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Abstract. We quantify the relationship be-

tween the dynamics of a particular time-
discrete dynamical system, the tent map,

and the induced dynamics at a symbolical
level in information theoretical terms. The

symbol dynamics is obtained by choosing

a partition point α ∈ [0, 1] and lumping
together the points in the intervals [0, α]

or (α, 1], resp. Interpreting the original

dynamics and the symbolic one as differ-
ent levels, this allows us to quantitatively

evaluate and compare various closure mea-

sures that have been proposed for identi-
fying emergent macro-levels of a dynami-

cal system. In particular, we can see how

these measures depend on the choice of the
partition point α, with α = 2

3
yielding a

minimum. Also, when we study the iter-
ated tent map, i.e., probe more time steps,

we get more refined insights into this rela-

tionship between the two levels, and even
a whole hierarchy of mesoscopic levels.

1. Introduction

Consider a dynamical system T : X → X on a
probability space X with measure µ where T can be
a measurable map, a Markov kernel, etc. Suppose we
have an operator φ : X → X̂ – for instance a coarse-
graining, aggregation, averaging, etc. – of the lower,
microscopic level X onto an upper level X̂. As the
dynamics evolves on the lower level, an induced dy-
namics can be observed on the upper state space X̂.
We say that the upper level is closed if it can be also
represented by a dynamical system: there is a mea-
surable map, a Markov kernel, etc. T̂ : X̂ → X̂ such
that φ ◦ T = T̂ ◦ φ. The maps φα may correspond to

X̂ X̂

X X

T̂

T

φ φ

Figure 1. Basic setup of multilevel dynamical system.

operations like coarse-graining, aggregation, averag-
ing etc., and X and X̂ represent, respectively, micro-
scopic and macroscopic state spaces. Furthermore,
the maps φα, with their scalar parameter α ≥ 0, re-
fer to different scales where the coarse-graining, etc.
is carried out. We characterize a relevant scale as one
where special structural or dynamical regularities can
be detected.
Closure measures provide a link between the two con-
cepts of “levels” and “scales” because they should
allow us to identify emergent levels, i.e scales for
which a(n approximately) closed description exists,
by means of quantifying to which extent the induced
system deviates from being closed. The following clo-
sure measures have been proposed so far:
Informational closure: In [11] we called the higher
process to be informationally closed, if there is no
information flow from the lower to the higher level.
Knowledge of the microstate will not improve predic-
tions of the macrostate, i.e for st = φα(xt) we have
(1.1)
I(st+1 : xt|st) = H(st+1|st)−H(st+1|st, xt) = 0 ,

where I denotes the conditional mutual information,
and H the entropy.
The entropy of a random variable Y : X → R on a
probability space X with measure µ is defined by

H(Y ) = −
∑
y

p(y) log(p(y))

where p(y) = µ(Y = y) denotes the distribution on R
induced by Y – the probability mass function of Y .
We use logarithms to base 2. The entropy will then
be measured in bits. The entropy is a measure of the
average uncertainty in the random variable.
Conditional entropy H(Z|Y ) for two random vari-
ables Z and Y with conditional distribution p(z|y) is
defined as

H(Z|Y ) = −
∑
y

p(y)
∑
z

p(z|y) log(p(z|y)) ,

which is the average uncertainty of a random variable
Z conditional on the knowledge of another random
variable Y .
The reduction in uncertainty due to another random
variable is called the mutual information

I(Z : Y ) = H(Z)−H(Z|Y ) .

The mutual information I(Z : Y ) is a measure of the
dependence between the two random variables. It is
symmetric in Z and Y and always non negative and is
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equal to zero if and only if Z and Y are independent,
see [4].
Markovianity: In [13] Shalizi and Moore, and in [7]
Görnerup and Jacobi proposed Markovianity of the
upper process st → st+1 as a property of an emergent
level. In this case st+2 is independent of st given
st+1, which can be expressed again in terms of the
conditional mutual information as

(1.2) I(st : st+2|st+1) = 0 .

Hence, it is reasonable to measure the deviation of
the process from being Markovian by means of the
conditional mutual information Eq. (1.2).
Predictive Efficiency: In his PhD thesis Shalizi [12]
proposed to measure the“predictive efficiency”to iden-
tify emergent levels. A relevant scale would corre-
spond to a description with a high predictive effi-
ciency. The basic idea behind predictive efficiency
is to quantify the trade-off between state complexity
and predictive information. Or in other words — how
much predictability one gains by increasing the state
space. We will discuss two possibilities to define the
predictive efficiency formally: On the one hand the
ratio between the excess entropy [5], and statistical
complexity [6] — this is also the measure proposed
by Shalizi [12]. 1 On the other hand we will consider
a variational functional that can be related to the in-
formation bottleneck method introduced in [15].

Whereas our previous paper [11] was dedicated to
uncover different notions of closure 2 and their inter-
dependencies in general, in this paper we focus on
the explicit computation of the three closure mea-
sures listed above for the dynamical system induced
by the tent map. More precisely, we set X = [0, 1] to
be the unit interval endowed with the Lebesgue mea-
sure, the unique ergodic measure on X with respect
to the tent map

T (x) =

{
2x if 0 ≤ x ≤ 1/2
2− 2x else

,

1Note that the excess entropy is also known under the

names effective measure complexity [8] or predictive informa-

tion [3] while the statistical complexity was also introduced as
true measure complexity [8] or forecast complexity [16].

2Beside the already mentioned notions of closure we de-

fined the one we called “observational commutativity”. But

due to theorem 4.1 in [11] is equivalent to informational clo-

sure Eq. (1.1) if the coarse-graining φα : X → X̂ is determin-

istic. This is the case if one aggregates all points contained in
the interval [0, α] or (α, 1], respectively. Therefore, we skipped

mentioning a corresponding closure measure in the main text.

with full support, and for an α ∈ [0, 1] we define

φα : X → X̂ = {0, 1} as

φα(x) =

{
0 if 0 ≤ x ≤ α
1 else

.

So, from the sequence xn = Tn(x), for an initial value
x ∈ X, one obtains a derived symbol dynamics sn =
φα(xn) ∈ {0, 1} and the probability of finding sn in
the state 0 is given by the probability that xn lies in
the interval [0, α] which is equal α.

