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Abstract We investigate the dynamics of two identical atoms resonantly cou-
pled to independent single-mode cavity in zero detuning without rotating wave
approximation (RWA). It is shown that for two atoms initially in the ground
state, the entanglement (concurrence) and the normalized geometric measure
of quantum discord (NGMQD) display similar behavior. There is no sudden
death and sudden birth. And the entanglement is always larger than NGMQD
in this case. For two atoms initially in excited state, one can see the novel
entanglement sudden death (ESD) and sudden birth (ESB) phenomena. The
entanglement is not always greater than the NGMQD in this case. Conse-
quently, there is no simple dominance relation between the entanglement and
the NGMQD.

Keywords Entanglement · Normalized geometric discord · Double J-C
model · ESD and ESB

1 Introduction

Quantum entanglement, originated from nonlocal quantum correlation, is fun-
damental in quantum physics both for understanding the nonlocality of quan-
tum mechanics [1] and plays an important role in quantum computations and
quantum information processing [2–5]. Due to the interactions with the envi-
ronment in preparation and transmission, the initially entangled states usually
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become mixed ones that are no longer maximally entangled. In Refs. [6–9] the
authors investigated the time evolution of entanglement of a bipartite qubit
system undergoing various modes of decoherence. It is found that the global
entanglement may vanish in finite time, a phenomenon so-called entanglement
sudden death (ESD) and have been demonstrated experimentally for optical
setups and atomic ensembles [10–12].

Recently, it has been perceived that entanglement is not the only kind
of quantum correlation, a new kind of quantum correlation, quantum discord
(QD) has attracted a lot of attentions [13,14] due to its potential to serve as an
important resource in the deterministic quantum computation with one pure
qubit (DQC1) [15–17] and quantum communication [18]. The quantum dis-
cord of a composite system AB is defined by DA ≡ min{EA

k }
∑

k pkH(ρB/k)+

H(ρA) − H(ρAB), where H(ρAB) = Tr(ρAB log2 ρAB) is the von Neumann
entropy and the minimum is taken over all positive operator valued measures
(POVMs) {EA

k } on the subsystem A with pk = Tr(EA
k ρAB) being the proba-

bility of the kth outcome and ρB/k = TrA(E
A
k ρAB)/pk being the conditional

state of subsystem B.
Because of the minimization taken over all possible POVM, or von Neu-

mann measurements, is is generally difficult to calculate measurement based
discord. In order to overcome this difficulty geometric measure of quantum dis-
cord (GMQD) has been introduced by Dakic et al [19]. Recently, Dakic et al
[18] show that the GMQD is related to the fidelity of remote state preparation
which provides an operational meaning to GMQD.

Many works have been devoted to entanglement in various systems with
different entanglement measures and the local decoherence influence on the
entanglement evolution . Recently, a more general quantum correlation, geo-
metric measure of quantum discord (GMQD), has also received a great deal
of attention [20,21]. The comparisons with entanglement dynamics have been
also performed [22,23]. However, to the best of our knowledge, the comparisons
between entanglement and NGMQD of two-level atoms coupled to indepen-
dent single-mode cavities without rotating wave approximation (RWA) has not
been found in the literature. We believe that the dynamics of entanglement
and NGMQD in the framework of our model is also fundamental interest. In
addition, some novel property which different from previous results has also
been discussed.

2 MODEL AND EFFECTIVE HAMILTONIAN WITHOUT
ROTATING WAVE APPROXIMATION

We generally consider a system consisting of two two-level atoms interacting
with independent single-mode cavities with annihilation (resp. creation) oper-
ator ak (resp. a+k ) for the kth mode with frequency ωk. The total system is
described by the Hamiltonian H = H0 +HI :

H0 =
1

2
Ω1σ

1
z +

1

2
Ω2σ

2
z + ω1a

+
1 a1 + ω2a

+
2 a2 (1)
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HI = g1(σ
+
1 + σ−

1 )(a
+
1 + a1) + g2(σ

+
2 + σ−

2 )(a
+
2 + a2) (2)

Here, Ωk is the transition frequency of the kth atom, k = 1, 2, σz ≡ |e⟩⟨e| −
|g⟩⟨g| is the Pauli operator with |e⟩ and |g⟩ the atomic excited and ground
states, respectively, σ+ = (σ−)† ≡ |e⟩⟨g| are the raising and lowing operators,
† stands for the transpose an conjugation. g1 and g2 are the coupling constants.

