xi
taking values in the finite set Xi of cardinality di. The input state space is the set
Xin = X1 × · · · × Xn, and the joint state space is X = X0 × Xin. For any subset
S ⊆ {0, . . . , n} write XS for the random vector (Xi)i∈S ; then XS is a random variable
with values in XS = ×i∈S Xi. For S = [n] := {1, . . . , n} we also write Xin instead
of X[n]. For any x ∈ X, the restriction of x to a subset S ⊆ {0, . . . , n} is the vector
x|S ∈ XS with (x|S )i = xi for all i ∈ S . In contrast, the notation xS will refer to an
arbitrary element of XS .

As a model for the computation of the output from the input, we use a stochastic
map (Markov kernel) κ from Xin to X0, that is, κ is a function that assigns to each
x ∈ Xin a probability distribution κ(x) for the output X0. Such a stochastic map κ
can be represented by a matrix, with matrix elements κ(x; x0), x ∈ Xin, x0 ∈ X0,
satisfying

∑
x0∈X0 κ(x; x0) = 1 for all x ∈ Xin. For each x ∈ Xin the probability
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distribution κ(x) models the behaviour of X0 when the input variables are in the
state x. When the input is distributed according to some input distribution pin, then
the joint distribution p of input and output variables satisfies

p(X0 = x0, Xin = x) = pin(Xin = x)κ(x; x0) .

If pin(Xin = x) > 0, then κ(x) can be computed from the joint probability distribution
p and equals the conditional distribution of X0, given that Xin = x.

When a subset S of the input nodes is knocked out and only the nodes in
R = [n] \ S remain, then the behaviour of the system changes. Without further
assumptions, the post-knockout function is not determined by κ and has to be
specified separately. We model the post-knockout function by a further stochastic
map κR : XR × X0 → [0, 1]. A complete specification of the system is given by
the family (κA)A⊆[n] of all possible post-knockout functions, which we refer to as
functional modalities. As a shorthand notation we denote functional modalities
by (κA). The stochastic map κ itself, which describes the normal behaviour of the
system without knockouts, can be identified with κ[n].

What does it mean for functional modalities to be robust? Assume that the input
is in state x, and that we knock out a set S of inputs. Denoting the remaining set of
inputs by R, we say that (κA) is robust in x against knockout of S , if κ(x) = κR(x|R),
that is, if

(1) κ(x; x0) = κR(x|R; x0) for all x0 ∈ X0 .

Let R be a collection of pairs (R, xR), where R ⊆ [n] and xR ∈ XR. We call such a
collection a robustness specification in the following. We say that (κA) is R-robust
in a set S ⊆ Xin if

(2) κ(x) = κR(x|R), whenever x ∈ S and (R, x|R) ∈ R .

The main example in this section will be the robustness structures

Rk :=
{
(R, xR) : R ⊆ [n], |R| ≥ k, xR ∈ XR

}
.

Equation (1) only compares the functional modality κR after knockout with the
stochastic map κ that describes the regular behaviour of the unperturbed system.
In particular, for R ( R′ ( [n], the functional modality κR′ is in no way restricted
by (1). Therefore, it may happen that a system that is not robust against a knockout
of a set S ′ = [n] \ R′ recovers its regular behaviour if we knockout even more
nodes. However, this is not the typical situation. Therefore, it is natural to assume
that the following holds: If (R, xR) ∈ R and if R ( R′ ( [n], then (R′, xR′) ∈ R for
all xR′ ∈ XR′ with xR′ |R = xR. In this case we call the robustness specification R
coherent. For example the robustness structures Rk are coherent. The notion of
coherence will not play an important role in the following, but it is interesting from
a conceptual point of view. It is related to the notion of coherency as used e.g. in [3].

By definition, for robust functional modalities (κA) the largest functional modality
κ[n] determines the smaller ones in the relevant points via (2). This motivates the
following definition: A stochastic map κ is called R-robust in S, if there exist
functional modalities (κA) with κ = κ[n] that are R-robust in S. More directly, κ is
R-robust in S if and only if

κ(x) = κ(y), whenever x, y ∈ S, x|R = y|R and (R, x|R) ∈ R .
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a) b) c) d)

Figure 1. An illustration of Example 1 with n = 4. a) The
graph GR3 . b) An induced subgraph GR3,S. c) The connected
components of GR3,S. In fact, in this example both connected com-
ponents are cylinder sets. d) The induced subgraph GR2,S, which is
connected.

When studying robustness of a stochastic map κ we may always assume that R
is coherent; for if x|R = y|R implies κ(x) = κ(y), then x|R′ = y|R′ also implies
κ(x) = κ(y), whenever R ⊆ R′ ⊆ [n].

For any subset R ⊆ [n] and xR ∈ XR let

C(R, xR) :=
{
x ∈ Xin : x|R = xR

}
.

be the corresponding cylinder set. Then κ is R-robust in S if and only if κ(x) = κ(y)
for all x, y ∈ S ∩ C(R, xR) and (R, xR) ∈ R. In other words, the stochastic map κ is
constant on S ∩ C(R, xR) for all (R, xR) ∈ R.

The following construction is useful to study robust functional modalities: Given
a robustness specification R, define a graph GR on Xin by connecting two elements
x, y ∈ Xin by an edge if there is (R, xR) ∈ R such that x|R = y|R = xR. Denote by
GR,S the subgraph of GR induced by S.

Example 1. Assume that Xi = {0, 1} for i = 1, . . . , n. Then the input state space
Xin = {0, 1}n can be identified with the vertices of an n-dimensional hypercube. The
graph GRn−1 is the edge graph of this hypercube (Fig. 1a)). Cylinder sets correspond
to faces of this hypercube. If R ⊂ [n] has cardinality n − 1, then the cylinder set
C(R, xR) is an edge, if R has cardinality n − 2, then C(R, xR) is a two-dimensional
face. Fig. 1b) shows an induced subgraph of G3 for n = 4. By comparison, the
graph GRn−2 has additional edges corresponding to diagonals in the quadrangles
of GRn−1 . For example, the set of vertices marked black in Figure 1b) is connected
in GRn−2 , but not in GRn−1 (Fig. 1d)).