0 1

1

x

T
Hx

L

Figure 2. The graph of the tent map has its peak at 1/2

and intersects the diagonal at 2/3

In the present paper we proceed as follows. Firstly,
we compute the joint probability of one consecutive
time step in the macrostate, i.e we compute the prob-
ability distribution p(sn+1, sn) for all α ∈ [0, 1]. This
allows us to compute Eq. (1.1) the information flow
from the lower to the upper level for all α. It turns
out that Eq. (1.1) has a local minimum in α = 2/3,
i.e the point where the tent map intersects the diago-
nal. This might be related to the fact that for sn = 1
we have 2/3 ≤ xn hence xn+1 = T (xn) ≤ 2/3 and
therefore always sn+1 = 0, i.e the successor state of
sn = 1 is always 0. This fact was used in [2] to dis-
tinguish the symbol dynamics generated by the tent
map from a purely random one. Furthermore, we
compute a first order approximation of the predictive
efficiency given as the ratio of the one step mutual
information and the state entropy, and in addition
the variational functional related to the information
bottleneck method.
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Secondly, we determine for all α ∈ [0, 1] the joint
probability p(sn+2, sn+1, sn) of two consecutive time
steps in the macrostate which leads us to the compu-
tation of Eq. (1.2) as function in α ∈ [0, 1], with the
result that beside the well known Markovianity of the
symbol dynamics obtained from the choice α = 1/2
as partitioning point, also α = 2/3 yields a Markov-
ian symbol dynamics.
Next, we move to the general case of arbitrary many
time steps and investigate for which choices of the
partitioning point α one obtains forbidden sequences
of a certain length. We have already mentioned that
for 0 < α < 2/3 every sequence of length two may
occur. Beside this property, 0 and 2/3 are the two
fix points of the tent map. This observation leads
to a generalization: Let us denote with p0 the great-
est m-periodic point of the tent map, i.e m is the
smallest integer such that Tm(p0) = p0, smaller 1/2
and p1 the smallest m-periodic point of the tent map
bigger than 1/2. Then for all partitioning points
α ∈ (p0, p1) all sequences of length ≤ m+ 1 may oc-
cur. Furthermore, we prove that this result is closely
related to the solution of the problem to find parti-
tioning points α such that the dynamics of the ex-
tended states (sn+m, . . . , sn) turns out to be Mar-
kovian. We prove that this is the case for all m + 1-
periodic points of the tent map contained in the inter-
val (p0, p1). This result provides a countable amount
of partitioning points whose aggregations lead to a
Markovian dynamics, at least on an extended state
space. We conclude with a brief study of possible
aggregations of states within these extended state
spaces which lead again to a Markovian dynamical
system. “Possible” in the sense of two different points
of view: Firstly, the Markovian dynamics on the ag-
gregated states leads to a closed description men-
tioned previously, i.e such that the diagram Fig. (1)
commutes. Secondly, instead of obtaining a closed de-
scription we look for aggregations such that the par-
tition of the unit interval is a Markovian partition.
That the first aspect differs from the second one is
shown by a simple example coming from the Mar-
kovian dynamics induced by the partitioning point
α = 2/5.

2. One time step

We adopt the previous notation: xn ∈ X = [0, 1]
denotes a microstate of the system, sn = φα(xn) ∈
X̂ = {0, 1} the corresponding macrostate which de-
pends on the choice of the partition point α ∈ [0, 1].

With p we denote the distribution induced on X̂ by
the aggregation map φα and the uniform Lebesgue
measure λ on X, which yields p(0) = λ([0, α]) = α

α ≤ 2/3 α > 2/3
p(0, 0) α/2 2α− 1
p(1, 0) α/2 1− α
p(0, 1) α/2 1− α
p(1, 1) 1− 3/2α 0

Table 1. The joint probabilites p(sn+1, sn) for one time

step.

and p(1) = 1−α, respectively. In the present section
we compute the joint distribution of one time step,
i.e p(sn+1, sn).
The joint distribution induces a partition A, consist-
ing of at most four sets, of the unit interval X = [0, 1]
via

Aε1ε0 = {x ∈ X : (φα(x), φα ◦ T (x)) = (ε1, ε0)} ,

with ε0, ε1 ∈ {0, 1}. Let be γ0 = α/2 and γ1 = 1−α/2
the two preimages of α with respect to the tent map,
i.e T (γ0,1) = α. One checks easily that the partition
sets Aε1ε0 ∈ A are unions of intervals whose end-
points are contained in the set {0, 1, α, γ0, γ1}. This,
and some combinatorial considerations, yields the fol-
lowing values for the joint distribution p(ε1, ε0) =
λ(Aε1,ε0), see table 1. This enables us to compute
the complexity measures mentioned in the introduc-
tion. We start with the entropy. For α ≤ 2/3 we
have

H(sn) =− α log(α)− (1− α) log(1− α)

H(sn+1, sn) =− 3/2α log(α/2)

− (1− 3/2α) log(1− 3/2α)

The conditional entropy becomes

H(sn+1|sn) =H(sn+1, sn)−H(sn)

=3/2α− α/2 log(α) + (1− α) log(1− α)

− (1− 3/2α) log(1− 3/2α)

and the mutual information turns out to be

I(sn+1, sn) =H(sn+1)−H(sn+1|sn)

=− 3/2α− α/2 logα

− 2(1− α) log(1− α)

+ (1− 3/2α) log(1− 3/2α)

For α > 2/3 we have

H(sn) =− α log(α)− (1− α) log(1− α)

H(sn+1, sn) =− (2α− 1) log(2α− 1)

− 2(1− α) log(1− α)
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The conditional entropy becomes

H(sn+1|sn) =− (2α− 1) log(2α− 1) + α log(α)

− (1− α) log(1− α)

and the mutual information

I(sn+1, sn) = −2α logα+ (2α− 1) log(2α− 1)

2.1. Informational flow. The information flow be-
tween the micro-level corresponding to state xn and
the coarse-grained level sn is defined by the condi-
tional mutual information

I(sn+1 : xn|sn) = H(sn+1|sn)−H(sn+1|sn, xn) .

Since sn+1 is fully determined by xn, the second term
vanishes and we have

I(sn+1 : xn|sn) = H(sn+1|sn) ,

i.e. the information flow is equal to the conditional
entropy on the coarse grained level, which has a local
minimum in α = 2/3.

