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Abstract. Semiconductor-superconductor hybrid systems are promising candi-
dates for the realization Majorana fermions and topological order, i.e. topologi-
cally protected degeneracies, in solid state devices. We show that the topologi-
cal order is mirrored in the excitation spectra and can be observed in nonlinear
Coulomb blockade transport through a ring-shaped nanowire. Especially, the exci-
tation spectrum is almost independent of magnetic flux in the topologically trivial
phase but acquires a characteristic h/e magnetic flux periodicity in the nontrivial
phase. The transition between the trivial and nontrivial phase is reflected in the
closing and reopening of an excitation gap. We show that the signatures of topo-
logical order are robust against details of the geometry, electrostatic disorder, and
the existence of additional subbands and only rely on the topology of the nanowire
and the existence of a superconducting gap. Finally, we show that the coherence
length in the nontrivial phase is much longer than in the trivial phase. This opens
the possibility to coat the nanowire with superconducting nanograins and thereby
significantly reduce the current due to cotunneling of Cooper pairs and to enhance
the Coulomb charging energy without destroying the superconducting gap.

PACS numbers: 74.25.F-, 85.35.Gv, 74.78.Na, 74.20.Rp

1. Introduction

Topological phases are quantum phases which cannot be described by a local order
parameter. Instead, the defining characteristic of topological phases is a pattern
of long-range quantum entanglement which is called topological order [1, 2, 3].
One characteristic property of topological order is the dependence of the ground-
state degeneracy on the topology of the manifold on which the system is defined
[1, 4, 5]. This degeneracy on manifolds might also serve as a starting point for a
general classification of topological phases of strongly correlated quantum matter,
complementary to the topological band theory which is based on single-particle states
and cannot be easily generalized to correlated systems [6, 7]. Recently, there is much
interest in topological phases [8, 9] due to their possible application in topological
quantum computation. However, these phases are also of fundamental scientific
interest for their ability to support exotic quasiparticle (QP) excitations with abelian
and even nonabelian quantum statistics.
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One particularly interesting class of topological phases are topological
superconductors, which have been predicted to host Majorana bound states [4, 10, 11,
12,13, 14, 15, 16, 17, 18, 19, 20]. The p,+ip, superconductor (SC) for spinless fermions
is a prototype system for topological SCs. Depending on the chemical potential, the
ground state of the p, + ip, SC is realized by the weak or the strong pairing phase,
which can be distinguished topologically. In particular, the grand canonical ground
state of the weak pairing phase on the torus depends on boundary conditions (BCs) for
each of the two primitive directions [4, 5]. Here, the ground state with only periodic
BCs is special and shows an odd parity, while the three ground states with at least one
antiperiodic BC are characterized by an even parity. In contrast, the strong pairing
phase and also the ordinary s-wave SC on the torus possess a fourfold degenerate even
parity ground state [5].

In this paper, we consider a quasi one-dimensional ring shaped SC nanowire
and demonstrate that essential aspects of the above described topological degeneracy
on the torus carry over to this simpler geometry. We focus on a regime in which
the quasiparticle gap A is larger than the single-particle level spacing d. In the
Coulomb blockade regime, the mean particle number N and the parity P are fixed
by the charging energy E. > A and the degeneracy of grand canonical ground states
is reflected in the excitation energies, which can be observed in nonlinear Coulomb
blockade transport [21, 22]. The lowest excited state above the ground state of a trivial
SC with even parity involves two Bogoliubov QPs and thus breaks a Cooper pair,
incurring an excitation energy 0 F' =~ 2A, which is essentially independent of magnetic
flux [23]. In contrast, the ground state for odd parity always has one Bogoliubov QP,
and hence the lowest excited state involves both annihilating and creating a Bogoliubov
QP which costs the excitation energy 0F ~ d?/A < 2A. For nontrivial topological
SCs the situation is very different. Here, ground states without unpaired particles at
the Fermi energy have odd parity for periodic BC, and even parity for anti-periodic
BC. Therefore, the excitation energy 6 F oscillates between d?/A and 2A as function
of magnetic flux with period h/e which is doubled as compared to the case of a trivial
SC [23]. This connection between the ground-state degeneracy on manifolds with
nonzero genus and the h/e flux periodicity of ring structures demonstrates that these
properties are a general consequence of topological order and that nonlinear Coulomb
blockade transport is a suitable tool to investigate topological order.

Recent experiments show evidence for Majorana fermions and topological
superconductivity [24, 25, 26, 27, 28] in semiconductor (SM) nanowires with strong
Rashba spin-orbit coupling in a magnetic field and proximity coupled to an s-wave
SC [29, 30, 31, 32]. Despite the effort which has been invested, clear experimental
signatures of the unconventional nature of the superconducting state are still missing.
Therefore, additional detection schemes have been suggested such as the periodicity
of the Josephson effect [10, 33, 34, 35], tunneling spectroscopy [36, 37, 38, 39,
40], interferometry [41, 42], transport experiments [43, 44, 45], and coincidence
measurements [46]. We here propose another experiment which directly investigates
consequences of topological order on a nontrivial manifold. For this purpose, we use
the Coulomb energy as an instrument to prescribe the parity of the hybrid system and
thus to observe the above discussed ground-state degeneracy. Our analysis is based on
the identification of the pfaffian Zy invariant Q for Hamiltonians in class D [33] with the
parity of the grand canonical ground state. Thus, we use this key piece of information
about the grand canonical ground state to construct two classes of states with parity
Q and —Q, where the class of states with parity Q (—Q) contains all eigenstates with
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an even (odd) number of QP excitations. We find two types of excitation spectra
which display trivial or nontrivial superconductivity depending on parameter values.
The transition between the different topological phases is characterized by the closing
and reopening of an excitation gap. As these findings only rely on the existence of a
superconducting gap A > d and the S* topology of the system, the excitation spectra
are robust against disorder, spatial variations of the superconducting pairing potential,
geometry details, and the existence of additional transverse subbands.

This paper is organized as follows: In section 2, we introduce the model system
and the proposed experimental setup. We continue in section 3 with a brief review of
the results in Ref. [23] for single-band SM nanowires and study the robustness of these
results against details of the geometry, electrostatic disorder, and local variations of
the superconducting order parameter. In section 4 we make a departure from the
case of strictly one-dimensional nanowires and consider the experimentally realistic
case of quasi one-dimensional nanowires. In section 5, we compare the current for the
single-electron tunneling with the current due to cotunneling of Cooper pairs which is
the most relevant transport channel competing with sequential tunneling of electrons.
We summarize our results in section 6.

