Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

A local estimate for super-Liouville equations on closed Riemann surfaces
by

Jürgen Jost, Chunqin Zhou, and Miaomiao Zhu

A LOCAL ESTIMATE FOR SUPER-LIOUVILLE EQUATIONS ON CLOSED RIEMANN SURFACES

JÜRGEN JOST, CHUNQIN ZHOU, MIAOMIAO ZHU

Abstract

Continuing our work on the super-Liouville equations, a variational problem motivated by the supersymmetric extension of the Liouville functional in quantum field theory, we study the profile of blow-up solutions near the blow-up point and establish a local estimate for the bubbling sequences.

1. Introduction

The conformally invariant variational problems arising in geometry and theoretical physics often exhibit a very rich and subtle structure. Uncovering and utilizing this structure beyond the general phenomenon of limit cases of the Palais-Smale condition leads to some of the most difficult and most interesting problems of geometric analysis. Usually, however, this structure is very sensitive to the particular special form of the variational problems, and it disappears under any variations of it. One of the most studied examples in this context is the Liouville functional with its associated Euler-Lagrange equation, the Liouville equation. It has deep links with complex analysis, prescribed curvature problems on Riemann surfaces, and conformal field theory. Remarkably, in the context of string theory and conformal field theory, physicists ([Po1, Po2]) have discovered an extension of the Liouville functional with an even richer structure, the super-Liouville functional. Here, a scalar field as in the original Liouville problem is coupled with an anticommuting spinor field. The resulting Euler-Lagrange equations, the super-Liouville system, then exhibit supersymmetry between the two fields. The anticommuting character of the spinor field, however, leads outside the aforementioned context of geometric analysis and the geometry of Riemann surfaces. We have discovered, however, that there also exists a version of the super-Liouville system involving only ordinary, commuting fields, and we have started to study it using the tools of nonlinear analysis (see [JWZ], [JWZZ]). In mathematical terms, this is a variational problem on a closed Riemann surface (M, g) with a spin structure. The functional we consider couples the standard Liouville functional with a spinor term and is therefore also called the super-Liouville functional (see [JWZ]). In particular, it preserves the conformal invariance of the ordinary Liouville functional on Riemann surfaces.

It is then the challenge for nonlinear analysis to extend the detailed structural analysis of solutions of the Liouville equation to those of the super-Liouville system. The essential aspect here is the analysis of the blow-up behavior of sequences of solutions and the precise characterization of the possible blow-up limits. In the present paper, we continue our work [JWZ, JWZZ] in this direction, and we show
that the elements of the blowing up sequence can be controlled by the rescaled blowup limit within constants that are independent of the particular sequence. This will be our main result, Theorem 2.3 below. For the ordinary Liouville equation, this has been achieved in [BCLT] and [Ly]. In fact, for the scalar field, we can use the method of [BCLT] for our purposes, but handling the spinor field requires new estimates, of course.

Acknowledgements

This work was carried out when the second author was visiting the Max Planck Institute for Mathematics in the Sciences. She would like to thank the institute for the hospitality and the good working conditions. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no. 267087. The second author is supported partially by NSFC of China (No. 11271253).

2. The super-Liouville functional

In this section, we introduce the super-Liouville functional, describe previous work about it, and then formulate our main result.

The super-Liouville functional is a conformally invariant functional that couples a real-valued function u and a spinor $\psi \in \Gamma(\Sigma M)$ on a closed Riemann surface M with conformal metric g and a fixed spin structure,

$$
\begin{equation*}
E(u, \psi)=\int_{M}\left\{\frac{1}{2}|\nabla u|^{2}+K_{g} u+\left\langle\left(\not D+e^{u}\right) \psi, \psi\right\rangle-e^{2 u}\right\} d v . \tag{1}
\end{equation*}
$$

Here ΣM is the spinor bundle on M and K_{g} is the Gaussian curvature in M. The Dirac operator $\not D$ is defined by $\not D \psi:=\sum_{\alpha=1}^{2} e_{\alpha} \cdot \nabla_{e_{\alpha}} \psi$, where $\left\{e_{1}, e_{2}\right\}$ is an orthonormal basis for $T M, \nabla$ is the Levi-Civita connection on M with respect to g and \cdot denotes Clifford multiplication for ΣM. Finally, $\langle\cdot, \cdot\rangle$ is the natural Hermitian metric on ΣM induced by g. Two useful formulas about Clifford multiplication between e_{i} and the spinors $\psi, \varphi \in \Sigma M$ are

$$
e_{i} \cdot e_{j} \cdot \psi+e_{j} \cdot e_{i} \cdot \psi=-2 \delta_{i j} \psi
$$

and

$$
\langle\psi, \varphi\rangle=\left\langle e_{i} \cdot \varphi, e_{i} \cdot \psi\right\rangle .
$$

For the geometric background of the theory of spinors and its calculus, we refer to [LM] and [Jo].

The Euler-Lagrange system for $E(u, \psi)$ is

$$
\left\{\begin{align*}
-\Delta u & =2 e^{2 u}-e^{u}\langle\psi, \psi\rangle-K_{g} \tag{2}\\
\not D \psi & =-e^{u} \psi
\end{align*} \quad \text { in } M .\right.
$$

where Δ is the Laplacian with respect to g. These equations are called the superLiouville equations. Similarly to the classical Liouville equations ([Liou] [BM] [LSh]), the analytic foundations for solutions to (2) are established in [JWZ] and [JWZZ]. More precisely, we developed a blow-up theory for sequences of solutions to (2) via establishing the energy identity for blow-up solutions and calculating the blow-up values at the blow-up points. To summarize, we have

Theorem 2.1. (Theorem 5.1, [JWZ] and Theorem 1.3, [JWZZ]) Let (M,g) be a closed Riemann surface with a fixed spin structure and let $\left(u_{n}, \psi_{n}\right)$ be a sequence of smooth solutions of

$$
\left\{\begin{align*}
-\Delta u_{n} & =2 e^{2 u_{n}}-e^{u_{n}}\left\langle\psi_{n}, \psi_{n}\right\rangle-K_{g}, \tag{3}\\
\not D \psi_{n} & =-e^{u_{n}} \psi_{n}
\end{align*}\right.
$$

in M with the energy condition

$$
\begin{equation*}
\int_{M} e^{2 u_{n}} d v<C \text { and } \int_{M}\left|\psi_{n}\right|^{4} d v<C \tag{4}
\end{equation*}
$$

for some positive constant $C>0$.
Define the blow up set of $\left(u_{n}, \psi_{n}\right)$ by:

$$
\begin{aligned}
& \Sigma_{1}=\left\{x \in M, \text { there is a sequence } y_{n} \rightarrow x \text { such that } u_{n}\left(y_{n}\right) \rightarrow+\infty\right\} \\
& \Sigma_{2}=\left\{x \in M \text {, there is a sequence } y_{n} \rightarrow x \text { such that }\left|\psi_{n}\left(y_{n}\right)\right| \rightarrow+\infty\right\} .
\end{aligned}
$$

Then $\Sigma_{2} \subset \Sigma_{1}$ and $\left(u_{n}, \psi_{n}\right)$ admits a subsequence, still denoted by $\left(u_{n}, \psi_{n}\right)$, satisfying one of the following:
i) u_{n} is bounded in $L^{\infty}(M)$.
ii) $u_{n} \rightarrow-\infty$ uniformly on M.
iii) Σ_{1} is finite, nonempty,

$$
u_{n} \rightarrow-\infty \quad \text { uniformly on compact subsets of } M \backslash \Sigma_{1},
$$

and

$$
2 e^{2 u_{n}}-e^{u_{n}}\left|\psi_{n}\right|^{2} \rightharpoonup \sum_{x_{i} \in \Sigma_{1}} \alpha_{i} \delta_{x_{i}},
$$

in the distribution sense and with $\alpha_{i} \geq 4 \pi$.
The proof of Theorem 2.1 relies on understanding the behavior of the spinor part ψ_{n} in the neighborhood of the blow up point. This exhibits some similarities with the analysis for other conformally invariant variational problems, in particular two-dimensional harmonic maps. In fact, we have the following the energy identity for spinors, which tells us that the neck energy of ψ_{n} converges to zero:

Theorem 2.2. (Thm 1.2, [JWZZ]) With the same notations and assumptions as in Theorem 2.1, suppose that $\Sigma_{1}=\left\{x_{1}, x_{2}, \cdots, x_{l}\right\}$. Then there are finitely many solutions of (2) on $S^{2}:\left(u^{i, k}, \psi^{i, k}\right), i=1,2, \cdots, l ; k=1,2, \cdots, L_{i}$, such that, after selection of a subsequence, ψ_{n} converges in $C_{\text {loc }}^{\infty}$ to ψ on $M \backslash \Sigma_{1}$ and the following energy identity holds:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{M}\left|\psi_{n}\right|^{4} d v=\int_{M}|\psi|^{4} d v+\sum_{i=1}^{l} \sum_{k=1}^{L_{i}} \int_{S^{2}}\left|\psi^{i, k}\right|^{4} d v \tag{5}
\end{equation*}
$$

Further exploring the behavior of the bubbling solution $\left(u_{n}, \psi_{n}\right)$, we calculated the blow-up values at blow-up points in Σ_{1}. Define the blow-up value $m(p)$ at $p \in \Sigma_{1}$ by

$$
m(p)=\lim _{r \rightarrow 0} \lim _{n \rightarrow \infty} \int_{\substack{B_{r}(p) \\ 3}}\left(2 e^{2 u_{n}}-e^{u_{n}}\left|\psi_{n}\right|^{2}\right) d v
$$

It is shown (see Lemma 5.1, [JWZZ]) that there exists $G \in W^{1, q}(M) \cap C_{l o c}^{2}\left(M \backslash \Sigma_{1}\right)$ with $\int_{M} G=0$ for $1<q<2$ such that

$$
\begin{equation*}
u_{n}-\frac{1}{|M|} \int_{M} u_{n} \rightarrow G \tag{6}
\end{equation*}
$$

in $C_{l o c}^{2}\left(M \backslash \Sigma_{1}\right)$ and weakly in $W^{1, q}(M)$. Moreover, in $\Sigma_{1}=\left\{p_{1}, p_{2}, \cdots, p_{l}\right\}$, for $R>0$ small such that $B_{R}\left(p_{k}\right) \cap \Sigma_{1}=\left\{p_{k}\right\}, k=1,2, \cdots, l$, there holds

$$
G=\frac{1}{2 \pi} m\left(p_{k}\right) \log \frac{1}{\left|x-p_{k}\right|}+g(x)
$$

for $x \in B_{R}\left(p_{k}\right) \backslash\left\{p_{k}\right\}$ with $g \in C^{2}\left(B_{R}\left(p_{k}\right)\right)$. Then, by using a Pohozaev type identity for solutions $\left(u_{n}, \psi_{n}\right)$ (see Proposition 2.7, [JWZZ]), we have shown (see Theorem 1.5, [JWZZ])

$$
\begin{equation*}
m(p)=\lim _{r \rightarrow 0} \lim _{n \rightarrow \infty} \int_{B_{r}(p)}\left(2 e^{2 u_{n}}-e^{u_{n}}\left|\psi_{n}\right|^{2}\right) d v=4 \pi \tag{7}
\end{equation*}
$$

Consequently, in iii) of Theorem 2.1, we have $\alpha_{i}=4 \pi$.
The purpose of the present paper is to study the profile of blow-up solutions near their blow-up points for the super-Liouville equation. This will extend the blow-up theory for the Liouville equation (see [BCLT], [Ly] and [JLW]).

To this end, we note that, by Theorem 1.1, ψ_{n} is uniformly bounded on compact subsets of $M \backslash \Sigma_{1}$ and due to (6), u_{n} has uniformly bounded oscillations on compact subsets of $M \backslash \Sigma_{1}$. Furthermore, to describe our result, by conformal invariance of the super-Liouville equations (2), it suffices to work with the Euclidean metric $g=d x_{1}^{2}+d x_{2}^{2}$ around the point 0 on $B_{2}=\left\{x \in \mathbb{R}^{2}:|x|^{2} \leq 2\right\}$, where 0 is the only blow up point of $\left(u_{n}, \psi_{n}\right)$ in B_{2}. So. we consider the system of equations and inequalities

$$
\left\{\begin{array}{lr}
-\Delta u_{n}=2 e^{2 u_{n}}-e^{u_{n}}\left\langle\psi_{n}, \psi_{n}\right\rangle, & \text { in } B_{2} \tag{8}\\
\not D \psi_{n}=-e^{u_{n}} \psi_{n}, & \text { in } B_{2} \\
\max u_{n}-\min u_{n} \leq C, & \text { on } \partial B_{2} \\
\max \left|\psi_{n}\right| \leq C, & \text { on } \partial B_{2} \\
\int_{B_{2}} e^{2 u_{n}}+\left|\psi_{n}\right|^{4} d x \leq C, & \\
2 e^{2 u_{n}}-e^{u_{n}}\left|\psi_{n}\right|^{2} \rightharpoonup 4 \pi \delta, \text { in the sense of distribusions } & \text { in } B_{2} .
\end{array}\right.
$$

Here δ is the Dirac measure at the origin 0 .
Assume that $\mu_{n}=u_{n}\left(x_{n}\right)=\max _{\bar{B}_{2}} u_{n}(x)$ and $\lambda_{n}=e^{-\mu_{n}}$. Then, $x_{n} \rightarrow 0$ and $\lambda_{n} \rightarrow 0$. Define the rescaled fields by

$$
\left\{\begin{array}{l}
\widetilde{u}_{n}(x)=u_{n}\left(\lambda_{n} x+x_{n}\right)+\ln \lambda_{n} \tag{9}\\
\widetilde{\psi}_{n}(x)=\lambda_{n}^{\frac{1}{2}} \psi_{n}\left(\lambda_{n} x+x_{n}\right)
\end{array}\right.
$$

for any $x \in B_{\frac{1}{\lambda n}}(0)$. Then $\left(\widetilde{u}_{n}(x), \widetilde{\psi}_{n}(x)\right)$ satisfies

$$
\left\{\begin{aligned}
-\triangle \widetilde{u}_{n}(x) & =2 e^{2 \widetilde{u}_{n}(x)}-e^{\widetilde{u}_{n}(x)}\left|\widetilde{\psi}_{n}(x)\right|^{2} \\
\not D \widetilde{\psi}_{n}(x) & =-e^{\widetilde{u}_{n}(x)} \widetilde{\psi}_{n}(x)
\end{aligned}\right.
$$

in $B_{\frac{1}{\lambda n}}(0)$ with the energy condition

$$
\int_{B_{\frac{1}{\lambda_{n}}}(0)} e^{2 \widetilde{u}_{n}(x)}+\left|\widetilde{\psi}_{n}(x)\right|^{4} d v<C .
$$

We know that $\widetilde{u}_{n}(0)=0$ and $\widetilde{u}_{n}(x) \leq 0$. If we only consider the case that the bubble is a solution to the Super-Liouville equations, we may further assume that $0 \in \Sigma_{1} \cap \Sigma_{2}$ (otherwise, if $0 \in \Sigma_{1} \backslash \Sigma_{2}$, then the bubble is a solution to the Liouville equation). Then, as is discussed in [JWZZ], we obtain that $\left(\widetilde{u}_{n}, \widetilde{\psi}_{n}\right)$ admits a subsequence converging in $C_{l o c}^{1, \alpha}\left(\mathbb{R}^{2}\right)$ to $(\widetilde{u}, \widetilde{\psi})$, which is an entire solution on \mathbb{R}^{2} to the Super-Liouville equation (2), i.e.

$$
\left\{\begin{align*}
-\Delta \widetilde{u} & =2 e^{2 \widetilde{u}}-e^{\widetilde{u}}\langle\widetilde{\psi}, \widetilde{\psi}\rangle, \tag{10}\\
\not D \widetilde{\psi} & =-e^{\widetilde{u}} \widetilde{\psi},
\end{align*} \quad x \in \mathbb{R}^{2}\right.
$$

with the energy condition

$$
\begin{equation*}
I(\widetilde{u}, \widetilde{\psi})=\int_{\mathbb{R}^{2}} e^{2 \widetilde{u}}+|\widetilde{\psi}|^{4} d x<\infty \tag{11}
\end{equation*}
$$