0 1

1

Α

b
it

IH sn +1 ,snL
HH sn +1È snL

Figure 3. Conditional entropy and mutual information as
functions of the partition parameter α. maximum and min-
imum turn out to be in 1/2 and 2/3.

2.2. Prediction efficiency. Prediction efficiency tries
to quantify the trade-off between the size of the state
space - measured by its entropy - and the correspond-
ing mutual information between the state and the
future. Here we restrict ourselves to a first order ap-
proximation using only the one-step mutual informa-
tion instead of the full predictive information. Nev-
ertheless, both are equal if the system is Markovian.

Moreover, we use the entropy of the given state in-
stead of the entropy of the causal states [6]. Subject
to these assumptions we quantify predictive efficiency
in two different ways. On the one hand as the ratio

(2.1) PE1(α) =
I(sn+1, sn)

H(sn)
,

a proxy of prediction efficiency [12] based on the one
step mutual information, or on the other hand as a
variational functional

(2.2) PE2(α, β) = I(sn+1, sn)− βH(sn)

corresponding to the information bottleneck method
[15]. Since sn = φα(xn), we have H(sn) = I(sn, xn)
and can interpret sn as the bottleneck variable which
strives to extract the information xn contains about
sn+1. Here, the additional parameter β acts as a
Lagrangian multiplier which adjusts the tradeoff be-
tween preserving information about sn+1 and reduc-
ing information about xn. One should observe that
for β = 0 the term (2.2) concurs with the mutual in-
formation and for β = 1 with the negative conditional
entropy.

In general, depending on the tradeoff parameter
β a different coarse graining α could be an optimal
information bottleneck. But in the case of the tent
map, α = 2/3 is a local maximum in any case (see
Fig. 5).

0 1

0.5

Α

Figure 4. Predictive efficiency (2.1) as function of the par-
tition parameter α. The values α = 1/2, 2/3 are labeled.

From the analytical expressions for the mutual in-
formation I(sn+1, sn) and the entropy H(sn) of the
macrostate space one verifies the values PE1(0) =
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1/2, PE1(1/2) = 0 and that the function (2.1) has a
local maximum in α = 2/3.

0 1

1

Α

Β

Figure 5. Predictive efficiency (2.2) as function of the par-

tition threshold α and the parameter β as a contour plot
where brighter colors indicate increasing values. The iso-

clines vary from 0.2, 0.1, . . ., −0.8

3. Two Time Steps

We tackle the problem to check when the macro-
level process sn → sn+1 is Markovian. Markovianity
holds if the term I(sn, sn+2|sn+1) in Eq. (1.2) van-
ishes, and the deviation from 0 measures to which
extent the symbol dynamics drifts away from being
Markovian. To compute the mutual information term
a further refinement of the partition is needed, in-
duced by the joint distribution p(sn+2, sn+1, sn) of
two consecutive time steps. Assembling all sets
(3.1)
Aε2ε1ε0 =

{
x ∈ X : φα ◦ T i(x) = εi, i = 0, 1, 2

}
with ε0, ε1, ε2 ∈ {0, 1} and T 0 = id[0,1], yields this
partition. Analogously to the one time step , we
need to compute the preimage {γ00, γ01} of γ0 and
the preimage {γ10, γ11} of γ1 and obtain

γ00 = α
4 γ01 = 1− α

4
γ10 = 1

2 −
α
4 γ11 = 1

2 + α
4

Again, the sets Aε2ε1ε0 of the partition are unions
of intervals whose endpoints are contained in the set
{0, 1, α, γ0, γ1, γ00, γ01, γ10, γ11}. Some combinatorics
yields the values of the joint distribution p(ε2, ε1, ε0) =

0 < α < 2/5 2/5 < α < 2/3
p(0, 0, 0) α/4 α/4
p(1, 0, 0) α/4 α/4
p(0, 1, 0) 0 5/4α− 1/2
p(1, 1, 0) α/2 1/2− 3/4α
p(0, 0, 1) α/4 α/4
p(1, 0, 1) α/4 α/4
p(0, 1, 1) α/2 1/2− 3/4α
p(1, 1, 1) 1− 2α 1/2− 3/4α

2/3 < α < 4/5 4/5 < α < 1
p(0, 0, 0) 7/4α− 1 3α− 2
p(1, 0, 0) α/4 1− α
p(0, 1, 0) 1− α 1− α
p(1, 1, 0) 0 0
p(0, 0, 1) α/4 1− α
p(1, 0, 1) 1− 5/4α 0
p(0, 1, 1) 0 0
p(1, 1, 1) 0 0

Table 2. The joint probabilities p(sn+2, sn+1, sn) for two

consecutive time steps

λ(Aε2ε1ε0) which are listed in tabel 2.
We can decompose the mutual information Eq. (1.2)

I(sn,sn+2|sn+1)

=H(sn+2|sn+1)−H(sn+2|sn, sn+1)

=H(sn+2, sn+1)−H(sn+1)−H(sn+2, sn+1, sn)

+H(sn+1, sn)

=2H(sn+1, sn)−H(sn+2, sn+1, sn)−H(sn) ,

where the last step follows from the stationarity of the
process which ensures H(sn+2, sn+1) = H(sn+1, sn)
and H(sn+1) = H(sn). The previously computed
joint distributions for the one- and two-step leads us
to the following analytical expressions for the mutual
information.
0 < α < 2/5.

I(sn, sn+2|sn+1) = −(2− 3α) log(1− 3/2α)

+ (1− 2α) log(1− 2α) + (1− α) log(1− α)

2/5 < α < 2/3.

I(sn, sn+2|sn+1) = −3α log(α/2)

− (2− 3α) log(1− 3/2α) + α log(α/4)

+ (5/4α− 1/2) log(5/4α− 1/2))

+ (3/2− 9/4α) log(1/2− 3/4α)

+ α log(α) + (1− α) log(1− α)
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2/3 < α < 4/5.

I(sn, sn+2|sn+1) = −2(2α− 1) log(2α− 1)

− 2(1− α) log(1− α) + α/2 log(α/4)

+ (7/4α− 1) log(7/4α− 1) + α log(α)

+ (1− 5/4α) log(1− 5/4α)

4/5 < α < 1.

