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We study the interplay of topology and dynamics in a neural network connected with spike-timing-
dependent plasticity (STDP) synapses. Stimulated with periodic spike trains, the STDP-driven
network undergoes a synaptic pruning process and evolves to a residual network. We examine the
variation of topological and dynamical properties of the residual network by varying two key param-
eters of STDP: Synaptic delay and the ratio between potentiation and depression. Our extensive
numerical simulations of the Leaky Integrate-and-Fire model show that there exists two regions in
the parameter space. The first corresponds to fixed point configurations, where the distribution of
peak synaptic conductances and the firing rate of neurons remain constant over time. The second
corresponds to oscillating configurations, where both topological and dynamical properties vary pe-
riodically which is a result of a fixed point becoming a limit cycle via a Hopf bifurcation. This leads
to interesting questions regarding the implications of these rhythms in the topology and dynamics
of the network for learning and cognitive processing.
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I. INTRODUCTION

Adaptive networks arise in diverse areas ranging from neural learning [1, 2] to social dynamics [3, 4]. (For a
review see Ref. [5].) Such networks combine topological evolution of the network with dynamics in the state of the
nodes. In such networks, there are two types of evolution: (a) the edges between nodes get modified, pruned or
rewired over time and (b) the state of the nodes can change over time. In adaptive networks, the two evolutions are
explicitly coupled and can drive each other with complex feedback. Detailed investigation of the dynamics of this co-
evolutionary process can lead to important insights on complex adaptive systems. Recent studies show the emergence
of interesting physical phenomena due to this combined dynamics in adaptive networks. For example, a topological
phase transition for some critical value of edge rewiring probability was observed for both social dynamics [6] and
neural network models [7, 8]. Although, such studies have revealed some interesting phenomena in adaptive networks,
there are many more interesting issues that still need to be addressed.

In neural networks, one of the learning paradigms for spiking neurons is spike-timing-dependent plasticity
(STDP) [9]. STDP is an adaptive scheme that plays an important role in the interplay between the topology and
dynamics of neural networks. STDP determines the evolution of synaptic weights based on pre- and post-synaptic
activity, which in turn, changes the neuronal activity. Previous studies of STDP-driven networks have mainly inves-
tigated the influence of STDP rule on either the dynamics or the topology of neural networks. It has been shown
that STDP could result in spike train learning [10] and enhancement or decoupling effect of synchronization [11, 12].
The topological evolution of STDP-driven networks is also well characterized. In Ref. [13], it was shown that the
functional architecture of brain can self-organize into small-world and scale-free network via STDP mediated synaptic
reorganization. Takahashi et al. [2] have studied the role of STDP in the development of feed-forward architecture in
neural networks. Gilson et al. [14] have developed a framework to analyze systematically the behaviour of STDP in
recurrent networks. It has also been suggested that the interplay between dynamics and topology might be essential
for neural information processing [15].

Previous studies have established that STDP could drive a globally connected network to a steady-state condition
where the firing rate of neurons and the distribution of peak synaptic conductances remain constant over time [9,
13, 15–18]. Specifically, in Ref. [17], we have studied a network of neurons with STDP learning rule and properly
chosen input signals. Starting from a globally connected network with random initial synaptic strengths, we found
that majority of synapses weaken in the course of dynamics due to STDP rule leading to a sparse residual network.
Moreover, such residual networks obtained by starting from different configurations of initial synaptic strengths were
found to be different with some common characteristic properties. This observation indicates that the combined
dynamics has several fixed points with each having its own basin of attraction in the high dimensional space of
synaptic strengths. In our earlier contribution, we have established the robustness of the observed characteristic
properties in the residual STDP-driven network for a narrow range of two key parameters in STDP learning rule:
(a) the synaptic delay and (b) the ratio between potentiation and depression. We had also found there a striking
similarity in the network motif distribution of the residual STDP-driven network in comparison to the real C. elegans
neural network.