By Proposition 6.3 in [JWZ], we know that

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} 2 e^{2 \widetilde{u}}-e^{\widetilde{u}}|\widetilde{\psi}|^{2} d x=4 \pi \tag{12}
\end{equation*}
$$

and $(\widetilde{u}, \widetilde{\psi})$ satisfies the following asymptotic behavior at infinity:

$$
\begin{array}{cl}
\widetilde{u}(x)=-2 \ln |x|+C+O\left(|x|^{-1}\right) & \text { for } \quad|x| \\
\widetilde{\psi}(x)=-\frac{1}{2 \pi} \frac{x}{|x|^{2}} \cdot \xi_{0}+o\left(|x|^{-1}\right) & \text { for } \quad|x| \quad \text { near } \quad \infty \tag{14}\\
\widetilde{\psi}
\end{array}
$$

where \cdot is the Clifford multiplication, $C \in \mathbb{R}$ is some constant and $\xi_{0}=\int_{\mathbb{R}^{2}} e^{\widetilde{u}} \widetilde{\psi} d x$ is a constant spinor. Combining (7), (12) and Theorem 2.2, we conclude that the neck energy of u_{n} converges to 0 . More presicely,

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \lim _{r_{0} \rightarrow 0} \lim _{n \rightarrow \infty} \int_{R \leq|x| \leq r_{0} \lambda_{n}^{-1}}\left(e^{2 \widetilde{u}_{n}}+e^{\widetilde{u}_{n}}\left|\widetilde{\psi}_{n}\right|^{2}+\left|\widetilde{\psi}_{n}\right|^{4}\right) d x=0 \tag{15}
\end{equation*}
$$

This completes the qualitative behavior for a sequence of bubbling solution to the super-Liouville equation derived in [JWZZ].

In this paper, we shall prove:
Theorem 2.3. Suppose that $\left(u_{n}, \psi_{n}\right)$ satisfies (8). Then there exist two constants $0<r_{0}<2$ and $C>0$ which both are independent of n, such that

$$
\begin{align*}
&\left|u_{n}(x)-\mu_{n}-\widetilde{u}\left(\lambda_{n}^{-1}\left(x-x_{n}\right)\right)\right| \leq C, \quad \text { for } x \in B_{r_{0}} \tag{16}\\
& \left\lvert\, \lambda_{n}^{\frac{1}{2}} \psi_{n}(x)-\widetilde{\psi}\left(\lambda_{n}^{-1}\left(x-x_{n}\right)\right) \leq C\right., \quad \text { for } x \in B_{r_{0}} . \tag{17}
\end{align*}
$$

When $\psi_{n} \equiv 0$, the problem we consider reduces to the usual Liouville equation problem, in which case the corresponding estimate as in (16) was established in [BCLT] and in [Ly] by using different methods. For our problem, we shall follow the approach developed in [BCLT]. The key point is to deal with the perturbation term, that is, to analyze the asymptotic behavior of ψ_{n} at the blow up point.

3. Proof of Theorem 2.3

To prove Theorem 2.3, we can follow the method of [BCLT] to deal with the function u. Therefore, we shall essentially have to deal with the spinor part ψ, for which we shall have to establish a decay estimate in a neighborhood of the blow-up point. So let us first state two useful lemmas, which will play an important role in the proof of our main result Theorem 2.3.

The first Lemma is a Pohozaev type identity for smooth solutions of (2).
Lemma 3.1. (Proposition 2.7, [JWZZ]) Let (u, ψ) be a smooth solution to (2). Then for every geodesic ball $B_{R} \subseteq M$, we have

$$
\begin{aligned}
& R \int_{\partial B_{R}}\left|\frac{\partial u}{\partial \nu}\right|^{2}-\frac{1}{2}|\nabla u|^{2} d \sigma \\
= & \int_{B_{R}} 2 e^{2 u}-e^{u}|\psi|^{2} d v-R \int_{\partial B_{R}} e^{2 u} d \sigma+\int_{B_{R}} K_{g} x \cdot \nabla u d v \\
& +\frac{1}{2} \int_{\partial B_{R}}\left\langle\frac{\partial \psi}{\partial \nu}, x \cdot \psi\right\rangle d v+\frac{1}{2} \int_{\partial B_{R}}\left\langle x \cdot \psi, \frac{\partial \psi}{\partial \nu}\right\rangle d v
\end{aligned}
$$

where ν is the outward normal vector to ∂B_{R}.
The second lemma is about the decay of the spinor part. Notice that equation (10) is invariant under conformal transformations. Let (v, ϕ) be the Kelvin transformation of $(\widetilde{u}, \widetilde{\psi})$, i.e.

$$
\begin{aligned}
& v(x)=\widetilde{u}\left(\frac{x}{|x|^{2}}\right)-2 \ln |x| \\
& \phi(x)=|x|^{-1} \widetilde{\psi}\left(\frac{x}{|x|^{2}}\right) .
\end{aligned}
$$

Then (v, ϕ) satisfies

$$
\left\{\begin{align*}
-\Delta v & =2 e^{2 v}-e^{v}\langle\phi, \phi\rangle, & & x \in \mathbb{R}^{2} \backslash\{0\}, \tag{18}\\
\not D \phi & =-e^{v} \phi, & & x \in \mathbb{R}^{2} \backslash\{0\} .
\end{align*}\right.
$$

And, by a change of variables, we have

$$
\begin{aligned}
& \int_{|x| \leq r_{0}} e^{2 v} d x=\int_{|x| \geq \frac{1}{r_{0}}} e^{2 \widetilde{u}} d x \\
& \int_{|x| \leq r_{0}}|\phi|^{4} d x=\int_{|x| \geq \frac{1}{r_{0}}}|\widetilde{\psi}|^{4} d x .
\end{aligned}
$$

Therefore, there is an $r_{0}>0$ small enough such that (v, ϕ) is a smooth solution to (18) on $B_{r_{0}} \backslash\{0\}$ with energy $\int_{|x| \leq r_{0}} e^{2 v} d x<\varepsilon_{0}<\pi$ for any sufficiently small number $\varepsilon_{0}>0$ and $\int_{|x| \leq r_{0}}|\phi|^{4} d x<C$. Since (18) are conformally invariant, in the sequel we may assume $B_{r_{0}}$ to be the unit disk B_{1}. When the energy of v is sufficiently small, we have the following decay estimate of ϕ at the singularity $\{0\}$:

Lemma 3.2. (Lemma 6.2, [JWZ]) There exists $0<\varepsilon_{0}<\pi$, such that if (v, ϕ) is a smooth solution to (18) on $B_{1} \backslash\{0\}$ with energy $\int_{|x| \leq 1} e^{2 v} d x<\varepsilon_{0}$ and $\int_{|x| \leq 1}|\phi|^{4} d x<$ C, then for any $x \in B_{\frac{1}{2}}$ we have

$$
|\phi(x)||x|^{\frac{1}{2}}+|\nabla \phi(x)||x|^{\frac{3}{2}} \leq C\left(\int_{B_{2|x|}}|\phi|^{4} d x\right)^{\frac{1}{4}} .
$$

Furthermore, if we assume that $e^{2 v}=O\left(\frac{1}{|x|^{2-\varepsilon}}\right)$, then, for any $x \in B_{\frac{1}{2}}$, we have

$$
|\phi(x)||x|^{\frac{1}{2}}+|\nabla \phi(x)||x|^{\frac{3}{2}} \leq C|x|^{\frac{1}{4 C}}\left(\int_{B_{1}}|\phi|^{4} d x\right)^{\frac{1}{4}}
$$

for some positive constant C. Here ε is any sufficiently small positive number.

Proof of Theorem 1.3 We divide the proof into five steps.
Step 1. From the rescaled functions (9), it is easy to see that (16) and (17) are valid in $B_{\lambda_{n} R}\left(x_{n}\right)$ for any fixed large number $R>0$ and for some constant $C>0$ independent of n. Thus, we only need to prove that (16) and (17) are valid when $x \in B_{r_{0}} \backslash B_{\lambda_{n} R}\left(x_{n}\right)$ for some $r_{0}>0$. In the sequel, C will denote a universal positive constant independent of n, which may vary from line to line.

