
Max-Planck-Institut

für Mathematik

in den Naturwissenschaften

Leipzig

Maximal Information Divergence from Statistical

Models defined by Neural Networks

by
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Abstract. We review recent results about the maximal values of the
Kullback-Leibler information divergence from statistical models defined
by neural networks, including näıve Bayes models, restricted Boltzmann
machines, deep belief networks, and various classes of exponential fami-
lies. We illustrate approaches to compute the maximal divergence from
a given model starting from simple sub- or super-models. We give a new
result for deep and narrow belief networks with finite-valued units.
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1 Introduction

In statistical learning theory, probability models are used to infer representations
of data. In model selection it is often assumed that the model approximation
errors are negligible compared with the statistical approximation errors. This
assumption may not always be justified in practice; in some cases even full di-
mensional models only fill a small portion of the space of probability distribu-
tions, and telling the general structure of the data generating distributions, in
order to constrain the possible model classes, is difficult.

Here we take a complementary perspective, disregarding the statistical ap-
proximation errors and focussing on the model approximation errors. We quan-
tify the model approximation error of a model M by the divergence func-

tion p 7→ D(p‖M) = infq∈MD(p‖q), where D(p‖q) =
∑
x p(x) log p(x)

q(x) is the

Kullback-Leibler divergence from p to q.4 We study the maximum value of
D(·‖M), which corresponds to a worst-case analysis. The ideas from this pa-
per can also be used to study the expectation value given a prior on the set of
target distributions, see [16]. The model approximation error can be used as a

4 We formulate our results in such a way that they are independent from the loga-
rithm’s base used in the definition of the divergence.



criterion for model selection. Related ideas are discussed in [2] in the context of
model design and reinforcement learning.

Most probability models with hidden variables are singular and not identi-
fiable. Moreover, data distributions that are not contained in these models can
have several maximum likelihood estimates. Although controlling parameter-
identifiability is crucial when estimating learning coefficients in Bayesian model
selection, we will instead focus on the value of the data likelihood and the sets
of maximizing distributions, irrespective of their parameters.

In general, the function D(·‖M) has no explicit formula, making the estima-
tion of the maximizers and the maximum value difficult. For exponential families
the situation is slightly better, as for each distribution p the divergence D(p‖·)
has a unique minimizer over M. For certain families, such as independence
models and convex exponential families, there even is a closed formula for this
function. The approximation properties of various classes of exponential families
have been studied in [9,10,1,18,19,16,6]. The divergence from complicated mod-
els can be estimated by finding tractable exponential subfamilies. This idea was
used in [17] to study approximation errors of restricted Boltzmann machines.

The representational power of neural networks has been studied for many
years and by too many authors to refer to appropriately at this place, see for
instance [3,5,4]. The representational power of the networks discussed in this
paper has been studied, in particular, in [7,20,8,13,17,11].

Section 2 reviews bounds on DM for statistical models defined by neural net-
works and for exponential families. Section 3 discusses strategies to bound DM
via sub-models and super-models, and discusses a class of exponential families
contained in restricted Boltzmann machines and deep belief networks. Section 4
puts our results in perspective.

2 Maximal information divergence

We consider neural networks with a set of visible units X1, . . . , Xn, where each
Xi takes values in a finite set Xi of cardinality |Xi| = Ni. See Fig. 1. The visible
state space of such a system is X = X1 × · · · × Xn. For any subset A ⊆ [n]
let NA =

∏
i∈ANi be the number of joint states of the units indexed by A, and

let N = N[n] = |X |. We denote the set of all probability distributions (px)x∈X on
X by ∆(X ), or ∆ if X is understood. The maximal information divergence
from a modelM⊆ ∆(X ) is DM := maxp∈∆D(p‖M). An rI-projection of p ∈ ∆
onto M is a point pM in the closure M of M with D(p‖M) = D(p‖pM).

2.1 Probability models defined by neural networks

The independence model E1n of n variables X1, . . . , Xn is the set of probability
distributions of the form p(x) =

∏
i∈[n] pi(xi) for all x = (x1, . . . , xn) ∈ X . This

model describes non-interacting stochastic variables. The following result is due
to Ay and Knauf [1, Corollary 4.10].
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Fig. 1. The näıve Bayes model Mn,k, the restricted Boltzmann machine RBMn,m, and
a deep belief network. Light (dark) nodes represent hidden (visible) variables.