Our previous observations are expected to have important implications for neural information processing. Hence,
in the present contribution, we have asked the following question: Are the fixed point steady states leading to the
residual networks stable. In Fig. 1, we report results from a simulation of the Hodgkin-Huxley (HH) model that point
to a bifurcation transition. From this figure, we can clearly see that there are two different long time behaviours for
the number of synapses and the firing rate for different values of the parameters. Since simulations of HH model are
more time consuming we have considered the Leaky Integrate-and-Fire (LIF) model to investigate this question in
detail. This allows us to explore a wider range of parameter space. Here, through extensive numerical simulations
of the LIF model, we report a bifurcation, a supercritical Hopf bifurcation, giving rise to a limit cycle. Hence, the
parameter space can be divided into two distinct regions: one corresponding to fixed point configurations and the
other to oscillating configurations where both topological and dynamical properties vary periodically. These new
observations have interesting consequences for the network structure as a whole.

The rest of the paper is organized as follows: Section II describes the LIF model along with the spike-timing-
dependent plasticity (STDP) rule. Section III presents results of our numerical simulations showing a Hopf bifurcation.
Section IV presents network motif analysis of the resulting networks. The last section V concludes with discussion of
the obtained results.

II. NEURON MODELS AND STDP LEARNING RULE

The Network were modeled using the NEST Simulation Tool [19]. We have used the Leaky Integrate-and-Fire
(LIF) model to simulate the behaviour of neurons. The membrane potential of the conductance based LIF neuron is
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FIG. 1. (Color online) Evolution of the number of survived synapses (upper dashed line), the number of near-maximum
synapses (lower dashed line), and the average firing rate of neurons (solid line) for two different evolutionary behaviours of the
Hodgkin-Huxley (HH) model: (a) fixed point state, (b) oscillating state. The chosen parameters are depicted by squares in
Fig. 6(a).

described by:

Cm
dVj

dt
= gL(Vr − Vj) + gj(t)(Eex − Vj) , (1)

where Cm = 200pF is the membrane capacitance, Vj is the membrane potential of the jth neuron, gL = 10nS is the
leak conductance which is equivalent to Rm = 100MΩ with Rm as the membrane resistance, Vr = −70mV is the resting
potential (leak reversal potential), and Eex = 0mV is the excitatory reversal potential. When the membrane potential
reaches the threshold value (Vth = −54mV), the neuron emits an membrane potential, and the depolarization is reset
to reset potential (Vr = −60mV) after a refractory period (τref = 1ms) during which the potential is insensitive to
stimulation. The parameters used here are same as in Ref. [9].
The Traub modified conductance based Hodgkin-Huxley model neuron is used to obtain Fig. 1. It is described by

the following equation:

Cm
dVj

dt
= gL(EL − Vj) + gNam

3h(ENa − Vj) + gKn4(EK − Vj) + gj(t)(Eex − Vj), (2)

where Cm = 100pF. Eex = 0mV is the excitatory reversal potential. The maximal conductances and reversal
potentials of the sodium and potassium ion channels and the leak channel used in the model are gNa = 1.0mS/mm

2
,

gK = 2.0mS/mm
2
, gL = 0.001mS/mm

2
, ENa = 48mV, EK = −82mV, and EL = −67mV respectively. The gating

variables X = m,h, n satisfy the following equation:

dX

dt
= αX(Vj)(1−X)− βX(Vj)X, (3)

where αX and βX are given by

αm =
0.32(V + 54)

1− exp(−0.25(V + 54))
βm =

0.28(V + 27)

exp(0.2(V + 27))− 1

αh = 0.128 exp(−(V + 50)/18)βh =
4

1 + exp(−0.2(V + 27))

αn =
0.032(V + 52)

1− exp(−0.2(V + 52))
βn = 0.5 exp(−(V + 57)/40).