Step 2. It follows from the boundary condition in (8) that

$$
0 \leq u_{n}-\min _{\partial B_{2}} u_{n} \leq C \quad \text { on } \partial B_{2}
$$

Define w_{n} as the unique solution of the following Dirichlet problem

$$
\left\{\begin{aligned}
-\Delta w_{n} & =0, & & \text { in } B_{2} \\
w_{n} & =u_{n}-\min _{\partial B_{2}} u_{n}, & & \text { on } \partial B_{2}
\end{aligned}\right.
$$

By the maximum principle, w_{n} is uniformly bounded in B_{2}. Furthermore, the function $v_{n}=u_{n}-\min _{\partial B_{2}} u_{n}-w_{n}$ satisfies the Dirichlet problem

$$
\left\{\begin{array}{lc}
-\triangle v_{n}=2 e^{2 u_{n}}-e^{u_{n}}\left|\psi_{n}\right|^{2}, & \text { in } B_{2} \\
v_{n}=0, & \text { on } \partial B_{2} \\
\int_{B_{2}} 2 e^{2 u_{n}}-e^{u_{n}}\left|\psi_{n}\right|^{2} d x \leq C . &
\end{array}\right.
$$

By Green's representation formula, we have

$$
v_{n}(x)=\frac{1}{2 \pi} \int_{B_{2}} \log \frac{1}{|x-y|}\left(2 e^{2 u_{n}(y)}-e^{u_{n}(y)}\left|\psi_{n}(y)\right|^{2}\right) d y+R_{n}(x)
$$

where $R_{n}(x)$ is a uniformly bounded function in B_{2}. Therefore we have

$$
\begin{align*}
& u_{n}(x)-\min _{\partial B_{2}} u_{n} \\
= & \frac{1}{2 \pi} \int_{B_{2}} \log \frac{1}{|x-y|}\left(2 e^{2 u_{n}(y)}-e^{u_{n}(y)}\left|\psi_{n}(y)\right|^{2}\right) d y+O(1) \\
= & \frac{1}{2 \pi} \int_{B_{r_{0}}\left(x_{n}\right)} \log \frac{1}{|x-y|}\left(2 e^{2 u_{n}(y)}-e^{u_{n}(y)}\left|\psi_{n}(y)\right|^{2}\right) d y+O(1) . \tag{19}
\end{align*}
$$

Here and in the sequel, $O(1)$ denotes a uniformly bounded term.
For the spinor ψ_{n}, we apply similar arguments. Since $\max _{\partial B_{2}}\left|\psi_{n}\right| \leq C$, we define ϕ_{n} by

$$
\left\{\begin{aligned}
\not D \phi_{n} & =0, & & \text { in } B_{2} \\
\phi_{n} & =\psi_{n}, & & \text { on } \partial B_{2}
\end{aligned}\right.
$$

Recall that on \mathbb{R}^{2} the Dirac operator $\not D$ is essentially the (doubled) Cauchy-Riemann operator (see [JWZ], P. 1108). By the maximum principle for holomorphic or antiholomorphic functions, $\left|\phi_{n}\right|$ is uniformly bounded in B_{2}. We define $\varphi_{n}=\psi_{n}-\phi_{n}$.

Then φ_{n} satisfies

$$
\begin{cases}\not D \varphi_{n}=-e^{u_{n}} \psi_{n}, & \text { in } B_{2} \\ \varphi_{n}=0, & \text { on } \partial B_{2} \\ \int_{B_{2}} e^{u_{n}} \psi_{n} d x \leq C . & \end{cases}
$$

By the Green function for the Dirac operator $\not D$ (see e.g. Section 2, $[A H M]$), we have

$$
\varphi_{n}(x)=-\frac{1}{2 \pi} \int_{B_{2}} \frac{x-y}{|x-y|^{2}} \cdot e^{u_{n}(y)} \psi_{n}(y) d y+\rho_{n}(x)
$$

where $\rho_{n}(x)$ is a harmonic spinor which is uniformly bounded in B_{2} and \cdot is the Clifford multiplication. Therefore we have

$$
\begin{align*}
\psi_{n}(x) & =-\frac{1}{2 \pi} \int_{B_{2}} \frac{x-y}{|x-y|^{2}} \cdot e^{u_{n}(y)} \psi_{n}(y) d y+O(1) \\
& =-\frac{1}{2 \pi} \int_{B_{r_{0}\left(x_{n}\right)} \mid} \frac{x-y}{|x-y|^{2}} \cdot e^{u_{n}(y)} \psi_{n}(y) d y+O(1) \tag{20}
\end{align*}
$$

Next we state the Green representation for the rescaled function $\left(\widetilde{u}_{n}(x), \widetilde{\psi}_{n}(x)\right)$. Setting $x=x_{0}$ in (19), we get

$$
\mu_{n}-\min _{\partial B_{2}} u_{n}=\frac{1}{2 \pi} \int_{B_{r_{0}}\left(x_{n}\right)} \log \frac{1}{\left|x_{n}-y\right|}\left(2 e^{2 u_{n}(y)}-e^{u_{n}(y)}\left|\psi_{n}(y)\right|^{2}\right) d y+O(1)
$$

and hence

$$
\begin{align*}
\widetilde{u}_{n}(x) & =u_{n}\left(\lambda_{n} x+x_{n}\right)-\mu_{n} \\
& =\frac{1}{2 \pi} \int_{B_{\frac{r_{0}}{\lambda_{n}}} \log \frac{|y|}{|x-y|}\left(2 e^{2 \widetilde{u}_{n}(y)}-e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right|^{2}\right) d y+O(1) .} . \tag{21}
\end{align*}
$$

Similarly, it follows from (20) that

$$
\begin{align*}
\widetilde{\psi}_{n}(x) & =\lambda_{n}^{\frac{1}{2}} \psi_{n}\left(\lambda_{n} x+x_{n}\right) \\
& =-\frac{1}{2 \pi} \int_{B_{\frac{r_{0}}{\lambda_{n}}}} \frac{x-y}{|x-y|^{2}} \cdot e^{\widetilde{u}_{n}(y)} \widetilde{\psi}_{n}(y) d y+O(1) \tag{22}
\end{align*}
$$

Define the local mass by

$$
M_{n}^{1}=\int_{B_{r_{0}}\left(x_{n}\right)} 2 e^{2 u_{n}}-e^{u_{n}}\left|\psi_{n}\right|^{2} d x, \quad \text { and } \quad M_{n}^{2}=\int_{B_{r_{0}\left(x_{n}\right)}} e^{u_{n}} \psi_{n} d x
$$

Claim: For any $\delta>0$ small, there exist $R=R_{\delta}>1$ and $N=N_{\delta} \in \mathbb{N}$ such that when $|x| \geq 2 R$ and $n>N$, there holds

$$
\begin{equation*}
\widetilde{u}_{n}(x)+\frac{M_{n}^{1}}{2 \pi} \log |x| \leq \delta \log |x|+O(1) . \tag{23}
\end{equation*}
$$

In fact, notice that $\lim _{n \rightarrow \infty} M_{n}^{1}=4 \pi$. Therefore for any small $\delta>0$, we can choose $R>1$ large enough such that, for n large, there holds

$$
\frac{1}{2 \pi} \int_{|y| \leq R} 2 e^{2 \widetilde{u}_{n}(y)}-e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right|^{2} d y \geq \frac{M_{n}^{1}}{2 \pi}-\frac{\delta}{2}
$$

Take $|x|>2 R, n$ sufficiently large and set $\Omega_{n}=B_{r_{0} \lambda_{n}^{-1}} \backslash\left(B_{\frac{|x|}{2}} \cup B\left(x, \frac{|x|}{2}\right)\right)$, rewrite \widetilde{u}_{n} as

$$
\begin{aligned}
\widetilde{u}_{n}(x)= & \frac{1}{2 \pi} \int_{|y| \leq R} \log \frac{|y|}{|x-y|}\left(2 e^{2 \widetilde{u}_{n}(y)}-e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right|^{2}\right) d y \\
& +\frac{1}{2 \pi} \int_{R \leq|y| \leq \frac{|x|}{2}} \log \frac{|y|}{|x-y|}\left(2 e^{2 \widetilde{u}_{n}(y)}-e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right|^{2}\right) d y \\
& +\frac{1}{2 \pi} \int_{B\left(x, \frac{|x|}{2}\right)} \log \frac{|y|}{|x-y|}\left(2 e^{2 \widetilde{u}_{n}(y)}-e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right|^{2}\right) d y \\
& +\frac{1}{2 \pi} \int_{\Omega_{n}} \log \frac{|y|}{|x-y|}\left(2 e^{2 \widetilde{u}_{n}(y)}-e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right|^{2}\right) d y+O(1) \\
= & I_{1}+I_{2}+I_{3}+I_{4}+O(1)
\end{aligned}
$$