Proposition 2. The following statements are equivalent for a stochastic map κ:
(1) κ is R-robust in S.
(2) κ is constant on S ∩ C(R, xR) for all (R, xR) ∈ R.
(3) κ is constant on the connected components of GR,S.
(4) For any probability distribution pin of Xin with pin(S) = 1 and for all (R, xR) ∈ R,
the output X0 is stochastically independent of X[n]\R given XR = xR.

Proof. The equivalence (1)⇔ (2) was already shown.
(2)⇔ (3): Condition (2) says that κ is constant along each edge of GR,S. By iteration
this implies (3). In the other direction, the subgraph of GR,S induced by S∩C(R, xR)
is connected for all (R, xR) ∈ R, and therefore (3) implies (2).
(2)⇒ (4): For any x ∈ Xin with pin(x) > 0, the conditional distribution of the output
given the input satisfies p(X0 = x0 | Xin = x) = κ(x; x0). By (2), κ(x; x0) is constant
on C(R, x|R) ∩ S. Hence the conditional distribution does not depend on X[n]\R, and
so p(X0 = x0 | Xin = x) = p(X0 = x0 | XR = x|R).
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(4) ⇒ (2): Let pin be the uniform distribution on S (or any other probability
distribution with support S), and fix (R, xR) ∈ R. By assumption, for any x ∈ S
with x|R = xR, the conditional distribution p(X0 = x0 | Xin = x) = κ(x; x0) does not
depend on x|[n]\S . Therefore, κ(x) is constant on S ∩ C(R; xR). �

The choice of the set S is important: On one hand S should be large, because
otherwise the notion of robustness is very weak. However, if S is too large, then the
equations (1) imply that the output X0 is (unconditionally) independent of all inputs.
Proposition 2 gives a hint how to choose the set S: The goal is to have as many
connected components as possible in GR,S. This motivates the following definition:

Definition 3. For any subset S ⊆ Xin, the set of connected components of GR,S is
called an R-robustness structure.

Let B be an R-robustness structure, and let S = ∪B. Let fB : S → B be the
map that maps each x ∈ S to the corresponding block of B containing x. Any
stochastic map κ that is R-robust on S factorizes through fB, in the sense that there
is a stochastic map κ′ that maps each block in B to a probability distribution on X0
and that satisfies κ = κ′ ◦ fB. Conversely, any stochastic map κ that factorizes
through fB is R-robust.

To any joint probability distribution pin on Xin with p(Xin ∈ S) = 1 we can
associate a random variable B = fB(X1, . . . , Xn). If κ is R-robust on S, then X0 is
independent of X1, . . . , Xn given B. Note that the random variable B is only defined
on ∪B, which is a set of measure one with respect to pin. The situation is illustrated
by the following graph:

X1 X2 X3 · · · Xn

fB(X1, X2, . . . , Xn)

Y

When the robustness specification R is fixed, how much freedom is left to
choose a robust stochastic map κ? More precisely, how many components can an
R-robustness structure B have?

Lemma 4. Let B be a robustness structure of the robustness specification R. Let
R ⊆ [n], S = [n] \ R and YR = {xR ∈ XR : (R, xR) ∈ R}. Then

|B| ≤ |YR| + |XR \ YR| · |XS |.

Proof. The set S is the disjoint union of the |YR| sets C(R, xR) ∩ S for xR ∈ YR and
the |XR \ YR| · |XS | singletons {x} ⊂ S with x|R < YR. Each of these sets induces a
connected subgraph of GR. The statement now follows from Proposition 2. �

Example 5. Suppose that S = Xin. This means that any R-robustness structure B
satisfies ∪B = Xin. If GR is connected, then B has just a single block. In this case
the bound of Lemma 4 is usually not tight. On the other hand, the bound is tight if
R = {(R, xR) : xR ∈ XR}.

Remark 6 (Relation to coding theory). Assume that all di are equal. We can interpret
Xin as the set of words of length n over the alphabet [d1]. Consider the uniform case
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R = Rk. Then the task is to find a collection of subsets such that any two different
subsets have Hamming distance at least n − k + 1. A related problem appears in
coding theory: A code is a subset Y of Xin and corresponds to the case that each
element of B is a singleton. If distinct elements of the code have Hamming distance
at least n − k + 1, then a message can be reliably decoded even if only k letters are
transmitted. If all letters are transmitted, but up to k letters may contain an error,
then this error may at least be detected; hence such codes are called error detecting
codes. In this setting, the function fB can be interpreted as the decoding operation.
The problem of finding a largest possible code such that all code words have a fixed
minimum distance is also known as the sphere packing problem. The maximal size
Ad1(n, n − k + 1) of such a code is unknown in general.

3. Canalyzing functions

Our notion of R-robust functional modalities naturally generalizes and is moti-
vated by canalyzing [9] and nested canalyzing functions [10]. Let f : Xin → X0
be a function, also called (deterministic) map. Such a map can be considered as a
special case of a stochastic map by identifying f with

κ f (x; x0) :=
{

1, if f (x) = x0
0, otherwise .

We say that f is (R, xR)-canalyzing, if the value of f does not depend on the input
variables X[n]\R given that the input variables XR are in state xR. In other words, an
(R, xR)-canalyzing function is assumed to be constant on the corresponding cylinder
set:

x, x′ ∈ C(R, xR) ⇒ f (x) = f (x′).

Given a robustness specification R, we say that a function f is R-canalyzing if it
is (R, xR)-canalyzing for all (R, xR) ∈ R. Clearly, the set of R-canalyzing functions
strongly depends on R. On one hand, any function is R-canalyzing with respect to

R =
{
([n], x) : x ∈ Xin

}
.

On the other hand, for two different elements i, j ∈ [n], and

R =
(
{i} × Xi

)
∪

(
{ j} × X j

)
,

anyR-canalyzing function is constant. Note that constant functions areR-canalyzing
for any R.

The following statement directly follows from Proposition 2:

Proposition 7. A function f : Xin → X0 isR-canalyzing if and only if κ f isR-robust
in S = Xin.