These parameters are taken from [20].
The synaptic conductance gj(t) of the jth neuron at time t in Eq. (1) is given by:

gj(t) = gm

N∑
i=1

wij(t)
∑
k

f(t− tki ) , (4)
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where N is the number of neurons, gm is the maximum value of synaptic conductance, wij is the weight of the synaptic
connection from the ith neuron to the jth neuron, tki is the timing of the kth spike of the ith neuron. In Eq. (4), we
have used an α-function [21] f(t) with latency (or transmission delay) τd and synaptic time constant τex = 2ms:

f(t) =

{
t−τd
τ2
ex

exp(− t−τd
τex

) if t > τd

0 otherwise.
(5)

In this study, the weight of the synaptic connection wij gets modified via STDP learning rule. The STDP rule is
a form of experimentally observed long-term synaptic plasticity where synaptic strengths get modified by repeated
pairings of pre- and post-synaptic membrane potentials with the sign and the degree of the modification dependent
on the relative timing of the firing of neurons. The amount of modification is determined based on the temporal
difference ∆t between the occurrence of the post-synaptic membrane potential and the arrival of the pre-synaptic
membrane potential,

∆t = tj − (ti + τd), (6)

where tj is the spike time of the postsynaptic neuron j, ti is the spike time of the presynaptic neuron i, and τd is the
delay time of the spike transmission from neuron i to neuron j. The weight modification ∆wij is described by the
following equation, which is applied at postsynaptic spikes:

∆wij(∆t) =

{
λ exp(−|∆t|/τ+) if ∆t ≥ τd
−λα exp(−|∆t|/τ−) if ∆t < τd,

(7)

where λ = 0.0001 is the learning rate. Here, we have chosen a small learning rate to simulate the effect of STDP on the
long term development of neural system. The synaptic strengths wij is constrained within the range [0, 1] which ensures
that the peak synaptic conductance gmwij is always positive and cannot exceed the maximum value gm = 0.3nS. The
time constants τ+ and τ− controls the width of the time window, and α introduces a possible asymmetry between the
scale of potentiation and depression. As argued in Ref. [9], in order to obtain stable competitive synaptic modification,
i.e., uncorrelated pre- and post-synaptic spikes producing an overall weakening of synapses, the integral of ∆wij should
be negative. Here, we have used an asymmetric time window of τ+ = 16.8ms and τ− = 33.7ms for STDP rule which
provides a reasonable approximation of the synaptic modification observed in experiments [22]. The choice of α > 0.5
along with an asymmetric time window results in a ratio of ατ−/τ+ > 1.0 ensuring that the integral of ∆wij is
negative.

III. HOPF BIFURCATION IN THE COEVOLUTION OF TOPOLOGY AND DYNAMICS

We now investigate how the topology and dynamics evolve together over time in STDP-driven networks. In our
simulations, we start from a globally connected network of 100 neurons with membrane potentials of neurons initialized
to a value drawn at random from a clipped normal distribution, with mean potential -57.0 mV, variance 3.0 mV, and
maximum -54.0 mV (threshold potential). The synapses of the network are governed by STDP learning rule. The
peak synaptic conductances are initialized to a clipped normal distribution, with mean 0.15 nS, variance 0.15 nS and
minimum 0.0 nS. We use a small learning rate (λ = 0.0001) and run the simulations for time t > 107ms in order to
mimic long term development of neural systems. The neurons are stimulated repeatedly by different patterns that
have a period of Tp = 150ms and are truncated from independent Poisson spike trains with the same average rate
fps = 50Hz, which is analogous to the stimulus scheme in [23]. The average firing rate corresponds to a 20ms spike
interval which is consistent with the width of STDP time window. The stimulus patterns are visualized in Fig. 2(a),
where two successive periods of stimulus patterns are shown.
Several authors have shown that after a period of relaxation by STDP, a fixed point condition can be achieved, where

the firing rate of the post-synaptic neuron and the distribution of peak synaptic conductances become constant [9, 13,
16, 17]. During the learning process due to the asymmetry between the scale of potentiation and depression, most of
the synapses get weakened to nearly zero while others get strengthened to achieve the maximum conductance. The
distribution of peak synaptic conductances approaches a bimodal distribution in resulting networks. However, the
previously published results were obtained for a limited range in parameter space. Here, we have investigated this
issue in a wider range of parameter space.
We have examined the variation of topological and dynamical properties of STDP-driven networks by varying two