Since $\int_{\frac{r_{0}(0)}{\lambda_{n}}} e^{2 \widetilde{u}_{n}(x)}+\left|\widetilde{\psi}_{n}(x)\right|^{4} d v<C$ and $\frac{|y|}{|x-y|} \leq 1+\frac{|x|}{|x-y|} \leq 3$ for $y \in B_{\frac{|x|}{2}}$, we have

$$
\begin{aligned}
I_{2} & \leq-\frac{1}{2 \pi} \int_{R \leq|y| \leq \frac{|x|}{2}} \log \frac{|y|}{|x-y|} e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right|^{2} d y+O(1) \\
& =\frac{1}{2 \pi} \int_{R \leq|y| \leq \frac{|x|}{2}} \log \frac{|x-y|}{|y|} e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right|^{2} d y+O(1) \\
& \leq \frac{1}{2 \pi} \int_{R \leq|y| \leq \frac{|x|}{2}} \log (1+|x|) e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right|^{2} d y+O(1) \\
& \leq \frac{\delta}{8} \log |x|+O(1) .
\end{aligned}
$$

Here we have used (15).
For I_{4}, noticing that $\frac{1}{3} \leq \frac{|y|}{|x-y|} \leq 3$ for $y \in \Omega_{n}$, we have

$$
I_{4} \leq O(1)
$$

For I_{3}, let us recall that $\widetilde{u}_{n} \leq 0$, and set $D_{1}=B\left(x, \frac{|x|}{2}\right) \cap\left\{|x-y|<|x|^{-1}\right\}$ and $D_{2}=B\left(x, \frac{|x|}{2}\right) \cap\left\{|x-y| \geq|x|^{-1}\right\}$. Noticing that $\frac{|x|}{2} \leq|y| \leq \frac{3}{2}|x|$ in $B\left(x, \frac{|x|}{2}\right)$, we can also obtain

$$
\begin{aligned}
I_{3}= & \frac{1}{2 \pi} \int_{D_{1}} \log \frac{1}{|x-y|} e^{2 \widetilde{u}_{n}(y)} d y+\frac{1}{2 \pi} \int_{D_{2}} \log \frac{1}{|x-y|} e^{2 \widetilde{u}_{n}(y)} d y \\
& +\frac{1}{2 \pi} \int_{B\left(x, \frac{|x|}{2}\right)} \log |y| e^{2 \widetilde{u}_{n}(y)} d y+\frac{1}{2 \pi} \int_{B\left(x, \frac{|x|}{2}\right)} \log \frac{|x-y|}{|y|} e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right|^{2} d y \\
\leq & C \int_{|x-y| \leq|x|^{-1}} \log \frac{1}{|x-y|} d y+C \log |x| \int_{B\left(x, \frac{|x|}{2}\right)} e^{2 \widetilde{u}_{n}(y)} d y+O(1) \\
\leq & \frac{\delta}{4} \log |x|+O(1)
\end{aligned}
$$

For I_{1}, noticing that $\frac{1}{2} \leq \frac{|x-y|}{|x|} \leq \frac{3}{2}$ for $|y| \leq R, \widetilde{u}_{n}$ and $\left|\widetilde{\psi}_{n}\right|$ are uniformly bounded on $|y| \leq R$, we can estimate

$$
\begin{aligned}
I_{1}= & \frac{1}{2 \pi} \int_{|y| \leq R} \log \frac{|y|}{|x-y|} 2 e^{2 \widetilde{u}_{n}(y)} d y-\frac{1}{2 \pi} \int_{|y| \leq R} \log \frac{|y|}{|x-y|} e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right|^{2} d y \\
\leq & \frac{1}{2 \pi} \log \frac{2 R}{|x|} \int_{|y| \leq R} 2 e^{2 \widetilde{u}_{n}(y)} d y+\frac{1}{2 \pi} \log |x| \int_{|y| \leq R} e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right|^{2} d y \\
& -\frac{1}{2 \pi} \int_{|y| \leq R} \log \frac{|x|}{|x-y|} e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right|^{2} d y-\frac{1}{2 \pi} \int_{|y| \leq R} \log |y| e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right|^{2} d y \\
\leq & -\frac{1}{2 \pi} \log |x| \int_{|y| \leq R}\left(2 e^{2 \widetilde{u}_{n}(y)}-e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right|^{2}\right) d y+O(1) \\
\leq & -\left(\frac{M_{n}^{1}}{2 \pi}-\frac{\delta}{2}\right) \log |x|+O(1) .
\end{aligned}
$$

Putting these estimates together, we get (23) and complete the proof of the claim.
By (23), we take some $0<\delta_{0}<1$ such that

$$
e^{\widetilde{u}_{n}(x)} \leq C|x|^{-\frac{M_{n}^{1}}{2 \pi}+\delta_{0}}
$$

for $|x| \geq 2 R$. Recall that $M_{n}^{1}=4 \pi+o(1)$ and $\left(\widetilde{u}_{n}, \widetilde{\psi}_{n}\right) \rightarrow(\widetilde{u}, \widetilde{\psi})$ in $C_{l o c}^{1, \alpha}\left(\mathbb{R}^{2}\right)$. Applying the Kelvin transformation and Lemma 3.2, we see that there is some $0<\delta_{1}<1$ such that for n large enough, the following asymptotic estimates for the spinor $\widetilde{\psi}_{n}$ hold:

$$
\begin{equation*}
\left|\widetilde{\psi}_{n}(x)\right| \leq C|x|^{-\frac{1}{2}-\delta_{1}}, \quad\left|\nabla \widetilde{\psi}_{n}(x)\right| \leq C|x|^{-\frac{3}{2}-\delta_{1}} \tag{24}
\end{equation*}
$$

for $|x| \geq 2 R$. Then, choosing $\delta<2 \delta_{1}$ and using (23) again, we have

$$
\begin{equation*}
e^{\widetilde{u}_{n}(x)} \leq C|x|^{-\frac{M_{n}^{1}}{2 \pi}+\delta} \tag{25}
\end{equation*}
$$

for $|x| \geq 2 R$. By using (24), (25) and some computations, we obtain

$$
\begin{equation*}
\int_{B_{\frac{r_{0}}{\lambda_{n}}}}|\log | y\left|\left(2 e^{2 \widetilde{u}_{n}(y)}-e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right|^{2}\right)\right| d y \leq C \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\frac{r_{0}}{\lambda_{n}}}|y|\left|\left(2 e^{2 \widetilde{u}_{n}(y)}-e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right|^{2}\right)\right| d y \leq C . \tag{27}
\end{equation*}
$$

Now we can follow similar arguments as in [BCLT] to obtain

$$
\begin{array}{r}
\left|\widetilde{u}_{n}(x)+\frac{M_{n}^{1}}{2 \pi} \log \right| x|\mid \leq C \\
\left|\nabla \widetilde{u}_{n}(x)+\frac{M_{n}^{1}}{2 \pi} \frac{x}{|x|^{2}}\right| \leq \frac{C}{|x|^{2}} \tag{29}
\end{array}
$$

for $\log \frac{1}{\lambda_{n}} \leq|x| \leq \frac{r_{0}}{\lambda_{n}}$. For the reader's convenience, we provide the proof of (28), (29).

In fact, by setting

$$
\widetilde{M}_{n}^{1}(x)=\int_{|y| \leq \eta_{0}|x|}\left(2 e^{2 \widetilde{u}_{n}(y)}-e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right|^{2}\right) d y
$$

for any small $\eta_{0}>0$ (which can be fixed later) and taking $\delta>0$ in (25) small enough, we have

$$
\begin{align*}
\left|\widetilde{M}_{n}^{1}(x)-M_{n}^{1}\right| & =\left|\int_{B \frac{r_{0}}{\lambda_{n}} \backslash\left\{|y| \leq \eta_{0}|x|\right\}}\left(2 e^{2 \widetilde{u}_{n}(y)}-e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right|^{2}\right) d y\right| \\
& \leq \int_{|y| \geq \eta_{0} \log \frac{1}{\lambda_{n}}}\left(2 e^{2 \widetilde{u}_{n}(y)}+e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right|^{2}\right) d y \\
& \leq C \int_{|y| \geq \eta_{0} \log \frac{1}{\lambda_{n}}}|y|^{-2\left(\frac{M_{n}^{1}}{2 \pi}-\delta\right)}+|y|^{-\left(\frac{M_{n}^{1}}{2 \pi}-\delta\right)-1-2 \delta_{1}} d y \\
& =O(1)\left(\log \frac{1}{\lambda_{n}}\right)^{-1-\frac{\delta_{1}}{2}} \tag{30}
\end{align*}
$$

for $\log \frac{1}{\lambda_{n}} \leq|x| \leq \frac{r_{0}}{\lambda_{n}}$. On the other hand, by using Green's representation formula for \widetilde{u}_{n} and estimate (26), we have

$$
\begin{aligned}
\widetilde{u}_{n}(x)= & \frac{1}{2 \pi} \int_{B_{\frac{r_{0}}{\lambda_{n}} \backslash\left\{|y| \leq \eta_{0}|x|\right\}} \log \frac{|y|}{|x-y|}\left(2 e^{2 \widetilde{u}_{n}(y)}-e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right|^{2}\right) d y}+\frac{1}{2 \pi} \int_{|y| \leq \eta_{0}|x|} \log \frac{1}{|x-y|}\left(2 e^{2 \widetilde{u}_{n}(y)}-e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right|^{2}\right) d y+O(1) .
\end{aligned}
$$

