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Abstract. We derive, via simultaneous homogenization and dimension
reduction, the Γ-limit for thin elastic plates of thickness h whose energy
density oscillates on a scale ε(h) such that ε(h)2 ≪ h ≪ ε(h). We
consider the energy scaling that corresponds to Kirchhoff’s nonlinear
bending theory of plates.

Keywords: elasticity, dimension reduction, homogenization, nonlinear
plate theory, two-scale convergence.

1. Introduction

In this paper we derive a model for homogenized bending plate, by means of
Γ-convergence, from 3d nonlinear elasticity. The pioneering papers in deriva-
tion of lower dimensional models by means of Γ convergence are [ABP91]
where the equations for elastic string are derived and [LDR95] where mem-
brane plate equations are derived. It was well known that the obtained
models depend on the assumption on the order of external loads with re-
spect to the thickness of the body (see [Cia97, Cia00] for the approach via
formal asymptotic expansion). The pioneering works in deriving higher di-
mensional models (e.g. bending and von-Kármán) via Γ-convergence are
[FJM02, FJM06] where the key indegredient is the theorem on geometric
rigidity.

Recently, models of homogenized bending plate were derived in the special
case when the relation between the thickness of the body h and the oscilla-
tions of the material ε(h) satisfy the condition h ∼ ε(h) or ε(h) ≪ h i.e. the
situations when is such that limh→0

h
ε(h) =: γ ∈ (0,∞], see [HNV]. Here we

partially cover the case γ = 0, by assuming additionally ε(h)2 ≪ h≪ ε(h).
The von-Kármán case of plate and shells are discussed in [NV, HV]. In the
case of von-Kármán plate all the cases for γ are obtained; the case γ = 0
corresponds to the situation where dimensional reduction prevails and the
case γ = ∞ corresponds to the situation where homogenization prevails.
Both of these cases can be obtained as limit cases from the intermediate
thin films that arises when γ → 0 i.e. γ → ∞. In the case of shells the
surprising fact was there are different scenarios for γ = 0; one scenario for
ε(h)2 ≪ h≪ ε(h), the other for h ∼ ε(h)2.

For the relation of the model obtained here with the ones obtained in [HNV],
see Remark 6 below. The recovery sequence for this model is significantly

Date: March 14, 2013.

1



2 IGOR VELČIĆ

different then the one defined in [HNV] and its gradient includes the terms
of order ε(h) ≫ h, which then has to be of the specific form (RA, where
R is the rotation matrix and A skew symmetric matrix), in order to obtain
the energy of order h2 (see the expression (51) below). The compactness
result, given in [FJM02], which gives the lower bound of Γ-limit, forces us to
work with piecewise constant map with values in SO(3) which creates some
additional technical difficulties in the compactness lemmas that are needed
for recognizing the oscillatory part of two scale limit (see Lemma 3.9 and
Lemma 3.11 below). The situation ε(h)2 ∼ h seems to be more involving,
since in that case we have lack of compactness result, partially due to the
possible occurrence of oscillations of order different than ε(h), see Remark
3 and Remark 7 below.

By so(3) we denote the space of skew symmetric matrices in M3. For a
matrix A, symA denotes its symmetric part while skwA denotes its skew
symmetric part i.e. symA = 1

2(A+ AT ), skwA = 1
2(A− AT ). For a vector

v ∈ R3 by Av we denote the antisymmetric tensor given by Avx = v × x.
We call v the axial vector of Av. One easily obtains

(1) Av =

 0 −v3 v2
v3 0 −v1
−v2 v1 0


For v, w ∈ R3 we have

(2) Av ·Aw = 2v · w.
By δij we denote the Kronecker delta. A . B means that the inequality is
valid up to a multiplicative constant C > 0 on the right hand side.

We need to introduce some function spaces of periodic functions. From now
on, Y = [0, 1)2, and we denote by Y the set Y endowed with the torus
topology, so that functions on Y will be Y -periodic.
We write C(Y), Ck(Y) and C∞(Y) for the Banach spaces of Y -periodic
functions on R2 that are continuous, k-times continuously differentiable
and smooth, respectively. Moreover, Hk(I × Y) denotes the closure of

C∞(I, C∞(Y)) with respect to the norm in Hk(I × Y ) and we write H̊k(Y)
for the subspace of functions f ∈ Hk(Y) with

´
Y f = 0. In the analogous

way we define H̊1(I×Y), C̊k(Y). The definitions extend in the obvious way
to vector-valued functions.

2. General framework and main result

By S ⊂ R2 we denote a bounded Lipschitz domain whose boundary is piece-
wise C1. For the proof of the lower bound we need only Lipschitz domain.
The piecewise C1-condition is necessary only for the proof of the upper
bound, cf. Section 4.2 for the details.
By Ωh := S × hI, where h > 0 and I := (−1

2 ,
1
2), we denote the reference

configuration of the thin plate of thickness h. The elastic energy per unit
volume associated with a deformation vh : Ωh → R3 is given by

(3)
1

h

ˆ
Ωh

W (
z3
h
,
z′

ε
,∇vh(z)) dz.
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We denote by z′ = (x1, x2) in-plane coordinates of a generic element z =
(x1, x2, x3) ∈ Ωh. By W we denote a energy density that models the elastic
properties of a periodic composite.

Assumption 2.1. We assume that

W : R× R2 ×M3 → [0,∞], (x3, y, F ) 7→W (x3, y, F )

is measurable and [0, 1)2-periodic in y for all F . Furthermore, we assume
that for almost every (x3, y) ∈ R × R2, the map M3 ∋ F 7→ W (x3, y, F ) ∈
[0,∞] is continuous and satisfies the following properties:

(frame indifference)

(FI)

W (x3, y, RF ) =W (x3, y, F ) for all F ∈ M3, R ∈ SO(3);

(non degeneracy)
(ND)

W (x3, y, F ) ≥ c1 dist
2(F, SO(3)) for all F ∈ M3;

W (x3, y, F ) ≤ c2 dist
2(F, SO(3)) for all F ∈ M3 with dist2(F, SO(3)) ≤ ρ;

(quadratic expansion at identity)
(QE)

lim
G→0

ess sup
y∈Y

|W (x3, y, I +G)−Q(x3, y,G)|
|G|2

= 0

for some quadratic form Q(x3, y, ·) on M3.

Here c1, c2 and ρ are positive constants which are fixed from now on.

We define Ω := S × I. The standard procedure in deriving lower dimen-
sional models is to rescale the out-of-plane coordinate: for x = (x′, x3) ∈ Ω
we consider the scaled deformation uh(x′, x3) := vh(x′, hx3). Then (13)
becomes

(4) Eh,ε(uh) :=

ˆ
Ω
W (x3,

x′

ε
,∇hu

h(x)) dx.

By ∇hu
h :=

(
∇′uh, 1

h∂3u
h
)
we have denoted the scaled gradient, and by

∇′uh :=
(
∂1u

h, ∂2u
h
)
we have denoted the gradient in the plane.

As already mentioned in the introduction, it is well known that different
models for thin bodies can be obtained from three dimensional elasticity
equations by the method of Γ-convergence. The main assumption that in-
fluence the derivation of the model is the assumption on the relation of the
order of the energy and the thickness of the body (also the assumption on
the boundary conditions can influence the model). The plate behavior, due
to its more complex geometry, is much more complex than the behavior of
rods. We recall some known results on dimension reduction in the homo-
geneous case when W (x3, y, F ) = W (F ). In [FJM06] a hierarchy of plate
models is derived from Eh := Eh,1 in the zero-thickness limit h → 0. The
case Eh ∼ 1 leads to a membrane model (see [LDR95]), which is a fully non-
linear plate model for plates without resistance to compression. The reason
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for that is that the compression enables the plate to preserve the metric on
the mid-plane and thus these deformations have lower order energy. The
obtained equations are of the same type as the original 3D equations i.e.
quasilinear and of the second order. In the regime Eh ∼ h4 finite energy
deformations converge to rigid deformations and to obtain the limit energy
we need to introduce the correctors from the rigid deformation. In [FJM06]
it is shown that h−4Eh converges to a plate model of “von-Kármán”-type.
In the case of higher scalings one obtains the linear plate model.