key parameters of STDP rule: (a) synaptic delay τd within a range of 1-15 ms and (b) the ratio between potentiation
and depression α within a range of 0.50-0.74. In each simulation, we start from a globally coupled network along with
specific values for τd and α. The STDP-driven network then undergoes a synaptic pruning process and evolves to a
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FIG. 2. Spatio-temporal spike patterns: (a) two successive periods of the input stimulus patterns of 100 neurons, (b) an
example of the output spike trains in the final stage of the evolution of STDP-driven network, where α = 0.71 and τd = 2.0ms.
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FIG. 3. (Color online) Evolution of the number of survived synapses (dashed line), the number of near-maximum synapses
(dash-dot line), and the average firing rate of neurons (solid line) for the examples of the four different evolutionary behaviours:
(a) fixed point state (α = 0.71, τd = 2.0ms), (b) oscillating state (α = 0.6, τd = 6.0ms), (c) critical state (α = 0.54, τd = 8.0ms),
and (f) supercritical state (α = 0.52, τd = 5.0ms). The robustness of the fixed-point state and the oscillating state against
heterogeneous delays is shown in (d) and (e), where α is 0.71 and 0.6 respectively and the synaptic delays τd are randomly
selected with a uniform distribution from the interval [0.1 ms, 15.0 ms] in both cases.
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FIG. 4. (Color online) The bimodal distribution of peak synaptic conductances in the residual network for fixed point state,
where α = 0.71, τd = 2.0ms.
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FIG. 5. (Color online) Evolution of synaptic conductances for the three different evolutionary behaviours: (a) fixed point
state (α = 0.71, τd = 2.0ms), where the synapses g26−36, g30−40, g54−64, g61−71 and g89−99 are shown; (b) oscillating state
(α = 0.6, τd = 6.0ms), where the synapses g2−12, g5−15, g6−16 and g20−30 are shown; and (c) critical state (α = 0.54, τd = 8.0ms),
where the synapses g6−16, g12−22, g20−30 and g80−90 are shown.

residual network. In this work, we find that the residual network is either in a fixed point state or an oscillating state
depending on the value of τd and α.
To study the topological and dynamical characteristics of the coevolution process, two properties of the residual

network are monitored. The first property is the average firing rate of neurons which gives an overview of network
dynamics. The second property is the number of synapses that have strength greater than a certain threshold. To
inspect the topological characteristics of the residual network, we filter the adjacency matrix using two types of
threshold. In the first case, we use a small threshold of gs = 0.01nS. If the weight of a synapse is greater than the
threshold value then it is considered a survived synapse, otherwise considered a pruned synapse. From the filtered
adjacency matrix, the number of survived synapses is estimated. In the second case, we use a large threshold of
gl = 0.29nS which gives us the number of synapses approaching the maximum value (gm = 0.3nS) or number of
near-maximum synapses from the filtered adjacency matrix. Fig. 3 show three different behaviours observed in our
simulations for the properties monitored for different values of parameters τd and α.
Fig. 3(a) shows the case of the fixed point state where α = 0.71 and τd = 2.0ms. This case has been reported in

earlier studies [9, 13, 15–17]. It can be seen that the number of survived synapses (> gs = 0.01nS) decreases rapidly
until 106ms after which it remains almost constant. The fraction of the synapses survived at the end is 10.7% of the
total, indicating that most of the synapses in fact did not survive. However, the number of near-maximum synapses
(> gl = 0.29nS) increases rapidly until 106ms after which it remains almost constant (about 9.2% of the total). The
difference between the number of survived synapses and number of near-maximum synapses is approximately 150
implying that synapses whose strength lies between gs = 0.01nS and gl = 0.29nS account for a small fraction of
survived synapses. Fig. 4 shows the bimodal distribution of synaptic strengths in residual networks. The evolution
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FIG. 6. Two parameter phase diagram showing the dependence of STDP-driven networks on the value of two key parameters:
α which is the ratio between potentiation and depression, and τd which is the synaptic delay. (a) The evolutionary behaviour
can be classified into two categories: fixed point state (white region) and oscillating state (grey region). Every dot symbol
corresponds to a simulation case. The vertical line (cross symbols) and the horizontal line (circle symbols) show configurations
corresponding to the simulations in Fig. 8(d) and (c) respectively, where either τd(= 5)ms or α(= 0.53) is fixed while the other
parameter traverses a vast range. The two square symbols depict parameters corresponding to the simulations of HH model
shown in Fig. 1. (b) The average firing rate (in Hz), and (c) the number of survived synapses for different configurations in
the fixed point region. (d) The oscillation period (in 100s), (e) the mean, and (f) the amplitude of the average firing rate
fluctuations (in Hz) corresponding to different configurations in oscillating region.

of average firing rate of neurons shows a trend similar to number of survived synapses and number of near-maximum
synapses (cf. Fig. 5(a)).