As the interaction term HI contains the counter-rotating terms, that is,
the high-frequency terms with frequencies ±(ωk +Ωk) like

V = a+k σ
+
k e

i(ωk+Ωk) +H.C.

in the interaction picture, the Hamiltonian H is not exactly solvable even for
the simple cases of single mode or single excitation.We use the generalized ver-
sion [24] of the Fröhlich-Nakajima transformation [25,26] exp(S) to eliminate
the high-frequency terms in the effective Hamiltonian. Here

S =
∑
k=1,2

Ak(a
+
k σ

+
k − akσ

−
k ) (3)

with
Ak =

gk
ωk +Ωk

. (4)

Up to the second order, the effect Hamiltonian Heff = exp(S)Hexp(−S) is
given by

Heff w H0 +H1 +
1

2
[S,H1] +

1

2
[S,HI ], (5)

where H1 = HI + [S,H0] is the first order term. It is direct to show that

[S,H1] =
∑
k=1,2

Akgk(akak + a+k a
+
k )σ

k
z , (6)

[S,HI ] = [S,H1] + 2
∑
k=1,2

Akgk(a
+
k akσ

k
z − σ−

k σ
+
k ). (7)

Since the total excitation number operator of the qubit-cavity system in the
transformed Hamiltonian is a conserved observable, one may focus on the
single-particle excitation subspace and omit the high-frequency terms includ-
ing akak and a+k a

+
k [27],

Heff=
∑
k=1,2

ωka
+
k ak +

∑
k=1,2

gk(akσ
+
k + a+k σ

−
k )

+
∑
k=1,2

1

2
Ωkσ

k
z +

∑
k=1,2

Akgk(a
+
k akσ

k
z − σ−

k σ
+
k ).

(8)

The above effective Hamiltonian is different from the one derived from the
RWA and is exactly solvable. For simplicity, in the following discussion, we
consider the case that the two-level atoms couple to the adjacent cavity with
the same coupling strength g1 = g2 ≡ g and the zero detuning δ = Ω − ω ≡ 0
(Ω1 = Ω2 = ω1 = ω2 ≡ Ω).
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3 DYNAMICS OF CORRELATIONS FOR TWO-LEVEL
SYSTEMS

We use concurrence as the measure to characterize the quantum entanglement
of a two-qubit state ρ [28,29],

C(ρ) = max{0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4},

where λi are the eigenvalues, in decreasing order, of the matrix ρ(σy⊗σy)ρ∗(σy⊗
σy), ρ

∗ denotes the complex conjugation of ρ and σy is the Pauli matrix. For
a density matrix ρ of the form,

ρ =


a 0 0 ω
0 b z 0
0 z∗ c 0
ω∗ 0 0 d

 , (9)

the concurrence is given by

C(ρ) = 2max{0, |z| −
√
ad, |ω| −

√
bc}. (10)

The geometric measure of quantum discord (GMQD) is defined by [19]

Dg
A(ρ) = min

χ∈Ω0

∥ρ− χ∥2, (11)

where Ω0 denotes the set of zero-discord states and ∥X − Y ∥2 = Tr(X − Y )2

is the square norm in the Hilbert-Schmidt space. An arbitrary two-qubit state
can be written in Bloch representation:

ρ =
1

4
[I ⊗ I +

3∑
i=1

(xiσi ⊗ I + yiI ⊗ σi) +

3∑
i,j=1

Rijσi ⊗ σj ],

where xi = Trρ(σi ⊗ I), yi = Trρ(I ⊗ σi) are components of the local Bloch
vectors, σi, i ∈ {1, 2, 3} are the three Pauli matrices, and Rij are components
of the correlation tensor. The GMQD of a two-qubit state is given by [19]

