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Abstract 

Background: The ubiquity of modules in biological networks may result from an 
evolutionary benefit of a modular organization. For instance, modularity may increase the 
rate of adaptive evolution, because modules can be easily combined into new 
arrangements that may benefit their carrier. Conversely, modularity may emerge as a by-
product of some trait. We here ask whether this last scenario may play a role in genome-
scale metabolic networks that need to sustain life in one or more chemical environments. 
For such networks, we define a network module as a maximal set of reactions that are 
fully coupled, i.e., whose fluxes can only vary in fixed proportions. This definition 
overcomes limitations of purely graph based analyses of metabolism by exploiting the 
functional links between reactions. We call a metabolic network viable in a given 
chemical environment if it can synthesize all of an organism’s biomass compounds from 
nutrients in this environment. An organism’s metabolism is highly versatile if it can 
sustain life in many different chemical environments. We here ask whether versatility 
affects the modularity of metabolic networks.  

Results: Using recently developed techniques to randomly sample large numbers of 
viable metabolic networks from a vast space of metabolic networks, we use flux balance 
analysis to study in silico metabolic networks that differ in their versatility. We find that 
highly versatile networks are also highly modular. They contain more modules and more 
reactions that are organized into modules. Most or all reactions in a module are 
associated with the same biochemical pathways. Modules that arise in highly versatile 
networks generally involve reactions that process nutrients or closely related chemicals. 
We also observe that the metabolism of E. coli is significantly more modular than even 
our most versatile networks.  

Conclusions: Our work shows that modularity in metabolic networks can be a by-
product of functional constraints, e.g., the need to sustain life in multiple environments. 
This organizational principle is insensitive to the environments we consider and to the 
number of reactions in a metabolic network. Because we observe this principle not just in 
one or few biological networks, but in large random samples of networks, we propose 
that it may be a generic principle of metabolic network organization.  



Background 

The architectures of most multi-cellular organisms are strikingly modular. On the one 
hand, such modularity can be spatial. Organisms are partitioned into organs and tissues 
whose cells have specialized functions [1-2], and where cells of similar types are in close 
proximity. Such spatial modularity also exists within cells. Examples include organelles, 
spatial modules that allow specialized tasks to be performed in localized regions of a cell. 
Spatial modularity can be thought of as functional specialization according to spatial 
localization.  

On the other hand, modularity can be topological, as research of the last ten years 
has shown. Such modularity is evident in biological networks such as protein-protein 
interaction networks [3-4], transcriptional regulatory networks [5], or metabolic networks 
[6-10]. In these systems, the networks – viewed as graphs – contain modules that are 
subsets of nodes strongly connected to each other but weakly connected to the remaining 
network. This kind of modularity does not involve explicit spatial location but 
nevertheless relies on a notion of proximity (of nodes in a network). If nodes within a 
module tend to be involved in the same biological or biochemical function, then both 
spatial and topological modularity point to a general architectural principle: The parts of 
an organism that perform specific tasks or functions are grouped into modules that can 
function semi-autonomously.  

The prevalence of modularity (both spatial and topological) in living systems 
might have several ultimate evolutionary origins (see Ref. [11] for a recent review). One 
long-standing idea is that modularity facilitates adaptation, in particular by enhancing the 
frequency at which new and useful traits appear, and by increasing their heritability. 
Indeed, modules that are semi-autonomous entities can be easily modified, added, 
replaced, or rearranged in a system through a process that has been called evolutionary 
tinkering [12-14]. In this view, modularity would be favored by natural selection because 
it modifies the rate of adaptation [15-17]. This scenario predicts that directional selection 
will bring forth organisms and networks that are highly modular; it can be particularly 
relevant for the evolution of complex traits [17-18]. A specific realization of this scenario 
arises in models of genetic network evolution when the environment is fluctuating and 
structured; modularity can then arise as a result of selection for a high rate of adaptation 
in changing environments [19-20]. But modularity in this scenario need not even require 
environmental change. In particular, it can emerge from innovations that allow adaptation 
to new ecological niches, as suggested by studies of metabolism [9-10], or from 
innovations that increase fitness, as suggested from gene network studies [21]. 

In other scenarios for the origin of modularity, natural selection on the rate of 
adaptation does not shape modularity; instead modular architectures follow from 
developmental constraints, or from other phenomena related to epistasis and pleiotropy 
[11]. In such scenarios, modularity can be the mere consequence of selection on other 
traits, but researchers do not agree on how general this scenario could be [22].  



In the present work we focus on metabolism, and show that modularity in 
genome-scale metabolic networks may be a by-product of phenotypic constraints. We 
will show that this scenario is likely to be very general in metabolism for traits related to 
an organism’s ability to live in different environments. We refer to this ability as an 
organism’s metabolic versatility, and explain it further below.  Specifically, we view 
metabolism as a complex chemical reaction network inside an organism and ask this 
question: Among all possible metabolic reaction networks with high versatility, do most 
have modular architectures?  

In contrast to many other networks [23-24], metabolic networks do not just have a 
static graph structure, but a function that involves the flow of molecules through them. 
This function can be used to define modules in a network based on fully coupled sets of 
reactions, as explained in the Methods and Results sections [25-29]. We will measure a 
network's modularity by several indices based on these modules, and relate this 
modularity to versatility, a metabolism’s ability to sustain life in different environments. 
Some organisms are metabolic specialists and can live in few environments, others are 
generalists that can thrive in many different environments. General principles of how a 
metabolic network must change as an organism’s versatility varies remain elusive. One 
might try to find such principles by studying a broad panel of living organisms that differ 
in versatility. However, any association between versatility and some other observable 
quantity, such as modularity, would leave open whether the association between the two 
is driven by evolutionary forces that act not on versatility but on some other, unknown 
network property. 

 To avoid this difficulty, we can take advantage of our ability to create random 
samples of metabolic genotypes with specific properties, including versatility. (More 
precisely, the genotypes we consider are discretized binary metabolic genotypes, 
representations of genotypes that are suitably simplified for our purpose, as explained in 
Methods.) This approach [30] allows us to examine the consequences of versatility for 
network modularity, in the absence of any other influences. We shall find that the ability 
to thrive in increasing numbers of environments is strongly associated with greater 
modularity of metabolic networks. Our observations support the idea that elementary 
properties of metabolic networks, such as their ability to sustain life in multiple 
environments, can contribute to shaping metabolic network structure and in particular 
modularity, without the need to consider evolutionary dynamics or selection on a rate of 
adaptation.  