Lemma 1. The maximal divergence to E1n is bounded by

DE1n ≤ log(N/max
i∈[n]

Ni) .

If all variables are q-ary, then DE1n = (n− 1) log(q), and the maximizers are the
uniform distributions on q-ary codes of cardinality q and minimum distance n.

The mixture of product distributionsMn,k, or näıve Bayes model, is
the graphical model on a star graph, where the leaves are visible variables, and
the internal node is a hidden variable with k states.

Theorem 1. Let A ⊆ [n]. If k ≥ N[n]\A, then DMn,k
is bounded by

DMn,k
≤ log(NA/max

j∈A
Nj) .

When all visible variables are binary, we have the tighter bound

DMn,k
≤
(
n− blog2(k)c − k

2blog2(k)c

)
log(2) .

Note the similarity of the bounds given in Lemma 1 and Theorem 1, In fact
Theorem 1 can be derived from Lemma 1, together with Lemma 6 given below.

The restricted Boltzmann machine RBMn,m is the undirected stochastic
network with full bipartite interaction graph Kn,m, where an independent set of
m units is hidden, and an independent set of n units is visible.

Theorem 2. Let A ⊆ [n], and let M1, . . . ,Mm be the sizes of the state spaces
of the hidden variables. If 1 +

∑
j∈[m](Mj − 1) ≥ N[n]\A, then

DRBMn,m
≤ log(NA/max

j∈A
Nj) .

When all units are binary, and m ≤ 2n−1 − 1, we have the tighter bound

DRBMn,m
≤
(
n− blog2(m+ 1)c − m+ 1

2blog2(m+1)c

)
log(2) .



Theorem 2 subsumes divergence bounds for näıve Bayes models (when m =
1) and independence models (when m = 0). This result was shown in the binary
case in [17, Theorem 2] and in the non-binary case in [15, Theorem 29].

A deep belief network (DBN) is a layered stochastic network with undi-
rected bipartite interactions between the units in the deepest two layers, which
form an RBM, and directed bipartite interactions between all other pairs of sub-
sequent layers, directed towards the first layer, which is the only visible layer.

Theorem 3. Consider a DBN with L layers, each layer containing n units with
state spaces of cardinalities q1, . . . , qn. Let m be any integer with

∏n
j=m+2 qj ≤

m ≤ n, and let q1 ≥ · · · ≥ qm. If L ≥ 2 +
qS1 −1
q1−1 for some S ∈ {0, 1, . . . ,m}, then

DDBN ≤ log(N[m−S]) .

In particular, when all units are binary and the network has L ≥ 1 + 2S layers
of size n = 2k−1 + k, for some S ∈ {0, 1, . . . , 2k−1}, then

DDBN ≤
(
2k−1 − S

)
log(2) .

The binary case is [13, Theorem 2], together with [14, Theorem 18]. The
non-binary case is new (details in [12]).

The bounds in Theorems 1, 2 and 3 vanish when the number of hidden
units is large enough (depending on their state spaces). In this case, the models
can approximate all probability distributions on the states of their visible units
arbitrarily well, i.e., they are universal approximators.

All these theorems can be proved using the same strategy: First, a family of
exponential sub-models is identified, and then, the divergence from the union of
these sub-models is bounded from above, as in Theorem 8 below.

2.2 Exponential families

Exponential families are widely-used statistical models. Examples include log-
linear models, hierarchical models, and independence models. The information
divergence maximization problem is by far better understood for exponential
families than for other probability models. We use exponential families to ap-
proximate probability models with hidden variables.

Let % = {A1, . . . , Am} be a partition of X . The partition model P% consists
of all p ∈ ∆ with p(x) = p(y) whenever x, y belong to the same block of %;
that is, the conditional distribution of p, conditioned on any block Ai ∈ %,
equals the uniform distribution. Partition models are the convex exponential
families that contain the uniform distribution. The following is a special case
of [9, Corollary 1]:

Lemma 2. Let % = {A1, . . . , Am} be a partition of X , and denote by c(%) =
maxi∈[m] |Ai| the coarseness of %. Then DP%

= log(c(%)), and the global max-
imizers are the distributions p with supp(p) ∩ Ai ≤ 1 for all i ∈ [m], where
supp(p) ∩Ai = 1 holds only if |Ai| = c(%).