Particular cases of canalyzing functions have been studied in the context of
robustness:

Example 8. (1) Canalyzing functions. A function f with domain Xin is canalyzing
in the sense of [9], if there exist an input node k ∈ [n], an input value a ∈ Xk, and
an output value b ∈ X0 such that the value of f is independent of x[n]\{k}, given that
x|k = a. In other words, f (x) = f (y) = b whenever x|k = y|k = a. A canalyzing
function is R-canalyzing with

R :=
{
(R, xR) : R ⊆ [n], k ∈ R, xR ∈ XR, xR|k = a

}
.
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(2) Nested canalyzing functions have been studied in [10]. A function f is nested
canalyzing in the variable order X1, . . . , Xn with canalyzing input values a1 ∈ X1,
. . . , an ∈ Xn and canalyzed output values b1, . . . , bn if f satisfies f (x) = bk for all
x ∈ X satisfying x|k = ak and x|i , ai for all i < k. Let R :=

⊎n
k=1 R

(k), where

R(k) :=
{
(R, xR) : [k] ⊆ R, xR|1 , a1, . . . , xR|k−1 , ak−1, xR|k = ak

}
, .

It is easy to see that f is a nested canalyzing function if and only if it is R-canalyzing.
The set of Boolean nested canalyzing functions has been described algebraically

in [7] as a variety over the finite field F2. Here, we use a different viewpoint, which
allows to study not only deterministic functions, but also stochastic functions.

4. Robustness and Gibbs representation

Let (κA) be a collection of functional modalities, as defined in Section 2. Instead
of providing a list of all functional modes κA, one can describe them in more
mechanistic terms. To illustrate this, we first consider an example from the field of
neural networks: Assume that the output node receives an input x = (x1, . . . , xn) ∈
{−1,+1}n and generates the output +1 with probability

κ(x1, . . . , xn; +1) :=
1

1 + e−(
∑n

i=1 wi xi−η)
.

For an arbitrary output x0 this implies

(3) κ(x1, . . . , xn; x0) :=
e

1
2 (

∑n
i=1 wi xi −η)x0

e
1
2 (

∑n
i=1 wi xi−η)·(−1) + e

1
2 (

∑n
i=1 wi xi−η)·(+1)

.

The structure of this representation of the stochastic map κ already suggests what
the function should be after a knockout of a set S of input nodes: Simply remove
the contribution of all the nodes in S . The post-knockout function is then given by

(4) κR(xR; +1) :=
e

1
2 (

∑
i∈R wi xi−η) x0

e+ 1
2 (

∑
i∈R wi xi−η) + e−

1
2 (

∑
i∈R wi xi−η)

,

where R = [n] \ S . These post-knockout functional modalities are based on the
decomposition of the sum that appears in (3).

More generally, we consider the following model of (κA):

κA(xA; x0) =
e
∑

B⊆A φB(xA |B,x0)∑
x′0

e
∑

B⊆A φB(xA |B,x′0)
,(5)

where the φB are functions onXB×X0. Such a sum decomposition of κ is referred to
as a Gibbs representation of κ and contains more information than κ itself. Clearly,
each κA is strictly positive. Using the Möbius inversion, it is easy to see that each
strictly positive family (κA) has a representation of the form (5) with

(6) φA(xA, x0) :=
∑
C⊆A

(−1)|A\C| ln κC(xA|C; x0) .

Note that this representation is not unique: If an arbitrary function of xA (that does
not depend on x0) is added to the function φA, then the function κA, defined via (5),
does not change.

A single robustness constraint has the following consequences for the φA.
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Proposition 9. Let S ⊆ [n] and R = [n] \ S , and let (κA) be strictly positive
functional modalities with Gibbs potentials (φA). Then (κA) is robust in x against
knockout of S if and only if

∑
B⊆[n],B*R φB(x|B, x0) does not depend on x0.

Proof. Denote by φ̃A the potentials defined via (6). Then (1) is equivalent to∑
B⊆[n]

φ̃B(x|B, x0) =
∑
B⊆R

φ̃B(x|B, x0) ⇐⇒
∑

B⊆[n]
B*R

φ̃B(x|B, x0) = 0.

The statement follows from the fact that φB(x|B; x0) − φ̃B(x|B; x0) is independent
of x0 (for fixed x). �

Example 10. Consider n = 2 binary inputs, X1 = X2 = {0, 1}, and let S =

{(0, 0), (1, 1)}. Then 1-robustness on S means

κ{1}(x1; x0) = κ{1,2}(x1, x2; x0) = κ{2}(x2; x0)

for all x0 whenever x1 = x2. By Proposition 9 this translates into the conditions

(7) φ{1,2}(x1, x2; x0) + φ{1}(x1; x0) = 0 = φ{1,2}(x1, x2; x0) + φ{2}(x2; x0)

for all x0 whenever x1 = x2 for the potentials (φA) defined via (6). This means:
Assuming that (κA) is 1-robust, it suffices to specify the four functions

φ∅(x0), φ{1}(x1; x0), φ{1,2}(0, 1; x0), φ{1,2}(1, 0; x0).

The remaining potentials can be deduced from (7). If only the values of (κA) for
x ∈ S are needed, then it suffices to specify φ∅(x0) and φ{1}(x1; x0).

Does R-robustness in x imply any structural constraints on (κA)? If (κA) is R-
robust in x for all x belonging to a set S, then the corresponding conditions imposed
by Proposition 9 depend on S. In this section, we are interested in conditions that
are independent of S. Such conditions allow to define sets of functional modalities
that contain all R-robust functional modalities for all possible sets S. If S (which
will be the support of the input distribution in Section 5) is unknown from the
beginning, then the system can choose its policy within such a restricted set of
functional modalities. To find results that are independent of S, our trick is to
find a set M̃R of functional modalities such that (κA) can be approximated on S by
functional modalities in M̃R. The approximation will be independent of S.

We first consider the special case R = Rk := {(R, xR) : R ⊆ [n], |R| ≥ k, xR ∈ XR}.
For simplicity, we replace any prefix or subscript Rk by k. Denote by Mk+1 the set
of all functional modalities (κA) such that there exist potentials φA of the form

φA(xA; x0) =
∑
B⊆A
|B|<k+1

αA,BΨB(xA|B; x0),

where αA,B ∈ R and ΨB is an arbitrary function RXB×X0 → R. The set Mk+1 is called
the family of (k + 1)-interaction functional modalities. Note that the functions ΨB
do not depend on A. This ensures a certain interdependence among the functional
modalities κA. The name “(k+1)-interaction” comes from the fact that each potential
ΨB depends on the k (or less) variables in B plus the output variable X0. Since
Mk+1 only contains strictly positive functional modalities, we are also interested
in the closure of Mk+1 with respect to the usual topology on the space of matrices,
considered as elements of a finite-dimensional real vector space.
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Example 11. The functional modalities (4), derived from the classical model (3)
of a neural network, belong to M2. To illustrate the difference between M2 and its
closure, consider the functional modalities (κA) with

κA(x1, . . . , xn; x0) :=
e
β
2 (

∑
i∈A wi xi − η) x0

e−
β
2 (

∑
i∈A wi xi − η) + e+

β
2 (

∑n
i∈A wi xi − η)

.