Modeling framework 

For our study, we use genome-scale metabolic network modeling.  The set of chemical 
reactions that can take place in an organism and their associated metabolites define the 
organism’s metabolic network. Each reaction is typically catalyzed by an enzyme that 
allows the transformation of substrate molecules into product molecules. With the advent 
of genome-scale metabolic network modeling [31-34], it has become possible to compute 
which target products can be synthesized by a given set of enzymes, assuming that the 
network is in a metabolic steady state, and that specific nutrients are available to the 



network from the environment. The relevant computational method is based on balancing 
metabolic flux – the rate at which a reaction converts substrates into products – for all 
reactions, and is thus called flux balance analysis (FBA) [32, 35]. Its predictions are 
usually in good agreement with experimental data [36-38], except where enzymes are 
mis-regulated, such that a network cannot attain optimal metabolic fluxes through all its 
reactions. (Such mis-regulation can be sometimes eliminated during laboratory evolution 
experiments [37, 39], if growth rate maximization is the sole objective of the 
experiment.)  

An organism’s set of enzyme coding genes, identified here with a list of reactions, 
can be viewed as a discretized binary metabolic genotype; for brevity we refer to it from 
here on as the organism’s genotype or metabolic genotype. Specifically, given a total 
universe of N possible reactions, any genotype can be represented by a string of N bits, 
G=(b1, b2, …, bN) as illustrated in Additional File 1, Figure S1a. If enzyme i is encoded in 
the organism’s genome, then bi=1, while bi=0 otherwise. In this framework, the space of 
all metabolic genotypes contains 2N elements.  Following previous work [30, 40], we here 
take the universe of reactions to encompass all known enzyme-catalyzed chemical 
reactions, as represented in publicly available databases [41-42]. This set of reactions is 
most likely incomplete, but nevertheless sufficiently comprehensive to produce a vast 
space of metabolic genotypes, where each genotype contains a subset of these reactions.  

If an organism can grow in a specific chemical environment (defined through the 
nutrients it contains), its metabolic network is able to produce all of its biomass 
precursors (see Methods); we then call the organism (and by extension its metabolic 
network) viable. This leads us to define an organism’s phenotype via its ability to 
synthesize biomass in a number of given chemical environments. Note that the mapping 
from genotype to phenotype in our approach is completely determined by the FBA 
framework. Previous research has shown that this map is highly degenerate, meaning that 
a huge number of genotypes will produce the same phenotype; indeed, many reactions in 
a metabolic network are typically non-essential and can be replaced by other reactions. 
Furthermore, genotypes of identical phenotype are such that small genotypic changes (a 
reaction deletion, addition, or exchange) connect these genotypes into a vast graph; we 
refer to this graph as a genotype network. A consequence of this connectivity property is 
that gradual evolution of genotypes is possible, while leaving the phenotype unchanged 
[30, 40]. For this reason, genotype networks can facilitate evolutionary changes and 
adaptation of genotypes [43]. Such properties seem to be generic properties of well-
studied genotype to phenotype maps, and have been found in many systems. These 
include RNA and proteins, where the genotype is the sequence and the phenotype is the 
secondary or tertiary structure [44-46], as well as gene regulatory networks whose 
genotype specifies a pattern of genetic interactions and whose phenotype corresponds to a 
gene expression pattern [47]. 

To characterize metabolic networks of a given phenotype, we cannot examine all 
genotypes because of their astronomical number.  Instead, we use a Markov Chain Monte 
Carlo (MCMC) [48] approach to sample a space of genotypes or subsets thereof. This 
approach is based on performing random walks within that subspace, as illustrated in 



Additional File 1, Figure S1c. At each step of such a random walk, a small change is 
applied to the current genotype and the phenotype of the changed genotype is computed; 
if the phenotype fulfills a pre-specified criterion, the current genotype is updated; if not, 
the change is rejected, and the current genotype is kept. With appropriate precautions 
[30] this procedure will create uniform samples of the accessible space of genotypes with 
a desired phenotype.  

Results 

Fully Coupled Sets of reactions are proxies of pathways 

The analysis of modularity in large graphs or networks is a mature field. Not surprisingly, 
multiple different measures of modularity have been developed [8, 49-54]. Identifying all 
modules of a large network can be computationally intractable, that is, NP difficult [55-
56]. Fortunately, metabolic networks are special, because their analysis can go beyond 
graph-based representations. The reason is that metabolic networks synthesize biomass, 
and this function of metabolic networks can be quantified by studying the flow or flux of 
matter through each reaction in a network. Doing so permits an analysis of modularity 
that is based on network function, not just topology. Here we take advantage of the 
notion of coupling between reaction fluxes to identify sets of reactions that form a 
metabolic module. Such sets have been referred to as reaction/enzyme subsets or 
correlated reaction sets or Fully Coupled Sets [25-29]. Hereafter we will use the term 
Fully Coupled Set (FCS) only.  These sets define metabolic network modules that are 
both biochemically sensible [28-29, 57-58] and computationally tractable [28]. By 
definition, two reactions are in the same FCS if the ratio of their fluxes is fixed when 
considering all possible steady-state flux distributions through the metabolic network. 
Determining all FCSs of a large metabolic network can be done efficiently using linear 
optimization (see Methods). We note that the different FCSs in a metabolic network are 
disjoint, and that not all of a network’s reactions need to belong to an FCS (see Methods). 

 The simplest possible FCS involves reactions in a linear biochemical pathway, 
arguably the most intuitive form of a functional module in biochemistry. However 
pathways with branches and cycles can also form FCSs [28]. For illustration, Figure 1 
represents the largest FCS containing a cycle that arises in the E. coli metabolic network; 
it includes reactions that are involved in cell envelope biosynthesis.   

We first asked how modules, as defined by FCSs, relate to conventional 
biochemical pathways, the classical functional modules of metabolism. To this end, we 
mapped reactions in many different FCSs onto biochemical pathways, as defined by 
standardized annotations [41, 59]. We relied on annotations in the Kyoto Encyclopedia of 
Genes and Genomes database (KEGG) [41], a comprehensive metabolic database that 
annotates biochemical reactions as belonging to a list of pathways. For the metabolic 
network of E. coli, we find that reactions in the same FCS typically belong to a common 
pathway.  To quantify whether this property was statistically significant, we implemented 
the following test.  



For each FCS, we identified the pathway annotation for all of its reactions. 
Because each reaction can be annotated as belonging to multiple pathways, we identified 
for each FCS the pathway annotation that is shared by most of its reactions. We defined 
the quantity Q as the fraction of reactions that are annotated as belonging to that pathway, 
and computed Q for each FCS in the metabolic network of E. coli. We observed that in 
most FCSs (50 percent, corresponding to 50 of 100 FCSs in E. coli) all reactions 
belonged to the same pathway, and nearly 75 percent of FCSs had more than 75 percent 
of their reactions belonging in the same pathway. This strong association of reactions in 
an FCS with one pathway is not expected by chance alone, as a randomization test shows 
(P<0.001). Thus, most of the FCSs in E. coli can be viewed as biochemical pathways or 
parts thereof.  