In this article we study the bending regime Eh ∼ h2, which, as shown in
[FJM02], the Γ-limit as h→ 0 of the functionals h−2Eh is the functional

(5)

ˆ
S
Q2(II(x

′)) dx′,

with Q2 : M2 → R is defined by the relaxation formula

(6) Q2(A) = min
d∈R3

Q (ι(A) + d⊗ e3) ;

here, Q is the quadratic form introduced in (QE) and ι denotes the natural
embedding of M2 into M3.

Denoting the standard basis of R3 by (e1, e2, e3) it is given by

ι(A) =

2∑
α,β=1

Aαβ(eα ⊗ eβ).

The special case of layered material is considered in [Sch07]. Dependence on
x3 variable produces non-trivial effects on the relaxation formula. Namely
the limit functional is then given by

(7)

ˆ
S
Q̄2(II(x

′)) dx′,

where

(8) Q̄2(A) = min
B∈M2

sym

ˆ
I
Q2 (ι(x3A+B)) dx3.

In [HNV] it was shown that in the non-homogeneous case the effective qua-
dratic form Q2 is determined by a relaxation formula that is more com-
plicated. For construction of the recovery sequence it was also helpful to
understand the behavior of layered materials. The obtained depended on
the relative scaling between the thickness h and the material period ε. Here
we will make the assumption that ε and h are coupled as follows:

Assumption 2.2. We assume that ε = ε(h) is a nondecreasing function
from (0,∞) to (0,∞) such that ε(h) → 0 and ε(h)2 ≪ h ≪ ε(h) i.e.

limh→0
h

ε(h) = limh→0
ε(h)2

h = 0.

The energy density of the homogenized plate we derive here is given by
means of a relaxation formula that we introduce next.
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Definition 2.3 (Relaxation formula). Let Q be as in Assumption 2.1. We
define Qrel

2 : M2
sym → [0,∞) by

Qrel
2 (A) := inf

B,U

¨
I×Y

Q (x3, y, ι(x3A+B) + U ) dy dx3,

taking the infimum over all B ∈ M2×2
sym and U ∈ L0(I × Y,M3

sym), where

L0(I × Y,M3
sym) :=

{  sym∇yζ + x3∇2
yφ

g1
g2

(g1, g2) g3

 : ζ ∈ H̊1(Y,R2),

φ ∈ H̊2(Y), g ∈ L2(I × Y,R3)

}
.

We also define the mapping U : H̊1(Y,R2) × H̊2(Y) × L2(I × Y,R3) →
L0(I × Y,M3

sym) by

U(ζ, φ, g) =

 sym∇yζ + x3∇2
yφ

g1
g2

(g1, g2) g3

 .

For a simpler definition of Qrel
2 , see Remark 5.

Remark 1. It can be easily seen by using Korn’s inequality that for ζ ∈
H̊1(Y,R2), φ ∈ H̊2(Y), g ∈ L2(I × Y,R3) we have

(9) ∥ζ∥H1 + ∥φ∥H2 + ∥g∥L2 . ∥U(ζ, φ, g)∥L2 .

We define the constraint on the deformation to be an isometry:

(10) ∂αu · ∂βu = δαβ , α, β ∈ {1, 2}.

We define the set of isometries of S into R3

H2
δ (S,R3) :=

{
u ∈ H2(S,R3) : u satisfies (10) a.e. in S

}
.(11)

For given map u ∈ H2
δ (S) we define the normal as n := ∂1u ∧ ∂2u, and we

define its second fundamental form II : S → M2
sym by defining its entries as

(12) IIαβ = ∂αu · ∂βn = −∂α∂βu · n.

We write IIh and nh for the second fundamental form and normal associated
with some uh ∈ H2

δ (S,R3). The Γ-limit is a functional of the form (5)
trivially extended to L2(Ω,R3) by infinity: we define E : L2(Ω,R3) → [0,∞],

E(u) :=


ˆ
S
Qrel

2 (II(x′)) dx′ if u ∈ H2
δ (S,R3),

+∞ otherwise.

We identify functions on S with their trivial extension to Ω = S × I: above
u ∈ H2

δ (S,R3) means that u(x′, x3) = u(x′) :=
´
I u(x

′, z) dz for almost every

x3 ∈ I, and u ∈ H2
δ (S,R3). Our main result is the following:

Theorem 2.4. Suppose that Assumptions 2.1 and 2.2 are satisfied. Then:
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(i) (Lower bound). If {uh}h>0 is a sequence with uh −
ffl
Ω u

h dx → u in

L2(Ω,R3), then

lim inf
h→0

h−2Eh,ε(h)(uh) ≥ E(u).

(ii) (Upper bound). For every u ∈ H2
δ (S,R3) there exists a sequence {uh}h>0

with uh → u strongly in H1(Ω,R3) such that

lim
h→0

h−2Eh,ε(h)(uh) = E(u).

The first step for identifying the Γ-limit is the compactness result. It gives
us the information on the limit deformations that can be concluded from
the smallness of energy. The result is given in [FJM02] and relies on the
theorem on geometric rigidity which is the key mathematical indegredient
for deriving lower dimensional models

Theorem 2.5 ([FJM02, Theorem 4.1]). Let (uh)h>0 ⊂ H1(Ω,R3) be such
that

lim sup
h→0

1

h2

ˆ
Ω
dist2(∇hu

h(x), SO(3)) dx <∞.

Then there exists a map u ∈ H2
δ (S,R3) satisfying

uh −
 
Ω
uh dx→ u, strongly in L2(Ω,R3),

∇hu
h → (∇′u, n ) strongly in L2(Ω,R3×3),

as h→ 0 after passing to subsequences and extending u and n trivially to Ω.

Remark 2. We could also consider the energy densities satisfying addition-
ally on the macroscopic variable x′ ∈ ω i.e. look the energy functionals of
the form

(13)
1

h

ˆ
Ωh

W (z′,
z3
h
,
z′

ε
,∇vh(z)) dz.

This changes the relaxation formula in an obvious way, but creates some
additional technical considerations, see [NV].

3. Two-scale limits of the nonlinear strain

Two-scale convergence was introduced in [Ngu89, All92] and has been ex-
tensively applied to various problems in homogenization. This is mainly
related to convex energies for which it is known that the oscillation that
relax the energy are of the same type as the oscillations of the material. In
the non convex case more complex behavior is expected. In this article we
work with the following variant of two-scale convergence which is adapted
to dimension reduction.

Definition 3.1 (two-scale convergence). We say a bounded sequence {fh}h>0

in L2(Ω) two-scale converges to f ∈ L2(Ω× Y ) and we write fh
2,0−−⇀ f , if

lim
h→0

ˆ
Ω
fh(x)ψ(x,

x′

ε(h)
) dx =

¨
Ω×Y

f(x, y)ψ(x, y) dy dx
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for all ψ ∈ C∞
0 (Ω, C(Y)). When ||fh||L2(Ω) → ||f ||L2(Ω×Y ) in addition, we

say that fh strongly two-scale converges to f and write fh
2,0−−→ f . For

vector-valued functions, two-scale convergence is defined componentwise.

As it is seen in the definition we allow only oscillations in variable x′. It
can be easily seen that this restriction does not influence the main results of
two scale convergence. Moreover, since we identify functions on S with their
trivial extension to Ω, the definition above contains the standard notion of
two-scale convergence on S × Y as a special case.

Indeed, when {fh}h>0 is a bounded sequence in L2(S), then fh
2,0−−⇀ f is

equivalent to

lim
h→0

ˆ
S
fh(x′)ψ(x′,

x′

ε(h)
) dx′ =

¨
S×Y

f(x′, y)ψ(x′, y) dy dx′

for all ψ ∈ C∞
0 (S,C(Y)).