2. Model system

We consider a quasi one-dimensional SM nanowire with strong spin-orbit coupling
which is proximity coupled to an s-wave SC. The nanowire forms an annulus in the z-
y plane with radius R and radial extension L; < R. We assume a strong confinement
in z-direction, i.e. the extension perpendicular to the plane of the annulus L, < L,
such that only the lowest subband with momentum in z-direction is occupied. This
hybrid system is separated from a back-gate by a thin insulating layer and weakly
tunnel-coupled to source and drain electrodes with potentials +eV/2. Assuming a
strong capacitive coupling between the nanowire and the SC, the total number of
electrons in this system is determined by the Coulomb Hamiltonian

Hc = E.(Nw + Nsco)? — eVa(Nw + Nso), (1)

where E, denotes the charging energy and Ny (Ng¢) the number of excess electrons
in the SM (SC) attracted by the back-gate. Varying the gate potential eV allows to
change the total electron number N = Ny + Ng¢ in discrete units. A current through
this island involves changing the electron number from N to N 4+ 1 and creating or
annihilating a QP excitation. Thus, resonances in the differential conductivity appear
when the condition

eV/2 = Enyi — E% (2)

is satisfied, where Ex is the total energy of a state with N electrons and E¥;
the respective ground-state energy. The spacing between the resonance peaks is
independent of the charging energy F. and displays the excitation spectrum for fixed
particle number,

SEy = Ey — E%. (3)

In our analysis, we assume that both the charging energy E. and the QP gap Agc
in the SC are larger than the effective gap Acg in the SM. Hence, for small voltages
eV < E.,Age all electrons in the SC are paired and unpaired electrons as well as
breaking of Cooper pairs can only show up in the SM.
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We describe the low-energy physics of the nanowire by the lattice Hamiltonian
H = Hgy + Hse [29, 30, 31, 32] with

HSM = Z { — b + 51-,1" (EZ&(Z;U — M + V;) }Ciacr’a

r,r’,o
T n
5Y To5Y
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where the operator ¢, (cro) creates (annihilates) an electron at site r with spin o
and mass m. The first term describes hopping on a simple square lattice with lattice
parameter a, ty yys = to = K2 / 2m?2a? for the nearest—neighbor lattice vectors 8, and
ter = —2tp. The second term in Eq. (4) contains the chemical potential u, the
electrostatic disorder potential V;, and the Zeeman energy splitting Ez = gupB/2
due to the magnetic field in z-direction. The last terms in Eq. (4) represent the Rashba
spin-orbit coupling with spin-orbit velocity «, and 6° are the Pauli spin matrices with
s = x,y, z. By coupling electrons with opposite spins, the spin-orbit coupling creates
two helical bands with spin rotating in the z-y-plane. The magnetic field tilts the
spin direction out of the xz-y plane and removes a level crossing at zero momentum by
opening a spin gap.

The proximity coupling between the s-wave SC and the nanowire is described by
the effective s-wave pairing Hamiltonian

Hyc = Z (ArciTCL + A:cucﬁ) (5)
r

with pairing potential A,. The pairing potential modifies the dispersion relation in a
crucial way by inducing two excitation energies. It opens an effective pairing gap at
the Fermi surface, and reduces the spin gap at zero momentum. Depending on Ey,
1, and A, the SM nanowire shows two topologically distinct superconducting phases
which are separated from each other by a topological phase transition [29, 30, 31].
For one partially occupied subband and E% < A? + p?, the nanowire is in the
topologically trivial phase. By tuning the chemical potential via the gate voltage
or the Zeeman energy via the magnetic field, the nanowire can be tuned across the
phase transition, which shows up as the closing and reopening of the QP excitation
gap. In the topologically nontrivial phase, which is reached for EZ > A% + p?, such
a nanowire supports a pair of zero-energy Majorana bound states located at the ends
of the wire.

We here consider a closed nanowire without end points and thus without
Majorana bound states. However, the unconventional nature of the topologically
nontrivial superconducting phase shows up in the doubling of the magnetic flux period
of the excitation spectrum from h/2e to o = h/e [23]. In our analysis, we incorporate
the magnetic flux ® through the azimuthal vector potential A = ®é,/27R and the
Peierls substitution with

trrts — tr,r+667% Jrre A(lr")dr’7 (6(1)
a S ae F LT A)dr’ (60)
A — AelaT, (6¢)
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where q is the Cooper pair wavenumber. We determine the Cooper pair wavenumber
by minimizing the ground-state energy of the nanowire with respect to arbitrary
vectors q. This is equivalent to determining g by minimizing the Ginzburg-Landau
free energy for the s-wave SC coupled to the nanowire [23]. For the strictly one-
dimensional ring-shaped nanowire with azimuthal q = ¢qé, this demands that g is the
integer nearest to —2®/®y.

We diagonalize the Hamiltonian by defining the Bogoliubov QP operators a; =
Zma (umlcm + vmlcig), where {l} is a complete set of QP quantum numbers. This
yields

H = ZEgozz[ozl + Egc (7)
|

with F; > 0 and the ground-state energy
1 1
Egc:—igEl+§;(2tofu+Vr). (8)

The corresponding ground-state electron number is given by the expectation value of
the particle number operator N = ) clacm in the state where all QP levels are
empty. Rewriting the particle number operator in terms of QP operators and taking

the expectation value with respect to the ground state, we find

Noe =Y |veail*. (9)
ro |
The parity of the grand canonical ground state is determined by the pfaffian Z,
topological number
Pf (Hit™
o POt (10)
V|det (Hit®) |

where H denotes the Bogoliubov-de Gennes Hamilton matrix in the basis
(CIT7 CI_ 17 Crts Cr 1) and 7% denotes the Pauli matrix acting on the particle-hole space
[33, 47]. Here, the topological number Q = +1(—1) corresponds to the even (odd)
parity of the grand canonical ground state. From the grand canonical ground state
with parity Q we construct two classes of states with parity P by creating Ng, QP
excitations. The parity P of these states is determined by

P=Q (=1, (11)

i.e. depending on whether Ng, is even (odd), P = Q (P = —Q)).