The same analysis can be applied to random samples of metabolic networks with 
specific properties, as generated by our MCMC sampling procedure (see Methods).  
Specifically, we first identified FCSs from 1000 in silico metabolic genotypes viable in 
all of the 89 carbon source environments we consider (see Methods). In this analysis, we 
observed that in most FCSs (74 percent, corresponding to 45,893 of 62,148 FCSs 
examined) all reactions belonged to the same pathway, and nearly 80 percent of FCSs 
had more than 80 percent of their reactions in the same pathway (see Additional File 1, 
Figure S2). Just like E. coli, the strong association is not expected by chance alone, as a 
randomization test shows (P<0.001; see Methods). Thus, both for E. coli and for our 
random samples, most FCSs can be viewed as biochemical pathways or as parts thereof. 
To illustrate such FCSs, Additional File 1, Figure S3 shows the most frequent FCS 
comprising five or more reactions that we found in our sampling. This FCS occurred in 
898 of the 1000 metabolic genotypes. All its reactions belong to histidine metabolism 
(Q=1). 

Both measures of modularity M and s increase with versatility  

We next asked quantitatively how network modularity is affected by environmental 
versatility. To answer this question, we defined two indices of network modularity, which 
we call M and s. The first index is the number M of reactions in a network that belong to 
FCSs. Then we calculate the average <M> for a sample of networks generated by our 
MCMC procedure, where each network in the sample needs to be viable in a given set 
Venv of chemical environments (see Methods). We consider Venv as an index of 
environmental versatility for these metabolic networks. In our analysis, we study up to 89 
minimal chemical environments that differ only in the sole carbon source they contain 
(see Methods and Additional File 2, Table S1). In other words, Venv indicates the number 
of sole carbon sources from which these networks can synthesize all essential biomass 
precursors. To see how our observations depended on the sets of carbon sources used, we 
investigated different choices for these sets, where sets of fewer carbon sources were 
nested within sets of more carbon sources (see Methods for further details). 

 In Figure 2a we show how <M> depends on versatility Venv, both on average 
(yellow dots), and for multiple different nested sets of carbon sources (symbols with 
different colors and shapes). The analysis is based on metabolic networks with the same 



number of reactions as E. coli [42]. The data show that greater versatility leads to higher 
values of the modularity index; this trend is clear when considering the average over all 
choices of carbon sources, and also when considering the different nested sets.  

As a network’s versatility rises, does an increase in M – the number of reactions 
in FCSs – occur through an increase in the size of the FCSs, or through an increase in the 
number of FCSs, while their size remains constant? To address this question, we next 
studied the number of FCSs, which we denote by s, our second index of modularity. We 
applied the procedures we described earlier to the same genotypes as before, averaging 
now the number of modules (FCSs) rather than the number of reactions in these modules. 

Figure 2b shows the average number of modules, which we denote as <s>, for the 
same 1000 metabolic genotypes, the same choices of Venv, and the same nested sets of 
environments as above. The figure shows that greater versatility leads to higher values of 
this modularity index. This holds for the averages over different nested sets (yellow dots), 
and also without averaging, i.e., for different nested sets of carbon sources (symbols of 
different shapes and colors). Both <M> and <s> show a monotonic increase with Venv but 
with possible deviations from linearity. 

The results of Figure 2 were obtained from networks whose number n of reactions 
equaled that of the E. coli metabolic network, i.e., n=831 [42]. Additional File 1, Figures 
S4 and S5 show that the patterns we see are not sensitive to the number of reactions in a 
network. Specifically, Additional File 1, Figure S4 shows that the average number of 
reactions in FCSs, <M>, increases with versatility Venv also for networks with n=500 
(Figure S4a) and n=700 (Figure S4b) reactions. The sole difference to the data of Figure 
2a is that the increase of <M> is beginning to level off as Venv reaches the largest values 
investigated here, in particular for n=500. Additional File 1, Figure S5 shows that the 
average number of modules, <s>, also increases with versatility at n=500 (Figure S5a) 
and n=700 (Figure S5b) reactions. However, in contrast to the trend for <M> in 
Additional File 1, Figure S4, the increase in <s> does not slow down for the largest 
values of Venv we have examined. 

Modular architecture of the E. coli metabolic network   

So far we have shown averages of our modularity measures M and s based on samples of 
random networks of a given versatility. In such a sample, modularity has a distribution, 
where some networks are more modular, and others less so. We can use this distribution 
to ask whether the modularity observed in the metabolic network of an organism such as 
E. coli is atypically high or low. In other words, the distribution of modularity arising in 
our samples of in silico metabolic networks can provide a null hypothesis to evaluate 
whether a biological network shows unusual modularity.   

Figure 3a shows the distribution of the total number M of reactions in modules, 
and Figure 3b shows the distribution of the number s of modules (FCSs) in a sample of 
1000 random networks with n=831 reactions  (the same as E.coli [42]), where each 
network is able to sustain growth on the 89 different sole carbon sources as given in Ref. 



[29].  This phenotype constitutes the in silico E. coli metabolic phenotype we use. The 
figure also shows the values of M and s for the metabolic network of E. coli. The data 
from the network sample allows us to test the null hypothesis that M or s for E. coli could 
have been drawn from the sample. We find that M is atypically large, being in the top 3 
percentile of our MCMC sample. This allows us to reject the null hypothesis at a P-value 
of P=0.028. Based on this analysis, we conclude that the metabolic network of E. coli is 
more modular than expected.  

 The architecture of the E. coli metabolic network has higher modularity than 
anticipated, but the large value of M may come from either a greater number of FCSs or 
from an increased size of the FCSs. Figure 3b shows that the number of FCSs in E. coli is 
just slightly above the position of the distribution's peak in our ensemble, well within one 
standard deviation. From this observation one can conclude that the atypically high 
modularity of the E. coli network stems from the fact that E. coli has larger modules 
(FCSs) but not much more modules than typical networks allowing growth on 89 carbon 
sources. 