While, using (24) and (25) (taking $\delta>0$ in (25) small enough), we can estimate

$$
\begin{aligned}
& \left|\int_{|y| \geq \eta_{0}|x|} \log \frac{|y|}{|x-y|}\left(2 e^{2 \widetilde{u}_{n}(y)}-e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right|^{2}\right) d y\right| \\
\leq & \int_{|y| \geq \eta_{0}|x|,|x-y|<1} \log \frac{1}{|x-y|}\left(2 e^{2 \widetilde{u}_{n}(y)}+e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right|^{2}\right) d y \\
& +\int_{|y| \geq \eta_{0}|x|,|x-y| \geq 1} \log |x-y|\left(2 e^{2 \widetilde{u}_{n}(y)}+e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right|^{2}\right) d y \\
& +\int_{|y| \geq \eta_{0}|x|} \log |y|\left(2 e^{2 \widetilde{u}_{n}(y)}+e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right|^{2}\right) d y \\
\leq & C \int_{|y| \geq \eta_{0} \log \frac{1}{\lambda_{n}}} \log |y|\left(2 e^{2 \widetilde{u}_{n}(y)}+e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right|^{2}\right) d y \\
= & O(1)\left(\log \frac{1}{\lambda_{n}}\right)^{-1-\frac{\delta_{1}}{4}}
\end{aligned}
$$

for $\log \frac{1}{\lambda_{n}} \leq|x| \leq \frac{r_{0}}{\lambda_{n}}$. Therefore, noticing that $\left(1-\eta_{0}\right)|x| \leq|x-y| \leq\left(1+\eta_{0}\right)|x|$ when $|y| \leq \eta_{0}|x|$, we get

$$
\widetilde{u}_{n}(x)=-\frac{1}{2 \pi} \widetilde{M}_{n}^{1} \log |x|+O(1)
$$

provided η_{0} is small enough. Consequently, by (30) we get (28).

For the proof of (29), we use Green's representation formula for $\widetilde{u}_{n}(x)$ again to obtain

$$
\begin{aligned}
& \nabla \widetilde{u}_{n}(x)+\frac{M_{n}^{1}}{2 \pi} \frac{x}{|x|^{2}} \\
= & \frac{1}{2 \pi} \int_{|y| \leq \frac{r_{0}}{\lambda_{n}}}\left\{\frac{x}{|x|^{2}}-\frac{x-y}{|x-y|^{2}}\right\}\left(2 e^{2 \widetilde{u}_{n}(y)}-e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right|^{2}\right) d y+O(1) \\
= & \frac{1}{2 \pi} \int_{G_{1}}\left\{\frac{x}{|x|^{2}}-\frac{x-y}{|x-y|^{2}}\right\}\left(2 e^{2 \widetilde{u}_{n}(y)}-e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right|^{2}\right) d y \\
& +\frac{1}{2 \pi} \int_{G_{2}}\left\{\frac{x}{|x|^{2}}-\frac{x-y}{|x-y|^{2}}\right\}\left(2 e^{2 \widetilde{u}_{n}(y)}-e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right|^{2}\right) d y+O(1) \\
= & H_{1}+H_{2}+O(1)
\end{aligned}
$$

where $G_{1}=\left\{|y| \leq \frac{r_{0}}{\lambda_{n}}\right\} \cap\left\{|x-y| \geq \frac{|x|}{2}\right\}$ and $G_{2}=\left\{|y| \leq \frac{r_{0}}{\lambda_{n}}\right\} \cap\left\{|x-y| \leq \frac{|x|}{2}\right\}$.
Notice that, by the mean value theorem for any $|x| \geq 1$, there holds

$$
\left|\frac{x}{|x|^{2}}-\frac{x-y}{|x-y|^{2}}\right| \leq 4 \frac{|y|}{|x|^{2}}, \quad \text { in } G_{1}
$$

and

$$
\left|\frac{x}{|x|^{2}}-\frac{x-y}{|x-y|^{2}}\right| \leq \frac{2}{|x-y|}, \quad \text { in } G_{2}
$$

Hence from (27) we have

$$
H_{1} \leq \frac{C}{|x|^{2}}
$$

On the other hand, by the decay estimates (24) and (25), we can take $\delta>0$ small enough and n large enough to get

$$
\left.\left.\left|2 e^{2 \widetilde{u}_{n}(y)}-e^{\widetilde{u}_{n}(y)}\right| \widetilde{\psi}_{n}(y)\right|^{2}|\leq C| y\right|^{-3-\frac{\delta_{1}}{2}}, \text { for }|y| \geq 2 R .
$$

Then, for $|x| \geq 4 R$ and n large enough, we have

$$
H_{2} \leq C|x|^{-3-\frac{\delta_{1}}{2}} \int_{G_{2}} \frac{1}{|x-y|} d y \leq C|x|^{-2-\frac{\delta_{1}}{2}}
$$

Here we have used the fact that $\frac{|x|}{2} \leq|y| \leq \frac{3|x|}{2}$ for $y \in G_{2}$. Thus we get (29).
Scaling back from (28) and (29), we obtain

$$
\begin{gather*}
u_{n}(x)=\frac{M_{n}^{1}}{2 \pi} \log \frac{1}{\left|x-x_{n}\right|}+\left(1-\frac{M_{n}^{1}}{2 \pi}\right) \log \frac{1}{\lambda_{n}}+O(1), \tag{31}\\
\nabla u_{n}(x)=-\frac{M_{n}^{1}}{2 \pi} \frac{x-x_{n}}{\left|x-x_{n}\right|^{2}}+O\left(\frac{\lambda_{n}}{\left|x-x_{n}\right|^{2}}\right), \tag{32}
\end{gather*}
$$

for $x \in B_{r_{0}} \backslash B_{\lambda_{n} \log \lambda_{n}^{-1}}\left(x_{n}\right)$.
For $\widetilde{\psi}_{n}(x)$, scaling back from (24), we also have

$$
\begin{equation*}
\left|\psi_{n}(x)\right| \leq \frac{C \lambda_{n}^{\delta_{1}}}{\left|x-x_{n}\right|^{\frac{1}{2}+\delta_{1}}}, \quad\left|\nabla \psi_{n}(x)\right| \leq \frac{C \lambda_{n}^{\delta_{1}}}{\left|x-x_{n}\right|^{\frac{3}{2}+\delta_{1}}}, \tag{33}
\end{equation*}
$$

for $x \in B_{r_{0}} \backslash B_{\lambda_{n} \log \lambda_{n}^{-1}}\left(x_{n}\right)$.

