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a b s t r a c t

This work is a modeling of evolutionary networks embedded in one or two dimensional
configuration space. The evolution is based on two attachments depending on degree
and spatial distance. The probability for a new node n to connect with a previous node

i at distance rni follows a ki
j kj

+ (1 − a) r−α
ni
j r

−α
nj

, where ki is the degree of node i, α

and a are tunable parameters. In spatial driven model (a = 0), the spatial distance
distribution follows the power-law feature. The mean topological distance l and the
clustering coefficient C exhibit phase transitions at same critical values of α which change
with the dimensionality d of the embedding space. When a ≠ 0, the degree distribution
follows the ‘‘shifted power law’’ (SPL) which interpolates between exponential and scale-
free distributions depending on the value of a.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the recent development of network sciences [1–9], spatial constraint networks have become an object of extensive
investigation [9–23]. These are the networks embedded in configuration space and influenced by spatial constraints. Recent
findings have revealed that the spatial distance distribution follows power law or exponential distribution [6,7,9,17,18].
These distributions are quite natural since, for instance, people tend to have their friends and relatives in their neighborhood,
transportation networks often favor shorter distance trips, and many communication networks are mainly dominated by
short radio ranges [20]. To model these systems, scientists have proposed spatially constrained networks embedded in one-
or two-dimensional space [10–13,15,19,21,22]. According to the generation rules, these networks can be categorized into
three classes: scale-free (SF) networks with disadvantaged long-range links, SF networks embedded in lattices and space-
filling networks [18].

The first class is an extension of the conventional SF models by adding competition between degree and spatial distance
preferences of linking. In one of the extended models, the network grows with addition of nodes randomly positioned in
space. The nodes are connected to each other with the probability Πi ∼ kirα , where r is the spatial distance between the
new node and the node i with degree ki. The distance distribution p(r) is given by p(r) ∼ r−(α−d+1) as expected, where
d is the dimension of the space. On the other hand, the degree distribution is a power law for α > −1 and a stretched
exponential law for α < −1 [15,19]. Another extension uses the connection probability Πi ∼ kβ

i r
α and generates a power

law degree distribution on a line in the α −β plane and in the zone limited by β > 1 and α < −0.5 [11]. The second class is
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an extension of the SF networks by embedding them in regular one- or two-dimensional spatial lattices in which the links
are added according to the probability p(r) ∼ r−δ . The structure of the network is affected by the parameter δ [13]. The
third class uses the method of space-filling packing in which a region is iteratively partitioned into subregions by adding
new nodes which are connected to the closest neighbors [10,12,21,22].

In this work we are interested in the first class networks. We introduce a model with a kind of competition between
the degree and the spatial distance preferences. While the degree preferential attachment produces connections free from
spatial constraints, the spatial distance preference favors closer connections. This competition between short-range and
long-range connections is modulated by a parameter a.

2. The model

To construct the networks, the nodes are embedded on a one-dimensional (d = 1) ring of radius R = 1/π or on a two-
dimensional (d = 2) sphere of radius R = 1/π . The spatial distance r between a pair of nodes is defined as the shortest
distance between them.

The model is constructed in the following way:

(1) Initial condition: We start with an initial state (t = m0) of m0 + 1 all-to-all connected nodes on the ring or the sphere.
(2) Growth: At every time step, a new node is added, which is randomly placed on the ring or the sphere.
(3) Addition of edges: The new node n connects withm(m ≤ m0+1) previous nodes, which are selectedwith the probability

πi

πi = a
ki
j
kj

+ (1 − a)
r−α
ni

j
rnj−α

(1)

where ki is the degree of node i, rni is the Euclidean distance between a new node n and a previous node i, 0 6 a 6 1 and
0 6 α. The growing process repeats step (2) and (3) until the network reaches the desired size. Accordingly, at each step,
the number of nodes increases by one, while the number of edges increases by m (m = m0 = 2 in what follows if not
mentioned). Hence at time t , the network contains t + 1 nodes andm(t + 1) edges.

This model has two limit cases: when a = 1, the network recovers the SF network model, while the case of a = 0 and
α = 0 corresponds to the random growing process.

The numerical results described in this paper are the average of 20 simulations for different realization of networks under
the same parameters with the network size of 10000 nodes. We have also tried 50000 nodes, but the result is almost the
same.