Reactions in versatility-dependent FCSs are just downstream of nutrients 

Thus far, we saw that metabolic networks sustaining growth on more nutrients have 
higher modularity, that is, more reactions contained in modules and more modules 
(FCSs) (see Figure 2). We surmised that these additional reactions would be closely 
linked to the additional nutrients that metabolic networks must utilize as their versatility 
increases. In other words, these reactions and the modules they reside in presumably are 
needed to metabolize these nutrients, and may thus occur just downstream of them. To 
inquire whether this is the case, we compared the FCSs of genotypes with maximal 
versatility (Venv =89) to FCSs of genotypes with Venv =1. Specifically, we first extracted 
the reactions that belonged to FCSs and that occurred in more than 50 percent of the 
genotypes in each of the two samples. Call these sets of reactions R89 and R1, for the 
ensembles with Venv =89 and Venv =1, respectively. At a qualitative level, we find that 
about 90% of reactions in R1 also belong to R89. We then examined the reactions that 
belong to R89 but that are not part of R1, and called this set of reactions R89\R1. Are the 
reactions in R89\R1 immediately downstream of the nutrients? The notion of downstream 
can be made quantitative through the Scope algorithm [60-61]. A reaction of scope 
distance one can use the nutrients as its only substrates, a reaction of scope distance two 
can use products of reactions at scope distance at most one, and so on. (See Methods for a 
more detailed explanation of this scope distance.)  We applied this algorithm to compare 
the scope distances of reactions in R89\R1 to the scope distances of all reactions in our 
universe of reactions. Figure 4 shows a distribution of these distances for both groups of 
reactions. It indicates that reactions associated in R89\R1 generally have smaller scope 
distance than other reactions. A statistical test (see Methods) shows that this difference is 
significant with a p-value of 10-5. In sum, reactions of modules involved in increased 
versatility tend to be more closely downstream of nutrients, suggesting that they typically 
belong to pathways metabolizing such nutrients. To illustrate this property with concrete 
examples, we determined which FCSs in R89\R1 involved any of the 24 reactions 
occurring at scope distance 1 in Figure 4b. These FCSs have various sizes that range from 



2 to 4 reactions. In Additional File 1, Figure S6 we show the three largest of these FCSs, 
all of them with 4 reactions, together with the pathways they belong to. These FCSs are 
linear pathways containing reactions of scope distance 1, 2, 3 and 4; they metabolize the 
nutrients fucose, rhamnose and 3-hydroxycinnamic acid. 

Discussion and conclusions 

Our work took advantage of a new computational method [30, 40] that uses a 
combination of flux balance analysis and Markov Chain Monte Carlo sampling to create 
large and random samples of metabolic networks with desired properties from the space 
of all possible metabolic networks. The property we focused on was environmental 
versatility, the number of chemical environments a metabolic network can sustain life in. 
We studied how versatility relates to a network’s modularity. For our purpose, we 
defined modularity as the total number of reactions contained in fully coupled sets. We 
found that more versatile networks are more modular (they have more modules and more 
reactions contained in modules) than less versatile networks. We emphasize that this does 
not result from the fact that networks with more reactions are more versatile, because our 
analysis uses networks with fixed number of reactions. The reactions that form part of 
newly arising modules in highly versatile networks tend to be close to reactions that 
process nutrients. The advantage of using random samples of metabolic networks with a 
specific property for our analysis is that such samples have not been subject to any of the 
(usually unknown) selection pressures that an organism’s metabolism is subject to, and 
that they can form a useful reference point to ask whether any one organism’s metabolic 
network has typical or atypical properties. In such a comparison, we learned that E. coli’s 
network is significantly more modular than random networks of the same versatility, a 
feature arising mainly from the fact that it contains larger modules.     

Modularity in metabolic networks has been studied by several other authors [6-
10]. Metabolic networks can be represented as graphs, allowing one to study topological 
(graph-based) measures of modularity; this approach has been taken for metabolic and 
other systems, such as protein interaction networks. Unfortunately, for any sensible 
definition of modularity, graph-based module identification is typically computationally 
very expensive, so in practice one resorts to heuristic algorithms to extract modules [49, 
51-52]. Additionally, in graph-based representations of metabolism, many metabolites 
have very high degree (number of reactions they participate in). This feature may prevent 
any clear modules from arising, although various heuristic tricks, such as removing high 
degree metabolites [6-10] can be used to skirt this problem. Problems like these can be 
avoided by using functional measures of modularity. Commonly used measures involve 
elementary flux mode or extreme pathways [25-27], but they are ill-suited for genome-
scale modeling because of the complexity in computing them. The measure of modularity 
we used here was based on the reactions contained in fully coupled sets (FCSs) [28]. We 
showed that most or all reactions in a fully coupled set fall within a single metabolic 
pathway, which underlines the biochemical relevance of our definition of modularity. 
Two further technical advantages come with our definition of modularity based on FCSs: 
(1) the approach involves no adjustable parameters; (2) identification of FCSs is 
computationally efficient even for genome-scale networks. 



Intriguingly, the extent of modularity found in E. coli is higher than in our in 
silico genomes.  E. coli both has more fully coupled sets and larger fully coupled sets 
than expected for networks with the highest versatility we consider. This high modularity 
may reflect the fact that E. coli is even more versatile than the most versatile networks in 
our samples, networks that are viable on 89 carbon sources. For example, it can also grow 
on sources of sulfur or nitrogen that we did not consider. The high computational cost of 
our analysis in multiple environments currently prohibits us from extending our study to 
a larger spectrum of environments.  Conversely, the high modularity of E. coli  might 
also be caused by other factors, for example, a long record of past evolutionary 
adaptations that may favor modularity through the high rates of adaptation it may allow 
and/or its high heritability, e.g. through horizontal gene transfer [62-63]. Indeed it has 
been shown that FCSs and operons in E. coli are positively associated [29, 57-58]. Only 
future work will be able to validate which of these causes is more important in E.coli. 
Our network sampling approach has the advantage that it provides a rational expectation 
for how modular a network can be expected to be based solely on phenotypic constraints. 
It thus puts answering this question within reach.  

Given the ubiquity of modularity in biological systems, it is tempting to propose 
general principles that might explain its appearance. By comparing natural with man-
made systems and following the original insights of Jacob [12] and others [1-6, 8-11], it 
seems very plausible that modularity should emerge during adaptive evolutionary 
trajectories because it can increase the rate of adaptive change. This holds true in 
particular in artificial systems such as factories, companies and even industries, where 
modularity allows for lower costs and enhanced possibilities for innovation [64-66]. As 
long as a lineage of organisms is experiencing adaptive evolutionary change, modularity 
should remain ubiquitous, whereas in long periods of stasis modularity may become 
reduced. This perspective is appealing but other factors may also influence modularity, 
which can be seen by considering the modularity of eukaryotic cells. The organization of 
cells into parts with specialized tasks (organelles, ribosomes, etc.) suggests that cellular 
tasks are best performed in specialized modules. One may thus conjecture that modularity 
has not only the indirect benefit of accelerating the rate of evolutionary change, but also 
direct benefits such as the possibility to perform certain tasks better, and thereby allow 
organisms to be better adapted to the complex world around them.  