Dg
A(ρ) =

1

4
(∥x∥2 + ∥R∥2 − kmax), (12)

where x = (x1, x2, x3)
T , kmax is the largest eigenvalue of the matrix K =

xxT +RRT . By introducing a matric ℜ defined by

ℜ =

(
1 yT

x R

)
, (13)

and a 3 by 4 matrix ℜ′
by deleting the first row of ℜ. Then the analytical

expression of GMQD can be further rewritten as [30]

Dg
A(ρ) =

1

4

[(∑
k

λ2k

)
−max

k
λ2k

]
, (14)

where λk are the singular values of ℜ′
. The maximum value of Dg

A(ρ) is
1
2 for

two-qubit states. It is natural to consider 2Dg
A(ρ) as a properly normalized

measure.
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3.0.1 Atoms initially in ground state

We first consider the case that cavities are initially maximal entangled while
the two atoms are in the (separable) ground state,

|ψ(0) >=

√
2

2
| ↓↓ 01 > +

√
2

2
| ↓↓ 10 > . (15)

The time dependent wave function can be generally expressed as

|ψ(t) >= x1(t)| ↓↓ 01 > +x2(t)| ↓↓ 10 >

+x3(t)| ↓↑ 00 > +x4(t)| ↑↓ 00 >,
(16)

where

x1(t) = x2(t) =
e−

gt(−2ig+y)
2Ω

[
i
(
−1 + e

gty
Ω

)
g +

(
1 + e

gty
Ω

)
y
]

2
√
2y

,

x3(t) = x4(t) = −
ie−

gt(−2ig+y)
2Ω

(
−1 + e

gty
Ω

)
Ω

√
2y

, y = i
√
g2 + 4Ω2.

(17)

The reduced density matrix ρ of two atoms can be obtained by tracing
out the photonic part of |ψ(t) >< ψ(t)|. In the basis | ↑↑>, | ↑↓>, | ↓↑> and
| ↓↓>, it is of the form

ρ =


0 0 0 0
0 |x4|2 x4x∗3 0
0 x3x

∗
4 |x3|2 0

0 0 0 |x1|2 + |x2|2

 . (18)

From Eq. (17), we see that the state depends on the transition frequency
Ω, which is different from the results in [31,32], where the correlation of the
systems is only influenced by the coupling strength g and the frequency ω
in the given initial states in the RWA. Such dependence on the transition
frequency Ω will influence the evolution of correlation in quantum systems.
We denote λ ≡ Ω

g , a parameter representing the relationship between the
transition frequency Ω of atoms and the coupling strength g. The concurrence
of the state (18) is given by

C(ρ) =
4λ2 sin2(

√
1+4λ2tΩ
2λ2 )

1 + 4λ2
. (19)

We consider λ > 1 (Ω > g), which is compatible with the approximation in
Eq. (5). The dynamical evolution of the entanglement in Eq. (19) is shown in
Fig. 1, the concurrence as a function of the time interval t and the transition
frequency Ω. One can see that concurrence for two atoms varies periodically
with t and Ω. There is no entanglement sudden death. The atoms remain

disentangled when
√
1+4λ2

2λ2 tΩ = kπ, k = 0, 1, · · · .
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Fig. 1 (Color online) The dynamical evolution of the concurrence and GMQD as a function
of time interval t and the transition frequency Ω in the case of zero detuning, with g1 =
g2 ≡ g, Ω = ω and λ ≡ Ω

g
, for the case of (a) λ = 3, (b) λ = 6, (c) λ = 9.

HaL

4 6 8 10
Λ

0.2

0.4

0.6

0.8

1.0

QC

HbL

4 6 8 10
Λ

0.2

0.4

0.6

0.8

1.0

QC

HcL

4 6 8 10
Λ

0.2

0.4

0.6

0.8

1.0

QC

Fig. 2 (Color online) The evolution of quantum correlation(QC) as a function of λ in the
case of zero detuning, with g1 = g2 ≡ g, Ω = ω, λ ≡ Ω

g
and T = Ωt, for (a) T = 10,

(b) T = 30, (c) T = 50. The blue dashed line and the red solid line are corresponding to
concurrence and NGMQD respectively.