In our simulations, apart from the fixed point case, an oscillating state of the residual network is also discovered.
An example of oscillating state is shown in Fig. 3(b) where α = 0.6 and τd = 6.0ms. We find that the number of
survived synapses (or near-maximum synapses) decrease (increase) to a certain level and fluctuate in a certain range,
about 20.5%-27.5% (9.0%-14.5%) of the total, with the period of 1450s. Due to the interplay between dynamics
and structure of the network, the average firing rate also oscillates with the same period. After the transient period
(t > 106ms), we have determined the mean and amplitude of this oscillation which are equal to 211.7 and 33.9,
respectively. Fig. 5(b) shows that typical synaptic conductances also oscillate over whole range of allowed values with
the same period.

The robustness of the fixed-point state and the oscillating state against heterogeneous delays is shown in Fig. 3(d)
and (e), where α is 0.71 and 0.6 respectively and the synaptic delays τd are randomly selected with a uniform
distribution from the interval [0.1 ms, 15.0 ms] in both cases. For the case of α = 0.71, the synaptic delays between
[0.1 ms, 15.0 ms] all lie in the fixed-point region. For the case of α = 0.6, the boundary between the oscillating region
and the fixed-point region is between 10.0 ms and 11.0 ms. Thus the fixed-point configurations within [11.0 ms, 15.0
ms] contribute to the evolution of the network also, reflected in smaller amplitudes of the oscillations of Fig. 3(e)
compared with that of Fig. 3(b).

An interesting question is what happens when the parameters cross the critical value at the boundary between the
fixed-point region and the oscillating region in parameter space. An example is showed in Fig. 3(c) where α = 0.54
and τd = 8.0ms. One can see that the number of survived synapses (or near-maximum synapses) show damped
oscillations asymptotically approaching and finally achieving the level of the fixed point state. Similarly, the average
firing rate also evolves toward a fixed point state with damped oscillations. The synaptic conductances also show
similar behaviour (cf. Fig. 5(c)). These observations clearly indicate the existence of a Hopf bifurcation from fixed
points in the high dimensional space of synaptic strengths to a limit cycle. To determine the character of the Hopf
bifurcation, we further report an example of a supercritical state in Fig. 3(f) where α = 0.52 and τd = 5.0ms. Here,
a small-amplitude limit cycle appears immediately after the fixed point goes unstable indicating a supercritical Hopf
bifurcation.

We have done extensive numerical simulations to examine the coevolutionary behaviour of the residual network in
a wide range of the parameter space for α and τd. Based on the three different observed behaviours mentioned above,
the whole parameter space could be separated into two regions as shown in Fig. 6(a). The first corresponds to fixed
point configurations where the distribution of peak synaptic conductances and the firing rate remains constant over
time (cf. Fig. 3(a)). The second corresponds to oscillating configurations where topological and dynamical properties
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FIG. 7. (Color online) Evolution of Normalized Z-score for: (a) critical state (α = 0.54, τd = 8.0ms) and (b) oscillating state
(α = 0.6, τd = 6.0ms). (c) The structure of the three node subgraph corresponding to each triad ID.