The question whether biological modularity may have a direct benefit can be 
addressed in systems where a realistically complex yet computationally tractable 
genotype to phenotype relationship exists. Genome-scale metabolic network models are 
such systems [32]. Answering the question amounts to finding out whether the best 
performing genotypes (according to some criterion) have a modular architecture. The 
criterion we used is based on the complex trait we called environmental versatility, the 
number of environments a metabolic network can sustain life in.  The answer we found is 
clear: Requiring viability in additional environments requires additional pathways or 
modules to metabolize more nutrients and thus versatility enhances modularity.   

Our analysis shows that modularity can be a by-product of versatility, at least in 
the framework of our metabolic modeling, because our system has no selective pressure 



on modularity per-se; highly versatile networks that are also highly modular are simply 
more numerous than the less modular ones. In the language of constraint satisfaction 
problems [67], constraints are easier to satisfy using modular architectures, so highly 
modular solutions will be more numerous than the less modular ones. An analogy with 
the engineering of network architectures may be appropriate here. Consider the circuit 
layout problem where a circuit’s electronic components and wires must be placed on a 
chip. If no constraints are imposed on the circuit’s speed, many different layouts are 
possible. But, if one focuses on the fastest circuits, one will find that they have shorter 
wires and are more modular, so modularity is a by-product of circuit speed.  In this 
example, functional constraints change the architectural characteristics in the space of 
possible solutions. Such a property may be expected to arise in both artificial and natural 
systems.  

Since versatility corresponds to viability in increasing numbers of environments, 
it can be considered as a trait associated with fitness itself. Our work suggests that 
modularity can emerge as a consequence of increasing functional constraints. Because 
our work is not just based on one or few metabolic networks from well-studied organism, 
but on large samples of random viable networks, we also suggest that this scenario may 
be generally important. Recent observations by Parter et al. [9] and Kreimer et al. [10] 
where generalists prokaryotes living in many different environments are more modular 
than specialists are fully consistent with this conclusion.  

Methods 

Flux Balance Analysis (FBA) 

Flux balance analysis (FBA) [32, 35] is a computational modeling approach widely used 
to analyze genome-scale metabolic networks. FBA uses structural information contained 
in the stoichiometric coefficients of each reaction in a metabolic network to predict the 
possible steady state fluxes of all reactions and the maximum biomass yield of an 
organism. FBA does not require knowledge of metabolite concentrations or detailed 
information of enzyme kinetics. The stoichiometric coefficients of all reactions in a 
network are encapsulated in a matrix S of dimensions m x n, where m is the number of 
metabolites and n is the number of reactions. Note that some of these reactions 
correspond to transport processes, i.e., they import or export metabolites. In a metabolic 
steady state, such as might be attained in a growing cell population with adequate nutrient 
supply, the metabolites achieve a dynamic mass balance wherein the vector v of 
metabolic fluxes through the reactions satisfies the equation 

Sv = 0       (1) 

so as to satisfy mass conservation. Eq. 1 represents stoichiometric and mass balance 
constraints on the metabolic network. For genome-scale metabolic networks, Eq. 1 leads 
to an under-determined system of linear equations in the metabolic fluxes, leading to a 
large solution space of allowable fluxes. The space of allowable solutions can be reduced 
by incorporating thermodynamic constraints associated with irreversible reactions, as 



well as flux capacity constraints which limit the maximum flux through certain reactions.  
To obtain a particular solution, linear programming (LP) is used to find a set of flux 
values –  a point in the solution space – that maximizes a biologically relevant linear 
objective function Z. The LP formulation of the FBA problem can be written as: 

},0|m a x {m a x bvaS vvc ≤≤== TZ     (2) 

where the vector c corresponds to the coefficients of the objective function Z, and vectors 
a and b contain the lower and upper limits of different metabolic fluxes in v. The 
objective function Z is often chosen to be the so-called growth flux. This is the flux 
through an artifactual reaction that reflects the synthesis of biomass, which requires 
biosynthesis of biomass precursor molecules, such as amino acids and nucleotides, in 
specific proportions. The stoichiometry of this reaction is based on the experimentally 
measured biomass composition of an organism. The predictions from the FBA 
framework and related approaches are often in good agreement with experimental results 
[36-38, 68]. 

Reaction database 

In this work, we have used a hybrid database compiled by Rodrigues and Wagner [40] 
containing 4816 metabolites and 5870 reactions. This hybrid database was obtained by 
merging the reactions in the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
LIGAND [41] with those in the E. coli metabolic model iJR904 [42], followed by 
appropriate pruning to exclude generalized polymerization reactions. Of the 5870 
reactions, 2501 are reversible and 3369 are irreversible. Note that more than 5500 
reactions in the hybrid database are contained in KEGG database and less than 300 
reactions are specific to the E. coli metabolic model iJR904.  

In addition to the 5870 metabolic reactions, the hybrid database has transport 
reactions for 143 external metabolites contained in the E. coli iJR904 model. These 143 
external metabolites were assumed to be the set of possible imported and secreted 
metabolites. Further, the hybrid database includes an objective function Z in the form of a 
biomass reaction that reflects synthesis of the E. coli biomass components, as defined in 
the iJR904 model.  

Genome-scale metabolic networks typically contain blocked reactions [28, 69] 
which are dead-ends and necessarily have zero flux for every examined chemical 
environment under any steady-state condition. Such blocked reactions cannot contribute 
to any steady-state flux distribution and can be excluded from the hybrid database. For 
the set of 143 external metabolites, we found 2968 of the 5870 reactions in the hybrid 
database to be blocked under all environmental conditions we examined. We have 
excluded this set of 2968 blocked reactions from the hybrid database of 5870 reactions to 
arrive at a reduced reaction set of 1597 metabolites and 2902 reactions. We thus take this 
reduced set of N=2902 reactions as the global reaction set. 



The E. coli metabolic model iJR904 has 931 reactions (which of course are 
contained in the hybrid database of 5870 reactions). Our global reaction set (having 2902 
reactions) was derived from the hybrid database by excluding blocked reactions; after this 
exclusion, the E. coli metabolic model iJR904 is left with 831 reactions. Here, we 
consider this set of 831 reactions to be the E. coli metabolic genotype. 

Viable genotypes  

Any subset of n reactions taken from the global reaction set is considered to specify a 
discretized binary metabolic genotype. For simplicity, we shall refer to this as a 
metabolic genotype or as a genotype. Specifically, a metabolic genotype G can be 
represented by a bit string of length N, i.e., G=(b1, b2, …, bN), where N  is the number of 
reactions in the global reaction set (see Additional File 1, Figure S1a). Each position in 
the bit string G corresponds to one reaction in the global reaction set, with the reaction 
being either present (bi=1) or absent (bi=0) in the genotype. We denote the set or space of 
metabolic genotypes with a given number n of reactions as Ω(n). 