If w1, . . . ,wn and η are fixed and β→ ∞, then

(8) κA(x1, . . . , xn; +1)→ θ(
∑
i∈A

wixi − η),

where

θ(x) =


+1, if x > 0,
1
2 , if x = 0,
0, if x < 0.

The functional modalities (8) are deterministic limits of the probabilistic model (3),
called linear threshold functions. They lie in the closure of M2, but not in M2 itself.

Linear threshold functions are widely used as elementary building blocks in
network dynamics, for example to build simple models of neural networks, meta-
bolic networks or gene-regulation networks. Robustness against knockouts of such
networks has been studied in [2], exploring the example of the yeast cell cycle.

Let M̃k+1 be the set of strictly positive functional modalities (κA) such that

(9) κC(xC; x0) =
1

ZC,xC

exp


∑
B⊆C
|B|=k

1(
|C|
k

) ln(κB(xC |B; x0))


=

1
ZC,xC


∏
B⊆C
|B|=k

κB(xC |B; x0)


1/(|C|k )

for all C ⊆ [n] with |C| > k, where ZC,xC is a normalization constant that ensures
that κC(xC) is a probability distribution. Note that equations (9) can be used to
parametrize the set M̃k+1: The stochastic maps κA with |A| ≤ k can be chosen
arbitrarily, while all other stochastic maps κC with |C| > k can be computed by
normalizing the geometric mean of the stochastic maps κB for B ⊆ C and |B| = k.

Lemma 12. M̃k+1 is a subset of Mk+1. It consists of those functional modalities
(κA) where the coefficients αA,B additionally satisfy

(−1)|A|αA,B = (−1)|A
′ |αA′,B, whenever B ⊆ A ∩ A′ and |B| < k,

and

(−1)A′ |A′|αA,B = (−1)A|A|αA′,B, whenever B ⊆ A ∩ A′ and |B| = k.

for all xB ∈ XB and x0 ∈ X0.

Proof. Assume that the coefficients αA,B of (κA) ∈ Mk+1 satisfy the conditions stated
in the lemma. We may multiply all functions ΨB by scalars and assume

αA,B = (−1)|A|−|B|, if |B| < k, αA,B = (−1)|A|−k k
|A|
, if |B| = k.(10)
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Then ln(κC(xC; x0)) equals the logarithm of the normalization constant plus

∑
A⊆C


∑
B⊆A
|B|<k

(−1)|A|−|B|ΨB(xC |B; x0) +
∑
B⊆A
|B|=k

(−1)|A|−k k
|A|

ΨB(xC |B; x0)


=

∑
B⊆C
|B|<k

 ∑
R⊆C\B

(−1)|R|
 ΨB(xC |B; x0)

+
∑
B⊆C
|B|=k

 ∑
R⊆C\B

(−1)|R|
k

|R| + k

 ΨB(xC |B; x0)

=
∑
B⊆C
|B|<k

|C|−|B|∑
l=0

(−1)l
(
|C| − |B|

l

) ΨB(xC |B; x0)

+
∑
B⊆C
|B|=k

|C|−k∑
l=0

(−1)l
(
|C| − k

l

)
k

l + k

 ΨB(xC |B; x0)

=
∑
B⊆C
|B|<k

δ|C|,|B|ΨB(xC |B; x0) +
∑
B⊆C
|B|=k

1(
|C|
k

)ΨB(xC |B; x0) ,(11)

where the identity
∑r

i=0

(
r
i

)
(−1)i

m+i = 1/
(
(m + r)

(
r+m−1

m−1

))
was used and δa,b denotes

Kronecker’s delta. For |C| > k the first sum is empty, and it follows that κC satisfies
the defining equality of M̃k+1.

Conversely, if (κA) ∈ M̃k+1, then let αA,B be as in (10), and let

ΨB(xB; x0) = log(κB(xB; x0)), for all x0 ∈ X0, xB ∈ XB, |B| ≤ k .

These coefficients αA,B and functions ΨB together define an element (κ̃A) ∈ Mk+1.
The calculation (11) shows that

κ̃A(xA; x0) =


1

ZA,xA
exp(ΨA(xA; x0) = κA(xA; x0), if |A| ≤ k,

1
ZA,xA

exp
(∑

B⊆A
|B|=k

1
(|A|k ) ln(κB(xA|B; x0)

)
, if |A| > k,

and so (κA) = (κ̃A) belongs to Mk+1 and is of the desired form. �

Theorem 13. Let (κA) be functional modalities. Then there exist functional modali-
ties (κ̃A) in the closure of M̃k+1 such that the following holds: If (κA) is k-robust on
a set S ⊆ Xin, then κA(x|A) = κ̃A(x|A) for all A ⊆ [n] and all x ∈ S. In particular,
(κ̃A) belongs to the closure of the family of (k + 1)-interactions.

Proof. Define (κ̃A) via

κ̃A(xA; x0) =


κA(xA; x0), if |A| ≤ k,

1
ZA,xA

(∏
B⊆A
|B|=k

κB(xA|B; x0)
)1/(|A|k )

, else,

where ZA,xA is a normalization constant. By definition, (κ̃A) lies in the closure
of M̃k+1. Let x ∈ S and C ⊆ [n]. If |C| ≤ k, then κ̃C(x|C) = κC(x|C) by definition
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of κ̃A. So assume that |C| > k. By definition of k-robustness, if x ∈ S, then
κC(x|C) = κB(x|B) for all B ⊂ C with |B| = k. Therefore, if x ∈ S and |C| > k, then

κC(x|C; x0) =


∏
B⊆C
|B|=k

κB(xC |B; x0)


1/(|C|k )

.

Therefore, if x ∈ S and |C| > k, then ZC,x|C = 1 and κC(x|C) = κ̃C(x|C). �

Since Mk+1 and M̃k+1 are independent of S, Theorem 13 shows that these two
families can be used to construct robust systems, when the set S is not known a
priori but must be learnt by the system, or when S changes with time and the system
must adapt.