Since the limit energy is expected to be convex in strain, one needs to
identify the two scale limit of the strain. However, the strain itself is not
a convex function of the gradient and it is not a-priori guaranteed that the
two scale analysis will be enough to obtain the two scale limit of the strain
itself. However in this regime, as well as in the regimes studied in [HNV], it
is enough to include only the oscillations that follow the oscillations of the
material to obtain the two scale limit of the strain. We have the following
characterization of the possible two-scale limits of nonlinear strains.

Proposition 3.2. Let (uh)h>0 be a sequence of deformations with finite
bending energy, let u ∈ H2

δ (S,R3) with the second fundamental form II, and
assume that

uh −
 
Ω
uh dx→ u strongly in L2(Ω,R3),

Eh :=

√
(∇huh)t∇huh − I

h

2,0−−⇀: E weakly two-scale

for some E ∈ L2(Ω × Y ;M3). Then there exist B ∈ L2(S,M2
sym), and

ζ ∈ L2(S, H̊1(I × Y,R2)), φ ∈ L2(S, H̊2(Y)) and g ∈ L2(S,L2(I × Y,R3))
such that

(14) E(x, y) = ι
(
x3 II(x

′) +B(x′)
)
+ U

(
ζ(x, ·), φ(x, ·), g(x, ·, ·)

)
(x3, y).

The starting point of the proof of the previous Proposition is [FJM06, The-
orem 6] (see also the proof of [FJM02, Theorem 4.1].

Lemma 3.3. There exist constants C, c > 0, depending only on S, such
that the following is true: if u ∈ H1(Ω,R3) then there exists a map R : S →
SO(3) which is piecewise constant on each cube x + hY with x ∈ hZ2 and

there exists R̃ ∈ H1(S,M3) such that for each ξ ∈ R2 which satisfy |ξ|∞ =
max{|ξ · e1|, |ξ · e2|} < h and for each S′ ⊂ S which satisfy dist(S′, ∂S) > ch
we have:

∥∇hu−R∥2L2(Ω) + ∥R− R̃∥2L2(S) + h2∥R− R̃∥2L∞(S) + h2∥∇′R̃∥2L2(S)

+∥τξR−R∥2L2(S′) ≤ C∥dist(∇hu,SO(3))∥2L2(Ω),
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where (τξR)(x
′) := R(x′ + ξ).

Let us recall some well-known properties of two-scale convergence. The
following lemma is already stated in [HNV] . We also refer to [All92, Vis06,
MT07] for proofs in the standard two-scale setting and to [Neu10] for the
adaption to the notion of two-scale convergence considered here.

Lemma 3.4. (i) Any sequence that is bounded in L2(Ω) admits a two-
scale convergent subsequence.

(ii) Let f̃ ∈ L2(Ω × Y ) and let (fh)h>0 ⊂ L2(Ω) be such that fh
2,0−−⇀ f̃ .

Then fh ⇀
´
Y f̃(·, y) dy weakly in L2(Ω).

(iii) Let f0 ∈ L2(Ω) and (fh)h>0 ⊂ L2(Ω) be such that fh ⇀ f0 weakly in

L2(Ω). Then (after passing to subsequences) we have fh
2,0−−⇀ f0(x)+ f̃

for some f̃ ∈ L2(Ω × Y ) with
´
Y f̃(·, y) dy = 0 almost everywhere in

S. f̃ is uniquely characterized by the fact that
´
S f

hψ(x, x
ε(h)) dx →´

S

´
Y f̃(x, y)ψ(x, y) dy dx, for every ψ ∈ C∞

0 (S, C̊∞(Y)).

(iv) Let f0 ∈ H1(Ω) and (fh)h>0 ⊂ H1(Ω) be such that fh → f0 strongly

in L2(Ω). Then fh
2,0−−→ f0, where we extend f0 trivially to Ω× Y .

(v) Let f0 and fh ∈ H1(S) be such that fh ⇀ f0 weakly in H1(S). Then
(after passing to subsequences)

∇′fh
2,0−−⇀ ∇′f0 +∇yϕ

for some ϕ ∈ L2(S,H1(Y)).

For the proof of the following lemma see [Neu10, Theorem 6.3.3].

Lemma 3.5. Let u0 ∈ H1(Ω,R3) and (uh)h>0 ⊂ H1(Ω,R3) be such that
uh ⇀ u0 weakly in H1(Ω,R3) and lim infh→0 ∥∇hu

h∥L2 <∞. Under the as-

sumption limh→0
h

ε(h) = 0 there exist ϕ ∈ L2(S, H̊1(Y,R3)), d ∈ L2(S,L2(I×
Y,R3)) such that (after passing to subsequences)

(15) ∇hu
h 2,0−−⇀ (∇′u0 , 0) + (∇yϕ , d).

Here u0 is the weak limit of uh i.e.
´
I u

h in H1(Ω,R3) i.e. H1(S,R3).

The following two lemmas are proved in [Vel].

Lemma 3.6. Let (uh)h>0 be a bounded sequence in L2(Ω) which two-scale
converges to u0(x, y) ∈ L2(Ω × Y). Let (vh)h>0 be a sequence bounded

in L∞(Ω) which converges in measure to v0 ∈ L∞(Ω). Then vhuh
2,0−−⇀

v0(x)u0(x, y).

Lemma 3.7. Let (uh)h>0 be a sequence which converges strongly to u in
H1(Ω) and (vh)h>0 be a sequence which is bounded in H1(Ω,Rn) such that
for each h > 0

(16) ∥∇uh − vh∥L2 ≤ Cη(h),

for some C > 0 and η(h) which satisfies limh→0
η(h)
ε(h) = 0. Then for any

subsequence of (∇vh)h>0 which converges two scale there exists a unique

v ∈ L2(Ω, H̊2(Y)) such that ∇vh 2,0−−⇀ ∇2u(x) +∇2
yv(x, y).
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We prove the following lemma.

Lemma 3.8. Let (Rh)h>0 ⊂ L∞(S,SO(3)) and (R̃h)h>0 ⊂ H1(S,M3) sat-
isfy for each h > 0

(17) ∥R̃h −Rh∥L2 ≤ Cη(h), ∥∇′R̃h∥L2 ≤ C, ∥R̃h∥L∞ ≤ C

where C > 0 is independent of h and η(h) satisfies limh→0
η(h)
ε(h) = 0. Then

for any subsequence of (∇′R̃h)h>0 which converges two scale there exists a

unique w ∈ L2(S, H̊1(Y,R3)) such that ∂αR̃
h 2,0−−⇀ ∂αR+RA∂yαw(x,y), where

R ∈ H1(S,SO(3)) is the weak limit of R̃h.

Proof. We have to prove only that

(18) Mh
α := sym[(R̃h)T∂αR̃

h]
2,0−−⇀ sym(RT∂αR) = 0, for α = 1, 2.

The rest is a direct consequence of (v) in Lemma 3.4. Namely, let us assume

(18). Then we conclude that for α = 1, 2 there exists w̃α ∈ L2(S, H̊1(Y,R3))
such that

(19) (R̃h)T∂αR̃
h 2,0−−⇀ RT∂αR+Aw̃α

.

Using the fact that R̃h → R, boundedly in measure and Lemma 3.6 we
conclude from (19) that

(20) ∂αR̃
h 2,0−−⇀ ∂αR+RAw̃α(x,y).

By using (v) of Lemma 3.4 we can also conclude that there exists M ∈
L2(S, H̊1(Y,M3)) such that

(21) ∂αR̃
h 2,0−−⇀ ∂αR+ ∂yαM.

From (20) and (21) we conclude that

Aw̃α(x,y) = ∂yα(R
TM),

which implies that w̃α = ∂αw, where w is the axial vector of skw(RTM).