For any genotype, we can use FBA to determine whether the corresponding 
metabolic network has the ability to synthesize all biomass components in a given 
chemical environment (medium). We consider a genotype to be viable in a given 
environment if and only if the maximum biomass flux predicted by FBA for the genotype 
is nonzero; otherwise we consider the genotype to be non-viable (see Additional File 1, 
Figure S1b). In general, in silico metabolic studies take a metabolic network’s fitness to 
be proportional to the maximum biomass growth flux the network can attain in a given 
environment. The metabolic property considered here is simpler: we ask only whether a 
network can synthesize all biomass components in a given environment, regardless of the 
synthesis rate. For all the work we report, we use the E. coli biomass composition to 
determine the viability of a genotype in a given chemical environment.   

Chemical environments and phenotypes 

For our purpose, the metabolic phenotype of a metabolic network (genotype) is 
determined by the network’s viability in a list of well-defined chemical environments 
(media). We shall denote the subset of genotypes within Ω(n) that have a specific 
phenotype – growth on a specific list of environments – as V(n). In this work, we use 
only aerobic minimal environments containing one carbon source. Each environment also 
contains unlimited amounts of the following inorganic metabolites: ammonia, iron, 
potassium, protons, pyrophosphate, sodium, sulfate, water and oxygen. Based on FBA 
applied to the metabolic model iJR904, it was found earlier that E. coli can support 
nonzero biomass growth on 89 different aerobic minimal environments [29, 57]. The 
environments we focus on here differ in these 89 carbon sources, which are listed in 
Additional File 2, Table S1. 



Environmental versatility index (Venv) and nested choices of chemical 
environments 

The Markov Chain Monte Carlo (MCMC) sampling algorithm (see also below) can be 
used to explore the set of genotypes having a given phenotype. In our case, this 
phenotype is viability on a given set of minimal environments; if this set consists of Venv 
environments, we say that the genotype’s environmental versatility index is Venv. Thus, 
the phenotype Venv =1 refers to genotypes viable in one specific environment, the 
phenotype Venv =2 refers to genotypes viable in two given environments, and so on. We 
have considered 89 minimal environments whose sole carbon sources, their only 
distinguishing feature, are listed in Additional File 2, Table S1.  

We have used MCMC to sample ensembles of increasingly versatile metabolic 
networks, i.e., ensembles whose networks have Venv =1, 2, 5, 10, 20, 30, 40, 50, 70 and 
89. The genotypes with Venv =89 are the most versatile among them as they are viable in 
all 89 minimal environments. There are many ways of choosing 1, 2, or more specific 
environments out of 89 environments to sample genotypes having a phenotype with Venv 
=1, 2, through 89. The properties of sampled genotypes in an ensemble with a given Venv 
will depend on the choice of those Venv environments. The computations we carry out are 
computationally very expensive, and they become more expensive with every additional 
environment in which viability is determined. To limit this expense, we pursued two 
strategies. First, we used nested sets of environments to sample genotypes in ensembles 
with different Venv, e.g., the set of 70 environments chosen for Venv =70 is a subset of that 
for Venv =89, and the set of 50 environments chosen for Venv =50 is a subset of that used 
for Venv =70, and so forth. Second, we used only one subset of 70 environments within 
Venv =89 to sample an ensemble with Venv =70, and only one subset of 50 environments 
within the choice for Venv =70 for sampling an ensemble with Venv =50. For Venv below 
that, we did tackle the variability coming from different environmental choices; 
specifically, for Venv =40, we used 10 different subsets of 40 environments within the 
choice for Venv =50; thus we generated 10 different genotype ensembles, where each 
genotype in each ensemble had Venv =40. Each of these 10 different choices of 40 
environments was then used to create a single nested sequence for Venv =30, 20, 10, 5, 2, 
and 1. This allowed us to have 10 different ensembles to sample at each of these Venv and 
to follow for each sequence of nested sets the consequences of modifying Venv. (See 
Additional File 1, Figure S7 for a diagram representing two such nested sets.) We 
computed the average properties of the sampled genotypes as well as their dispersion 
based on the 10 different samples for each value of Venv. 

MCMC sampling of viable genotypes   

It was shown in previous work [30] for a single environment, corresponding to Venv =1, 
that the size of the subspace V(n) relative to Ω(n) is of the order of 10-22 for genotypes 
with n =2000 reactions. This size decreases even further if one requires viability in 
multiple environments. Such tiny probabilities of finding a desired phenotype in Ω(n) 
make it infeasible to sample genotypes in V(n) by simply drawing random genotypes in 
Ω(n) with the correct number n of reactions, followed by determining the phenotype of 



each genotype. Thus, we relied on the Markov Chain Monte Carlo (MCMC) method 
described in Ref. [30] to uniformly sample genotypes in V(n).   

This MCMC method starts with a genotype in V(n) and produces a sequence of 
genotypes, wherein the (k+1)th genotype in the sequence is generated from the kth 
genotype using a probabilistic transition rule. At each transition step, one proposes a 
small modification to the current genotype in the sequence; if the modified genotype has 
the correct phenotype, one accepts the modified genotype as the next genotype of the 
sequence; otherwise the next genotype becomes identical to the current genotype. The 
modification introduced at each transition step is a reaction swap. It consists of removal 
of one reaction from the current genotype, followed by addition of new reaction from the 
global reaction set to generate a modified genotype. Note that the reaction swap preserves 
the number n of reactions in the genotype (see Additional File 1, Figure S1a). Thus, the 
MCMC approach produces a walk in the subspace V(n), as illustrated in Additional File 
1, Figure S1c. Note that in the limit of long walks, this approach samples uniformly the 
space of genotypes that are accessible from the first genotype of the MCMC procedure 
and that have a given phenotype.  

In our simulations, starting from an initial genotype in V(n), we have first carried 
out 105 attempted swaps to erase the memory of the starting genotype. After this initial 
phase, we continued the MCMC procedure to sample genotypes in V(n). During this later 
phase, it is not useful to keep all of the genotypes produced, as many of them may be 
highly similar to one another. We thus saved only every 1000th genotype generated in a 
sequence of 106 steps. This procedure produces a random ensemble of 1000 genotypes in 
V(n) [30]. We sampled genotypes in V(n) for three different values of the number of 
reactions n = 500, 700 and 831.  