If we are not interested in all functional modalities but just the stochastic map κ
describing the unperturbed system, we can describe κ in terms of low interaction
order. The family of (k + 1)-interaction stochastic maps, denoted by Kk+1, consists
of all strictly positive maps κ such that

ln κ(x; x0) =
∑

A⊆[n]
|A|≤k

ΨA(x|A; x0)

for some real functions ΨA : XA → R.

Corollary 14. Let κ be a stochastic map. For given k there exists a stochastic map
κ̃ in the closure of Kk+1 such that the following holds: If κ is k-robust on a set S,
then κ(x) = κ̃(x) for all x ∈ S.

Proof. If κ is k-robust on S, there exist functional modalities (κA)A with κ = κ[n].
Choose (κ̃A) as in Theorem 13. If x ∈ S, then κ(x) = κ[n](x) = κ̃[n](x). Hence the
Corollary holds true with κ̃ = κ̃[n]. �

Example 15. The functional modalities (4) do not lie in M̃2. This does not mean
that neural networks are not robust: In fact, it is possible to naturally redefine the
functional modalities (4) such that the new functional modalities lie in M̃2.

The construction (4) identifies the summand wixix0 with φ{i}. Now we will make
another identification: For each i ∈ [n] let

κ{i}(xi; x0) =
1

Zi,xi

exp(n wi xi x0 − η) .

The unique extension of these stochastic maps to functional modalities (κA) in M2
is given by

(12) κA(x|A; x0) =
1

Z′A,x|A

∏
i∈A

κ{i}(xi; x0)

1/|A|

=
1

ZA,x|A
exp

 n
|A|

∑
i∈A

wixix0 − η

 ,
where ZA,x|A and Z′A,x|A are constants determined by normalization. The functional
modalities defined in this way lie in M̃2, and the stochastic map κ[n] agrees with (3).
Note that, by tuning the parameters w1, . . . ,wn, any combination of stochastic maps
is possible for κ1, . . . , κn. This shows that any element of M̃2 has a representation of
the form (12).
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As in example 11 we can scale the weights wi and the threshold η by a factor of
β and send β→ +∞. This leads to the rule

(13) κA(xA; +1)→ θ(
n
|A|

∑
i∈A

wixi − η),

which is a normalized variant of (8).
The rule (12) implements a renormalization of the effect of the remaining inputs

under knockout. Similar renormalization procedures are sometimes used when
training neural networks using Hebb’s rule. Usually the total sum of the weights∑

i wi is normalized to not grow to infinity. The rule (12) suggests that under
knockout all remaining weights are amplified by a common factor.

The ideas leading to Theorem 13 can be applied to more general robustness
structures R as follows: For any x ∈ X let

Rx :=


{
R ⊆ [n] : (R, x|R) ∈ R

}
, if there exists R ⊆ [n] with (R, x|R) ∈ R,{

[n]
}
, else,

and let Rmin
x be the subset of inclusion-minimal elements of Rx. If (κA) is R-robust

in S, then
κ(x; x0) = κR(x|R; x0) for any R ∈ Rmin

x , x ∈ S
and hence

κ(x; x0) =

 ∏
R∈Rmin

x

κR(x|R; x0)


1/|Rmin

x |

.

For any C ⊆ [n] let Rmin
x (C) = {R ∈ Rmin

x : C ⊆ R}. If R is coherent, then we can
deduce

(14) κC(x|C; x0) =

 ∏
R∈Rmin

x (C)

κR(x|R; x0)


1/|Rmin

x (C)|

for all x ∈ S with Rmin
x (C) , ∅. This motivates the following definition: Denote by

M̃R the set of all strictly positive functional modalities that satisfy

κC(x|C; x0) =
1

ZC,x|C

 ∏
R∈Rmin

x (C)

κR(x|R; x0)


1/|Rmin

x (C)|

for all x ∈ X and all C ⊆ [n] with Rmin
x (C) , ∅, where ZC,x|C is a suitable normaliza-

tion constant. The same proof as for Theorem 13 implies:

Theorem 16. Let (κA) be functional modalities, and assume thatR is coherent. Then
there exist functional modalities (κ̃A) in the closure of M̃R such that the following
holds: If (κA) is R-robust on a set S ⊆ X, then

κA(x|A) = κ̃A(x|A) for all x ∈ S.

As a generalization of Lemma 12, we can also describe M̃R as a set of functional
modalities with limited interaction order. To simplify the presentation, we assume
that R is saturated, by which we mean the following: If (R, xR) ∈ R for some
xR ∈ XR, then (R, x′R) ∈ R for all xR ∈ XR. In other words, a saturated robustness
specification is given by enumerating a family of subsets of [n]. For example,
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the robustness structures Rk are saturated, while the robustness structures defining
canalyzing and nested canalyzing functions (see Section 3) are not saturated. If R is
saturated, then Rx and Rmin

x are independent of x ∈ X.
Consider the family

∆ =
{
C ⊆ [n] : C ⊆ R for some R ∈ Rmin

x and x ∈ X
}
,

and let ∆(C) = {R ∈ ∆ : R ⊆ C}. Let M∆ be the set of all functional modalities (κA)
such that there exist potentials φA of the form

(15) φA(xA; x0) =
∑

B∈∆(A)

αA,BΨB(xA|B; x0),

where αA,B ∈ R and ΨB is an arbitrary function RXB×X0 → R. We call M∆ the family
of ∆-interaction functional modalities. Note that the functions ΨB do not depend
on A. This ensures a certain interdependence among the functional modalities κA.

Lemma 17. Assume that R is coherent and saturated. M̃R is a subset of M∆.

Proof. If Rx = ∅, then ∆ contains all sets. The Möbius inversion formula shows that
M∆ contains all strictly positive functional modalities. Therefore, we may assume
that Rx , ∅.