The maximal divergence from any exponential family of dimension k can be
bounded from below as follows, see [19, Theorem 28]:

Theorem 4. Let E be an exponential family of dimension k. Then

DE ≥ log(N)− log(k + 1) .

If equality holds, then E is a partition model with homogeneous partition.

Probability models defined as marginals of exponential families can behave
very different from proper exponential families. Any finite subset of ∆ can be
embedded in a projection of a two-dimensional exponential family, see [2]:

Lemma 3. Given any finite set of probability distributions {p(i)}Ki=1 ⊂ ∆N−1,
there is a two-dimensional exponential family E ⊆ ∆K−1, and a linear map
ψ : ∆K−1 → ∆N−1, such that ψ(E) ⊇ {p(i)}Ki=1.

3 Estimating the information divergence

3.1 Subfamilies and superfamilies

If M′ ⊆M then DM ≤ DM′ . In special cases it is possible to have equality.

Lemma 4. If M′ ⊆M and if p is a maximizer of the divergence from M such
that M′ contains an rI-projection pM of p to M, then p maximizes the diver-
gence from M′ among the set {q ∈ ∆ : qM ∈M′ for some rI-projection qM}.

The lemma ist useful for exponential families; where the set of distributions
whose rI-project toM lies inM′, can be parametrized viaM′+N , where N is
the normal space ofM. The following argument due to Juŕıček [6] is an example:

LetM = E1n be the independence model of n q-ary variables and letM′ be the
set of i.i.d. distributions. By Lemma 1, the uniform distribution p on the states
(1, . . . , 1), (2, . . . , 2), . . . , (q, . . . , q) maximizes the divergence from M, and it is
exchangeable. Since the rI-projections of the set of exchangeable distributions
to M belong to M′, Lemma 4 implies that p maximizes the divergence from
M′ among the exchangeable distributions, with divergence D(p‖M′) = (n −
1) log(q). Now, M′ as a subset of the exchangeable simplex can be identified
with the multinomial model. This proves the following result [6, Theorem 1.1].

Theorem 5. The maximal divergence from the multinomial model of n q-ary
variables is equal to (n− 1) log(q).

Conversely, simple subfamilies can be used to study larger models:

Lemma 5. Let E be an exponential family. Let Mi be a sub-model of E with
DMi

= K and divergence maximizers Gi, for all i ∈ [k]. If there is a point
p ∈ G = ∩iGi with pE ∈ ∪iMi, then DE = K and the divergence maximizers are
exactly the points in G whose rI-projections onto E lie in ∩iMi.



Lemma 5 can be used to prove the homogeneous case of Lemma 1 as follows:
The independence model of n q-ary variables contains the partition model Pi
with partition blocks {x : xi = yi} for all yi ∈ Xi, for any i ∈ [n]. By Lemma 2,
the maximal divergence from the partition model Pi is DPi = (n−1) log(q), and
the set of maximizers is the set Gi of distributions p whose support supp(p) =

{x(j)}j satisfies x
(j)
i 6= x

(j′)
i for all j 6= j′. The intersection G = ∩iGi is the set

of probability distributions with support on a code of minimum distance n. The
rI-projection of an arbitrary element p ∈ G lies in ∩iPi = {u} if and only if p is
a uniform distribution on a code of minimum distance n and cardinality q. By
Lemma 5 these are the global divergence maximizers from E1n.

3.2 Mixtures of exponential families with disjoint supports

The mixture Mixt(M1, . . . ,Mk) of k models M1, . . . ,Mk ⊆ ∆ is the set of

probability distributions of the form p =
∑k
i=1 λip

(i), where λ ∈ ∆k−1 and
p(i) ∈ Mi for all i ∈ [k]. In general, mixtures are difficult to describe, even for
simple modelsM1, . . . ,Mk. The situation is much simpler when mixing models
supported on disjoint subsets of X :

Lemma 6. Let {A1, . . . , Ak} be a partition of X and let M1, . . . ,Mk be sta-
tistical models with Mi ⊆ ∆(Ai). For any p ∈ ∆(X ), the rI-projections of p to
Mixt(M1, . . . ,Mk) are the distributions of the form

pM(x) = p(Ai)pMi(x), for all x ∈ Ai for all i ∈ [k],

where pMi
denotes an rI-projection of p(x|Ai) to Mi for all i ∈ [k].