It remains to prove (18). Notice that

(22) Mh
α,ij =

1
2∂α(R̃

h
i · R̃h

j ).

Take ψ ∈ C∞
0 (S, C̊∞(Y;R3)) and calculate

lim
h→0

ˆ
S
Mh

α,ijψ(·, ·
ε(h)) dx = lim

h→0

ˆ
S

1
2(R̃

h
i · R̃h

j )∂xαψ(·, ·
ε(h))

+ lim
h→0

ˆ
S

1
2ε(h)(R̃

h
i · R̃h

j )∂yαψ(·, ·
ε(h))

using (17) and
Cauchy inequality

= lim
h→0

ˆ
S

1
2(R

h
i ·Rh

j )∂xαψ(·, ·
ε(h))

+ lim
h→0

ˆ
S

1
2ε(h)(R

h
i ·Rh

j )∂yαψ(·, ·
ε(h))

=

ˆ
S
∂α(δij)ψ(·, ·

ε(h))

= 0.
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This together with (iii) of Lemma 3.4 implies (18). �

Lemma 3.9. Let (uh)h>0 ⊂ H1(S,R3), (Rh)h>0 ⊂ L∞(S, SO(3)) and (R̃h)h>0 ⊂
H1(S,M3) satisfy for each h > 0:

∥∇′uh − (Rhe1, R
he2)∥L2 + ∥Rh − R̃h∥L2 + ∥∇′R̃h∥L2 ≤ Cη(h),(23)

∥R̃h∥L∞ ≤ C

where C > 0 is independent of h and η(h) satisfies limh→0
η(h)
ε(h) = 0. Then

for any subsequence of (∇′R̃h)h>0 which converges two scale there exists a

unique w ∈ L2(S, H̊2(Y)) such that

(24) ∂αR̃
h 2,0−−⇀ ∂αR+R

 0 0 −∂y1yαw
0 0 −∂y2yαw

∂y1yαw ∂y2yαw 0

 ,

where R is the weak limit of R̃h in H1.

Proof. From (23) we conclude that there exists R : S → SO(3) and u ∈
H2(S,R3) such that Reα = ∂αu, for α = 1, 2, R̃h ⇀ R weakly in H1,
∂αu

h → Reα, R
h → R strongly in L2. Also from (23) and Lemma 3.8 we

have that there exists w̃ ∈ L2(S, H̊1(Y,R3)) such that for α = 1, 2

(25) ∂αR̃
h 2,0−−⇀ ∂αR+RA∂yα w̃.

Using Lemma 3.7 we conclude that there exists v ∈ L2(S, H̊2(Y,R3)) such
that

(26) R

 0 −∂yαw̃3

∂yαw̃3 0
−∂yαw̃2 ∂yαw̃1

 =

 ∂y1yαv1 ∂y2yαv1
∂y1yαv2 ∂y2yαv2
∂y1yαv3 ∂y2yαv3

 .

By putting ṽ = RT v we have that for α = 1, 2

(27)

 0 −∂yαw̃3

∂yαw̃3 0
−∂yαw̃2 ∂yαw̃1

 =

 ∂y1yα ṽ1 ∂y2yα ṽ1
∂y1yα ṽ2 ∂y2yα ṽ2
∂y1yα ṽ3 ∂y2yα ṽ3

 .

From this one easily concludes that w̃3 = 0 which implies the claim by
defining w = ṽ3. �

The following lemma was already used in [HV] and can be easily proved by
e.g. Fourier transform.

Lemma 3.10. Let M ∈ L2(S;L2(Y,M2
sym) such that for every

Ψ ∈ C∞
0 (S,C∞(Y;M2

sym))

which satisfies

(28) Ψ(·, y) = (cof∇2F )(y)ψ(·)

for some ψ ∈ C∞
0 (S), F ∈ C̊∞(Y), we have that¨

S×Y
M(·, y) : Ψ(·, y) = 0.
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Then there exist unique M0 ∈ L2(S,M2
sym) and ζ ∈ L2(S, H̊1(Y;R2)) such

that

M =M0 + sym∇yζ.

The following lemma is crucial for the proof of the Proposition 3.2.

Lemma 3.11. Let Assumption 2.2 be satisfied. Let (ũh)h>0 ⊂ H2(S,R3),

(R̃h)h>0 ⊂ H1(S,M3) and (Rh)h>0 ⊂ L∞(S,SO(3)) such that for each h > 0
Rh is piecewise constant on each cube x + hY with x ∈ hZ2 and for each
ξ ∈ R2 which satisfy |ξ|∞ = max{|ξ · e1|, |ξ · e2|} < h we have

h2∥∇′2ũh∥2L2 + ∥∇′ũh − (Rhe1, R
he2)∥2L2(Ω) + ∥Rh − R̃h∥2L2(S)(29)

+h2∥Rh − R̃h∥2L∞(S) + h2∥∇′R̃h∥2L2(S) + ∥τξRh −Rh∥2L2(Sh) ≤ Ch2,

for some C > 0 and for each sequence of subdomains Sh ⊂ S which satisfy
dist(Sh, ∂S) ≥ ch for some c > 0. Then there exist M0 ∈ L2(S,M2

sym) and

ζ ∈ L2(S, H̊1(Y,R2)) such that for α, β = 1, 2 (on a subsequence) we have:

Mh
αβ := 1

2h [(R
heα) · ∂βũh + (Rheβ) · ∂αũh]− δαβ

2,0−−⇀ M0,αβ + 1
2(∂yαζβ + ∂yβζα).

Proof. From (29) we can assume that there exists u ∈ H2(S,R3) and R ∈
H1(S,SO(3)) such that ∂αu = Reα, ∂αũ

h ⇀ ∂αu weakly in H1 for α = 1, 2,

R̃h ⇀ R weakly in H1 and Rh → R strongly in L2. Let us suppose that

Mh 2,0−−⇀ M , for some M ∈ L2(S × Y,M2). Using Lemma 3.10 it is enough
to see that ¨

S×Y
M(·, y) : Ψ(·, y) = 0,

where Ψ is defined by (28). Let us observe¨
S×Y

M(·, y) : Ψ(·, y)

= lim
h→0

ˆ
S
Mh : (cof∇2F )

(
·

ε(h)

)
ψ

= lim
h→0

ε(h)2

h

ˆ
S
hMh : cof

[
∇2
(
F
(

·
ε(h)

)
ψ
)
− 2∇

(
F
(

·
ε(h)

)
∇ψ
)
+ F

(
·

ε(h)

)
∇2ψ

]
= lim

h→0

ε(h)2

h

ˆ
S
hMh : cof

[
∇2
(
F
(

·
ε(h)

)
ψ
)
− 2∇

(
F
(

·
ε(h)

)
∇ψ
)]
.

It is easy to conclude that

lim
h→0

ε(h)2

h

ˆ
S
hMh : cof

[
∇
(
F
(

·
ε(h)

)
∇ψ
)]

= 0.

Namely, it is enough to conclude that the sequence

Ih :=

ˆ
S
hMh : cof

[
∇
(
F
(

·
ε(h)

)
∇ψ
)]
,
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is bounded. To see this notice that, because of (29) we have |Ih − Ĩh| → 0,
where

(30) Ĩh :=

ˆ
S
Mh

c : cof
[
∇
(
F
(

·
ε(h)

)
∇ψ
)]
,

and

Mh
c := 1

2 [(R̃
heα) · ∂βũh + (R̃heβ) · ∂αũh].

By partial integration in (30) and the fact that ∥∇Mh
c ∥L1(S) is bounded we

easily obtain the boundedness of Ĩh. From this it follows the boundedness
of Ih. It remains to prove that

(31) lim
h→0

ε(h)2

h

ˆ
S
hMh : cof∇2

(
F
(

·
ε(h)

)
ψ
)
= 0.