Define Gibbs potentials using the Möbius inversion (6). If x ∈ S and A is large
enough such that Rmin

x (A) , ∅, then∑
C⊆A
C∈Rx

(−1)|A\C| ln κC(x|C; x0) =
∑
C⊆A
C∈Rx

(−1)|A\C|
1

|Rmin
x (C)|

∑
B∈Rmin

x (C)

ln κC(x|C; x0)

=
∑
C⊆A
C∈Rx

(−1)|A\C|
1

|Rmin
x (C)|

∑
B∈Rmin

x (C)

ln κB(x|B; x0)

=
∑

B∈Rmin
x (C)

 ∑
R⊆A\B

(−1)|A|−|R|−k 1
|Rmin

x (B ∪ R)|

 ln κB(x|B; x0) .

Together with (6) this gives

φA(x|A, x0) =
∑
C⊆A
C<Rx

αA,C ln κC(x|C; x0) +
∑
C⊆A

C∈Rmin
x

αA,C ln κC(x|C; x0) ,

where

αA,C =

(−1)|A|−|C|, if C < Rx,∑
R⊆A\B(−1)|A|−|R|−k 1

|Rmin
x (B∪R)|

if C ∈ Rmin
x .

This is clearly of the form (15). �

In the case R = Rk the sum
∑

R⊆A\B(−1)|A|−|R|−k 1
|Rmin

x (B∪R)|
that appears in the

proof of Lemma 17 can be solved explicitly, resulting in the statement of Lemma 12.
In the general case this is not possible.

Corollary 14 also generalizes. Let ∆ be as above. The set K∆ of ∆-interactions
stochastic maps consists of all strictly positive stochastic maps κ such that

ln κ(x; x0) =
∑
A∈∆

ΨA(x|A; x0)

for some real functions ΨA : XA → R.
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Corollary 18. Let κ be a stochastic map, and let R be a coherent and saturated
robustness specification. There exists a stochastic map κ̃ in the closure of K∆ such
that the following holds: If κ is R-robust on a set S, then κ(x) = κ̃(x) for all x ∈ S.

The proof is the same as the proof of Corollary 14.

Remark 19. Instead of representing functional modalities as a family (κA) of sto-
chastic maps, it is possible to use a single stochastic map κ̂, operating on a larger
space, that integrates the information from the family (κA). The stochastic map κ̂
can be constructed as follows: For each i = 1, . . . , n let X̂i be the disjoint union of
Xi and one additional element, denoted by 0. This additional state represents the
knockout of Xi. Let X̂in = X̂1 × · · · × X̂n. For each y ∈ X̂in let supp(y) = {i : yi , 0}.
We define the stochastic map κ̂ : X0 × X̂in via

κ̂(x; x0) = κsupp(x)(x|supp(x); x0).

This construction gives a one-to-one correspondence between functional modalities
and stochastic maps from X̂in to X0.

As an example, consider the functional modalities defined in (4). In this example,
the construction of κ̂ is particularly easy: It just amounts to extending the input
space to {−1, 0,+1}n. Equation (3) remains valid for κ̂. The construction is more
complicated for the functional modalities (12).

More generally, any Gibbs representation for functional modalities (κA) as in (5)
extends to a Gibbs representation of κ̂: For any B ⊆ [n], x0 ∈ X0 and x ∈ X̂in let

φ̂B(x, x0) =

φB(x|B, x0), if supp(x) ⊆ B,
0, else.

Then

κ̂(x; x0) =
e
∑

B⊆[n] φ̂B(x,x0)∑
x′0∈X0 e

∑
B⊆[n] φ̂B(x,x0)

.

5. Robustness and conditional independence

Given the probability distribution pin of the input variables and a stochastic map κ
describing the system, the joint probability distribution of the complete system can
be computed from

p(x0, x) = κ(x; x0)pin(x), for all (x0, x) ∈ X,

As shown in Proposition 2, robustness of stochastic maps is related to conditional
independence constraints on the joint distribution. In this section we study the set
of all joint distributions that arise from robust systems in this way.

Let R be a robustness specification. By Proposition 2, the stochastic map κ is
R-robust on supp(pin) if and only if for all (R, xR) ∈ R the output X0 is (stochasti-
cally) independent of X[n]\R, given that XR = xR. In the following, this conditional
independence (CI) statement will be written as X0 y X[n]\R

∣∣∣ XR = xR . This moti-
vates the following definition: A joint distribution p is called R-robust if it satisfies
X0 y X[n]\R

∣∣∣ XR = xR for all (R, xR) ∈ R. We denote by PR the set of all R-robust
probability distributions.
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The single conditional independence statement X0 y X[n]\R
∣∣∣ XR = xR means that

the conditional distributions satisfy

p(X0 = x0 | Xin = x) = p(X0 = x0 | XR = xR), for all x ∈ Xin with p(x) > 0
and x|R = xR .

It is often convenient to use another definition that avoids the need to work with
conditional distributions: The statement X0 y X[n]\R

∣∣∣ XR = xR holds if and only if

(16) p(x0, xS , xR)p(x′0, x
′
S , xR) = p(x0, x′S , xR)p(x′0, xS , xR),

for all x0, x′0 ∈ X0, xS , x′S ∈ XS and xR ∈ XR. Here, p(x0, xS , xR) is an abbreviation
of p(X0 = x0, XS = xS , XR = xR). It is not difficult to see that these two definitions of
conditional independence are equivalent. The formulation in terms of determinantal
equations is used in algebraic statistics [4] and will also turn out to be useful here.

A joint probability distribution p can be written as a d0 × |Xin|-matrix. Each
equation (16) imposes conditions on this matrix saying that certain submatrices have
rank one. To be precise, for any edge (x, x′) in the graph GR (defined in Section 2)
equations (16) for all x0, x′0 ∈ X0 require that the submatrix (pkz)k∈X0,z∈{x,x′} has
rank one. For any x ∈ Xin denote by p̃x the vector with components p̃x(x0) =

p(X0 = x0, Xin = x) for x0 ∈ X0. Then a distribution p lies in PR if and only if
p̃x and p̃y are proportional for all edges (x, y) of GR. Observe that p̃x and p̃y are
proportional if and only if either (i) one of p̃x and p̃y vanishes or (ii) κ(x) = κ(y).
This observation allows to reformulate the equivalence (1)⇔ (3) of Proposition 2
as follows:

Lemma 20. Let S = {x ∈ Xin : p̃x , 0}. A distribution p lies in PR if and only if
p̃x and p̃y are proportional whenever x, y ∈ S lie in the same connected component
of GR,S.