To start the MCMC sampling, a first genotype having the correct phenotype is 
required. To this end, we first determined those reactions in the E. coli metabolic network 
that have nonzero flux in an optimal flux distribution with maximum biomass flux for 
each of the 89 minimal environments considered here. (Recall that E. coli is viable on all 
of our 89 environments). The number of nonzero fluxes is ~300 in a typical optimal flux 
distribution for each of the 89 environments. We generated a genotype with n reactions 
and phenotype Venv =1 (i.e., growth on one specified environment) by starting with the set 
of nonzero flux reactions for E. coli in that environment, and then adding randomly other 
reactions until we reached a metabolic genotype with exactly n reactions. We generated a 
genotype with n reactions and Venv =2 (i.e., growth in two specific environments) by 
starting with the union of the two sets of reactions that had nonzero flux when the E. coli 
metabolic network synthesized biomass in the two different environments;  then we 
added randomly other reactions until we reached a metabolic genotype with exactly n 
reactions. We generated starting genotypes with Venv =5, 10, 20, 30, 40, 50, 70 and 89 
analogously.  



Fully coupled sets (FCSs) and measures of modularity 

A reaction pair v1 and v2 are said to be fully coupled to each other if a nonzero flux for v1 
implies a proportionate (nonzero) flux for v2 in any steady state and vice versa [28]. A 
fully coupled set (FCS) in a metabolic network is a maximal set of reactions that are 
mutually fully coupled to each other (thus, there are no FCSs of size 1). A simple 
argument shows that FCSs of a network are non-overlapping entities. Indeed, if a reaction 
were to belong to two FCSs, then all reactions in those two sets would be fully coupled 
pairwise, resulting in one larger FCS.  

We denote the number of FCSs in a metabolic network genotype by s. This is one 
index of modularity. We also define the modularity index M for a genotype as the number 
of reactions contained in the FCSs of that genotype (M can vary from zero to the total 
number of reactions in the network). Burgard et al [28] have proposed a linear 
programming (LP) based method to determine whether two fluxes in a metabolic network 
are fully coupled. The LP formulation of the coupling problem can be written as:  

{ }bvavS ≤≤0,.1,max  Solve 21max ==v|v=R    (3) 

{ }bvavS ≤≤0,.1,min  Solve 21min ==v|v=R    (4) 

If Rmax = Rmin then v1 and v2 are fully coupled. In the above equations, S is the 
stoichiometric matrix, and vectors a and b contain the lower and upper limits of different 
metabolic fluxes in v.  

We have used the algorithm of Burgard et al. to determine all FCSs in our 
metabolic network genotypes. We have computed the coupled reaction pairs under 
conditions where all external metabolites were allowed to be imported or secreted. 
Further, coupled reaction pairs were computed without assuming a constant biomass 
composition to avoid coupling a large set of fluxes to the biomass reaction. Hence, all 
biomass components were allowed to be synthesized independently of one another, 
without constraining their stoichiometry in the biomass.  

Scope algorithm and distance of reactions from nutrient metabolites 

Ebenhöh and colleagues [60-61] have introduced the concept of scope based on a 
network expansion algorithm for the structural analysis of genome-scale metabolic 
networks.  Their approach calculates for a given metabolic network/reaction database and 
predefined external metabolites (referred to as seed metabolites) the set of metabolites – 
the scope – which the reaction network is in principle able to produce. In other words, the 
scope describes the synthesizing capacity of a given set of seed metabolites given a list of 
metabolic reactions.  

The Scope algorithm iteratively updates a set A of metabolites that a reaction 
system can synthesize. In the algorithm this set A is initialized to the set of nutrient 
metabolites. At each iteration i of the algorithm, one takes the current set A(i) of 



producible metabolites and expands it to set A(i+1) as follows. First one initializes, 
A(i+1) to contain all metabolites in A(i). Then one considers successively each reaction in 
the database and adds that reaction’s products to A(i+1) if and only if all of its substrates 
are in A(i). This procedure ends when A(i) = A(i+1), that is when in a given iteration no 
new molecules can be synthesized. We have used the Scope algorithm to define a 
distance of a reaction in the global reaction set from nutrient metabolites. Specifically, 
the distance of a reaction from the nutrient metabolites in the seed set is defined as the 
iteration number i of the Scope algorithm when that particular reaction contributes its 
products to A(i+1).    

A limitation of the Scope algorithm in comparison to constraint-based 
frameworks like FBA is its inability to deal properly with the self-generating 
(autocatalytic) nature of certain cofactor metabolites (e.g., ATP, NADH) in the network 
[70-71]. The scope of the nutrient metabolites in the seed set is sensitive to the presence 
or absence of such co-factors in the seed set.  Following Kun et al [71], we included in 
the seed set the autocatalytic metabolites listed in Additional File 2, Table S2 (in addition 
to the nutrient metabolites in our minimal environment) when computing the distance of 
reactions with the Scope algorithm.   

We have determined the distance from nutrient metabolites for each reaction in 
the global reaction set for 89 different seed sets corresponding to the 89 aerobic minimal 
environments. For each reaction, we have designated the minimum of the 89 distances 
obtained for the 89 different environments as the scope distance of that reaction from the 
nutrient metabolites. 

Statistical tests for the increase in modularity M with Venv  

Since the modularity index M and the number s of FCSs is larger for sampled genotypes 
with Venv =89 than with Venv =1 (cf. Figure 2a), it is appropriate to identify reactions 
contributing to additional FCSs in genotypes having Venv =89. To this end, we combined 
the lists of FCSs for each of the 1000 sampled genotypes at Venv =89 (and n=831 
reactions) to create a merged list of FCSs that occur in at least one such sampled 
genotype. Since the FCSs are non-overlapping entities, multiple copies of a FCS in the 
merged list signify the FCS’s presence in multiple sampled genotypes. We then 
determined the set of reactions that occurred in at least 500 FCSs in the merged list of 
FCSs for Venv =89. We refer to it as the consensus set R89 of FCS reactions for Venv =89 
and n=831. In a similar way, we obtained the consensus set R1 of FCS reactions for our 
sampled genotypes with Venv =1. 

The consensus set R89 for Venv =89 is larger than the set R1 for Venv =1, and the 
complement set R89\R1 consisting of the reactions belonging to R89 but not R1 gives the 
set of reactions that mostly account for the additional FCSs in Venv =89. We then 
considered the scope distances of reactions from nutrient metabolites for two choices of 
reaction sets. The first set is this complement set R89\R1, the second is the set of all 
reactions in the global reaction set. (In Figure 4 we show the corresponding 
distributions.) The scope distances for the reactions in R89\R1 are clearly concentrated at 



much smaller values than when considering all possible reactions. A Kolmogorov-
Smirnov (K-S) test allowed us to reject the null hypothesis that the two distributions are 
the same (p<10-5). Further, a two sample Welch t-test allowed us to reject the hypothesis 
that the means of the two distributions are the same (p<8.10-8). 