We call a set Y ⊆ X1 × · · · × Xn cubical if it can be written as a product
Y = Y1 × · · · × Yn with Yi ⊆ Xi for all i ∈ [n]. A set Y is cubical iff there exists
a product distribution p with supp(p) := {x ∈ X : p(x) > 0} = Y (in this case
Yi = supp(pi)). We call a partition cubical if it consists of cubical blocks. For

any cubical set Y let E1Y denote the set of product distributions with support Y.

Let % = {A1, . . . , Ak} be a cubical partition of X . The mixture of products

with disjoint supports % is the modelM% := Mixt(E1A1
, . . . , E1Ak

) ⊆Mn,k. For
this kind of models, Lemmas 1 and 6 show:

Corollary 1. Let % = {A1, . . . , Ak} be a cubical partition of X with blocks Ai =
Yi,1 × · · · × Yi,n with |Yi,j | ∈ {1, qi} for all j ∈ [n], for all i ∈ [k]. Then

DM%
= max

i∈[k]
log(|Ai|/qi) .

3.3 Unions of exponential families

Let M∗n,k =
⋃
%:|%|=kM% ⊆ Mn,k be the union of mixtures of products with

disjoint supports %, where % runs over all cubical partitions of X with k blocks.
The set M∗n,k is not an exponential family, but a finite union of exponential



families. Similarly, letM∗n,k,0 =
⋃
%:|%|=k P% be the union of all partition models

P% of partitions % with k cubical blocks.
Our motivation for studying unions of mixture models and unions of partition

models comes from the following two results. For simplicity, we consider binary
units; analogue results for non-binary units can be found in [15] and [12].

Theorem 6 ([17, Theorem 1]). The binary model RBMn,m contains any mix-
ture of one arbitrary product distribution, m− k product distributions with mu-
tually disjoint supports, and k distributions with support on any edges of the
n-cube, for any 0 ≤ k ≤ m. In particular, RBMn,m contains M∗n,m+1.

Theorem 7 ([14, Theorem 17]). Let L ∈ N, let k be the largest integer for

which L ≥ 1+2(2
k−1), and let K = 2k−1 +k ≤ n. The binary deep belief network

model with L layers of width n contains any partition model P% with partition
% = {{x : xλ = yλ} : yλ ∈ {0, 1}K}, where λ ⊆ [n], |λ| = K.

Unions of exponential families are more difficult to describe than exponential
families, but the maximal rI-projection can be approximated as follows:

Theorem 8. Let X = {0, 1}n. If k ≤ 2n−1, then

DM∗n,k
≤
(
n− blog2(k)c − k

2blog2(k)c

)
log(2) .

If k ≤ 2n, then

DM∗n,k,0
≤
(
n+ 1− blog2(k)c − k

2blog2(k)c

)
log(2) .

The first part was shown in [17, Theorem 2]. The second part can be proved with
a direct adaptation of the same proof. Theorem 8, together with Theorems 6
and 7, proves the ‘tighter bounds’ in Theorems 1 and 2.

4 Discussion

When we plot the approximation error bounds of the model classes discussed
here against the corresponding number of model parameters, we find that they
all behave similarly; they all decay logarithmically on a large scale. This is the
optimal maximal approximation error behaviour of exponential families (The-
orem 4). The bounds for partition models, homogeneous independence models,
and mixtures of products with disjoint homogeneous supports, are tight. The
näıve Bayes model bound is tight for many choices of the Ni in the sense that it
vanishes iff the model is a universal approximator, see [11]. The other bounds for
the more complicated models are probably not tight. It is reasonable to expect
that fixing the number of parameters, models with many hidden units fill the
probability simplex more evenly than their counterparts with fewer or no hid-
den units (see, e.g., Lemma 3). For the discussed model classes, this paper does
not give conclusive answers in that direction, since the only maximal divergence
lower-bounds are for exponential families. It should be mentioned, however, that



the mere existence of universal approximators within a given class of networks
is not always obvious and sometimes false. For example, DBNs with too narrow
hidden layers are never universal approximators, regardless of their parameter
count.
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13. G. Montúfar and N. Ay. Refinements of universal approximation results for DBNs
and RBMs. Neural Computation, 23(5):1306–1319, 2011.
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