By partial integration we obtain for h small enough:

ˆ
S
hMh : cof∇2

(
F
(

·
ε(h)

)
ψ
)
=

(32)

ˆ
S
(Rhe2) · ∂11ũh∂2

(
F
(

·
ε(h)

)
ψ
)
−
ˆ
S
(Rhe2) · ∂12ũh∂1

(
F
(

·
ε(h)

)
ψ
)

+
∑

x′∈hZ2∩Sh

(
(Rhe1)(x

′)− (Rhe1)(x
′ + h(0, 1))

)
·

(ˆ
Γ2,h

x′

∂1ũ
h∂2

(
F
(

·
ε(h)

)
ψ
))

−
∑

x′∈hZ2∩Sh

(
(Rhe1)(x

′)− (Rhe1)(x
′ + h(1, 0))

)
·

(ˆ
Γ1,h

x′

∂2ũ
h∂2

(
F
(

·
ε(h)

)
ψ
))

−
∑

x′∈hZ2∩Sh

(
(Rhe2)(x

′)− (Rhe2)(x
′ + h(1, 0))

)
·

(ˆ
Γ1,h

x′

∂1ũ
h∂2

(
F
(

·
ε(h)

)
ψ
))

+
∑

x′∈hZ2∩Sh

(
(Rhe2)(x

′)− (Rhe2)(x
′ + h(1, 0))

)
·

(ˆ
Γ1,h

x′

∂2ũ
h∂1

(
F
(

·
ε(h)

)
ψ
))

,

where Γ1,h
x′ is the segment [x′ + h(1, 0), x′ + h(1, 1)], Γ2,h

x′ is the segment

[x′+h(0, 1), x′+h(1, 1)] and Sh is a compact subset of S such that sptψ ⊂ Sh.

First we will prove that limh→0
ε(h)2

h Ih1 = 0, where

Ih1 =

ˆ
S
(Rhe2) · ∂11ũh∂2

(
F
(

·
ε(h)

)
ψ
)
−
ˆ
S
(Rhe2) · ∂12ũh∂1

(
F
(

·
ε(h)

)
ψ
)
.

To prove this it is enough to prove the boundedness of the sequence Ih1 .

Notice, as before, using (29) and Cauchy inequality that |Ih1 − Ĩh1 | → 0,
where

Ĩh1 =

ˆ
S
(R̃he2) · ∂11ũh∂2

(
F
(

·
ε(h)

)
ψ
)
−
ˆ
S
(R̃he2) · ∂12ũh∂1

(
F
(

·
ε(h)

)
ψ
)
.

By replacing ũh with a smooth function ũhc ∈ C3(S) such that ∥ũh−ũhc ∥H2 ≪
ε(h) we obtain, after partial integration, that |Ĩh1 − Ĩh1,c| → 0, where

Ĩh1,c = −
ˆ
S
∂2(R̃

he2) · ∂11ũhcF
(

·
ε(h)

)
ψ +

ˆ
S
∂1(R̃

he2) · ∂12ũhcF
(

·
ε(h)

)
ψ.
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Now we easily obtains the boundedness of Ĩh1,c which implies the boundedness

of Ih1 . We want to show that limh→0
ε(h)2

h Ih2 = 0, where

Ih2 :=
∑

x′∈hZ2∩Sh

(
(Rhe1)(x

′)− (Rhe1)(x
′ + h(0, 1))

)
·

(ˆ
Γ2,h

x′

∂1ũ
h∂2

(
F
(

·
ε(h)

)
ψ
))

.

We will prove even more that Ih2 → 0. Since ũh ∈ H2(Ωh
x′ ,R3) we have that

(33)

ˆ
Γ2,h

x′

∣∣∣∣∂1ũh − 1
h

ˆ
Γ1,h
·

∂1ũ
h

∣∣∣∣2 ≤ h
3

ˆ
Ωh

x′

|∂12ũh|2,

where for x ∈ Γ2,h
x′ we put Γ1,h

x = [x−h(0, 1), x] and Ωh
x′ is the square of side

h whose left corner is x′. From (29) we easily conclude that for α = 1, 2 and
ξ ∈ R2, |ξ|∞ = 1 we have

(34)
∑

x′∈hZ2∩Sh

(
(Rheα)(x

′)− (Rheα)(x
′ + hξ)

)2
≤ C,

Using Cauchy inequality and (33), (34) we conclude that |Ih2 − Ĩh2 | → 0,
where

Ĩh2 :=
∑

x′∈hZ2∩Sh

(
(Rhe1)(x

′)− (Rhe1)(x
′ + h(0, 1))

)
·

(
1
h

ˆ
Ωh

x′

∂1ũ
h∂2

(
F

(
Ph
x′ (·)
ε(h)

)
ψ
(
P h
x′(·)

)))
,

and P h
x′ : Ωh

x′ → Γ2,h
x′ is the projection. From (29) and Cauchy inequality we

can easily conclude that |Ĩh2 − Ĩh2,c| → 0, where

Ĩh2,c :=
∑

x′∈hZ2∩Sh

(
(Rhe1)(x

′)− (Rhe1)(x
′ + h(0, 1))

)
·

(Rhe1)(x
′)

ˆ
Γ2,h

x′

∂2

(
F
(

·
ε(h)

)
ψ
)
.

By using (34) we easily obtain that |Ĩh2,c − Ĩh2,cc| → 0, where

Ĩh2,cc :=
∑

x′∈hZ2∩Sh

(
(Rhe1)(x

′)− (Rhe1)(x
′ + h(0, 1))

)
·

1
2

(
(Rhe1)(x

′) + (Rhe1)(x
′ + h(0, 1))

)ˆ
Γ2,h

x′

∂2

(
F
(

·
ε(h)

)
ψ
)
= 0.

This implies that Ih2 → 0. In the same way we can conclude that Ih4 → 0,
where

Ih4 :=
∑

x′∈hZ2∩Sh

(
(Rhe2)(x

′)− (Rhe2)(x
′ + h(1, 0))

)
·

(ˆ
Γ1,h

x′

∂2ũ
h∂1

(
F
(

·
ε(h)

)
ψ
))
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It remains to check the part

Ih3 :=
∑

x′∈hZ2∩Sh

(
(Rhe1)(x

′)− (Rhe1)(x
′ + h(1, 0))

)
·

(ˆ
Γ1,h

x′

∂2ũ
h∂2

(
F
(

·
ε(h)

)
ψ
))

−
∑

x′∈hZ2∩Sh

(
(Rhe2)(x

′)− (Rhe2)(x
′ + h(1, 0))

)
·

(ˆ
Γ1,h

x′

∂1ũ
h∂2

(
F
(

·
ε(h)

)
ψ
))

We follow the same pattern to replace ∂1ũ
h i.e. ∂2ũ

h by Rhe1 i.e. Rhe2 and
obtain that |Ih3 − Ih3,c| → 0, where

Ih3,c :=
∑

x′∈hZ2∩Sh

(
(Rhe1)(x

′)− (Rhe1)(x
′ + h(1, 0))

)
·

(Rhe2)(x
′)

ˆ
Γ1,h

x′

∂2

(
F
(

·
ε(h)

)
ψ
)

+
∑

x′∈hZ2∩Sh

(
(Rhe2)(x

′)− (Rhe2)(x
′ + h(1, 0))

)
·

(Rhe1)(x
′)

ˆ
Γ1,h

x′

∂2

(
F
(

·
ε(h)

)
ψ
)
.

Using again (34) we easily obtain that |Ih3,c − Ih3,cc| → 0, where

Ih3,cc :=
∑

x′∈hZ2∩Sh

(
(Rhe1)(x

′)− (Rhe1)(x
′ + h(1, 0))

)
·

1
2

(
(Rhe2)(x

′) + (Rhe2)(x
′ + h(1, 0))

)ˆ
Γ1,h

x′

∂2

(
F
(

·
ε(h)

)
ψ
)

+
∑

x′∈hZ2∩Sh

(
(Rhe2)(x

′)− (Rhe2)(x
′ + h(1, 0))

)
·

1
2

(
(Rhe1)(x

′) + (Rhe1)(x
′ + h(1, 0))

)ˆ
Γ1,h

x′

∂2

(
F
(

·
ε(h)

)
ψ
)

= 0.