For any family B of subsets of Xin let PB be the set of probability distributions p
on X that satisfy the following two conditions:

(1) ∪B = {x ∈ Xin : p̃x , 0},
(2) p̃x and p̃y are proportional, whenever there existsZ ∈ B such that x, y ∈ Z.

Then PR =
⋃

BPB, where the union is over all R-robustness structures B. The
disadvantage of this decomposition is that there are R-robustness structures B, B′

such that PB is a subset of the topological closure PB′ of PB′ . In other words, each
p ∈ PB can be approximated arbitrarily well by elements of PB′ , and therefore in
many cases it suffices to only consider PB′ . The following definition is needed:

Definition 21. An R-robustness structure B is maximal if and only if ∪B :=⋃
Z∈BZ satisfies any of the following equivalent conditions:

(1) For any x ∈ Xin \ ∪B there are edges (x, y), (x, z) in GR such that y, z ∈ ∪B
do not lie in the same connected component of GR,∪B.

(2) For any x ∈ Xin \ ∪B the induced subgraph GR,∪B∪{x} has fewer connected
components than GR,∪B.

Lemma 22. PR equals the disjoint union
⋃

BPB, where the union is over all R-ro-
bustness structures. Alternatively, PR equals the (non-disjoint) union

⋃
BPB, where

the union is over all maximal R-robustness structures.

Proof. The first statement follows directly from the above considerations. To see
that it suffices to take maximal R-robustness structures in the second decomposition,
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consider an R-robustness structure B that is not maximal. By definition there exists
x ∈ Xin\∪B such that the induced subgraph GR,∪B∪{x} has at least as many connected
components as GR,∪B. Let B′ be the family of connected components of GR,∪B∪{x}.
If GR,∪B∪{x} has the same number of connected components as GR,∪B, then there is
Y ∈ B such that Y ∪ {x} ∈ B′, otherwise let Y ∈ B be arbitrary. Let y ∈ Y. For any
p ∈ PB and ε > 0 define a probability distribution pε via

pε(x0, z) =


p(x0, z), if z < {x, y},
(1 − ε)p(x0, x), if z = y,
εp(x0, x), if z = x.

Then pε ∈ PB′ , and hence PB ⊆ PB′ . If B′ is not maximal, we may iterate the
process. �

The following lemma sheds light on the structure of PB:

Lemma 23. Fix an R-robustness structure B. Then PB consists of all probability
measures of the form

(17) p(X0 = x0, Xin = x) =

µ(Z)λZ(x)pZ(x0), if x ∈ Z ∈ B,
0, if x ∈ Xin \ ∪B,

where µ is a probability distribution on B and λZ is a probability distribution onZ
for eachZ ∈ B and (pZ)Z∈B is a family of probability distributions on X0.

Proof. It is easy to see that (17) defines indeed a probability distribution. By
Lemma 20 it belongs to PB. In the other direction, any probability measure can be
written as a product

p(x0, x1, . . . , xn) = p(Z)p (x1, . . . , xn|(X1, . . . , Xn) ∈ Z) p(x0|x1, . . . , xn),

if (x1, . . . , xn) ∈ Z ∈ B, and if p is an R-robust probability distribution, then
pZ(x0) := p(x0|x1, . . . , xn) depends only on the block Z in which (x1, . . . , xn)
lies. �

Lemma 22 decomposes the set PR of robust probability distributions into the
closures of the smooth manifolds PB, where B runs over the maximal R-robustness
structures. Lemma 23 gives natural parametrizations of these manifolds.

By comparison, Theorem 16 and Lemma 17 describe robustness from a different
point of view. The result can be translated to the setting of this section as follows:

Corollary 24. Suppose that R is a coherent and saturated robustness structure, and
define ∆ as in Section 4. If p ∈ PB, then there exists a stochastic map κ̃ ∈ K∆ such
that p(x0|x) = κ̃(x; x0) for all x ∈ ∪B.

In the statement of the corollary note that p(Xin = x) > 0 for all x ∈ ∪B, and
hence the conditional distribution p(x0|x) is well-defined in this case.

Corollary 24 can also be viewed from the perspective of hierarchical models: Let
∆̃ = {{1, . . . , n}} ∪ {S ∪ {0} : S ∈ ∆}. The hierarchical loglinear model E∆̃ consists
of all probability distributions p on X of the form

log(p(x)) =
∑
A⊆∆̃

φ̃A(x|A),
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a) b)

Figure 2. A 1-robustness structures for two variables. a) The graph
G1,S. b) The representation in terms of bipartite graphs.

where φA is a real function with domain XA. By the results of this section, E∆̃ is a
smooth manifold containing PR in its closure. See [11, 4] for more on hierarchical
loglinear models.

Remark 25. It is also possible to derive the decomposition in Lemma 22 from
results from commutative algebra. Since the equations (16) that describe conditional
independence are algebraic, they generate a polynomial ideal, called conditional
independence ideal. In this case the ideal is a generalized binomial edge ideal,
as defined in [13]. For such ideals, the primary decomposition is known and
corresponds precisely to the decomposition of the set of robust distributions as
presented in Lemma 22. The parametrization of Lemma 23 can be considered as a
surjective polynomial map and shows that all components of the decomposition are
rational.

6. k-robustness

In this section we consider the symmetric case R = Rk. As above, we replace
any prefix or subscript R by k.

If k = 0, then any pair (x, y) is an edge in G0. This means that any 0-robustness
structure B contains only one set. There is only one maximal 0-robustness structure,
namely B = {Xin}. The set R0 is irreducible. This corresponds to the fact that P0 is
defined by X0 y Xin .

B is actually a maximal k-robustness structure for any 0 ≤ k < n. This illustrates
the fact that the single CI statement X0 y Xin implies all other CI statements of
the form X0 y X[n]\R

∣∣∣ XR = xR . The corresponding set PB contains all probability
distributions of Pk of full support.

Now let k = 1. In the case n = 2 we obtain results by Alexander Fink, which can
be reformulated as follows [5]: Let n = 2. A 1-robustness structure B is maximal if
and only if the following statements hold:

• Each B ∈ B is of the form B = S 1 × S 2, where S 1 ⊆ X1, S 2 ⊆ X2.
• For every x1 ∈ X1 there exists B ∈ B and x2 ∈ X2 such that (x1, x2) ∈ B,

and conversely.
In [5] a different description is given: The block S 1 × S 2 can be identified with

the complete bipartite graph on S 1 and S 2. In this way, every maximal 1-robustness
structure corresponds to a collection of complete bipartite subgraphs with vertices
in X1 ∪ X2 such that every vertex in X1 and X2, respectively, is part of one such
subgraph. Figure 2 shows an example.