3. Spatial driven model

In this section, we focus on the behavior of pure spatial-driven model with a = 0 and α ≠ 0 in Eq. (1). The connection
probability is

πi =
r−α
ni

j
rnj−α

. (2)

3.1. Degree distribution

The nodes are labeled by their birth times, s = 0, 1, 2 · · · t . p(k, s, t) is the probability that the node s has degree k at
time t . The master equation of p(k, s, t) is given by

p(k, s, t + 1) =
m

t + 1
p(k − 1, s, t) +


1 −

m
t + 1


p(k, s, t). (3)

The initial conditions are p(k, s = 0, 1 . . .m0, t = m0) = δk,m0 and p(k, t, t) = δk,m.p(k, s, t + 1) contains two parts. The
first one comes from the nodes having degree k − 1 at time t and selected to connect with the new node at time t + 1. The
second one comes from the nodes having degree k at time t and not selected at time t + 1.

The degree distribution of the entire network can be written as

p(k, t) =
1

t + 1

t
s=0

p(k, s, t). (4)
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Fig. 1. The symbols represent the degree distribution p(k) of a network of size N = 10 000 grown according to our model for different m, α, d = 1 and
d = 2. The solid lines are analytic results given by Eq. (8).

Combining Eqs. (3) and (4), we get the following equation for the degree distribution

(t + 2)p(k, t + 1) − (t + 1)p(k, t) = mp(k − 1, t) − mp(k, t) + δk,m (5)

let t → ∞, p(k, t) will approach a stationary distribution p(k) [12]. Eq. (5) becomes

(m + 1)p(k) − mp(k − 1) = δk,m (6)

which means

p(k) =


m

m + 1
p(k − 1) if k > m

1
m + 1

if k = m.
(7)

The final degree distribution turns out to be

p(k) =
1

m + 1


m

m + 1

k−m

, (k ≥ m) (8)

which decays exponentially with k (p(k) = 0 for k < m), in agreement with the results of Ref. [12,23]. Thus the spatial
driven network is an exponential network like most small-world networks [12,22,23].

Fig. 1 shows the results of numerical simulation compared to the analytical results of Eq. (8) with a good agreement for
different α and m. The degree distribution is only affected by the number of new edgesm added at every time step.

3.2. Spatial distribution of link

When networks are embedded in space, the spatial distance r between the nodes is well-defined. The network evolution
follows the purely spatial motivation as in Eq. (2). When t is large enough, the nodes are homogeneously located on the
one-dimension ring or two-dimension surface. The number of previous nodes at distance r from the new node is 2 when
d = 1 and is proportional to 2π sin r

R when d = 2. We define πt(r) as the probability of an added link between two specific
nodes with distance r at time t , and△N(r, t) as the number of new links of length r that the network has at time t.△N(r, t)
is given by the number of ‘‘neighbors’’ at distance r multiplied by the probability of link addition and by the number of new
links, i.e., △N(r, t) = 2mπt(r) for d = 1 and △N(r, t) ∼ 2πmπt(r) sin r

R for d = 2.
In one-dimension, the number of links of length r at time t is

N(r, t) =

t
s=0

△N(r, s) = 2m(π0(r) + π1(r) + · · · + πt(r)). (9)

From Eq. (2), we get

πs(r) ∼ r−α (10)

and

N(r, t) ∼ r−α. (11)
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Fig. 2. (a) Probability p(r) that a node has a connection at distance r for α = 1, 2, 3 and d = 1. (b) Probability p(r) that a node has a connection at distance
r for α = 1.5, 2, 3.5 and d = 2. The straight lines are the results of analytic calculation with the slope −(α − d + 1).

The spatial distribution of links is given by

p(r) =
N(r, t)

m(t + 1)
∼ r−α. (12)

For the case of two-dimension, we have

N(r, t) =

t
s=0

△N(r, s) ∼ 2πm(π0(r) + π1(r) + · · · + πt(r)) sin
r
R
. (13)

According to the Taylor series, the spatial distribution is given by

p(r) =
N(r, t)

m(t + 1)
∼ r−α+1. (14)

From the above results, we can derive p(r) ∼ r−(α−d+1). This result has also been found by Kosmidis and Manna using
numerical simulation [13,15]. Fig. 2 shows a good agreement between the results of numerical simulation and analytical
calculation from Eqs. (12) and (14) for different values of α.

3.3. Clustering coefficient

The clustering coefficient of a single node i in network is defined as ci =
2ei

ki(ki−1) [1], where ei is the total number of edges
between all the ki neighbors. The clustering coefficient C of the whole network is the average of ci over all nodes.