Step 3. We want to show that

$$
\begin{equation*}
M_{n}^{1}=4 \pi+O(1)\left(\log \frac{1}{\lambda_{n}}\right)^{-1} \tag{34}
\end{equation*}
$$

To this purpose, we apply the Pohozaev type identity (see Lemma 3.1) in the region $B_{n}:=B_{\lambda_{n} \log \frac{1}{\lambda_{n}}}\left(x_{n}\right)$ to obtain

$$
\begin{aligned}
& \int_{\partial B_{n}} r\left(\left|\frac{\partial u_{n}}{\partial \nu}\right|^{2}-\frac{1}{2}\left|\nabla u_{n}\right|^{2}\right) d \sigma \\
= & \int_{B_{n}} 2 e^{2 u_{n}}-e^{u_{n}}\left|\psi_{n}\right|^{2} d v-\int_{\partial B_{n}} r e^{2 u_{n}} d \sigma \\
& +\frac{1}{2} \int_{\partial B_{n}}\left\langle\frac{\partial \psi_{n}}{\partial \nu}, x \cdot \psi_{n}\right\rangle d \sigma+\frac{1}{2} \int_{\partial B_{n}}\left\langle x \cdot \psi_{n}, \frac{\partial \psi_{n}}{\partial \nu}\right\rangle d \sigma,
\end{aligned}
$$

with $r=|x|$. Substituting (31), (32) and (33) into both sides of the above identity, we have

$$
\begin{align*}
& \int_{\partial B_{n}} r\left(\left|\frac{\partial u_{n}}{\partial \nu}\right|^{2}-\frac{1}{2}\left|\nabla u_{n}\right|^{2}\right) d \sigma \\
= & \int_{\partial B_{n}} r\left(\frac{1}{2}\left(\frac{M_{n}^{1}}{2 \pi}\right)^{2} \frac{1}{r^{2}}+O\left(\frac{\lambda_{n}}{r^{3}}\right)\right) d \sigma \\
= & \frac{\left(M_{n}^{1}\right)^{2}}{4 \pi}+O(1)\left(\log \frac{1}{\lambda_{n}}\right)^{-1} . \tag{35}
\end{align*}
$$

and

$$
\begin{align*}
& \int_{B_{n}} 2 e^{2 u_{n}}-e^{u_{n}}\left|\psi_{n}\right|^{2} d v \\
= & M_{n}^{1}-\int_{B_{r_{0}} \backslash B_{n}} 2 e^{2 u_{n}}-e^{u_{n}}\left|\psi_{n}\right|^{2} d v \\
= & M_{n}^{1}+O(1)\left(\log \frac{1}{\lambda_{n}}\right)^{-\frac{M_{n}^{1}}{2 \pi}+1} \tag{36}
\end{align*}
$$

and

$$
\begin{align*}
& -\int_{\partial B_{n}} r e^{2 u_{n}} d \sigma+\frac{1}{2} \int_{\partial B_{n}}\left\langle\frac{\partial \psi_{n}}{\partial \nu}, x \cdot \psi_{n}\right\rangle d \sigma+\frac{1}{2} \int_{\partial B_{n}}\left\langle x \cdot \psi_{n}, \frac{\partial \psi_{n}}{\partial \nu}\right\rangle d \sigma \\
= & O(1)\left(\log \frac{1}{\lambda_{n}}\right)^{-\frac{M_{n}^{1}}{\pi}+2}+o\left(\left(\lambda_{n} \log \frac{1}{\lambda_{n}}\right)^{\frac{1}{2}}\right) \\
= & O(1)\left(\log \frac{1}{\lambda_{n}}\right)^{-1} . \tag{37}
\end{align*}
$$

Putting (35),(36) and (37) together, we get (34).
Step 4. Now let us prove the local estimate (16). From step 1, it is sufficient to show

$$
\begin{equation*}
\left|\widetilde{u}_{n}(x)-\widetilde{u}(x)\right| \leq C \tag{38}
\end{equation*}
$$

for $R \leq|x| \leq \frac{r_{0}}{\lambda_{n}}$, where $R>0$ is sufficiently large.
Notice that

$$
\left|\widetilde{u}_{n}(x)-\widetilde{u}(x)\right| \leq\left|\widetilde{u}_{n}(x)+2 \log \right| x| |+|\widetilde{u}(x)+2 \log | x| |
$$

and from the asymptotic behavior of entire solutions \widetilde{u} (see (13)), we have

$$
|\widetilde{u}(x)+2 \log | x|\mid \leq C
$$

for $|x| \geq R$ and for R large enough. So, to prove (38), it is sufficient to prove

$$
\left|\widetilde{u}_{n}(x)+2 \log \right| x|\mid \leq C
$$

for $R \leq|x| \leq \frac{r_{0}}{\lambda_{n}}$.
For this purpose, by (28) and (34), we firstly have

$$
\left|\widetilde{u}_{n}(x)+2 \log \right| x\left|\left|\leq\left|\widetilde{u}_{n}(x)+\frac{M_{n}^{1}}{2 \pi} \log \right| x\right|\right|+\left|\frac{M_{n}^{1}}{2 \pi} \log \right| x|-2 \log | x| | \leq C
$$

for $\log \lambda_{n}^{-1} \leq|x| \leq \frac{r_{0}}{\lambda_{n}}$.
Since $\left(\widetilde{u}_{n}, \widetilde{\psi}_{n}\right)$ converges to $(\widetilde{u}, \widetilde{\psi})$ uniformly for $|x| \leq R$ for any large $R>0$, and $\widetilde{u}(x)$ satisfies $|\widetilde{u}(x)+2 \log | x|\mid \leq C$ for $| x \mid \geq R$, we have

$$
\left|\widetilde{u}_{n}(x)+2 \log \right| x\left|\left|\leq\left|\widetilde{u}_{n}(x)-\widetilde{u}(x)\right|+|\widetilde{u}(x)+2 \log | x\right|\right| \leq 2 C
$$

for $|x|=R$ and n large enough. Now we define $w_{ \pm}$by

$$
w_{ \pm}(x)=-2 \log |x| \pm\left(C_{1}-C_{1}|x|^{-\frac{1}{2}}\right) .
$$

Then it is clear that

$$
\Delta w_{ \pm}(x)=\mp \frac{1}{4} C_{1}|x|^{-\frac{5}{2}}
$$

for $|x| \geq R$. Therefore, by using the decay estimates (24), (25), and suitably choosing $C_{1}>0$, we have

$$
\begin{cases}-\triangle w_{-}(x) \leq-\triangle \widetilde{u}_{n}(x) \leq-\triangle w_{+}(x), & \text { for } R \leq|x| \leq \log \frac{1}{\lambda_{n}} \tag{39}\\ w_{-}(x) \leq \widetilde{u}_{n}(x) \leq w_{+}(x), & \text { on }|x|=R,|x|=\log \frac{1}{\lambda_{n}}\end{cases}
$$

Hence, by the maximum principle, we conclude that

$$
w_{-}(x) \leq \widetilde{u}_{n}(x) \leq w_{+}(x)
$$

for $R \leq|x| \leq \log \frac{1}{\lambda_{n}}$. Thus we complete the local estimate (16) of u_{n}.
Step 5 Now we establish the local estimate (17) of ψ_{n}.
From step 1, it is sufficient to show

$$
\begin{equation*}
\left|\widetilde{\psi}_{n}(x)-\widetilde{\psi}(x)\right| \leq C \tag{40}
\end{equation*}
$$

for $R \leq|x| \leq \frac{r_{0}}{\lambda_{n}}$, where R is sufficiently large.
At this point, by (14), we notice that

$$
\tilde{\psi}(x)=-\frac{1}{2 \pi} \frac{x}{|x|^{2}} \cdot \xi_{0}+o\left(|x|^{-1}\right)
$$

for $|x| \geq R$, and

$$
\begin{aligned}
\left|M_{n}^{2}-\lambda_{n}^{\frac{1}{2}} \xi_{0}\right| & =\left|\int_{B_{r_{0}} \backslash B_{\lambda_{n} R}\left(x_{n}\right)} e^{u_{n}} \psi_{n} d x+\int_{B_{\lambda_{n} R}\left(x_{n}\right)} e^{u_{n}} \psi_{n} d x-\lambda_{n}^{\frac{1}{2}} \int_{\mathbb{R}^{2}} \widetilde{\psi} e^{\widetilde{u}} d x\right| \\
& \leq\left|\int_{B_{r_{0}} \backslash B_{\lambda_{n} R}\left(x_{n}\right)} e^{u_{n}} \psi_{n} d x\right|+\left|\lambda_{n}^{\frac{1}{2}} \int_{B_{R}} e^{\widetilde{u}_{n}} \widetilde{\psi}_{n} d x-\lambda_{n}^{\frac{1}{2}} \int_{\mathbb{R}^{2}} \widetilde{\psi} e^{\widetilde{u}} d x\right| \\
& \leq\left|\lambda_{n}^{\frac{1}{2}} \int_{B_{\frac{r_{0}}{\lambda_{n}}} \backslash B_{R}\left(x_{n}\right)} e^{\widetilde{u}_{n}} \widetilde{\psi}_{n} d x\right|+\left|\lambda_{n}^{\frac{1}{2}} \int_{B_{R}} e^{\widetilde{u}_{n}} \widetilde{\psi}_{n} d x-\lambda_{n}^{\frac{1}{2}} \int_{\mathbb{R}^{2}} \widetilde{\psi} e^{\widetilde{u}} d x\right| \\
& =o\left(\lambda_{n}^{\frac{1}{2}}\right) .
\end{aligned}
$$