According to Eq. (14), the GMQD of the state (18) is given by

Dg
A(ρ) =

1 + 2λ2 + 13λ4 + (6λ2 − 4λ4) cos(
√
ztΩ
λ2 ) + 7λ4 cos( 2

√
ztΩ
λ2 )

2(z)2

−Max

[
1 + 2λ2 + 7λ4 + 2λ2(3 + 2λ2) cos(

√
ztΩ
λ2 ) + 5λ4 cos( 2

√
ztΩ
λ2 )

2(z)2
,

4λ4 sin4(
√
ztΩ
2λ2 )

(z)2

]
,

(20)

where z = 1 + 4λ2.
For GMQD in Eq. (20), it follows the similar tendency as concurrence

showing in Fig. 1. Based on the intuitive observations from Fig. 1, we can see
the maximum value of GMQD is approaching to 1

2 , it is easy to be explained
according to the analytic expression of Eq. (21). In order to further compare
the GMQD with the concurrence, we consider a normalized geometric measure
of quantum discord (NGMQD) 2Dg

A(ρ) as a proper measurement for quantum
correlations, in the case that cavities are initially maximal entangled while the
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two atoms are in the (separable) ground state, for zero detunnings. The results
are collected in Fig. 2. The evolution of both NGMQD and concurrence display
similar behavior, we notice that the amplitude of oscillation of concurrence and
NGMQD as a function of λ is gradually increasing until to maximal value one.
In fact, we can prove that entanglement is always larger than NGMQD in this
case. It is interesting to note from Fig. 2 that zero-discord (that is so-called
classical-quantum states, according to the definition of Eq. (11), an arbitrarily
state ρ ∈ Ω0 if and only if Dg

A(ρ) ≡ 0, so zero-discord states are equivalent
to zero-GMQD states) states are appearing when entanglement is zero, it
means that separable states with the form of Eq. (18) have no non-classical
correlations (NGMQD), which is different from the previous literature [33].

3.0.2 Atoms initially in excited state

Now we consider the case that the atoms are initially in excited state,

|φ(0) >=

√
2

2
| ↑↑ 01 > +

√
2

2
| ↑↑ 10 > . (21)

The state of the system at time t is given by

|φ(t) >= y1(t)| ↑↑ 01 > +y2(t)| ↑↑ 10 >

+y3(t)| ↓↑ 11 > +y4(t)| ↑↓ 02 >

+y5(t)| ↓↓ 12 > +y6(t)| ↓↑ 20 >

+y7(t)| ↑↓ 11 > +y8(t)| ↓↓ 21 > .

(22)

According to Schrödinger equation and the initial condition in Eq. (21),
we have

|y1(t)|2 = 1
8(ΘΞ)2Λ2

{
(ΘΞ)2

[
(−1 + Λ) cos

(
ΘT
2λ2

)
+ (1 + Λ) cos

(
ΞT
2λ2

)]2
+
[(
3 + 8λ2 − 3Λ

)
Ξ sin

(
ΘT
2λ2

)
−
(
3 + 8λ2 + 3Λ

)
Θ sin

(
ΞT
2λ2

)]2}
,

|y3(t)|2 = λ2

2(ΘΞ)2Λ2

{
(ΘΞ)2

[
cos
(
ΘT
2λ2

)
− cos

(
ΞT
2λ2

)]2
+
[(
−2− 4λ2 + Λ

)
Ξ sin

(
ΘT
2λ2

)
+
(
2 + 4λ2 + Λ

)
Θ sin

(
ΞT
2λ2

)]2}
,

|y4(t)|2 = λ2

4(ΘΞ)2Λ2

{
(ΘΞ)2

[
cos
(
ΘT
2λ2

)
− cos

(
ΞT
2λ2

)]2
+
[(
−1− 4λ2 + 2Λ

)
Ξ sin

(
ΘT
2λ2

)
+
(
1 + 4λ2 + 2Λ

)
Θ sin

(
ΞT
2λ2

)]2}
,

|y5(t)|2 = λ4
[
cos
(
ΞT
2λ2

)
− cos

(
ΘT
2λ2

)]2
/Λ2,

(23)