Since the large Coulomb energy enforces a well-defined parity and mean particle
number in the nanowire, we Legendre transform both classes of states into a pseudo-
canonical ensemble with Ny, QPs, mean particle number N, and parity P. This
ensemble contains states with energy

Nqp
E[{l2}7N7P]:EGC+ZElJ +MN7 (12)

Jj=1

where the chemical potential y is determined by the constraint

N = Noo() + 33" (lurat, (0)F = [trot, ()%): (13)

j=1 ro
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Here, {l; : i« = 1,...,Ng} denotes the set of quasiparticle excitations. For
noninteracting systems, this method is fully equivalent to the wave function based
technique used in Ref. [23]. There, the authors defined two classes of grand canonical
ansatz wave functions with even and odd parity as tensor products of generalized
BCS wave functions [22]. The ground state was then determined by the unbiased
minimization of the energy expectation value and the lowest excited states where given
by pairwise creation of Bogoliubov QPs. However, while the wave function method is
defined on the many-body Hilbert space, the technique used here only relies on the
pfaffian Z invariant, the QP energies, and the corresponding QP wave functions and
is thus more suitable for large systems without additional symmetries.

In recent experiments, it has been shown that both InSb and InAs are suitable
SM materials due to a large g-factor and strong spin-orbit coupling [24, 25, 26, 27, 28].
In the experimental situation, the confinement energy in transverse direction is the
largest energy scale so that only a few subbands are partially occupied. It is useful
to express the kinetic energy and the spin-orbit coupling in terms of a characteristic
energy €5, = ma?/h? and a spin-orbit length Iy, = h?/ma. Typical values for these
materials are €5, = 0.1 meV, l;, = 100 nm, and gup/2 = 1meV/T. Thus, we
find with R = 0.5um, A = 0.5 meV, and Fz = 1 meV, an effective pairing gap of
Aegr =~ 0.2meV and the level spacing at the Fermi energy of d = 0.08 meV. To ensure
sequential single-electron tunneling through the hybrid system, we consider the case
E. > Aqg. Here, a relative charging energy between the SM and the SC of the order
of 1 meV together with a pairing gap Agc = 2 meV in the SC [24] would reduce Aqg
by 20 % [48] and is thus neglected. In the following, we vary the magnetic field B
in discrete steps with the magnetic flux always being fixed modulo ®(, such that the
only effect of B is a change of the Zeeman energy E.

3. Single-band Hamiltonian

We begin our analysis with a perfectly one-dimensional nanowire of width L, — 0
which has been studied recently in Ref. [23]. There, the authors considered the
rotational symmetric continuum version of the model introduced above, i.e. spatially
constant superconducting pairing A, = A and vanishing electrostatic disorder V;. = 0.
Before discussing the relevance of geometry details, electrostatic disorder, and spatial
dependence of the pairing potential, we recapitulate the main results of Ref. [23]. To
illustrate the main results in that Letter, we will here focus on the nondisordered case
(v = 0, black line) in figure 2. The disordered case will be treated in section 3.2. The
plot shows the lowest excitation energy En — E%; as a function of Zeeman energy with
N chosen such that p ~ 0. As discussed above, at E% = A? + ;2 the Zeeman energy
drives the nanowire through a topological phase transition with the trivial phase for
Ez < A and the nontrivial phase for Ez 2 A [16].

Our findings for £z < A are characteristic for s-wave superconductivity in
metallic nanograins [21, 22]. For even parity, the excitation spectrum shows a
superconducting gap 2A.g since all excited states contain two Bogoliubov QPs which
corresponds two breaking one Cooper pair. In contrast, the ground state for odd parity
always has one Bogoliubov QP and therefore the spectrum is qualitatively independent
of magnetic flux and determined by the single-particle level spacing as

d2

eff

(14)
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for QP energies E(n) = y/n?d? + A%; where n counts the energy levels relative to the
Fermi energy. Similarly, a variation of magnetic flux by ®4/2 changes E(n) on the
order of d?/Acg.

In the topologically nontrivial phase for Ez 2 A, the parity effect is very different.
Here, the excitation energies depend on both electron parity and magnetic flux. In
Figs. 2(a) and (d) we find a QP excitation gap 2A.g since two Bogoliubov QP
excitations are required and thus a Cooper pair needs to be broken. In contrast,
the excitation energies in Figs. 2(b) and 2(c) reflect the single-particle level spacing
as d?/2A.g since always one unpaired particle is located near the Fermi surface. As
shown in Fig. 2(d), the characteristic signature of the topological phase transition at
E; ~ A is the closing and reopening of the QP excitation gap.

These different parity effects become even more impressive when fixing the
Zeeman energy and varying the magnetic flux. In the trivial phase, the excitation
energies for even parity are of order 2A.g with small oscillations of period ®y/2 and
amplitude d?/A.g. For odd parity, the QP gap is absent and the excitation energies
reflect the single-particle level spacing. In contrast, as shown in figure 1(b) we find
large ®( periodic oscillations of amplitude 2A.¢ in the nontrivial phase. Here, the
excitation energies for ®/®q € (—1/4,1/4) are determined by the superconducting gap
2A.g due to the pairwise creation of Bogoliubov QPs i.e. the breaking of Cooper pairs,
while they display the single-particle level spacing d?/A.g for ®/®¢ € (1/4,3/4). The
excitation spectrum for odd parity is equivalent to that for even parity but shifted by
/2, as follows from the discussion above.

This characteristic ®q flux periodicity of the excitation spectrum in the nontrivial
superconducting phase is directly related to the 47 periodicity of the Josephson current
between two topological SCs [10, 33, 35] which has been recently discovered in InSb/Nb
nanowire junctions [26]. In first order in the tunneling matrix element ¢, the Josephson
Hamiltonian between two one-dimensional topological SCs is given by

H;(A¢) = Ptcos (%), (15)
where P, which has eigenvalues +1, describes the parity operator of the neutral
fermion state shared between the two topological SCs and A¢ the superconducting
phase difference. For a fixed parity of the neutral fermion, the Josephson energy
is 47 periodic in the phase difference. If the Josephson junction is inserted into a
ring structure, the magnetic flux threading the ring yields a superconducting phase
difference A¢ = 479 /Py, and the 47 phase periodicity is equivalent to a &y flux
periodicity. If the nanowire is coupled to a reservoir, varying A¢ by 2w ~ ®q/2 will
change the occupancy (P+1)/2 of the neutral fermion state and hence the parity of the
ground state. This is in agreement with our result that the parity of the ground-state
wave function changes when varying the flux through the ring by ®¢/2.