Fig. 3 shows the behavior of the clustering coefficient C as a function of 1/N for different values of α. The variation of
C follows C ∼ (1/N)δ where δ depends on α as shown in Fig. 4 for d = 1 and d = 2. The error bars are determined from
the fitting with C ∼ (1/N)δ . There are three regimes separated by α = d/2 and α = 3d with different C behaviors. In
the first regime 0 < α 6 d/2, the data follow C ∼ 1/N , similar to the Erdös–Rényi (ER) random graph [24]. In the second
regime d/2 < α < 3d, the exponent δ decreases from 1 to 0 (see Fig. 4). In the third regime 3d 6 α, C is independent from
N(δ = 0), similar to the OHO model presented by Ozik et al. [12,23]. These regimes can be expressed as follows:

C ∼

1/N 0 < α 6 d/2
(1/N)δ d/2 < α < 3d
constant 3d 6 α.

(15)

Now let us see how the clustering coefficient C depends on α when the network size is fixed (N = 10 000,N =

15 000,N = 20 000). Fig. 5 shows that the critical point at α = d/2 separates a phase of vanishing clustering (0 < α 6 d/2)
from a phase of increasing clustering (d/2 < α < 3d), and that the point at α = 3d separates the phase of increasing
clustering from a phase of constant clustering (3d 6 α). The increasing clustering coefficient with increasing α is expected
from the model because larger α favors smaller distance connection and higher clustering. This spatial effect on C is
specifically notable in the second phase d/2 < α < 3d.
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Fig. 3. (a) Clustering coefficient C as a function of 1/N for different α and d = 1. (b) Clustering coefficient C as a function of 1/N for different α and d = 2.
Straight lines of slope 0 and 1 are best fits of the data.

Fig. 4. Exponent δ as a function of α for d = 1 and d = 2. The left and the lower coordinates correspond to d = 1, the right and the upper coordinates
correspond to d = 2. This figure shows that the α/d dependence of δ is free from dimension.

3.4. Topological distance

We can see in Fig. 6 that the mean topological distance l of the network follows the function l = γ logN for different
α, which is a typical small world network behavior and different from what observed in Kosmidis’s model embedded in
regular lattices [13]. The α dependence of the slope γ is depicted in Fig. 7. The error bars are determined by the fitting with
l = γ logN . We are interested in the behavior at the regime transition points α = d/2 and α = 3d. In the first regime
0 < α 6 d/2 and the third one 3d 6 α, γ is independent from α. In the second regime d/2 < α < 3d, γ increases from
the first one to the third one. It is worth mentioning that, in the ER random model, l = logN/log⟨k⟩ or γ = 1/log⟨k⟩. In the
present case, ⟨k⟩ = 2m = 4, leading to γ ≈ 1.66, close to the value of the first regime.

4. Network structure when a ≠ 0

In many real space networks, the spatial distance between the nodes plays an important role in the formation of links,
while the degree preferential attachment is also a natural property of linking.When a ≠ 0 in ourmodel, there is an interplay
between the preference of larger degree and the preference of smaller distance in the evolution of the network. We note
that in many models of network growth, the probability to get connected to a node at distance r is proportional to r−α .
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Fig. 5. Clustering coefficient C as a function of α with N = 10 000, 15000 and 20000, for d = 1 and d = 2.

Fig. 6. (a) Topological distance l versus N for different α and d = 1. (b) Topological distance l versus N for different α and d = 2.

Fig. 7. α dependence of the slope γ . The left and the lower coordinates correspond to d = 1, the right and the upper coordinates correspond to d = 2.
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From the simulation results, when α increases, the degree distribution of the network gradually changes from power-law
to stretched exponential [15,19].

The degree increases each time when a new node n is added into the system and connects to a previous node i with
probability πi. Assume that ki is a continuous variable, its increasing rate should be proportional to πi and satisfy the
following equation:

∂ki
∂t

= mπi = ma
ki
j
kj

+ m(1 − a)
r−α
ni

j
rnj−α

. (16)

The sum in the first term on the right-hand side goes over all nodes except the new one, giving


j kj = 2mt . Since the new
node is randomly located, and the existing nodes are uniformly distributed, when t is large, the change of the degree of node

imust be independent of where node i is on the circle or the sphere, so that the second term reads r−α
ni
j rnj−α ≈ 1

t [25]. To prove

this relationship we use the mean-field approximation in which the spatial distance preference probability π s
i =

r−α
ni
j rnj−α is

represented by its average value. As we will show, the mean-field approximation turns out to be exact in the limit of large
system size.