where, T = Ωt, Λ =
√
1 + 6λ2 + 8λ4, Θ =

√
5 + 12λ2 − 4

√
1 + 6λ2 + 8λ4,

and Ξ =
√

5 + 12λ2 + 4
√
1 + 6λ2 + 8λ4. While y2(t) = y1(t), y7(t) = y3(t),

y6(t) = y4(t) and y8(t) = y5(t).
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Fig. 3 (Color online) The evolution of quantum correlation(QC) as a function of λ and
T in the case of zero detuning, with g1 = g2 ≡ g, Ω = ω, λ ≡ Ω

g
and T = Ωt, for (a)

concurrence, (b) NGMQD.
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Fig. 4 (Color online) The evolution of quantum correlation(QC) as a function of T in the
case of zero detuning, with g1 = g2 ≡ g, Ω = ω, λ ≡ Ω

g
and T = Ωt, for (a) λ = 3, (b) λ = 9.

The blue dashed line and the red solid line correspond to the concurrence and NGMQD
respectively. In Fig. 4b, the NGMQD has sudden changes at T=14.85 and T=21.25. The
NGMQD is greater than the concurrence for 21.56 < T < 24.5 and 33.5 < T < 37.
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Fig. 5 (Color online) The evolution of difference between concurrence and the NGMQD as
a function of λ and T in the case of zero detuning, with g1 = g2 ≡ g, Ω = ω, λ ≡ Ω

g
and

T = Ωt.

The reduced density matrix of the two atoms is given by

ρ =


|y1|2 + |y2|2 0 0 0

0 |y4|2 + |y7|2 x7y
∗
3 0

0 y3y
∗
7 |y3|2 + |y6|2 0

0 0 0 |y5|2 + |y8|2

 . (24)
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According to Eq. (10), the concurrence in this case has the form

C(ρ) = 2Max[0, |y7y∗3 | −
√
(|y1|2 + |y2|2)(|y5|2 + |y8|2)]. (25)

The GMQD for the states Eq. (24) is given by

Dg
A(ρ) =

1

4

(
2λ1

2 + λ3
2 −Max

[
λ1

2, λ3
2
])
, (26)

where λ21 = 4|y3|4, λ23 = 2[4|y1|4 + 2(|y3|2 + |y4|2)2 − 4(|y1|2 + |y5|2)(|y3|2 +
|y4|2) + 4|y5|4].

The dynamical evolution of the concurrence and NGMQD is shown in Fig.
3 for the case that cavities are initially maximal entangled while the two atoms
are in the (separable) excited state, in zero detunnings. In this case one sees
both entanglement sudden death and sudden birth phenomena, as well as
NGMQD sudden death and sudden birth, Fig. 3b. It is also clearly shown in
Fig. 4 for some fixed λ. Moreover, the entanglement is not always greater than
the NGMQD, which is different from the case in Fig. 2. We give an intuitive
comparison of the relationships between C(ρ) and 2Dg

A(ρ) by studying the
quantity

R(ρ) = C(ρ)− 2Dg
A(ρ) (27)

for the states defined by Eq. (24). Without loss of generality, we consider R(ρ)
as a function of time T and the parameter λ for zero detunnings. From Fig. 5
we can see that there exist states ρ1 and ρ2 such that C(ρ1) > 2Dg

A(ρ1), while
C(ρ2) < 2Dg

A(ρ2). Even for a given state ρ (24), it appears that C(ρt1) >
2Dg

A(ρt1) at time t1, nevertheless, C(ρt2) < 2Dg
A(ρt2) at time t2.

4 CONCLUSION

In summary, we have systematically studied the dynamics of two identical
atoms resonantly coupled to independent single-mode cavity in zero detuning
without rotating wave approximation. The evolutions are investigated in detail
for two different initial states. For two atoms are initially in the ground state,
concurrence and the NGMQD increase in the first period and then decreases,
after it decreases to zero, it immediately increases again, there is no entan-
glement sudden death, the NGMQD vanishes only at some discrete times. We
show that entanglement is always larger than NGMQD in this case. For two
atoms are initially in the excited state, we have shown the novel entanglement
and NGMQD sudden death and sudden birth phenomena. It is illustrated that
entanglement is not always greater than the NGMQD in this case. They are
different not only quantitatively, but also qualitatively.
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