3.1. Dependence on details of the geometry

In this section, we study how details of the geometric realization of the ring topology
affect the excitation spectrum. For this purpose, we compare the spectra for a ring, a
square, and for a model with periodic BC as sketched in figure 1(a). In Ref. [23], the
authors showed that the low-energy physics of the ring-shaped nanowire is equivalent
to that of a strip of width L, and length L = 27 R > L, with periodic BC along the
x-direction and with vector potential A = (® — ®(/2)Z/L in the Landau gauge. Here,
the first term in the bracket describes the magnetic flux penetrating the ring. The
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Figure 1. (a) Sketch of three different realizations of the S topology of the circle:
a ring, a square, and a wire with periodic boundary condition indicated by dots.
(b) Lowest excitation energies for Fz = 2A as function of magnetic flux, and
(c) lowest excitation energies for & = 0 (mod ®¢) as function of magnetic field.
The parameters used in the calculation are: even parity, N = 44, L = 27rR =3
pm, and @ = 2 nm. In (c), the magnetic flux for the system with periodic BC is
® = —®g/2 (mod2). The lines for panel (b) are defined in panel (c).

second term originates from the conservation of the total angular momentum of the
electrons in the ring-structure. More specifically, this conservation yields a spin-orbit
coupling between states with equal total angular momentum (pR, 1) and (pR + h, )
and thus effectively shifts orbital angular momenta pR by +#/2 [49]. This shift can be
understood by identifying it with a 27 spin rotation of an electron encircling the ring
which is equivalent to a Berry phase factor —1 and an effective shift of the magnetic
flux by —®y/2.

Experimentally, the fabrication of ring structures with radii of several hundred
nanometers is challenging and the approximation of the ring by a triangle or a rectangle
is likely. For this purpose, we consider a square-like structure made out of four
nanowires, however, our results are qualitatively also valid for a triangular structure
which consists of three wires.

In figure 1(b),(c), we compare the fixed particle number excitation spectrum for
the three different realizations of the lattice on which the Hamiltonian is defined; the
ring of radius R, a quadratic approximation of the ring with edge lengths 7 R/2, and a
straight nanowire of length L = 27 R with periodic BC. In our numerics, we model the
ring-shaped nanowire by a one-dimensional tight-binding Hamiltonian Eq. (4) with
spin-orbit coupling perpendicular to the nanowire, and thus rotating in the x-y plane.
As function of the discretized azimuthal angle ¢; = 2mi/n with n lattice sites, the
spin-orbit direction is then given by

050 ,ring (1) = sin(p;)o® + cos(p;)o¥. (16)
Similarly, we model the square by abrupt changes in the spin-orbit direction at the
position of the corners,
o, for0<i< 7y
oV, for F <i<g
—o®, for § <i< ¢
—o¥, for = <i<n
and the straight nanowire with periodic BC by a constant spin-orbit direction,

(17)

0S80,square (Z) =

USO,periodic(i) =oY. (18)
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The spectra for these three models are qualitatively very similar and show a &g
flux period. As expected, we find that the model with periodic BC yields the same
spectrum as the ring model but with vector potential shifted by —®¢z/2L due to the
Berry phase factor —1. The spectrum for the square model shows small deviations
from that for the ring geometry since here both translational and rotational symmetry
are broken. As a consequence, QP states with reduced excitation energy exist, which
are predominately localized near the corners of the square. Because of the broken
symmetries, we also find that the spectrum as function of flux is shifted by ~ ®/8
compared to the ring model.

We see that our main results are robust against the details of the geometric
realization and rely on the existence of a void such that the topology of the nanowire
is homotopically equivalent to an annulus. All these results underline the general
arguments in the introduction, connecting ground-state degeneracies on the torus to
parity and flux periodicities of excitations.

3.2. FElectrostatic disorder

On one hand, disorder is known to often have drastic influence on the electronic
properties of low-dimensional systems. On the other hand, superconducting pairing
correlations in s-wave SCs are protected against time-reversal invariant impurity
scattering by Anderson’s theorem [50]. This motivates us to address the question of
how robust the ground-state degeneracies in the torus topology are against potential
electrostatic disorder. In the following, we discuss the effect of disorder on the
excitation energies in the regime where the effective gap is larger than the single-
particle level spacing Acg > d, i.e. for
- Aé€solsoN .
2Rd

We model electrostatic disorder by a locally varying impurity potential V, with
vanishing mean value and Gaussian white noise correlator (ViVyr) = vdpr/a. We
here consider the regime of disorder strengths v < Aegolso, Since strong disorder
v > Aé€solso breaks the nanowire into topological and nontopological domain walls
and thereby destroys the excitation gap [37].

In figure 2, we display the excitation spectrum as a function of Zeeman energy
for different combinations of parity and magnetic flux. We find that the effect of
electrostatic disorder is very different in the topologically trivial and the nontrivial
phase. In the trivial phase, the QP excitation gap is remarkably robust against
disorder which is characteristic for s-wave superconductivity [50]. In contrast, we
find a significant reduction of the excitation gap due to disorder in the nontrivial
phase. Since the topological phase for large Zeeman energies Ez > A,pu can be
mapped onto a spinless p-wave SC [30], this reduction is in full agreement with the
effect of disorder on the excitation gap in spinless p-wave SCs [51, 52]. Furthermore,
we find that the reduction is very efficient near the topological phase transition since
there already weak disorder breaks the nanowire into domains of different chemical
potential and thereby shifts parts of the wire through the topological phase transition
which reduces the excitation gap locally. Away from the topological phase transition,
the reduction of the excitation gap is weaker because the existence of partially trivial
domains due to disorder becomes unlikely. Furthermore, we find that disorder shifts
the topological phase transition towards larger values of the Zeeman energy [52, 53].
As before, we argue that this shift originates from local topological phase transitions

Ez (19)
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Figure 2. Lowest excitation energy for a ring-shaped nanowire with N = 44,
L = 3 pum, and @ = 5 nm as function of Zeeman energy and for different
disorder strengths. The curves represent the average over 50 random disorder
configurations. The lines are defined in panel (c).

at B2 = A? + (u + V;)? which are shifted towards larger Zeeman energies due to
disorder.