When t is large enough, the existing nodes are homogeneously located on the one-dimension ring or two-dimension
surface. At time step t , we calculate π s

i for T times, for each calculation the new node is placed randomly and labeled by
ns = n1, n2, . . . nT . The average value of π s

i can be written as

⟨π s
i ⟩ =

1
T

 r−α
n1 i

t−1
j=0

r−α
n1j

+
r−α
n2 i

t−1
j=0

r−α
n2j

+ · · · +
r−α
nT i

t−1
j=0

r−α
nT j

 . (17)

Due to the uniform distribution of the existing nodes, we have
t−1

j=0 r−α
n1j

=
t−1

j=0 r−α
n2j

= · · · =
t−1

j=0 r−α
nT j

. Hence

⟨π s
i ⟩ =

1
T

T
l=1

r−α
nl i

t−1
j=0

r−α
nsj

. (18)

In the denominator, rnsj can be considered as a continuous variable between rmin and rmax, thus
t−1
j=0

r−α
nsj = t⟨r−α

nsj ⟩

= t
 rmax

rmin

r−α
nsj f (rnsj)drnsj (19)

where f (rnsj) is the probability density of rnsj, satisfying
 rmax
rmin

f (rnsj)drnsj = 1. For uniform distribution of nodes, f (rnsj) must
be a constant, let it be c , and Eq. (19) can be written as

t−1
j=0

r−α
nsj = tc

 rmax

rmin

r−α
nsj drnsj. (20)

This calculation alsoworks for the sumover l from1 to T , in the numerator. Since for large T , the newnodes are also uniformly
distributed over rnli, so the probability density f (rnl i) should be equal to c . Hence

T
l=1

r−α
nli

= Tc
 rmax

rmin

r−α
nl i

drnl i. (21)

Take Eqs. (20) and (21) to Eq. (18), Eq. (18) can be written as

⟨π s
i ⟩ =

1
T

Tc
 rmax
rmin

r−α
nli

drnl i

tc
 rmax
rmin

r−α
nsj drnsj

=
1
t
. (22)

From the above derivations and mean-field approximation, we can get

π s
i ≈ ⟨π s

i ⟩ =
1
t
. (23)
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Substituting this result back into Eq. (16), the evolution of node i′s degree follows

∂ki
∂t

≈ a
ki
2t

+ (1 − a)
m
t

=
aki + 2(1 − a)m

2t
. (24)

In the view of the initial condition ki(ti) = m for the degree of a node added at time ti, Eq. (24) has the solution

ki =

(2m − am)


t
ti

 a
2

− 2(1 − a)m

a
(25)

from which the probability P(ki(t) < k) that a node has degree ki(t) smaller than k is given by

P(ki(t) < k) = P

ti >
t

ak+2(1−a)m
2m−am

 2
a

 . (26)

Since the addition of nodes and links are carried out at equal time interval, the probability density at ti is: Pi(ti) = 1/ti. Thus

P(ki(t) < k) = 1 −


ak + 2(1 − a)m

2m − am

−
2
a

. (27)

Then the probability density p(k) reads

p(k) =
∂P(ki(t) < k)

∂k
=

2
2m − am


a

2m − am

−
2+a
a


k +

2(1 − a)m
a

−
2+a
a

. (28)

This is the ‘‘shifted power law’’ (SPL) function. When a changes from 0 to 1, the degree distribution gradually changes from
an exponential law to a power law. In Fig. 8, the symbols represent the degree distribution p(k) of our model for different
values of a and α (d = 1 and 2). The solid lines are given by Eq. (28) with m = 2, a = 0.1, 0.5 and 0.9. The agreement
between simulation results and analytical results means that the analysis from Eq. (16) to Eq. (28) is close to the numerical
simulation with the model. SPL degree distribution is confirmed by empirical data as well [26,27].

Fig. 9 shows the behavior of the clustering coefficient C for different a and α. In the first regime 0 < α 6 d/2 (see Fig. 9a
for d = 1 and Fig. 9d for d = 2), ln C increases with a independently from α. Fig. 9b and Fig. 9e correspond to the second
regime d/2 < α < 3d in which ln C decreases linearly with a first and then increases slightly until a = 1. On the other
hand, ln C increases with increasing α and its minimum seems to be dependent on α. In the third regime 3d 6 α (see Fig. 9c
for d = 1 and Fig. 9f for d = 2), ln C decreases with a independently from α.