both vary periodically in time (cf. Fig. 3(b)). The results of the average firing rate and the number of survived
synapses corresponding to different configurations in the fixed point region are shown in Fig. 6(b) and Fig. 6(c).
As expected, the number of survived synapses and the firing rate decrease as the ratio between potentiation and
depression α is increased. The results for the mean and amplitude of the average firing rate fluctuation corresponding
to different configurations in the oscillating region are shown in Fig. 6(e) and Fig. 6(f). The mean value decreases
monotonically with increasing α similar to the case of the fixed point configuration. However, the variation of the
amplitude does not exhibit monotonically changing behaviour. On the other hand, Fig. 6(d) shows that the period of
the oscillation of the firing rate increases monotonically with both α and τd. These different observed characteristics
imply that the interplay between the potentiation and depression along with time delay could bring about complex
behaviours during the coevolution of topology and dynamics.
Finally, there exist some variation with input too. As addressed in our previous paper [17], while increasing the

length of repeated spike sequence or mixing with non-periodic stochastic spikes, the stochastic aspects of the spike
trains dominate, and the number of surviving links become smaller, but the common characteristic properties we
found do not change. In principle, the existence of a bifurcation transition reported in Fig. 1 also does not change for
these cases. However, the oscillating region in parameter space may shrink or widen depending on the input. Here,
we have adopted a reasonable type of input with a chosen period so as to be able to focus our attention on extensive
numerical simulations of other parameter values. The important point here is that given the input, one observes an
oscillating state for some parameters and a fixed point state for others.

IV. NETWORK MOTIF ANALYSIS

We next perform network motif analysis [25, 26] to compare the structural characteristics of resulting networks for
two different evolutionary behaviours. Network motifs are patterns of interconnections (or sub-graphs) that recur in
the real network much more often than expected at random. Network motif profile has been used to characterize
diverse networks. Different sub-graphs have been shown to carry out different functions and the abundance of certain
sub-graphs can determine the overall character of a network. In order to determine the over-representation or under-
representation of sub-graphs in a real network, one needs to generate randomized versions of the real network and
count the number of sub-graphs therein. We use the software Mfinder developed by Alon and co-workers [25, 26]
for network motif analysis. We first obtain the frequency of different three-node sub-graphs in a given network and
then compare it with the average frequency in an ensemble of 1000 random networks. Randomization is performed
by rewiring connections such that the number of incoming edges, outgoing edges and mutual edges for each node is
preserved.
The abundance of each sub-graph i is quantified by the Z-score,

zi =
Nrl

i − ⟨Nrd
i ⟩

std(Nrd
i )

, (8)

where Nrl
i is the abundance of sub-graph i in the real network, ⟨Nrd

i ⟩ and std(Nrd
i ) are the mean and standard



9

FIG. 8. (Color online) The triad significance profile (SP) of different networks. The normalized significance level (Z-score) for
each of the 13 triads is shown, and the lines connecting the Z-score values serve only as visualization aid. The different networks
are as follows: (a) The whole neuronal network (the dark solid line) and the inter neurons network (the red dashed line) in the
C. elegans neural system. The latest wiring diagram of C. elegans neural system from Ref. [24] is used here. (b) Two ensembles
of independently evolved STDP-driven networks with different parameter configurations (the charcoal grey points in Fig. 4(a))
of α and τd in fixed-point region (the dark solid line) and oscillating region (the red dashed line) respectively. The average and
standard deviation of SP is calculated for each ensemble. (c) The SPs of the STDP-driven networks with fixed α = 0.53 along
with τd = 1− 7ms (the red dotted lines with square markers, oscillating-state configurations (OS)) or τ = 8− 15ms (the dark
solid lines with point markers, fixed-point state configurations (FS)). (d) The SPs of the STDP-driven networks with fixed
τd = 5ms along with α = 0.51− 0.515 (the blue dashed line with circle marker, FS), α = 0.52− 0.664 (the red dotted lines with
square markers, OS) or α = 0.67− 0.74 (the dark solid lines with point markers, FS). As the motif SPs oscillate in time for the
configurations in the oscillating region, we have taken the network structure at a fixed time step, the end of the evolution, for
all the cases.

deviation of the abundance of sub-graph i in the ensemble of random networks. If zi > 0 (zi < 0) then the sub-graph
i is over-represented (under-represented) and is designated as a motif (anti-motif) [25]. The significance profile (SP)
of different sub-graphs in a network is the vector of Z-scores normalized to length 1:

Si =
zi√∑13
i z2i

. (9)