I(sn, sn+2|sn+1) = −2(2α− 1) log(2α− 1)

+ (3α− 2) log(3α− 2) + α log(α)

0 1

0.15

Α

b
it

Figure 6. The mutual information Eq. (1.2) as a function

of the partition parameter α. The values α = 1/2, 2/3 are
labeled.

As one can read of the graphic, and also check
analytically, the mutual information Eq. (1.2) is zero
when α = 1/2 and α = 2/3, hence the symbol dynam-
ics coming from these choices of the partition point
are Markovian. For α = 2/3, the Markov kernel of

the upper process T̂ : X̂ → X̂ is described by the
2× 2-matrix (p(ε0|ε1))ε0,ε1∈{0,1}

(3.2)

(
1/2 1/2
1 0

)
.

If one considers the microstate dynamics T : X → X
induced by the deterministic tent map also as Mar-
kovian process, one could ask whether the micro and
macro processes commute. Is the distribution p on X̂
induced by φ2/3◦T , i.e the push forward (φ2/3◦T )∗(λ)

of the Lebesgue measure λ of X = [0, 1] onto X̂ =

{0, 1}, the same induced by T̂ ◦ φ2/3? Since λ is T -
invariant we obtain on the one hand

(φ2/3◦T )∗(λ) = φ2/3∗ ◦T∗(λ) = φ2/3∗(λ) = (2/3, 1/3)

where the notation (2/3, 1/3) means p(0) = 2/3 and
p(1) = 1/3. On the other hand, we get

(T̂ ◦ φ2/3∗)(λ) = T̂∗ ◦ φ2/3∗(λ)

= T̂∗(p)

= (2/3, 1/3)

(
1/2 1/2
1 0

)
= (2/3, 1/3)

and commutativity T̂ ◦ φ2/3 = φ2/3 ◦ T in the sense
of weak lumpability is proven. Hence, due to the dis-
cussion in the introduction, the macroscopic process
T̂ : X̂ → X̂ is a closed description.
Local maxima are localized at the new thresholds 2/5
and 4/5 for the partition parameter α, where further
forbidden sequences occur, as one can read off the
upper table for the joint distribution: If α < 2/5 the
sequence 010 cannot occur, and for 4/5 < α the se-
quences 110, 101, 011, and 111 vanish. Furthermore,
there is a local maximum in 0.628174.

4. More time steps

In this section we want to assemble some general
results on the dynamics of the extended states

(sn+m, sn+m−1, . . . , sn) ,

with

sk(x) =

{
0 if T k(x) < α
1 if T k(x) ≥ α ,

for k ∈ N and a partitioning point α ∈ [0, 1]. In the
definition T k means the k-times iterated tent map
which is defined piecewise.
(4.1)

T k(x) =


2kx− l if x ∈

[
l

2k
,
l + 1

2k

]
l + 2− 2kx if x ∈

[
l + 1

2k
,
l + 2

2k

]
for l = 0, 2, 4, . . . , 2k − 2. The k-times iterated tent
map T k consists of k-copies of the ordinary tent map
T and has 2k − 1 intersection points with the diago-
nal different from zero. I.e. there are 2k − 1 points
0 < p1 < . . . < p2k−1 < 1 such that T k(pi) = pi. For
the cases k = 2, 3 we plotted the graph of T k. In the
sequel we pursue two different goals: first, we inves-
tigate for which choices of α forbidden sequences of a
certain length appear; second, we determine a count-
able set of periodic partitioning points whose induced
extended state dynamics turns out to be Markovian.
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Figure 7. The 2-times iterated tent map. The intersections

with the diagonal mark the 2-periodic points of the tent map.

0 1

1

x

T
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Hx
L

Figure 8. The 3-times iterated tent map. The intersections

with the diagonal mark the 3-periodic points of the tent map.

4.1. Forbidden sequences. Previously, we observed
that for certain thresholds of the partitioning point
α forbidden sequences may occur. If α ≥ 2/3, the
symbol sn = 1 cannot followed by sn+1 = 1. Hence,
the sequence 11 does not occur in the derived sym-
bol dynamics. Analogous results hold true for other

thresholds if one has a look at the extended state dy-
namics given by two consecutive time steps. One can
read off the table in the third section that only for
a choice α ∈ (2/5, 2/3) all sequences of length three
have a probability different from zero to occur, i.e.
the measure of all sets in Eq. (3.1) is different from
zero.

Definition 4.1. Let α ∈ [0, 1], m ∈ N0, a ∈ {0, 1}m+1

be an m+1-tupel with entries consisting of 0’s or 1’s.
We define

(4.2) T m =

m⋃
k=0

T−k(α) ∪ {0, 1} .

T m is the union of all preimages of α under the it-
erated tent T k, with k = 0, . . . ,m, including {0, 1},
where T 0 = id[0,1] denotes the identity map on [0, 1].
Furthermore, we define
(4.3)
Aa =

{
x ∈ [0, 1] : φα ◦ T k(x) = ak; k = 0, . . . ,m

}
\T m

with a = (am, . . . , a1, a0).

Lemma 4.1. The set Aa, for a ∈ {0, 1}m+1, is the
interior of the domain

Da = {x ∈ [0, 1] : (φα ◦ Tm(x), . . . , φα(x)) = a}

of the symbol sequence a – i.e. the biggest open set
contained in the domain. Furthermore, Aa is a finite
union of open intervals whose boundary points are
contained in the set T m and we have

(4.4) [0, 1] \ T m =
⋃

a∈{0,1}m+1

Aa .

In addition, the family of sets

A = {Aa : a ∈ {0, 1}m, Aa 6= ∅}

is a partition of the unit interval almost sure.

Proof. The preimage T−k(α) consists of 2k points.
We refer to this points with respect to their total
order

0 < αk1 < αk2 < . . . < αk2k−1 < αk2k < 1 .