This finishes the proof of the claim. �

Remark 3. In the case ε(h)2 ∼ h the major difficulty is to deal with the

expression Ĩh1,c, since under the integral we have the product of two sequences

which are only bounded in L2.

For proving the Proposition 3.2 we need the following remark, the same as
we needed in the proof of [NV, Proposition 3.1].
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Remark 4. Assume that S̃ ⊂ R2 a bounded domain. Let us look the follow-
ing minimization problem

min
v∈H1(S̃)´

S̃
v=0

ˆ
S̃
|∇v − p|2 dx′,

where p ∈ H1(S̃,R2) is a given field. The associated Euler-Lagrange equa-
tion reads {

−△v = −∇ · p in S̃

∂νv = p · ν on ∂S̃,

subject to
´
S̃
v dx = 0. Above, ν denotes the normal on ∂S̃. Since ∇ · p ∈

L2, we obtain by standard regularity estimates that v ∈ H2(S̃) under the

assumption that ∂S̃ is C1,1. In this case it holds ∥v∥
H2(S̃)

. ∥∇ · p∥
L2(S̃)

+

∥p∥
L2(S̃)

.

Proof of Proposition 3.2. Without loss of generality we assume that all uh

have average zero. Let Rh, R̃h be the maps obtained by applying Lemma 3.3

to uh. Due to the uniform bound on ∇′R̃h given by Lemma 3.3, Rh and

R̃h are precompact in L2(S,M3). Hence, Rh and R̃h strongly converge in
L2(S,M3) to R ∈ H1(S, SO(3)) on a subsequence. Also we can conclude
that uh → u strongly in H1(Ω,R3) and ∇hu

h → R = (∇′u, n) strongly in

L2(Ω,M3), for u ∈ H2(S,R3). Take S̃ ⊂ S, open, such that ∂S̃ is of class

C1,1 and define Ω̃ := S̃ × I, uh =
´
I u

h(x′, x3) dx3 and notice that

(35) ∥∇′uh − (R̃he1, R̃
he2)∥2L2 ≤ Ch2,

for some C > 0. Define ũh ∈ H2(S̃,R3) such that ũh minimizes the problem

min
v∈H1(S̃,R3)´

S̃
v=0

ˆ
S̃
|∇v − (R̃he1, R̃

he2)|2 dx′.

From Remark 4 we conclude that there exists C > 0 such that

∥ũh∥
H2(S̃)

≤ C, ∥∇′ũh − (R̃he1, R̃
he2)∥2L2(S̃)

≤ Ch2,

∥∇′ũh −∇′uh∥2
L2(S̃)

≤ Ch2.

Let us suppose that on a subsequence

(36) 1
h(R

h)t(∇′uh −∇′ũh)
2,0−−⇀ θ(x′) +∇yv(x

′, y),

where θ ∈ L2(S̃,M3×2) and v ∈ L2(S̃, H̊1(Y,R3)). This can be done without
loss of generality by using Lemma 3.4, Lemma 3.6 and Poincare inequality.
Following [FJM02], we introduce the approximate strain

(37) Gh(x) =
(Rh)t∇hu

h(x)− I

h
.

Since Gh is bounded in L2(Ω) we can assume that Gh 2,0−−⇀ G ∈ L2(Ω ×
Y,M3). First notice that it suffices to identify the symmetric part of the

two-scale limit G of the sequence Gh. Indeed, since
√

(I + hF )t(I + hF ) =

I + h symF up to terms of higher order, the convergence Gh 2,0−−⇀ G implies
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E = symG (see e.g. [Neu12, Lemma 4.4] for a proof). We define zh ∈
H1(Ω,R3) via

(38) uh(x′, x3) = uh(x′) + hx3R̃
h(x′)e3 + hzh(x′, x3).

Then clearly
´
I z

h(x′, x3)dx3 = 0 and we compute

(39)

Gh =
ι
(
(Rhe1 , R

he2)
t∇′ũh − I ′

)
h

+
1

h

∑
α=1,2

(Rhe3 · ∂αũh)e3 ⊗ eα

+
1

h
(Rh)t(∇′uh −∇′ũh , 0) +

1

h

(
(Rh)tR̃he3 ⊗ e3 − (0 , 0 , e3)

)
+x3(R

h)t(∇′R̃he3 , 0) + (Rh)t∇hz
h,

where by I ′ we have denoted the unit matrix in M2. By using Lemma 3.11

we conclude that there exist B̃ ∈ L2(S̃,M2
sym), ζ̃ ∈ L2(S̃, H̊1(Y,R2)) such

that on a subsequence

(40) sym

(
(Rhe1 , R

he2)
t∇′ũh − I ′

)
h

2,0−−⇀ B̃(x′) + sym∇y ζ̃(x
′, y).

Using Lemma 3.6 and Lemma 3.9 we conclude that there exists φ ∈ L2(S, H̊2(Y))
such that

(41) x3(R
h)t(∇′R̃he3)

2,0−−⇀ x3∇2
yφ(x

′, y).

Using Lemma 3.5 and Lemma 3.6 and the fact that
´
I z

h = 0 we conclude

that there exists ϕ ∈ L2(S, H̊1(Y,R3)), d ∈ L2(S,L2(I × Y,R3)) such that
on a subsequence

(42) (Rh)t∇hz
h 2,0−−⇀ (∇yϕ , d)

Without loss of generality we can assume that there exist p ∈ L2(S̃×Y,R2)
and z ∈ L2(S × Y;R3) such that

Rhe3 · ∂αũh
2,0−−⇀ pα(x

′, y), for α = 1, 2,(43)

1

h

(
(Rh)tR̃he3 − e3

)
2,0−−⇀ z(x′, y)(44)

Using (36) as well as (40)-(43) we conclude that there exists ζ ∈ L2(Ω̃, H̊1(Y,R2)),

φ ∈ L2(S̃, H̊2(Y)) and g ∈ L2(Ω̃× Y,R3) such that

E(x, y) = ι
(
x3 II(x

′) +B(x′)
)
+ U

(
ζ(x, ·), φ(x, ·), g(x, ·, ·)

)
(x3, y),(45)

∀(x, y) ∈ Ω̃× Y,
where

B = B̃ + sym
∑

α,β=1,2

θαβeα ⊗ eβ

ζ = ζ̃ +
∑
α=1,2

(ϕα + vα)eα

g = 1
2

∑
α=1,2

(∂yαϕ3 + ∂yαv3 + dα + θ3α + pα + zα)eα + (d3 + z3)e3



A NOTE ON THE DERIVATION OF HOMOGENIZED BENDING PLATE MODEL 17

To obtain the representation (45) for all (x, y) ∈ Ω × Y and some ζ ∈
L2(Ω, H̊1(Y,R2), φ ∈ L2(S, H̊2(Y)) and g ∈ L2(Ω × Y ,R3) it is enough to
use that E ∈ L2(Ω × Y,R3×3) and to exhaust S by an increasing sequence

(S̃n)n∈N of the sets with C1,1 boundary. �

4. Proof of Theorem 2.4

4.1. Lower bound. As a preliminary step we need to establish some conti-
nuity properties of the quadratic form appearing in (QE) and its relaxed
version introduced in Definition 2.3. For the proof we refer to [Neu12,
Lemma 2.7].

Lemma 4.1. Let W be as in Assumption 2.1 and let Q be the quadratic
form associated with W via (QE). Then

(Q1) Q(·, G) is Y -periodic and measurable for all G ∈ M3,
(Q2) for almost every (x3, y) ∈ R× R2 the map Q(x3, y, ·) is quadratic and

satisfies
(46)
c1| symG|2 ≤ Q(x3, y,G) = Q(x3, y, symG) ≤ c2| symG|2 ∀G ∈ R3×3.