Since the parity and flux dependence of excitation energies reflect the presence
or absence of nontrivial topological order, our findings for the nonlinear Coulomb
blockade transport are robust against electrostatic disorder and other perturbations
as long as the topological order is not destroyed by the formation of domain walls.

3.8. nmonsuperconducting segments

In this section, we consider the situation that the proximity induced superconducting
order parameter is spatially dependent. Experimentally this might appear due to the
roughness of the nanowire/SC interface or if the nanowire is not completely covered
with the s-wave SC. As sketched in figure 3(a), we describe this spatial dependence of
the superconducting pairing amplitude by a step function such that A, = 0 for 0 <
x < A< Land A, = A elsewhere. In figure 3(c), we display the excitation energies for
different lengths A of the nonsuperconducting segment. We find a significant reduction
of the excitation gap in the trivial phase while the excitation energies in the nontrivial
phase are only weakly reduced even for A ~ [;,. We argue that the origin of the
robustness of the excitation gap in the topological phase is the small effective gap
A < A and the enhanced Fermi velocity vp(Ez > A) ~ 2vp(Ez = 0) due to the
occupation of a single spinless band. Hence, the superconducting coherence length
¢ = vp/Acg in the topologically nontrivial phase is significantly enhanced as compared
to the trivial phase. Thus, in the nontrivial phase superconducting pairing correlations
are more efficiently induced in the nonsuperconducting part of the wire which here
shows up as the robustness of the superconducting gap against the existence of a quite
long normal segment.

From the robustness of the excitation gap, we conclude that it is not necessary
for our proposed setup that the nanowire is completely covered with the s-wave SC.
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Figure 3. Sketch of the nanowire with (a) one and (b) ten nonsuperconducting
segments of length A, i.e. segments which are not covered with superconducting
material. (c), (d) Lowest excitation energy for a ring-shaped nanowire of length
L = 3 pm with even parity, N = 44, and ® = 0 for the case with (c) one and (d)
ten nonsuperconducting segments.

In particular, we propose that it is sufficient to place superconducting grains on the
nanowire in order to significantly increase the charging energy and to reduce Cooper
pair cotunneling through the SC [see section 5]. We now assume that the nanowire
contains ten nonsuperconducting segments of length A uniformly distributed over the
nanowire as sketched in figure 3(b). In figure 3(d), we study the excitation spectrum
for different characteristic lengths A. While the excitation gap for A = 3l5,/2 ~ 150
nm in the trivial phase is completely absent, we find that the excitation energies in the
nontrivial phase are only reduced by 30% as compared to the situation where A # 0
everywhere.

4. Multi-band Hamiltonian

In this section we make a departure from the case of strictly one-dimensional nanowires
and consider the experimentally realistic situation of quasi one-dimensional nanowires
of finite thickness with a < L] < €. In our numerical analysis, we model the ring
shaped nanowire by a strip with periodic boundary conditions along the z-direction
and with hard wall boundary conditions along the y-direction. The magnetic flux ® is
incorporated through the modified vector potential A = (® — ®(/2)%/L as discussed
above in section 3.1.

To ensure that the induced superconducting phase remains quasi one-dimensional
and the nanowire exhibits a substantial gap, we demand that the width does not exceed
the superconducting coherence length § = vp/Acg [53, 54, 55, 56, 57, 58]. The spatial
extension in the y-direction gives rise to the existence of additional transverse modes
and thus subbands which might be partially occupied depending on the chemical
potential. In figure 4(a), we display the Bogoliubov QP spectrum for & = —®/2 as
function of Zeeman energy and chemical potential. For pu < (wh)?/2mL? only one
subband is partially occupied and the excitation spectrum is equivalent to the one
discussed in section 3. With increasing chemical potential higher subbands are filled
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Figure 4. (a) Lowest energy of the Bogoliubov QP spectrum Eqp = min{E;} as
function of Zeeman energy and chemical potential, and (b) phase diagram inferred
from the topological number @ as function of Zeeman energy and mean electron
number. The green dashed lines in (a) represent the topological phase transition
for the various subbands in the limit of uncoupled subbands o — 0, whereas the
color scale encodes the excitation energy for coupled subbands. The parameters
used in the calculation are: L =3 pum, L = 100 nm, a = 5 nm, and ® = —Pq /2.

25

2
(a) E/A

up consecutively and similarly to the single-band case, the higher subbands can be
either topologically trivial or nontrivial depending on the chemical potential and the
Zeeman energy.

In figure 4(a), the topologically nontrivial phase shows up as islands which are
enclosed by lines of vanishing excitation energies, i.e. by topological phase transitions.
Assuming that the subbands are uncoupled, we find the topological phase whenever
the chemical potential lies well within one of the spin gaps at zero momentum and
when the Zeeman energy satisfies the relation

E% > A+ (pn—e€,)?, (20)
where €, = (hnm)?/2mL? denotes the kinetic energy of subband n. However,
the transverse spin-orbit term aclﬁogg,cwgy’a/ couples the subbands and thereby

modifies the lines where the topological phase transitions occur. These modifications
are similar to avoided crossings with energy splitting dp ~ 2akp , between the lines of
topological phase transitions and thus reduce the size of the topologically nontrivial
islands. With increasing chemical potential, the spin-orbit energy in the transverse
direction increases and thus the energy splitting due to the avoided crossing increases
O ~ /€.

In figure 4(b), we display the topological number @ as function of Zeeman splitting
and mean electron number N. As before, the topological number is +1 in the trivial
and —1 in the nontrivial phase and thus we conclude that the parity of the grand
canonical ground states in both phases is different with even parity in the trivial
and odd parity in the nontrivial phase. Similarly to figure 4(a), we find islands of
topologically nontrivial phase which are enclosed by the trivial phase. We propose
that the fixed mean particle number excitation energies can be used as a tool to
investigate the topological phase diagram. In Appendix A we show that our results
for the single-band nanowire can directly be applied to the multi-subband nanowire.
Thus, the topologically trivial phase is characterized by an excitation spectrum with
gap 2A.g for even parity while the excitations are determined by the single-particle
level spacing for odd parity. When varying the magnetic flux, the spectra for both
even and odd parity show small ®(/2 periodic oscillations as expected for trivial SCs.
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Figure 5. Lowest excitation energy for fixed mean particle number as function of
magnetic flux ® (mod ®¢) which pierces the nanowire relative to its central line,
and as function of additional magnetic flux §& = BLL /2 through the nanowire
itself due to the finite thickness of the nanowire. The parameters used in the
calculation are: odd parity, N =43, Bz = 2A, L =27R =3 pm, L, = 70 nm,
and @ = 10 nm. For even parity, we find the same spectrum with ® shifted by
Pp/2.