This result generalizes in the following way:
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Lemma 26. A 1-robustness structure B is maximal if and only if the following
statements hold:

• Each B ∈ B is of the form B = S 1 × · · · × S n, where S i ⊆ Xi.
•

⋃
S 1×···×S n∈B S i = Xi for all i ∈ [n]

Proof. Suppose that B is maximal. Let Y ∈ B and let S i be the projection of
Y ⊂ Xin toXi. LetY′ = S 1×· · ·×S n. ThenY ⊆ Y′. We claim that (B\{Y})∪{Y′}
is another 1-robustness structure with the same number of components as B, and
by maximality we can conclude Y = Y′. By Definition 3 we need to show that
GR,Y′ is connected and that GR,Z∪Y′ is not connected for allZ ∈ B \ {Y}. The first
condition follows from the fact that GR,Y is connected. For the second condition
assume to the contrary that there are x ∈ Y′ and y ∈ Z such that x = (x1, . . . , xn)
and y = (y1, . . . , yn) disagree in at most n − 1 components. Then there exists a
common component xl = yl. By construction there exists z = (z1, . . . , zn) ∈ Y such
that zl = yl = xl, hence Y ∪ Z is connected, in contradiction to the assumptions.
This shows that each Y has a product structure.

Write Y = SY1 × · · · × SYn for each Y ∈ B. Obviously SYi ∩ SZi = ∅ for
all i ∈ [n] and all Y,Z ∈ B if Y , Z. For the second assertion, assume to
the contrary that l ∈ Xi is contained in no SYi . Take any Y ∈ B and define
Y′ := SY1 ×· · ·× (SYi ∪{l})×· · ·×SYn . Then (B \ {Y})∪{Y′} is another 1-robustness
structure with the same number of components as B, contradicting the assumptions.

Conversely, assume that B is a 1-robustness structure satisfying the two assertions
of the theorem. For any x ∈ Xin \ ∪B there exist y1, . . . , yn ∈ ∪B such that
x1 = y1,. . . ,xn = yn. Since x < ∪B the points y1, . . . , yn cannot all belong to the
same block of B. If yi and y j belong to different blocks of B, then the two edges
(x, yi) and (x, y j) of G1 show that B is maximal. �

The last result can be reformulated in terms of n-partite graphs generalizing [5]:
Namely, the 1-robustness structures are in one-to-one relation with the n-partite
subgraphs of Md1,...,dn such that every connected component is itself a complete
n-partite subgraph Me1,...,en with ei > 0 for all i ∈ [n]. Here, an n-partite graph is a
graph which can be coloured by n colours such that no two vertices with the same
colour are adjacent.

Unfortunately the nice product form of the maximal 1-robustness structures does
not generalize to k > 1:

Example 27 (Binary inputs). If n = 3 and d1 = d2 = d3 = 2, then the graph G2 is
the graph of the cube. For a maximal 2-robustness structure B the set Xin \ ∪B can
be any one of the following (see Fig. 3):

• The empty set
• A set of cardinality 4 corresponding to a plane leaving two connected

components of size 2
• A set of cardinality 4 containing all vertices with the same parity.
• A set of cardinality 3 cutting off a vertex.

In the last case only the isolated vertex has a product structure (Fig. 4d).
If n = 4 and d1 = d2 = d3 = d4 = 2, then the graph G3 is the graph of a

hyper-cube. Figure 4 shows how a maximal 3-robustness structure can look like.

k-robustness implies (k + 1)-robustness, and therefore Pk ⊆ Pk+1. This does not
mean that all k-robustness structures are also (k + 1)-robustness structures, for the
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a) b) c) d)

Figure 3. The four symmetry classes of maximal 2-robustness
structures of three binary inputs, see Example 27.

Figure 4. A maximal 3-robustness structure for four binary inputs.

Figure 5. The 2-robustness structure from Example 28. The graph
G2 is the graph of a hypercube of dimension four, where diagonals
have been added to the two-dimensional faces. Only the edges of
G2 that connect vertices of Hamming distance one are shown, and
the edges of G2,∪B. The two blocks are marked in green and red.

following reason: If B is a k-robustness structure and S = ∪B, then Gk+1,S may
have more connected components than Gk,S.

Example 28. Consider n = 4 binary random variables X1, . . . , X4. Then

B := {{(1, 1, 1, 1), (2, 2, 1, 1)}, {(1, 2, 2, 2), (2, 1, 2, 2)}}

is a maximal 2-robustness structure. Both elements of B are connected in G2, but
not in G3, see Fig. 5.

Nevertheless, the notions of l-robustness and k-robustness for l > k are related as
follows:

Lemma 29. Assume that d1 = · · · = dn = 2, and let B be a maximal k-robustness
structure of binary random variables. Then each B ∈ B is connected as a subset of
Gs for all s ≤ n − 2k + 1.

Proof. We can identify elements of Xin with binary strings of length n. Denote by
Ir the string 1 . . . 10 . . . 0 of r ones and n − r zeroes in this order. Without loss of
generality assume that I0, Il are two elements of B ∈ B, where k ≤ n − l < s ≤
n− 2k + 1. Then l ≥ 2k, and hence b l

2c ≥ k. Let m = d l
2e. We will prove that we can

replace B by B∪ {Im} and obtain another k-robustness structure. By maximality this
will imply that I0 and Il are indeed connected by a path in Gs.

Otherwise there exists A ∈ B, A , B, and x ∈ A such that x and Im agree in at
least k components. Let a be the number of zeroes in the first m components of x, let
b be the number of ones in the components from m + 1 to l and let c be the number
of ones in the last n − l components. Then Im and x disagree in a + b + c ≤ n − k
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components. On the other hand, x and I0 disagree in (m − a) + b + c components,
and x and Il disagree in a + ((l−m)− b) + c ≤ a + (m− b) + c components. Assume
that a ≥ b (otherwise exchange I0 and Il in the following argument). Then x and I0
disagree in at most m + c ≤ d l

2e + n − l = n − b l
2c ≤ n − k components, so A ∪ B is

connected, in contradiction to the assumptions. �
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