Furthermore, there exists a monotone function r : R+ → R+ ∪ {+∞}, such
that r(δ) → 0 as δ → 0 and

(47) ∀G ∈ M3 : |W (x3, y, I +G)−Q(x3, y,G)| ≤ |G|2r(|G|)

for almost every y ∈ R2.

Lemma 4.2. For all A ∈ M2
sym there exist a unique quadraple (B, ζ, φ, g)

with B ∈ M2
sym and ζ ∈ H̊1(Y,R2), φ ∈ H̊2(Y), g ∈ L2(I × Y,R3) such

that:

Qrel
2 (A) =

¨
I×Y

Q (x3, y, ι(x3A+B) + U(ζ, φ, g) ) dydx3

The induced mapping M2
sym ∋ A 7→ (B, ζ, φ, g) ∈ M2

sym × H̊1(Y,R2) ×
H̊2(Y) × L2(I × Y,R3) is bounded and linear and thus A 7→ Qrel

2 (A) is
quadratic.

Proof. By (46) and by Remark 1 for each A ∈ M2
sym the bilinear form

associated with the quadratic functional

G 7→
ˆ
Y×I

Q(x3, y, x3A+G) dydx3

is elliptic on the closed linear subspace of L2(I × Y,M3
sym) given by

X := ι(M2
sym) + L0(I × Y,M3

sym).

Hence it admits a unique minimizer G0 ∈ X by Riesz representation theo-
rem. Linearity of G0 in A follows immediately from that. �
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Remark 5. It can be easily seen that

Qrel
2 (A) := inf

B,ζ,φ

¨
I×Y

Q2

(
x3, y, ι(x3A+B) + sym(∇yζ + x3∇2

yφ)
)
dy dx3,

where the infimum is taken over all B ∈ M2
sym, ζ ∈ H̊1(Y,R2) and φ ∈

H̊2(Y). In the case when W and consequently Q are independent of x3, but
still dependent on y, the relaxation formula looks significantly simpler i.e.
the minimizing B and ζ in the above expression are easily shown to be 0.
Thus the homogenization of the layered materials is more complex than the
materials that have energy density independent of x3.

Remark 6. The following observation is already made in [HNV]. Under the
assumption that h

ε(h) → γ ∈ (0,∞) the quadratic functional associated with

the Γ-limit is given by Q2,γ : M2
sym → [0,∞) by

Q2,γ(A) := inf
B,ϕ

¨
I×Y

Q
(
x3, y, ι(x3A+B) + (∇yϕ ,

1
γ∂3ϕ)

)
dy dx3

where the infimum is taken over all B ∈ R2×2
sym and ϕ ∈ H̊1(I×Y,R3). Using

[NV][Lemma 5.2] one can easily obtain that for A ∈ M2
sym we have

Qrel
2 (A) = lim

γ→0
Q2,γ(A).

The continuity in γ, for all γ ∈ [0,∞], of the quadratic functional associated
with the Γ-limit was already observed in the case of von-Kármán plate (see
[NV]). The case of von-Kármán shell resembles the case of bending plate
since we obtain that the continuity holds under the assumption that ε(h)2 ≪
h≪ ε(h) as already commented in the introduction.

Proof of Theorem 2.4 (lower bound). Without loss of generality we may as-

sume that
ffl
Ω u

h dx = 0 and lim suph→0 h
−2Eh,ε(h)(uh) < ∞. In view of

(ND), the sequence uh has finite bending energy and the sequence Eh is

bounded in L2(Ω,M3) by using the inequality |
√
F TF−I|2 . dist2(F, SO(3)),

valid for an arbitrary F ∈ M3. Hence, from Theorem 2.5 we deduce that
u ∈ H2

δ (S,R3). By Lemma 3.4 (i) and Proposition 3.2 (i) we can pass to a
subsequence such that, for some E ∈ L2(Ω× Y ;R3×3),

Eh 2,0−−⇀ E,

where E can be written in the form of (14). As explained in [Neu12] (cf.
[FJM02] for the corresponding argument in the homogeneous case), a care-

ful Taylor expansion of W ( x′

ε(h) , I + hEh(x)) combined with the lower semi-

continuity of convex integral functionals with respect to weak two-scale con-
vergence (see e.g. [Vis07, Proposition 1.3]) yields the lower bound

lim inf
h→0

1

h2
Eh,ε(h)(uh) ≥

¨
Ω×Y

Q(x3, y, E(x, y)) dy dx =

¨
Ω×Y

Q

(
x3, y, ι(x3 II(x

′) +B(x′)) + U
(
ζ(x, ·), φ(x, ·), g(x, ·, ·)

)
(x3, y)

)
dy dx,



A NOTE ON THE DERIVATION OF HOMOGENIZED BENDING PLATE MODEL 19

where we have used (14). Minimization over B ∈ L2(S,M2) and ζ ∈
L2(S, H̊1(Y,R2)), φ ∈ L2(S, H̊2(Y)), g ∈ L2(Ω× Y,R3) yields

lim inf
h→0

1

h2
Eh,ε(h)(uh) ≥

ˆ
S
Qrel

2 (II(x′)) dx′ = E(u).

�

4.2. Upper bound. It remains to prove the upper bound. We modify
the argumentation given in [HNV] by adding additional oscillations. To
recover the matrix B in the relaxation formula 2.3 we use the same ansatz
as in [HNV]. Since for Γ-limit it is enough to do the construction for dense
subsets, first we will say which dense subset of H2

δ (S,R3) is of interest. The
density of smooth isometries in H2 isometric immersions is established in
[Hor11b, Hor11a] (cf. also [Pak04] for an earlier result in this direction).
The results in [Hor11a] forces us to consider domains S which are not only
Lipschitz but also piecewise C1. More precisely, we can require only that
the outer unit normal be continuous away from a subset of ∂S with length
zero.

As in [HNV] for a given u ∈ H2
δ (S,R3) and for a displacement V ∈ H2(S,R3)

we denote by qV the quadratic form

qV = sym
(
(∇u)T (∇V )

)
.

This quadratic form can be seen as symmetrized gradients on developable
shell given by parametrization u. We denote by A(S) the set of all u ∈
H2

δ (S,R3) ∩ C∞(S,R3) with the property that{
B ∈ C∞(S,M2

sym) : B = 0 in a neighborhood of {x′ ∈ S : Π(x′) = 0}
}

⊂ {qV : V ∈ C∞(S;R3)}.

In other words, if u ∈ A(S) and B ∈ C∞(S,M2
sym) is a matrix field which

vanishes in a neighborhood of {Π = 0}, then there exists a displacement
V ∈ C∞(S;R3) such that qV = B. To recover the matrix B in the cell
formula we use the following lemma. The short argument, which relies on
[Sch07, Lemma 3.3] is given in [HNV]. The claim of it is connected to
the fact that on developable surface without the flat regions the space of
symmetric gradients is equal to the space of all symmetric matrices (see also
[HoLePa]).

Lemma 4.3. The set A(S) is dense in H2
δ (S,R3) with respect to the strong

H2 topology.

Thanks to Lemma 4.3 it will be enough to construct recovery sequences for
limiting deformations belonging to A(S). First we present a construction
assuming additional information about the limit. Then we use the standard
diagonalizing argument for the general case. The meaning of Lemma 4.3 is
that we can recover the arbitrary matrix field out of the flat parts of the
isometry. On the flat parts, however, the matrix B that relaxes the cell
formula 2.3 is equal to 0.
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Lemma 4.4. Let u ∈ H2
δ (S,R3) ∩W 2,∞(S,R3) and let V ∈ W 2,∞(S,R3).

Let ζ ∈ C∞
c (S, C̊∞(Y,R2)), φ ∈ C∞

c (S, C̊∞(Y)), g ∈ C∞
c (S, C̊∞(I×Y ,R3)).