In contrast, the situation is different in the topologically nontrivial phase where the
excitation spectrum qualitatively depends on both magnetic flux and electron parity.
We here find a characteristic ®¢ flux period similar to the situation for the single-
band model in section 3. We conclude that the excitation spectrum for fixed mean
particle number, which can be observed in nonlinear Coulomb blockade transport, is
an unbiased tool to map out the topological phase diagram shown in figure 4(b).

Due to the finite width L, of the nanowire, the area of the nanowire itself is
penetrated by magnetic flux and thus the magnetic flux through the ring-shaped
nanowire is not well-defined. However, the magnetic flux can be decomposed into a
mean value for the middle of the wire and deviations due to the finite thickness

L,

L
§®(y) = BLy for — % <y< o (21)

For nanowires with radius R = L/27 ~ 0.5 pm and magnetic field strengths B <1 T,
we find 0P(L, /2) > ®¢. In figure 5, we display the fixed electron number excitation
spectrum as function of mean magnetic flux ® (mod ®() and additional flux §® (L /2).
We find that the flux periodicity of the excitation spectrum is not changed, however,
the excitation spectrum itself is shifted due to §®. We can therefore conclude that
additional magnetic flux due to the finite width of ring-shaped nanowires with large
radii is unproblematic for the study of the flux periodicity of the excitation energies.

5. Sequential and Cotunneling of Cooper pairs

In general, there are competing transport channels through the hybrid ring-shaped
nanowire. Our focus is on nonlinear Coulomb blockade transport due to sequential
single-electron tunneling through the SM. The most important competing channels
are sequential and cotunneling of Cooper pairs. For that purpose, we estimate the
magnitude of the current due to Cooper pair processes for a general superconducting
island weakly tunnel-coupled to two leads and study under which parameter conditions
they become important. We assume that the SC has a large number of transverse
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channels N, and charging energy E.. The tunneling between lead 7 and the SC is
described by

Hr,;= Z {tkyqa;.rka (ugovVqo + vq[,'yiqu) + h.c.}, (22)
kqo

where ty q are the tunnel matrix elements, a;x, are the fermion operators in lead ¢

with energy €;k, and vqo, are QP operators for the SC with energy Fq = | /53 + A%,

The uq, and vq, are the BCS coherence factors with magnitudes /(1 £&q/Eq)/2.

Tunneling of Cooper pairs between lead i and the SC is described by an effective
Hamiltonian which can be derived in second order perturbation theory in Hp ;. In the
first step, one electron with momentum k; and spin o is transferred from an initial
state into an intermediate excited state with momentum q of the superconducting
island. In the second step, another electron with momentum ks, and spin —¢ tunnels
into the partner state of the first electron —q such that both electrons form a Cooper
pair. Hence, the final state contains an extra Cooper pair in the SC and two QP
excitations in the lead. Similarly, we find the reverse process by splitting a Cooper
pair followed by two consecutive electron tunneling events [59]. This yields the effective
tunneling Hamiltonian

1
Hep, = (BCS|Hp;————Hr,;|BCS), 23
cpi = (BCS| L 1, BCS) (23)
where we traced out the QP operators via the BCS ground state [BCS). We find
Hepi = Z {Aikl,kzaikmaikw + Afkhkzazkﬂajm} (24)
kiks

with the effective tunneling matrix elements
1

— Ciky — Hi

Aikl,kz = Ztl*q,qtkz,—unliv—QT{E +E
c q

qa

1
+ } 25
Ec+Eq_6ik2_Ni ( )

In the following, we consider the Andreev current through a normal-
superconducting-normal structure with symmetric barriers and bias voltage 0 < V <
Agc/e. Assuming that the voltage between the left (right) lead and the SC is £V/2,
we calculate the rate for the Andreev reflection process using Fermi’s golden rule. The
current for the scattering of two electrons from the left metallic lead into the SC reads

2

La(w) = 2e% 3 |Ari o flerio)f (eri)8(eriy + eris +w) - (26)
kikso

with w = eV — 4E, and Fermi functions f. In Ref. [59] it has been shown that the
Andreev conductance G4 = I4/V for sequential Cooper pair tunneling can be written
as G4(w) = (e2/h)G?*(w) /N, where G is the dimensionless normal state conductance
and NV the number of transverse channels through the superconducting region in its
normal state. Due to the charge 2e of Cooper pairs, sequential tunneling of Cooper
pairs is not resonant for eV/2 < E. — Aqg and can be neglected. In the expression for
the current, this suppression shows up as a shifted chemical potential w = eV — 4E..
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Similarly, we calculate the current for Cooper pair cotunneling from the left lead
to the right lead via the superconducting island by calculating the scattering rate in
second order perturbation theory in Hop,;. We find

87 |A Lk, ko 2] ARKs k|
I co V — 2 _ 1,852 3,84
A, t( ) € Z (ELkl + €rk, + eV — 4EC)2

ki koksky
fler,) flerw,) f(—€ris) f(—€RK,)
0(€Lk, + €Lk, — €Rks — €RK, + 2€V). (27)
Building on the result for the sequential Cooper pair tunneling and assuming eV < E,
we find that the Andreev cotunneling current can be expressed as

G4 (eV\V3
Thcot(V) = hA(T).

In the expression for Eq. (28), the Andreev conductance G 4(eV) is not suppressed by
the Coulomb energy since the charge on the superconducting island after the tunneling
events is the same as the initial charge.

In contrast, we find for sequential electron tunneling a current I,, = (e/h)I'
where T' is the tunneling rate between the lead and the SM. For characteristic bias
voltages smaller or equal to E./e, we compare the currents due to the sequential
tunneling of electrons and the Andreev cotunneling of Cooper pairs. With Eq. (28)
and the expression for the Andreev conductance, we find

I, _ N2T
IA,cot - ECG4.