Then

0 = φα ◦ T k(x) ⇔ x ∈
2k−1−1⋃
j=1

(αk2j , α
k
2j+1)

∪
[
0, αk1) ∪ (αk2k , 1

]
1 = φα ◦ T k(x) ⇔ x ∈

2k−1⋃
j=1

[
αk2j−1, α

k
2j

]
.(4.5)
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The domain Da of the sequence a = (am, . . . , a0) is
the finite section

m⋂
k=0

(
φα ◦ T k

)−1
(ak)

of sets given by Eq. (4.5). Intersecting two intervals
is an interval again. Thus, Da consists of an union
of intervals whose boundary points are contained in
T m and Aa is the interior, that is the biggest open
set contained in Da.
Finally, let a = (φα ◦Tm(x), . . . , φα(x)) ∈ {0, 1}m for
an x ∈ [0, 1]. We obtain x ∈ Da. Clearly, we have
Da ∩Db = ∅ for a 6= b, with a, b ∈ {0, 1}m. Thus

[0, 1] =
⋃

a∈{0,1}m+1, Da 6=∅

Da

is a partition of the unit interval. Since the union of
the sets Aa differs from the one of the sets Da by T m,
the proof is done. �

Proposition 4.2. Let be m ≥ 2 and α < 1/2 a par-
titioning point such that there are no forbidden se-
quences up to length m+ 1 then 2m−1/(2m + 1) < α.

Proof. From induction one obtains that

A(0, . . . , 0)︸ ︷︷ ︸
m−1−times

= (0, α/2m−2) .

From this follows that

A(0, . . . , 0, 1)︸ ︷︷ ︸
m−times

= (1− α/2m−1, 1) ,

because 1−α/2m−1 is the maximal element in T m−1,
since it is the maximum of all preimages of α under
Tm−1. But 1− α/2m−1 has the two preimages

η0 =
1

2
− α

2m
η1 =

1

2
+

α

2m
.

If one wants A(0, . . . , 0, 1, 0)︸ ︷︷ ︸
m+1−times

6= ∅ one needs η0 < α

which yields

1

2
− α

2m
< α⇔ 2m−1

2m + 1
< α .

�

Proposition 4.2 gives a necessary condition for the
partitioning point α to be sure that every possible
sequence of length m + 1 may occur in the symbol
dynamics derived from this choice of α. It turns out
that this condition is also sufficient. But before we
prove this, we need the following lemmata.

Lemma 4.3. Let be m ≥ 2. Then

α =
2m−1

2m + 1

is the biggest m-periodic point less than 1/2.

Proof. We need to find the biggest solution x0 of the
equation Tm(x) = x such that x0 < 1/2. Inserting
k = m and l = 2m−1 − 2 into Eq. (4.1) shows that
x0 is contained in the interval

[
(2m−1 − 1)/2m, 1/2

]
and Tm(x) = 2m−1 − 2mx. Hence, we need to solve
the equation

x0 = 2m−1 − 2mx0 ⇔ x0 =
2m−1

2m + 1

and the proof is done. �

Lemma 4.4. Let be m ≥ 1, 2m−1/(2m + 1) < α <
1/2, and 0 ≤ l ≤ m. Then T−i(α) ∩ T−j(α) = ∅ for
all 0 ≤ i < j ≤ m, and the cardinality of the set T l,
defined by Eq. (4.2), is 2l+1 + 1.

Proof. From Eq. (4.1) one obtains that the cardinal-
ity of the preimage T−k(α) is 2k. Furthermore, for
all 0 ≤ i < j ≤ m we have T−i(α) ∩ T−j(α) = ∅.
Otherwise, there is an x ∈ T−i(α) ∩ T−j(α) and
we obtain T i(x) = T j(x) = α. From this follows
α = T j(x) = T j−i(T i(x)) = T j−i(α). Therefore,
α < 1/2 is a periodic point with period n = j−i ≤ m.
Then from lemma 4.3 follows

α ≤ 2n−1/(2n + 1) ≤ 2m−1/(2m + 1) ,

a contradiction. Since |T−k(α)| = 2k for all 1 ≤ k ≤
m, the set T l consists of 2 +

∑l
k=0 2k = 2l+1 + 1

different points. �

Lemma 4.5. Let be m ≥ 1 and 2m−1/(2m+1) < α <
1/2. The maximum of the finite set T m−1 \ {0, 1} is

1− α/2m−1 .

Proof. Firstly, we show that 1 − α/2m−1 ∈ T m−1 \
{0, 1}. We have Tm−2(α/2m−2) = α which proves
α/2m−2 ∈ Tm−2(α). But the two preimages of α/2m−2

under the tent map T are α/2m−1 and 1 − α/2m−1

and 1−α/2m−1 ∈ Tm−1(α) ⊂ T m−1\{0, 1} is proven.
Secondly, we assume the existence of an x ∈ T m−1 \
{0, 1} such that 1 − α/2m−1 < x. From this and
2m−1/(2m + 1) < α follows 2m/(2m + 1) < x. We
have

2m

2m + 1
− 2k − 1

2k
≥ 2m

2m + 1
− 2m − 1

2m

=
1

2m(2m + 1)
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and therefore x ∈
(
2k − 1/2k, 1

]
for all k = 1, . . . ,m.

From Eq. (4.1) follows for 1 ≤ k ≤ m

T k(x) = 2k − 2kx = 2k(1− x)

≤ 2m(1− x) < 2m
(

1− 2m

2m + 1

)
=

2m

2m + 1
.

But x ∈ T m−1\{0, 1} and thus there is a k ∈ {1, . . . ,m}
such that T k(x) = α > 2m−1/(2m + 1) – a contradic-
tion. �

Corollary 4.6. For m ≥ 1, 2m−1/(2m + 1) < α <
1/2 and η ∈ T m−1\{0, 1} we have η0 < α < 1/2 < η1

with {η0, η1} = T−1(η).

Proof. From lemma 4.5 follows η ≤ 1− α/2m−1. We
have

η0 = η/2 ≤ 1

2
− α

2m

<
1

2
− 1

2

1

2m + 1

=
2m−1

2m + 1
< α .

Whereas η1 = 1−η/2 > 1/2 follows immediately. �

Definition 4.2. Let be Λ ⊂ [0, 1] a discrete (and
therefore finite) subset of the unit interval. Suppose
x ∈ Λ. If the set

{y ∈ Λ : x < y}

is not empty, we call its infimum the successor of x
in Λ.

Theorem 4.7. Let be m ≥ 1, 2m−1/(2m + 1) < α <
1/2 and a ∈ {0, 1}k a k-tupel with k ≤ m + 1. Then
the interior Aa of the domain of the symbol sequence
a consists of a single interval (x1, x2), with x1, x2 ∈
T k−1, and x2 is the successor of x1 in the set T k−1.
In particular, the symbol dynamics has no forbidden
sequences of length k ≤ m+ 1.

