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Abstract

We consider the normalized Laplacian matrix for signed graphs and derive interlacing
results for its spectrum. In particular, we investigate the effects of several basic graph
operations, such as edge removal and addition and vertex contraction, on the Laplacian
eigenvalues. We also study vertex replication, whereby a vertex in the graph is dupli-
cated together with its neighboring relations. This operation causes the generation of
a Laplacian eigenvalue equal to one. We further generalize to the replication of motifs,
i.e. certain small subgraphs, and show that the resulting signed graph has an eigenvalue 1
whenever the motif itself has eigenvalue 1.
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1. Introduction

Let G = (V,E) be a simple graph with vertex set V = V (G) = {v1, v2, . . . , vn} and
edge set E = E(G) = {e1, e2, . . . , em}. The Laplacian matrix of the graph G is the
n×n matrix L(G) = D(G)−A(G), where D(G) = diag{dv1 , dv2 , . . . , dvn} is the diagonal
matrix of vertex degrees and A(G) = [aij ] is the (0, 1)-adjacency matrix of the graph
G, that is, aij = 1 if vi and vj are adjacent, and aij = 0 otherwise. The normalized
Laplacian is the matrix L̄(G) is given by [5]

L̄(u, v) =


1, if u = v and dv 6= 0,

−1/
√
dudv if u and v are adjacent,

0 otherwise.

We can write L̄ = D−1/2LD−1/2 with the convention that D−1/2(v, v) = 0 whenever
dv = 0. The normalized Laplacian arises in several applications such as random walks and
spreading problems on networks. The eigenvalue spectrum of the Laplacian determines
the convergence rates of such dynamics; furthermore, it gives useful information about
the graph structure.

Email address: fatay@mis.mpg.de (Fatihcan M. Atay)
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Signed graphs were introduced by Harary [7] in connection with the study of theory
of social balance. A signed graph Γ = (G, σ) consists of a simple graph G = (V,E) and
a mapping σ : E → {+,−}, called the edge labeling. In this context G is called the
underlying graph of Γ. We may write V (Γ) for the vertex set and E(Γ) for the edge set
if necessary. The degree of vi ∈ V (Γ) is defined as dvi = d+

vi + d−vi where d+
vi is number of

positive edges and d−vi is number of negative edges incident on vi. Thus, a signed graph
Γ = (G, σ) and its underlying graph G have the same degree sequence, and the degree
matrix of Γ is D(Γ) = D(G). The signed adjacency matrix of Γ is A(Γ) = [aσij ], where
aσij = σ(vi, vj)aij . The Laplacian matrix of Γ, denoted by L(Γ) or L(G, σ), is defined by
D(Γ) − A(Γ). Clearly, L(G) = L(G,+) and L(G,−) = D(G) + A(G), where “+” and
“−” denote all-positive and all-negative edge labelings, respectively. The Laplacian L(Γ)
is a symmetric matrix whose row sum vector is 2(d−v1

, d−v2
, . . . , d−vn)>. The normalized

Laplacian of Γ, denoted by L̄(Γ) or L̄(G, σ), is the matrix whose components are given
by

L̄(u, v) =


1 if u = v and dv 6= 0,

−σ(u, v)/
√
dudv if uv ∈ E(Γ),

0 otherwise.

We can write L̄ = D−1/2L(Γ)D−1/2 = I − D−1/2A(Γ)D−1/2, with the convention
D−1/2(v, v) = 0 whenever dv = 0.

Eigenvalue interlacing provides a useful tool for obtaining regularity and comparison
results regarding the graph structure and various graph matrices. Much research has
been done in this area concerning the adjacency and Laplacian matrices of unsigned
graphs [6, 9, 13, 4, 14]. In contrast, there exist considerably fewer results on the spectra
of signed graphs. Among the relevant works, we mention Hou et al. [11, 12], who studied
the spectrum of the Laplacian L(Γ) for signed graphs and obtained some bounds for the
largest and smallest Laplacian eigenvalues of unbalanced signed graphs. The notion of
the normalized Laplacian for signed graphs were introduced in Li et al. [15].

In this paper we consider the normalized Laplacian for signed graphs and derive
interlacing results for its spectrum. We start with some basic results on the Laplacian
spectrum for signed graphs in Section 2. In Section 3 we present eigenvalue interlacing
results for several graph operations, including edge removal and addition (Section 3.2)
and vertex contraction (Section 3.3). We further generalize to successive contractions of
a vertex using the concepts of dominating sets and private neighborhoods (Section 3.4).
In Section 4 we study the replication operation. Vertex replication refers to duplicating
a vertex together with its neighboring relations (Section 4.1). This operation causes the
generation of a Laplacian eigenvalue equal to 1 (Section 4.2). We conclude the paper by
extending the replication operation from single vertices to entire motifs, i.e. certain small
connected subgraphs, and showing that the resulting signed graph has an eigenvalue 1
whenever the motif itself has eigenvalue 1 (Section 4.3).