Here we have used the decay estimates $(24),(25)$ for $\left(\widetilde{u}_{n}, \widetilde{\psi}_{n}\right)$.
Recall that

$$
x \cdot x \cdot \psi=-|x|^{2} \psi
$$

for any $x=x_{1} e_{1}+x_{2} e_{2} \in \mathbb{R}^{2}$ and any spinor ψ on \mathbb{R}^{2}, where $\left\{e_{1}, e_{2}\right\}$ is the standard orthonormal basis for \mathbb{R}^{2} and \cdot is the Clifford multiplication. Then, using Green's representation formula (22) for $\widetilde{\psi}_{n}(x)$, we calculate

$$
\begin{aligned}
& \left|\widetilde{\psi}_{n}(x)+\frac{1}{2 \pi \lambda_{n}^{\frac{1}{2}}} \frac{x}{|x|^{2}} \cdot M_{n}^{2}\right| \\
= & \left|\frac{x}{|x|^{2}} \cdot\left(x \cdot \widetilde{\psi}_{n}(x)-\frac{1}{2 \pi \lambda_{n}^{\frac{1}{2}}} M_{n}^{2}\right)\right| \\
\leq & \frac{1}{2 \pi|x|}\left|\int_{B_{r_{0} \lambda_{n}^{-1}}}\left(\frac{x \cdot(x-y)}{|x-y|^{2}}+1\right) \cdot e^{\widetilde{u}_{n}(y)} \widetilde{\psi}_{n}(y) d y\right|+O(1)|x|^{-1} \\
= & \frac{1}{2 \pi|x|}\left|\int_{B_{r_{0} \lambda_{n}^{-1}}} \frac{y \cdot(x-y)}{|x-y|^{2}} \cdot e^{\widetilde{u}_{n}(y)} \widetilde{\psi}_{n}(y) d y\right|+O(1)|x|^{-1} \\
\leq & \frac{1}{2 \pi|x|} \int_{B_{r_{0} \lambda_{n}^{-1}}} \frac{|y|}{|x-y|} \cdot e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right| d y+O(1)|x|^{-1}
\end{aligned}
$$

for $R \leq|x| \leq \frac{r_{0}}{\lambda_{n}}$.
By the decay estimates $(24),(25)$ for $\left(\widetilde{u}_{n}, \widetilde{\psi}_{n}\right)$, there exists $0<\delta_{2}<1$ such that

$$
e^{\widetilde{u}_{n}(x)}\left|\widetilde{\psi}_{n}(x)\right| \leq c|x|^{-2-\delta_{2}}
$$

for $|x| \geq R$ and for n large enough. Then, similarly to the derivation of the gradient estimates in [CK], we can estimate

$$
\begin{aligned}
& \frac{1}{2 \pi|x|} \int_{B_{r_{0} \lambda_{n}^{-1}}} \frac{|y|}{|x-y|} \cdot e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right| d y \\
= & \frac{1}{2 \pi|x|} \int_{|y| \leq \frac{|x|}{2}} \frac{|y|}{|x-y|} \cdot e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right| d y \\
& +\frac{1}{2 \pi|x|} \int_{\frac{|x|}{2} \leq|y| \leq 2|x|} \frac{|y|}{|x-y|} \cdot e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right| d y \\
& +\frac{1}{2 \pi|x|} \int_{2|x| \leq|y| \leq \frac{r_{0}}{\lambda_{n}}} \frac{|y|}{|x-y|} \cdot e^{\widetilde{u}_{n}(y)}\left|\widetilde{\psi}_{n}(y)\right| d y \\
\leq & C|x|^{-1}
\end{aligned}
$$

for $R \leq|x| \leq \frac{r_{0}}{\lambda_{n}}$. Hence, there holds

$$
\left|\widetilde{\psi}_{n}(x)+\frac{1}{2 \pi \lambda_{n}^{\frac{1}{2}}} \frac{x}{|x|^{2}} \cdot M_{n}^{2}\right| \leq C|x|^{-1}
$$

for $R \leq|x| \leq \frac{r_{0}}{\lambda_{n}}$.
Put these estimates together, we have

$$
\begin{aligned}
& \left|\tilde{\psi}_{n}(x)-\tilde{\psi}(x)\right| \\
\leq & \left|\widetilde{\psi}_{n}(x)+\frac{1}{2 \pi} \frac{x}{\lambda_{n}^{\frac{1}{2}}|x|^{2}} M_{n}^{2}\right|+\left|\frac{1}{2 \pi} \frac{x}{\lambda_{n}^{\frac{1}{2}}|x|^{2}} M_{n}^{2}-\frac{1}{2 \pi} \frac{x}{|x|^{2}} \xi_{0}\right|+\left|\widetilde{\psi}(x)+\frac{1}{2 \pi} \frac{x}{|x|^{2}} \xi_{0}\right| \\
\leq & C|x|^{-1} \\
\leq & C
\end{aligned}
$$

for $R \leq|x| \leq \frac{r_{0}}{\lambda_{n}}$.
Thus we complete the proof of Theorem 2.3.

References

[AHM] B. Ammann, E. Humbert and B. Morel, Mass endomorphism and spinorial Yamabe type problems on conformally flat manifolds, Comm. Anal. Geom. 14(2006),163-182.
[BCLT] D. Bartolucci, C.C. Chen, C.-S. Lin, G. Tarantello, Profile of blow-up solutions to mean field equations with singular data, Comm. PDE, 29(2004), no. 7-8, 1241-1265.
[BM] Brezis, H and Merle, F. Uniform estimates and blow up behavior for solutions of $-\Delta u=$ $V(x) e^{u}$ in two dimensions. Comm. Partial Differential Equations 16(1991), no. 8-9, 1223-1253
[CK] S. Chanillo and M.K.-H.Kiessling, Conformally invariant systems of nonlinear PDE of Liouvilly type, Geom. and Func. Analysis, 5 (1995), 924-947.
[Jo] J. Jost, Riemannian Geometry and geometric analysis, Sixth edition. Universitext. Springer, Heidelberg, 2011.
[JLW] J. Jost, C.-S. Lin and G.F. Wang, Analytic Aspects of the Toda System: II. Bubbling behavior and existence of solutions, Comm. Pure Appl. Math. 59 (2006), no. 4, 526-558.
[JWZ] J. Jost, G. Wang and C.Q. Zhou, Super-Liouville equations on closed Riemann surface, Comm. PDE, 32 (2007), 1103-1128.
[JWZZ] J. Jost, G. F. Wang, C.Q. Zhou and M.M. Zhu, Energy identities and blow-up analysis for solutions of the super Liouville equation, J. Math. Pures Appl. 92 (2009), 295-312.
[LM] H. B. Lawson and M. Michelsohn Spin geometry. Princeton Mathe. Series, 38 Princeton University Press, Princeton, NJ, 1989.
[Ly] Y.Y. Li, Harnack type inequality: the method of moving planes, Comm. Math. Phys. 200 (1999), 421-444.
[LSh] Li, Y. Y. and Shafrir,I., Blow-up analysis for solutions of $-\Delta u=V e^{u}$ in dimension two, Indiana Univ. Math. J., 43 (1994), 1255-1270.
[Liou] Liouville, J., Sur l'équation aux différences partielles $\frac{d^{2}}{d u d v} \log \lambda \pm \frac{\lambda}{2 a^{2}}=0$, J. Math. Pures Appl. 18, 71 (1853)
[Po1] A. M. Polyakov, Quantum geometry of bosonic strings. Phys. Lett. B 103 (1981), no. 3, 207-210.
[Po2] A. M. Polyakov, Quantum geometry of fermionic strings. Phys. Lett. B 103 (1981), no. 3, 211-213.

Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, D-04103 Leipzig, Germany

E-mail address: jost@mis.mpg.de
Department of Mathematics, and MOE-LSC, Shanghai Jiaotong University, Shanghai, 200240, China

E-mail address: cqzhou@sjtu.edu.cn

Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, D-04103 Leipzig, Germany

E-mail address: Miaomiao.Zhu@mis.mpg.de