We now make the conservative assumption I' = d/10 and d =~ E./10, where d is the
mean level spacing in the SM, and demand that single particle sequential tunneling
be larger than Cooper pair cotunneling. In this way, we obtain the condition that
G < V/N./3, ie. the dimensionless conductance of the junction between lead
and the SC in its normal state has to be smaller than one third of the square
root of the number of transverse channels. For a metal of diameter 10 nm and
with Fermi wavelength 0.3 nm, the number of transverse channels is approximately
(diameter /wavelength)? = 1000, and thus the dimensionless normal state conductance
needs to satisfy G < 10, which is realistic for metallic quantum dots with current state
technology.

One way to realize the condition G < v/N /3 experimentally is to not cover
the nanowire with superconducting material in the vicinity of the electrodes. This
significantly reduces the conductance between the SC and the electrodes. One can
even imagine that an extreme limit could be realized, in which all electrons entering
the hybrid system have to do so via the SM in the vicinity of the electrodes. One might
argue that as a consequence of removing the SC near the electrodes, the proximity
induced pairing amplitude in this region will be reduced as well. However, when the
region not covered with superconducting material is considerably smaller than the
coherence length in the SM (of the order of 100 nm as shown in Sec. 3.3), this effect
will be small. In principle, one could go even further and only deposit superconducting
nanograins on top of the nanowire instead of adding a fully connected SC, and in this
way eliminate the influence of Andreev cotunneling almost completely.

In order to fully suppress cotunneling of Cooper pairs through the SC, we propose
to use ferromagnetic leads with the polarization in magnetic field direction. While
ferromagnetic leads fully suppress Andreev processes and thus cotunneling of Cooper

(28)

(29)
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pairs in conventional s-wave SCs, they do not significantly affect the current due to
sequential tunneling of electrons.

6. Summary

In conclusion, we have proposed a Coulomb blockade transport experiment to
investigate the topological order of semiconductor-superconductor hybrid nanorings,
and have shown that characteristic parity and flux periodicity effects in the excitation
spectrum reflect the distinct ground-state degeneracies of trivial and nontrivial
superconducting phases on manifolds with nonzero genus. In particular, the excitation
spectrum for fixed mean particle number provides clear signatures of the h/e flux
periodicity in the nontrivial phase and the topological phase transition. All these
findings are robust against geometry details of the realization of the ring structure
and rely on the existence of a hole such that the system is homotopically equivalent
to a circle.

We have shown that the spectroscopic gap in the nontrivial phase is robust against
moderate electrostatic disorder. Furthermore, the nontrivial phase is characterized
by a large superconducting coherence length which allows to deposit superconducting
nanograins on top of the nanowire instead of adding a fully connected superconductor,
and in this way reduces the Andreev cotunneling and enhance the charging energy.
Using a T-matrix formalism, we have estimated the magnitude of Andreev cotunneling
and have derived a criterion for the maximum number of parallel conduction channels
through the proximity coupled s-wave superconductor which ensures that single
particle transport dominates over cotunneling of Cooper pairs.

Finally, we studied multi-subband nanowires and we have shown that nonlinear
Coulomb blockade transport can be used as a tool to map out the topological phase
diagram.

Acknowledgments

We acknowledge helpful discussion with L. Kimme, and financial support by BMBF.

Appendix A. Multi-band phase diagram

In this appendix, we present the lowest excitation energy Ex — E¥ for the multi-band
SM hybrid nanowire for several combinations of magnetic flux and parity as function
of Zeeman energy and mean electron number. As shown in figure Al and explained in
section 4, both the chemical potential ;1 and the Zeeman energy can be used to tune
the nanowire through the topological phase transitions.

Our findings for the trivial phase (i.e. the dark region in figure Al(a))
are characteristic for s-wave superconductivity in superconducting grains without
excitation gap for odd parity [figures Al(a) and (c)] and with energy gap 2A.g for even
parity [figures A1(b) and (d)]. These excitation energies do not change qualitatively
when changing the magnetic flux and show small ®(/2 periodic oscillations of order
/Dot < Desr-

In the topologically nontrivial phase (i.e. the bright region in figure Al(a)) the
parity effect is very different. Here, the excitation energies depend on both electron
parity and magnetic flux. In Figs. Al(a) and (d) we find an excitation gap 2A.g
since two Bogoliubov QP excitations are required and thus a Cooper pair needs to be
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Figure A1l. Lowest excitation energy in the fermionic excitation spectrum with
fixed mean electron number as function of magnetic field and mean electron
number for several combinations of magnetic flux and electron parity; L = 3
pm, L] =100 nm, and a = 5 nm. Note the different color scale in (c¢) where all
excitation energies are determined by the single-particle level spacing d.

broken. In contrast, the excitation energies in Figs. A1(b) and Al(c) are determined by
the single-particle level spacing since always one unpaired particle is located near the
Fermi surface. As shown in Fig. A1(d), the characteristic signature of the topological
phase transition is the closing and reopening of the excitation gap. When studying
the flux dependence of the excitation energies in the nontrivial phase, we find large
oscillations with period ®; and amplitude 2A.g. For even parity, the excitation
energies for /P, € (—1/4,1/4) are determined by the effective gap 2A.¢ while they
are determined by the single-particle level spacing d?/Aeg for ®/®y € (1/4,3/4). For
odd parity, we qualitatively find the same spectrum but shifted by ®¢/2, as follows
from the earlier discussion.

Thus, the excitation spectrum for fixed electron number directly reflect the
topological phase diagram shown in figure 4(b). The proposed nonlinear Coulomb
blockade transport experiment can therefore be used as a tool to clearly determine the
topological order of the hybrid system by measuring the fermionic excitation spectrum.

References

] X.-G. Wen, Int. J. Mod. Phys. B 4, 239 (1990).
] A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404 (2006).
] M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405 (2006).
[4] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
] M. Oshikawa, Y. B. Kim, K. Shtengel, C. Nayak, and S. Tewari, Ann. Phys. 322, 1477 (2007).
] Z. Wang, X.-L. Qi, S.-C. Zhang, Phys.Rev.Lett. 105, 256803 (2010).
] V. Gurarie, Phys. Rev. B 83, 085426 (2011).
] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).