Proof. Proof by induction over k ≤ m. For k = 1
we have A0 = (0, α) and A1 = (α, 1). For k = 2 one
checks immediately that

A(0,0) = (0, α/2), A(0,1) = (α/2, α),

A(1,1) = (α, 1− α/2), A(1,0) = (1− α, 1) .

Let the assumption hold true for k ∈ {2, . . . ,m}.
We prove that for all a ∈ {0, 1}k the intersection
Aa ∩ T−k(α) consists only of a single element.
Let us assume the opposite. Then there are two dif-
ferent cases: firstly, there is an a ∈ {0, 1}k such that
Aa∩T−k(α) = ∅; secondly, it exists a b ∈ {0, 1}k such

that Ab ∩ T−k(α) consists of more than only one ele-
ment. Let us assume the first case. Due to the induc-
tion hypothesis we have 2k nonempty sets Aa, with
a ∈ {0, 1}k, such that [0, 1]\T k−1 =

⋃
a∈{0,1}k Aa, see

lemma 4.1. We have |T−k(α)| = 2k and from lemma
4.4 we know T−k(α)∩ T k−1 = ∅. Hence, by a simple
counting argument we obtain that there must be an
element b ∈ {0, 1}k such that the set Ab ∩ T−k(α)
has more then two elements, and we reduced the first
to the second case. Therefore, without loss of gen-
erality we can assume that there is a b ∈ {0, 1}k
and η0, η1 ∈ T−k(α), where η1 is the successor of
η0 in the set T−k(α), with η0, η1 ∈ Ab = (x1, x2) for
xi ∈ T k−1. We need to distinguish three different
cases.
1. x1 < α: Then we have T (xi) = 2xi and T (ηi) =
2ηi. We obtain T (x1) < T (η0) < T (η1) < T (x2),
with (T (x1), T (x2)) ⊂ Ab̂ = (x3, x4) and the sequence

b̂ = (bk−1, . . . , b1) whenever b = (bk−1, . . . , b1, b0) and
x3, x4 ∈ T k−2. Furthermore, T (η1) is the succes-
sor of T (η0) in T k−1. Otherwise, there is an x0 ∈
T k−1 with T (η0) < x0 < T (η1), and this implies
η0 < x0/2 < η1, with x0/2 ∈ T k – a contradic-
tion because we assumed that η1 is the successor
of η0 in T k. Let denote with x5 the predecessor
of T (η0) in the set T k−1, which is greater or equal
x3, and with x6 the successor of T (η1) in the set
T k−1, which is less or equal x4. Then for all x ∈
(x5, T (η0))∪(T (η1), x6) we have φα◦T k−1(x) = ε, and
for all x ∈ (T (η0), T (η1)) we get φα ◦ T k−1(x) = ε +
1 mod 2. We define bε = (ε, bk−1, . . . , b1) ∈ {0, 1}k.
Thus, we get (x5, T (η0)) ∪ (T (η1), x6) ⊂ Abε and
(T (η0), T (η1)) ∩ Abε = ∅. Hence, Abε is not longer
an interval. But this is a conflict with the induction
hypothesis.
2. x1 = α: From corollary 4.6 we know 1/2 < η0, η1.
Furthermore, the successor x2 of x1 = α in T k−1 is
equal α/(2k−1) + 1/2, and one obtains

T (α)− T (x2) = 2α+ 2x2 − 2 = 2α+
α

2k−2
+ 1

= α
1 + 2k−1

2k−2
− 1 >

2m−k+1(1 + 2k−1)

2m + 1
− 1

=
2m−k+1 + 2m − 1− 2m

2m + 1
≥ 1

2m + 1
.

This proves T ((α, x2)) = (T (x2), 1], with T (x2) <
T (η1) < T (η0) < 1. Then, for all x ∈ (T (x2), T (η1))∪
(T (η0), 1) we have φα ◦ T k−1(x) = ε, and for all x ∈
(T (η0), T (η1)) we get φα ◦ T k−1(x) = ε + 1 mod 2,
and reasoning in the same way as in the previous
case yields a contradiction as well.
3. α < x1: Also this case leads to a contradiction in
an analogous way as in the first case if one reverses
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the inequality signs there.
Induction yields that for every a = (ak−1, . . . , a0) ∈
{0, 1}k, with k ≤ m, there is exactly one element x3

in the preimage T−k(α) contained in Aa = (x1, x2).
This yields φα ◦ T k(x) = ε for all x ∈ (x1, x3), φα ◦
T k(x) = ε+ 1 mod 2 for all x ∈ (x3, x2),

Aaε = (x1, x3)

with (ε, ak−1, . . . , a0), and

Aaε+1 = (x3, x1)

with aε+1 = (ε+ 1 mod 2, ak−1, . . . , a0). �

Remark 4.1. Due to a symmetry argument one can
repeat all the previous considerations also for the
choice

α ∈
(

1

2
,

2m−1

2m − 1

)
,

obtaining the same result – no forbidden sequences of
length less or equal m+ 1 do occur and vice versa.
Furthermore, it is well known that α = 1/2 gives us
a generating partition. Hence, also for this choice no
forbidden sequences of any length can appear.

We can combine proposition 4.2, theorem 4.7 and
remark 4.1 to get the following final result of this
subsection.

Theorem 4.8. For m ≥ 2 the symbol dynamics sn
has no forbidden sequences up to length m+ 1 iff

α ∈
(

2m−1

2m + 1
,

2m−1

2m − 1

)
.

4.2. Markovianity. In the sequel we study the prob-
lem for which choices of the partitioning point α the
dynamics of the extended states (sn+m, . . . , sn) turns
out to be Markovian. From lemma 4.1 we know that
the family of sets

(4.6) A = {Aa : a ∈ {0, 1}m, Aa 6= ∅} ,

where the sets Aa are defined by Eq. (4.3) for all
a ∈ {0, 1}m, is a partition of the unit interval almost
sure.

Definition 4.3. We call the partition A of Eq. (4.6)
Markovian if for every a ∈ {0, 1}m+1, with Aa 6= ∅,
there is an index set Ia ⊂ {0, 1}m+1 such that

T (Aa) =
⋃
b∈Ia

Ab a.s.