5. Comparison with empirical data

Previous works have shown that the establishment of friendship and relationship is influenced by spatial constrains
[7,18,28,29]. In Ref. [29], Goldenberg and Levy collected data on the location of the receivers of more than 4400 email
messages and found that the spatial distribution of the communication was a power law. This motivates us to compare
the topological structure of our model to the structure of the empirical data on email communication network [30], which
consists of 1133 nodes and 5451 edges. In order to apply the two-dimensional model to the empirical data, we first set
N = 1133 and m = m0 = 5, then adjust a = 0.02 to match the degree distribution, finally set α = 5 to match ⟨c⟩ and ⟨l⟩.
The comparison of degree distribution is shown in Fig. 10. We employ the Kolmogorov–Smirnov test [31] in the software
SPSS to compare the degree distribution of empirical data and that of our model. The result is P − value = 0.826 (when
P − value > 0.05 means that the two comparative samples come from the same kind of distribution). Therefore we can
conclude the email network [30] and our model follow the same kind of degree distribution. The topological parameters are
listed in Table 1with good agreement. The small value of a implies that the competition between degree and spatial distance
preference for attachment may be present in the evolution of email systems and that the degree preference plays a much
less important role than spatial distance. On the other hand, recent works [28,32] have shown that the degree dependence
of clustering coefficient of several real networks follows a power law C(k) ∼ k−1. This tendency is confirmed by the email
network data of Ref. [30] and our simulation (see Fig. 11).

6. Summary

In summary, we have studied an evolutionary network in the configuration space with a model in which the probability
of attachment is controlled by two competing factors: degree preference and spatial distance preference. These two factors
are modulated by two parameters a and α.
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Fig. 8. (a) Degree distribution for d = 1, a = 0.1, α = 0.5, 1.5, 3.5 and d = 2, a = 0.1, α = 1, 3, 7. (b) Degree distribution for d = 1, a = 0.5,
α = 0.5, 1.5, 3.5 and d = 2, a = 0.5, α = 1, 3, 7. (c) d = 1, a = 0.9, α = 0.5, 1.5, 3.5 and d = 2, a = 0.9, α = 1, 3, 7. The straight lines are analytic
results given by Eq. (28) with the same a values as in the simulation, i.e. a = 0.1, 0.5 and 0.9, respectively.

Table 1
Comparison of empirical data from email network and simulation results. N is the number
of nodes, ⟨k⟩ is the average degree, ⟨c⟩ is the mean clustering coefficient, ⟨l⟩ is topological
distance. The simulation results come from our model with parameters α = 5, a = 0.02,
N = 1133,m = m0 = 5.

N ⟨k⟩ ⟨c⟩ ⟨l⟩

Email 1133 9.6222 0.2211 3.6060
Model 1133 10.0000 0.2214 3.5571

When a = 0 andα ≠ 0, themodel reduces to the spatial drivenmodel, exhibiting phase transitions at some critical values
of α. For the regime 0 < α 6 d/2, where d is the dimension of the embedding space, the network has short topological
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Fig. 9. (a) Clustering coefficient C as a function of a for d = 1 in the first regime for α = 0 and 0.5. (b) C as a function of a for d = 1 in the second regime
for α = 1, 1.5, 2, 2.5. (c) C as a function of a for d = 1 in the third regime for α = 3, 3.5, 4. (d) C as a function of a for d = 2 in the first regime for α = 0, 1.
(e) C as a function of a for d = 2 in the second regime for α = 2, 3, 4, 5. (f) C as a function of a for d = 2 in the third regime for α = 6, 7, 8.

Fig. 10. Comparison of empirical data from email network and simulation results of the degree distribution. The simulation results come from our model
with parameters α = 5, a = 0.02, N = 1133,m = m0 = 5.

distance and vanishing clustering as in the ER random model. For d/2 < α < 3d, the network has increasing clustering
coefficient with increasing α. The topological distance is short as well. For 3d 6 α, the network has a constant clustering,
similar to the OHO model. In all these regimes, the spatial distribution follows the power law p(r) ∼ r−(α−d+1), the degree
distribution follows exponential law.

When a ≠ 0, there will be more long-range links caused by degree preferential attachment. The degree distribution
follows shifted power law. When a changes from 0 to 1, the network property changes from the property of spatial driven
network to the property of scale-free network.

The qualitatively consistent with empirical results reveals that the model has captured some basic mechanisms for the
evolution of social communication networks. We hope that it will be helpful for further study and understanding of real
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Fig. 11. Comparison of empirical data and simulation result of the k dependence of clustering coefficient. The simulation results come from our model
with parameters α = 5, a = 0.02, N = 1133,m = m0 = 5.

networks whose evolution is influenced by the interplay of different even competing dynamics. The tunable parameter a
can also become an object of investigation and of optimization when true physical processes such as epidemic diffusion,
informational diffusion, opinion spreading, culture propagation, transport of matter and so forth, are considered in a spatial
network.
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