Robustness of Topological Order in Semiconductor-Superconductor Nanowires 18

[9] X. L. Qi and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

[10] L. Fu and C. L. Kane, Rhys. Rev. Lett. 100, 096407 (2008); L. Fu and C. L. Kane, Phys. Rev.
B 79, 161408(R) (2009).

[11] M. Sato and S. Fujimoto, Phys. Rev. B 79, 094504 (2009).

[12] G. E. Volovik, JETP Lett. 90, 398 (2009).

[13] J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys. Rev. Lett. 104, 040502 (2010).

[14] J. Linder, Y. Tanaka, T. Yokoyama, A. Sudbg, and N. Nagaosa, Phys. Rev. Lett. 104, 067001
(2010).

[15] A. Cook and M. Franz, Phys. Rev. B 84, 201105(R) (2011).

[16] J. D. Sau, S. Tewari, R. Lutchyn, T. Stanescu, and S. Das Sarma, Phys. Rev. B 82, 214509

(2010).

7] S. Walter, T. L. Schmidt, K. Bgrkje, and B. Trauzettel, Phys. Rev. B 84, 224510 (2011).

8] C. W. J. Beenakker, Annu. Rev. Con. Mat. Phys. 4, 113 (2013).

9] J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).

0] M. Leijnse and K. Flensberg, Semicond. Sci. Technol. 27, 124003 (2012).

1] C. T. Black, D. C. Ralph, and M. Tinkham, Phys. Rev. Lett. 76, 688 (1996).

2] J. von Delft and D.C. Ralph, Phys. Rep. 345, 61 (2001).

3] B. Zocher, M. Horsdal, and B. Rosenow, Phys. Rev. Lett. 109, 227001 (2012).

4] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven,

Science 336 1003 (2012).

[25] J. R. Williams, A. J. Bestwick, P. Gallagher, Seung Sae Hong, Y. Cui, Andrew S. Bleich, J. G.
Analytis, I. R. Fisher, and D. Goldhaber-Gordon, Phys. Rev. Lett. 109, 056803 (2012).

[26] L. P. Rokhinson, X. Liu, and J. K. Furdyna, Nature Phys. 8, 795 (2012).

[27] M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and H. Q. Xu, Nano Lett. 12, 6414

(2012).

[28] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrikman, Nature Phys. 8, 8387
(2012).

[29] J. Alicea, Phys. Rev. B 81, 125318 (2010).

[30] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010).

[31] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010).

[32] J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher, Nature Phys. 7, 412 (2011).

[33] A. Kitaev, Phys. Usp. 44, 131 (2001).

[34] L. Jiang, D. Pekker, J. Alicea, G. Refael, Y. Oreg, and F. von Oppen, Phys. Rev. Lett. 107,

236401 (2011).
[35] B. van Heck, F. Hassler, A. R. Akhmerov, and C. W. J. Beenakker, Phys. Rev. B 84, 180502(R)
(2011).
6] K. T. Law, P. A. Lee, and T. K. Ng, Phys. Rev. Lett. 103 237001 (2009).
7] K. Flensberg, Phys. Rev. B 82, 180516(R) (2010).
[38] M. Wimmer, A. R. Akhmerov, J. P. Dahlhaus, and C. W. J. Beenakker, New J. Phys. 13, 053016
(2011).
| M. Leijnse and K. Flensberg, Phys. Rev. B 84, 140501(R) (2011).
] D. E. Liu and H. U. Baranger, Phys. Rev. B 84, 201308(R) (2011).
] A. R. Akhmerov, J. Nilsson, and C. W. J. Beenakker, Phys. Rev. Lett. 102, 216404 (2009).
] E. Grosfeld and A. Stern, Proc. Natl. Acad. Sci. U.S.A. 108, 11810 (2011).
] S. Tewari, J. D. Sau, V. W. Scarola, C. Zhang, and S. Das Sarma, Phys. Rev. B 85, 155302
(2012).
[44] A. R. Akhmerov, J. P. Dahlhaus, F. Hassler, M. Wimmer, and C. W. J. Beenakker, Phys. Rev.
Lett. 106, 057001 (2011).

45] C.-X. Liu and B. Trauzettel, Phys. Rev. B 83, 220510(R) (2011).
46] B. Zocher and B. Rosenow, arXiv:1208.4092 (2010).
47] S. Tewari and J. D. Sau, Phys. Rev. Lett. 109, 150408 (2012).

[45]

[46]

[47]

[48] P. M. Ostrovsky, M. A. Skvortsov, and M. V. Feigel’'man, Phys. Rev. Lett. 92, 176805 (2004).

[49] F. E. Meijer, A. F. Morpurgo, and T. M. Klapwijk, Phys. Rev. B 66, 033107 (2002).

[50] P. W. Anderson, J. Phys. Chem. Solids 11, 26 (1959).

[51] O. Motrunich, K. Damle, and D. A. Huse, Phys. Rev. B 63, 224204 (2001).

[52] P.W. Brouwer, M. Duckheim, A. Romito, and F. von Oppen, Phys. Rev. B 84, 144526 (2011).

[53] R. M. Lutchyn, T. D. Stanescu, and S. Das Sarma, Phys. Rev. Lett. 106, 127001 (2011); T. D.
Stanescu, R. M. Lutchyn, and S. Das Sarma, Phys. Rev. B 84, 144522 (2011).

[564] M. Wimmer, A. R. Akhmerov, M. V. Medvedyeva, J. Tworzydlo, and C. W. J. Beenakker, Phys.

Rev. Lett. 105, 046803 (2010).
[55] A. C. Potter and P. A. Lee, Phys. Rev. Lett. 105, 227003 (2010).



Robustness of Topological Order in Semiconductor-Superconductor Nanowires 19

[56] B. Zhou and S.-Q. Shen, Phys. Rev. B 84, 054532 (2011).

[57] K. T. Law and P. A. Lee, Phys. Rev. B 84, 081304 (2011).

[58] R. M. Lutchyn and M. P. A. Fisher, Phys. Rev. B, 84, 214528 (2011).

[59] F. W. J. Hekking, L. I. Glazman, K. A. Matveev, and R. I. Shekhter, Phys. Rev. Lett. 70, 4138
(1993).

[60] D. V. Averin and Yu. V. Nazarov, Phys. Rev. Lett. 65, 2446 (1990).