Then there exists a sequence (uh) ⊂ H1(Ω,R3) such that uh → u and
∇hu

h → (∇′u, n) uniformly in Ω and

(48) lim
h→0

1

h2
Eh,ε(h)(uh) =

¨
Ω×Y

Q
(
x3, y, ι(x3 II(x

′) + qV (x
′)) + U

(
ζ(x, ·), φ(x, ·), g(x, ·, ·)

)
(x3, y)

)
dy dx3 dx

′.

Proof. First we start with the following Kirchhoff-Love type ansatz to which
we add its linearization induced by the displacement V :

vh(x) := u(x′) + hx3n(x
′) + h

(
V (x′) + hx3µ(x

′)
)
,

where µ is given by

µ = (I − n⊗ n)(∂1V ∧ ∂2u+ ∂1u ∧ ∂2V ).

We set R(x′) = (∇′u(x′), n(x′)). A straighforward computation shows that

(49) ∇hv
h = R+ h

(
(∇′V, µ) + x3(∇′n, 0)

)
+ h2x3(∇′µ, 0).

The actual recovery sequence uh is obtained by adding to vh the oscillating
corrections given by ζ, φ, g:

(50)

uh(x) := vh(x)− ε(h)2n(x′)φ(x′,
x′

ε(h)
)

+hε(h)2x3R(x
′)

 ∂x1φ(x,
x′

ε(h)) +
1

ε(h)∂y1φ(x,
x′

ε(h))

∂x2φ(x,
x′

ε(h)) +
1

ε(h)∂y2φ(x,
x′

ε(h))

0


+hε(h)R(x′)

(
ζ(x′, x′

ε(h))

0

)
+ h2

ˆ x3

−1/2
R(x′)g(x′, t,

x′

ε(h)
) dt.
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By the regularity of V , the uniform convergence of uh and ∇hu
h is immedi-

ate. Equation (49) implies

Rt∇hu
h = I + ε(h)

 0 0 ∂y1φ
0 0 ∂y2φ

−∂y1φ −∂y2φ 0


+ hι

(
(∇′u)t(∇′V ) + x3 II

)
+ h

(
(µ · ∇′u)⊗ e3 + e3 ⊗ (n · ∇′V )

)
+ hι

(
x3∇2

yφ+∇yζ
)
+ h

 0 0 g1
0 0 g2
0 0 g3


− ε(h)2ι(φ II) + ε(h)2

 0 0 ∂x1φ
0 0 ∂x2φ

−∂x1φ −∂x2φ 0


+ hε(h)2x3ι

(
∂x1x1φ+ 1

ε(h)∂x1y1φ ∂x1x2φ+ 1
ε(h)∂x2y1

∂x1x2φ+ 1
ε(h)∂x1y2φ ∂x2x2φ+ 1

ε(h)∂x2y2

)

+ h2x3R
t(∇′µ, 0) + hε(h)2x3(R

t∇′R)

 ∂x1φ+ 1
ε(h)∂y1φ

∂x2φ+ 1
ε(h)∂y2φ

0


+ hε(h)ι(∇x′ζ) + hε(h)(Rt∇′R)

(
ζ
0

)
+

h2

ε(h)
(

ˆ x3

−1/2
∇yg , 0 )

+ h2(

ˆ x3

−1/2
∇x′g , 0 ) + h2(Rt∇′R)

ˆ x3

−1/2
g;

(51)

the argument of the functions ζ, φ, g and their derivatives is (x, x′/ε(h)).
Let us define

Eh =

√
(∇huh)t∇huh)− I

h
.

Using n · ∇′V + µ · ∇′u = 0, the Assumption 2.2 and Taylor expansion we
deduce from (51) that

Eh 2,0−−→ E :=ι (qV + x3 II) + U(ζ(x′, ·), φ(x′, ·), g(x′, ·))(x3, y),

Properties (FI), (QE) and (47) yield

(52) lim sup
h→0

∣∣∣∣ 1h2Eh,ε(h)(uh)−
ˆ
Ω
Q(x3,

x′

ε(h) , E
h(x)) dx

∣∣∣∣ = 0.

Hence, by (46) and by strong two-scale convergence of Eh, we can pass to
the limit in the second term in (52). �

Proof of Theorem 2.4 (Upper bound). The following is the standard argu-
ment and is already given in [HNV]. We may assume that E(u) < ∞,
so u ∈ H2

δ (S,R3). Moreover, since Qrel
2 is quadratic (cf. Lemma 4.2), it

suffices to prove the statement for a dense subset of H2
δ (S,R3). Hence, by

Lemma 4.3, we may assume without loss of generality that u ∈ A(S).
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By Lemma 4.2 there exist B ∈ L2(S,M2
sym) and ζ ∈ L2(S, H̊1(Y,R2)),

φ ∈ L2(S, H̊2(Y)), g ∈ L2(S,L2(I × Y,R3)) such that:

(53) E(u) =
¨

Ω×Y
Q(x3, y, ι(x3 II+B) + U(ζ, φ, g)) dydx.

Since B(x′) depends linearly on II(x′), we know in addition that B(x′) = 0
for almost every x′ ∈ { II = 0 }.

By a density argument it suffices to show the following: There exists a
doubly indexed sequence uh,δ ∈ H1(Ω,R3) such that

lim sup
δ→0

lim sup
h→0

∥uh,δ − u∥H1 = 0,(54)

lim sup
h→0

∣∣∣∣ 1h2Eh,ε(h)(uh,δ)− E(u)
∣∣∣∣ . δ.(55)

If we establish this, then we can obtain the desired sequence by diagonalizing
argument (e. g. by appealing to [Att84, Corollary 1.16]).

We construct uh,δ as follows: By density, for each δ > 0 there exist maps
Bδ ∈ C∞(S,R2×2

sym) and ζ
δ ∈ C∞

c (S, C̊∞(Y,R2)), φδ ∈ C∞
c (S, C̊∞(Y)), gδ ∈

C∞
c (S, C̊∞(I × Y,R3))

such that

∥Bδ −B∥L2(S) + ∥U(ζδ, φδ, gδ)− U(ζ, φ, g)∥L2(Ω×Y ) ≤ δ2,(56)

Bδ = 0 in a neighborhood of { II = 0 }.(57)

Since u ∈ A(S,R3) and due to (57), for each δ > 0 there exists a smooth
displacement Vδ such that

Bδ = qVδ
.

We apply Lemma 4.4 to u and Vδ to obtain a sequence uh,δ that converges
uniformly to u as h → 0. Hence (54) is satisfied. Lemma 4.4 also ensures
that

lim
h→0

1

h2
Eh(uh,δ) =

¨
Ω×Y

Q
(
x3, y, ι(x3 II+B

δ) + U(ζδ, φδ, gδ)
)
dydx.

By continuity of the functional on the right-hand side, combined with (56)
and (53), the bound (55) follows. �

Remark 7. In the case ε(h)2 ∼ h one can define the sequence, instead of the
expression (50), which includes the oscillations which are of order different
than ε(h) and which possibly additionally relax the energy. This can be

achieved e.g. by putting in (50) instead of φ ∈ C∞
c (S, C̊∞(Y)) the function

φk ∈ C∞
c (S, C̊∞(kY)). It can be easily seen that this is allowable recovery

sequence which could have less energy than the original one. Namely, in the
expression for the strain then would also appear the matrix ATA, where

A =

 0 0 ∂y1φk

0 0 ∂y2φk

−∂y1φk −∂y2φk 0

 .
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This nonlinear term would cause nonconvexity of the energy in ∇φ which
has the consequence that the oscillations which are not of the order ε(h)
could also be energetically convenient. This partially explains the lack of
compactness, which is commented in Remark 3.
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[NV] Stefan Neukamm and Igor Velčić. Derivation of a homoge-
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