SP gives the relative significance of sub-graphs in a network and can be used to compare networks of different
sizes and degree sequences [26]. We have studied the effect of the oscillating synaptic strengths on the motif SP and
the results are contained in Fig. 7 and Fig. 8. Fig. 7 depicts the evolution of the normalized Z-score for different
sub-graphs. We observe both oscillations and critical damping of Z-scores when the parameters lie in the relevant
regions. We have determined the SPs of residual networks obtained for different parameter configurations. As the
motif SPs oscillate in time for the configurations in the oscillating region, we have taken the network structure at
a fixed time step, the end of the evolution, for all the cases. Fig. 8(b) shows the motif distribution averaged over
an ensemble of independently evolved networks with different values of α and τd in the fixed-point region and in
the oscillating region. Randomly generated membrane potentials and initial weights of STDP synapses are also used
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for different configurations, as has been explained in section II. For comparison, we depict the SP of C. elegans is
depicted in Fig. 8(a). In contrast to vast diversity observed in the number of survived synapses and the average firing
rate of different configurations (cf. Fig. 6(c) and Fig. 6(b)), the standard deviation is within a very small range. The
robustness of SP is evident from this small standard deviation.
We have also studied the motif SP in different simulations where one of the two key parameters is kept fixed

while the other is varied over a range. First, we fix α to 0.53, and then vary time delay τd in two regions. The
first region contains values from 1ms to 7ms that lie within the oscillating region, and the second region has values
from 8ms to 15ms that lie within the fixed-point region. As seen from the Fig. 8(c) if parameters occur within the
oscillating region, then motif distributions corresponding to different τd are scattered in a certain range, though the
form of SP characteristics is qualitatively preserved. However, the variation in the motif distributions is compact if
the parameters lie in the fixed point region. Similar results are obtained in the case where the time delay is kept fixed
at 5ms and the parameter α is varied in two different regions (cf. Fig. 8(d)).

V. CONCLUSIONS

We have studied the coevolution of structure and dynamics in a neural network where synaptic connections get
modified by STDP learning rule. When stimulated by periodic spike trains, the STDP-driven network undergoes a
synaptic pruning process and evolves to a residual network. In the present contribution, we focus on the influence of
parameter variation to provide a more detailed insight compared to earlier studies. We have examined the variation
in the observed topological and dynamical properties of the residual network as a consequence of varying two key
parameters of STDP learning rule: (a) synaptic delay and (b) the ratio between potentiation and depression. Our
extensive numerical simulations of the LIF model show that there exists two regions in the parameter space. The first
corresponds to fixed point configurations where the distribution of peak synaptic conductances and the firing rate
remains constant over time after the transient period. The second corresponds to oscillating configurations where
structure and dynamical properties coevolve periodically due to their coupling via STDP. When the parameters cross
the critical values at the boundary between the two regions, structure and dynamical properties coevolve with damped
oscillation and asymptotically approach the fixed point state, which coincides with a Hopf bifurcation. Detailed studies
of these phenomena show that the interplay between potentiation and depression of STDP along with time delay can
lead to emergence of complex behaviors in the coevolution of structure and dynamics of residual network. Network
motif analysis was also used to characterize the two different evolutionary behaviors of the residual network. We find
that if parameters occur in the fixed point region then there is not much variation in the motif distribution. However,
if parameters occur in the oscillating region, the motif distributions corresponding to different parameter values are
scattered although the form of SP characteristics is qualitatively preserved.
Our study has led to some interesting questions. Various kinds of rhythms in brain and their role in the cognitive

processing is well known and is an ongoing topic of active research [27]. However, the frequency of oscillations suggested
by our simulations are much smaller than the rhythms studied hitherto. This is expected since the emergence of
oscillatory behaviour in our numerical simulations is a consequence of the much slower learning dynamics. There
is indeed a need to verify this prediction by carefully analyzing much longer signals for the existence of still slower
oscillations. Further, there is a question of the implication of these rhythms in the structure and dynamics to memory
and learning. Are these rhythms desirable or otherwise? Would the brain be utilizing these oscillations for better
cognitive processing? Future research would shed some light on these intriguing questions.
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