Use of pathway classification of reactions to characterize biochemical 
relevance of FCSs 

We have classified reactions in our global reaction set into different biochemical 
pathways using the pathway information [72] for reactions in the KEGG database [41], 
along with subsystem information [73] for the remaining reactions in the E. coli 
metabolic model iJR904 [42].  We have used this pathway classification as follows to test 
whether the majority of reactions in a given FCS belong to a common biochemical 
pathway.   

 For a given FCS, we define the quantity Q which is the fraction of reactions 
sharing the dominant annotation for that FCS. We computed Q for each FCS in the 
merged list of FCSs from our 1000 sampled genotypes with phenotype Venv =89 and 
n=831 (see the previous section for merged lists of FCSs). We then considered the 
cumulative distribution of Q for FCSs in the merged list, namely, the probability that Q is 
at least as large as a given value X. The cumulative distribution of Q for FCSs in the 
merged list with Venv =89 and n=831 is shown in Additional File 1, Figure S2. We also 
computed the fraction h of FCSs in the merged list with Q ≥ h, a quantity that is 
analogous to the h-index commonly used to measure scientific productivity [74]. This h-
index has a value of h=0.79, as can be seen from the point of intersection of the 
cumulative distribution of Q with the bisecting line in Additional File 1, Figure S2.  

To test the significance of the h-index obtained from the merged list of FCSs for 
sampled genotypes with Venv =89 and n=831, we performed the following randomization 
test. Starting from the merged list of FCSs and the pathway annotations of their reactions, 
we generated 1000 equivalent random lists by swapping the annotations among reactions 
in different FCSs, while preserving the frequency of each annotation in the merged list. 
We swapped annotations as follows. We first recorded the multiplicity of each distinct 
FCS within the merged list. We then randomly picked two FCSs in the merged list with 
the same multiplicity, and one random reaction in each of the two FCSs, and then 
swapped the annotations of these two reactions in the FCSs. We performed at least 107 

swaps starting from the merged list before saving a random list, that is, a list of FCSs 
whose reaction annotations had been randomized in this way.  None of the 1000 random 
lists we generated had an h-index greater than 0.79 obtained for the merged list with Venv 
=89. On this basis, we can reject the hypothesis that reaction annotations are not similar 
within FCSs at a p-value of less than 0.001.   
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Figure 1: Example of a FCS in the E. coli metabolic network. We display a FCS of 12 
reactions in the E. coli metabolic network that is branched and contains a cycle. In this 
figure, the (hyper) edges represent reactions involving metabolites. Green edges represent 
irreversible reactions and red edges represent reversible reactions. To reduce clutter, the 
ubiquitous high degree metabolites such as ATP, NADH, etc. have been omitted from 
this figure. Abbreviations of metabolite names are as follows: 26dap-M = meso-2,6-
Diaminoheptanedioate; ala-D = D-Alanine; ala-L = L-Alanine; glu-D = D-Glutamate; 
glu-L = L-Glutamate; peptido_EC = Peptidoglycan subunit; uaagmda = Undecaprenyl-
diphospho-N-acetylmuramoyl-(N-acetylglucosamine)-L-ala-D-glu-meso-2,6-
diaminopimeloyl-D-ala-D-ala; uaccg = UDP-N-acetyl-3-O-(1-carboxyvinyl)-D-
glucosamine; uacgam = UDP-N-acetyl-D-glucosamine; uagmda = Undecaprenyl-
diphospho-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-diaminopimeloyl-D-
alanyl-D-alanine; uama = UDP-N-acetylmuramoyl-L-alanine; uamag = UDP-N-
acetylmuramoyl-L-alanyl-D-glutamate; uamr = UDP-N-acetylmuramate; udcpdp = 
Undecaprenyl diphosphate; udcpp = Undecaprenyl phosphate; ugmd = UDP-N-
acetylmuramoyl-L-alanyl-D-gamma-glutamyl-meso-2,6-diaminopimelate; ugmda = 
UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-diaminopimeloyl-D-alanyl-D-
alanine.  



 

Figure 2: A higher modularity index M and a greater number of modules s are by-
products of increasing environmental versatility. The Environmental Versatility Index 



(Venv, horizontal axis in both (a) and (b)) denotes the number of minimal environments in 
which a genotype is forced to be viable. The modularity index M (vertical axis in (a)) for 
a genotype gives the number of reactions contained in the FCSs of that genotype. The 
number of FCSs (modules) in a metabolic network genotype is denoted by s (vertical axis 
in (b)). The figure shows that with increasing Venv, both M and the number of modules s 
in a genotype increase. The data shown here are based on MCMC sampled genotypes 
with n=831 reactions (as in the in silico E. coli metabolic model), and 10 different 
choices for nested sets of environments when requiring viability on more and more 
environments. Each choice of nested set is displayed with a different color and symbol in 
(a) and (b). Each of the 10 nested sets, as well as their average (line shown for visual 
guidance), show a clear rise in the average of M (panel a) and the average of s (panel b) 
as one increases Venv. 



 



Figure 3: Distribution of M and of the number of modules s for genotypes of 
phenotype with Venv =89 in an ensemble and comparison with E. coli. The horizontal 
axis shows the modularity index M in (a) and the number of modules s in (b). The vertical 
axis shows the frequency of genotypes with the corresponding value of M (panel a) and s 
(panel b) in a random sample of 1000 genotypes (n=831 reactions each, as in the in silico 
E. coli metabolic model) that are viable in Venv =89 different minimal environments. In 
both panels, the histogram is displayed along with estimates of M and s for E. coli. From 
(a), we can reject at a p-value of 0.028 the hypothesis that the modularity index M of E. 
coli is drawn from this same distribution. Thus, E. coli can be considered as atypically 
modular.  



 

Figure 4: The increase in modularity with Venv can be attributed to reactions that 
are close to nutrients. The sampled genotypes with Venv =89 typically have additional 
FCSs compared to sampled genotypes with Venv =1. The reactions in these additional 
FCSs are not typical of the whole reaction network, and instead cluster at small distances 
from the nutrients. (See Methods for the determination of these distances using the Scope 
algorithm.) The distribution of distances for these reactions in additional FCSs is clearly 



concentrated at much smaller values than the distribution for all possible reactions; a 
Kolmogorov-Smirnov (K-S) test yields a p-value of 10-5, allowing us to reject the 
hypothesis that the two distributions are the same. Furthermore, a two sample Welch t-
test gives a p-value of 8×10-8, allowing us to also reject the hypothesis that the mean of 
the two distributions are the same. a) Distribution of scope distances from the nutrients 
for all possible reactions. b) Distribution of scope distances from the nutrients for those 
reactions belonging to additional FCSs that differentiate the sampled genotypes at Venv 
=89 from those at Venv =1. 
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