Lemma 4.9. If the partition A given by Eq. (4.6)
is Markovian, the dynamics of the extended states
(sn+m, . . . , sn) is Markovian as well.

Proof. An immediate corollary of theorem 6.5 of Roy
L. Adler’s work [1]. �

It turns out that the Markov property of the par-
tition in Eq. (4.6) is closely related to the one of no
forbidden sequences.

Lemma 4.10. Let

α ∈
(

2m−1

2m + 1
,

2m−1

2m − 1

)
and a ∈ {0, 1}m+1 such that we have Aa = (x1, x2),
with x1, x2 ∈ T m \ {α}. Then exists an index set
Ia ⊂ {0, 1}m+1 such that

T (Aa) =
⋃
b∈Ia

Ab a.s.

Proof. From theorem 4.7 we know that for every a ∈
{0, 1}m+1 there are x1, x2 ∈ T m such that Aa =
(x1, x2). We assume further that x1, x2 6= α. From
corollary 4.6 one obtains that in this case either x2 <
1/2 or 1/2 < x1. Let us study the first case. The
second one can be proven analogously.
The tent map is strictly increasing on [0, 1/2]. Hence,
T (Aa) = (T (x1), T (x2)). Since

x1, x2 ∈
m⋃
k=1

T−k(α) ∪ {0, 1}

we have

(4.7) T (x1), T (x2) ∈
m−1⋃
k=0

T−k(α) ∪ {0, 1} .

Define Ia = {b ∈ {0, 1}m+1 : Ab ⊂ T (Aa)}. Then
from Eq. (4.7) and theorem 4.7 it follows

T (Aa) =
⋃
b∈Ia

Ab \ T m .

�

The crucial point to get Markovianity is T (α) ∈
T m, i.e. T (α) ∈ T−k ∪ {0, 1} for a k ∈ {0, . . . ,m}.
But this is equivalent to assume that α is a k + 1-
periodic point or equal 1/2. From the proof of lemma
4.4 we know that for all k < m the k + 1-periodic
points are not in (2m−1/(2m + 1), 2m−1/(2m − 1)).
Hence, only the two choices

α =
2m

2m+1 + 1
α =

2m

2m+1 − 1

are left as candidates, which are both m+ 1-periodic
due to lemma 4.3.

Theorem 4.11. Let be m ≥ 1 and

α =
2m

2m+1 + 1
or α =

2m

2m+1 − 1
.

Then the extended state dynamics (sn+m, . . . , sn) is
Markovian.
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Proof. We only check the case α = 2m/(2m+1 + 1).
The other one is similar. Suppose a ∈ {0, 1}m+1.
Then from theorem 4.7 follows the existence of two
elements x1, x2 ∈ T m such that Aa = (x1, x2) and
x2 is the successor of x1 in T m. We need to prove
T (Aa) =

⋃
b∈Ia Ab for an index set Ia ⊂ {0, 1}n+1.

If we have x1, x2 6= α, this follows from lemma 4.10.
Therefore, we assume x1 = α or x2 = α.
Suppose x1 = α and define y = α/2m + 1/2. We get

Tm(y) = Tm−1
(

1− α

2m−1

)
= Tm−2

( α

2m−2

)
= α ,

and y ∈ T m is proven. Assume that there is an ele-
ment z ∈ T m ∩ (α, y). Then

T (z) > min{T (α), T (y)}

= min

{
2m+1

2m+1 + 1
, 1− α

2m−1

}
= min

{
1− α

2m
, 1− α

2m−1

}
.

T (z) > 1 − α/2m is excluded by lemma 4.5, and we
obtain T (z) ∈ (1− α/2m−1, 1− α/2m) which implies
z ∈ (1/2, y). From this follows

T (z) > T (y)

T k(z) < T k(y) for all k = 2, . . . ,m

which yields T k(z) 6= α for all k = 0, . . . ,m and z /∈
T m – a contradiction. This proves x2 = y = α/2m +
1/2, and we obtain

T (x1) = T (α) =
2m+1

2m+1 + 1

T (x2) = 2− 2x2 = 1− α

2m−1
=

2m+1 − 1

2m+1 + 1
< T (α)

We have shown T (Aa) = (T (x2), 1]. Since T (x2) ∈
T m, from theorem 4.7 follows the existence of a set
Ia ⊂ {0, 1}m+1 such that T (Aa) =

⋃
b∈Ia Ab.

Conversely, suppose x2 = α. This implies T (Aa) =
(T (x1), T (α)), with T (x1), T (α) ∈ T m, because α is
assumed to be m + 1 periodic. Again, from theo-
rem 4.7 follows the existence of an index set Ia ⊂
{0, 1}m+1 such that T (Aa) =

⋃
b∈Ia Ab. �

Periodicity of the partitioning point α turns out to
be crucial for the induced extended symbol dynamics
to be Markovian. More precisely, α needs to be an
m+ 1-periodic point if the dynamics of the extended
states (sn+m, . . . , sn) is Markovian. The following ex-
ample demonstrates that the opposite does not hold.

Example 4.1. Let be α = 4/5. Then we have T (α) =
2/5, T 2(α) = 4/5 and α is a point with period 2. We

define ŝn = (sn+1, sn) and decompose the mutual in-
formation in Eq. (1.2)

I(ŝn,ŝn+2|ŝn+1)

=2H(ŝn+1, ŝn)−H(ŝn+2, ŝn+1, ŝn)−H(ŝn)

=2H(sn+2, sn+1, sn)−H(sn+3, sn+2, sn+1, sn)

−H(sn+1, sn) .

As one can read off, one needs the joint probabilities
of one, two, and three consecutive time steps. Table 1
and 2 provide the first two joint probabilities, whereas
the third ones are given by

p(0, 0, 0, 0) = 3/10, p(0, 0, 0, 1) = 1/10,
p(0, 0, 1, 0) = 1/5, p(1, 0, 0, 0) = 3/20,
p(1, 0, 0, 1) = 1/20, p(0, 1, 0, 0) = 1/5 ,

and all not listed sequences do not appear at all.
Computation yields

I(ŝn, ŝn+2|ŝn+1) ≈ 0.0642106 .

Hence, the dynamics of the extended state (sn+1, sn)
is not Markovian.

4.3. Aggregation. Due to theorem 4.11 we obtain
for m ≥ 1 and

α =
2m

2m+1 + 1
or α =

2m

2m+1 − 1

a Markovian dynamics P on a state space V with
2m+1 states. M. N. Jacobi, and O. Görnerup [10] de-
veloped a method to find all possible strong lumpings
Π : V → V̂ of the states. A strong lumping aggre-
gates all states such that the new macro process P̂ in
Fig. (9) is Markovian again, no matter what choice
is made for the initial distribution on the state space
V , and the diagram Fig. (9) commutes. This method
relies on level sets of the eigenvectors derived from
the matrix representation of the transition kernel of
the process P . We want to apply this technique to
come up with further Markovian symbol dynamics
for the tent map. Let us start with α = 2/5. By

V̂ V̂

V V

P̂

P

Π Π

Figure 9. A Markovian process P̂ obtained from P by a
lumping Π.

theorem 4.11 we obtain from this choice a Markovian
dynamics on a state space with four elements which
we enumerate as follows:
(4.8)

(0, 0) = 1, (1, 0) = 2, (0, 1) = 3, (1, 1) = 4 .
11



With respect to this labeling the matrix representa-
tion of the transition kernel of the Markov process P ,
which we denote also by P , reads as

P =


1/2 1/2 0 0
0 0 0 1

1/2 1/2 0 0
0 0 1/2 1/2

 .

The Jordan decomposition of the matrix P yields a
diagonal matrix D = diag (0, 1,−i/2, i/2) with eigen-
vectors

(4.9)


−1 1 −1− i −1 + i
1 1 2i −2i
0 1 −1− i −1 + i
0 1 1 1

 .

Due to the eigenvector method described in [10] the
lumping of the first and the third state is the only
possible. For this lumping we obtain

Π =


1 0 0
0 1 0
1 0 0
0 0 1

 P̂ =

 1/2 1/2 0
0 0 1
1/2 0 1/2

 ,

and one checks easily that ΠP̂ = PΠ. We want to
point out that the new Markovian symbol dynamics
does not come from a Markovian partition of the unit
interval [0, 1]. The initial partition induced by the
states Eq. (4.8){(

0,
1

5

)
,

(
1

5
,

2

5

)
,

(
4

5
, 1

)
,

(
2

5
,

4

5

)}
is transformed by the lumping into the one where
the intervals (0, 1/5) and (4/5, 1) are unified. But
this is not a Markovian partition any longer because
T ((2/5, 4/5)) cannot be represented by a union of the
remaining partition elements.
Vice versa, if the aggregation Π lumps the first and
the second state together – i.e. we unify the intervals
(0, 1/5) and (1/5, 2/5) – one checks immediately that
this yields a Markovian partition as well and there-
fore, see lemma 4.9, a Markovian symbol dynamics
with transition kernel

P̂ =

 1/2 0 1/2
1 0 0
0 1/2 1/2


where we choose the labeling (0, 0)+(1, 0) = 1, (0, 1) =
2, and (1, 1) = 3. But this aggregation cannot come
from lumping of level sets of the eigenvectors Eq. (4.9).
From proposition 4 in [10] it follows that the commu-

tativity relation of Fig. (9), that is ΠP̂ = PΠ, does

not hold. Indeed, verification yields

ΠP̂ =


1
2 0 1

2
1
2 0 1

2
1 0 0
1
2

1
2 0

 6=


1 0 0
0 0 1
1 0 0
0 1

2
1
2

 = PΠ .

This is a further instance of the same phenomena we
studied in example 6.1 of [11]. There we performed
a lumping of a Markovian dynamics induced by the
Bernoulli shift, from which we obtained a Markovian
dynamics as well, but Fig. (9) did not commute at
all. From [11] we know that this occurs if and only
if the information flow Eq. (1.1) for the aggregation
does not vanish. Hence, the aggregation of the first
and third state derived from the eigenvector method
provides a lumping with vanishing information flow.
If we summarize, we can conclude that the lumping
of the first and third state, derived from the eigenvec-
tor method in [10], leads to a commutative diagram
Fig. (9) with vanishing information flow. But the un-
derlying partition is no longer Markovian. While the
aggregation of the first and the second state leads to
a Markovian partition, but the diagram Fig. (9) does
not commute at all because there is some informa-
tional flow from the lower to the upper level, i.e with
respect to this closure measure this aggregation does
not lead to a new closed level.
Similar computations can be performed for the points
α = 4/9 and α = 4/7, respectively. Both points are
those with period 3 and by theorem 4.11 the result-
ing dynamics of the extended state(sn+2, . . . , sn) is
Markovian. The eigenvector method leads to a sin-
gle possible aggregation which lumps together the
states (0, 0, 0, 0) and (0, 0, 0, 1), which leads again to
a non-Markovian partition, but a commutative dia-
gram Fig. (9). A lumping leading to a Markov par-
titions is also possible. It consists of intervals whose
endpoints are in the set {0, 1, α, T (α), T (α2)}, see [9].
But again, this lumping does not lead to a commuta-
tive diagram Fig. (9).

5. Conclusion

We investigated the relationship between dynam-
ics of a particular time discrete dynamical system,
the tent map, and the induced symbolic dynamics us-
ing different closure measures discussed in [11]. We
answered the question to which extent the symbolic
dynamics induced by non-generating partitions pro-
vides a self-sufficient level of description.
All illustrated closure measures highlight the choice
α = 2/3 for the partition parameter. At this scale the
symbol dynamics sn → sn+1 turns out to be Markov-
ian and this Markovian process commutes with the
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microscopic one in the sense of weak lumpability. Fur-
thermore, for α = 2/3 we have (at least locally) maxi-
mal predictability (2.1), maximal mutual information
I(sn+1, sn), and the information flow I(sn+1, xn|sn) =
H(sn+1|sn) has a local minimum at α = 2/3. Hence,
these measures suggest the symbol dynamics derived
from the choice α = 2/3 as an emergent level of the
dynamical system xt → xt+1 = T (xn) defined by the
tent map.
A similar result holds true for a whole series of parti-
tioning points given by theorem 4.11, where the dy-
namics of the extended states turn out to be Markov-
ian. Also these choices for the partition threshold α
lead to new closed levels which are multilevel dynam-
ical systems in their own right.
Given these results the tent map turned out to be
a rich testbed for the study of closure measures and
level identification in multilevel systems.
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