2. Eigenvalues of the normalized Laplacian

Without loss of generality, the graphs considered in this paper can be assumed to
have no isolated vertices, because, by the definition of the Laplacian, an isolated vertex
simply contributes a zero eigenvalue to the spectrum. The normalized Laplacian L̄ can
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thus be viewed as an operator on the space of functions f : V (Γ)→ R satisfying

L̄f(u) = f(u)−
∑

v, v∼u
σ(u, v)

f(v)√
dudv

. (1)

As a symmetric operator, the basic properties of its spectrum can be obtained through
Rayleigh quotients. To this end, first notice that, for f = (f1, . . . , fn) and the usual
Laplacian L(Γ) = D(Γ)−A(Γ) for signed graphs, we have

f>L(Γ)f =
∑
i

f2
i di − 2

∑
i∼j

σ(i, j)fifj

=
∑
i∼j

(fi − σ(i, j)fj)
2,

where
∑
i∼j denotes a sum over all unordered pairs {i, j} for which vi and vj are adjacent.

If g = D1/2f , then

g>L̄(Γ)g

g>g
=

(D1/2f)>L̄(Γ)(D1/2f)

(D1/2f)>(D1/2f)
=
f>L(Γ)f

f>Df

=

∑
i∼j

(fi − σ(i, j)fj)
2∑

i

f2
i di

. (2)

The right hand side of (2) is obviously nonnegative; moreover, it is bounded from above
by 2 since ∑

i∼j
(fi − σ(i, j)fj)

2 ≤
∑
i∼j

2(f2
i + f2

j ) = 2
∑
i

f2
i di.

As D1/2 is a vector space isomorphism, it follows by the Courant-Fisher theorem (see
Theorem 6 below for a statement) that the eigenvalues of L̄ belong to the interval [0, 2]
(see [15]).

The switching operation introduced by Seidel [2] plays an important role in discussions
of signed graphs. Let Γ = (G, σ) be a signed graph and θ : V → {+,−} be a sign function
on its vertex set. Switching Γ by θ means forming a new signed graph Γθ = (G, σθ) whose
underlying graph is the same as G, but whose sign function is defined on an edge e = vivj
by σθ(e) = θ(vi)σ(e)θ(vj). Two signed graphs Γ1 = (G, σ1) and Γ2 = (G, σ2) with the
same underlying graph are said to be switching equivalent, written Γ1 ∼ Γ2, if there
exists a switching function θ such that Γ2 = Γθ1. Switching leaves many signed-graph
characteristics invariant, including the set of positive cycles. A signature matrix is a
diagonal matrix S = diag{s1, s2, . . . , sn} with diagonal entries si = ±1. Two square
matrices M1, M2 of order n are said to be signature similar if there exists a signature
matrix S such that M2 = SM1S. Clearly, two signature-similar matrices have identical
eigenvalues, since S−1 = S. By the following lemma, switching equivalence of graphs can
be described in terms of signature similarity of matrices. A direct consequence is that
the switching operation does not alter the Laplacian eigenvalues.

Lemma 1. [12] Let Γ1 = (G, σ1) and Γ2 = (G, σ2) be signed graphs on the same under-
lying graph. Then Γ1 ∼ Γ2 if and only if L(Γ1) and L(Γ2) are signature similar.
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The same conclusion holds also for the normalized Laplacian. As stated in the next
lemma, the normalized Laplacian L̄ of switching-equivalent graphs have identical eigen-
values and the corresponding eigenfunctions are directly related by the switching func-
tion.

Lemma 2. Let Γ = (G, σ) be a signed graph on n vertices and suppose f = (f(1), . . . , f(n))
is an eigenfunction of L̄(Γ) corresponding to the eigenvalue λ. Let Γθ = (G, σθ) be a
switching-equivalent graph obtained from Γ through the switching function θ. Then the
function fθ := (θ(1)f(1), . . . , θ(n)f(n)) is an eigenfunction of L̄(Γθ) corresponding to
the eigenvalue λ.

Proof. From (1),

(L̄(Γ)f)(u) = f(u)−
∑

v, v∼u
σ(u, v)

f(v)√
dudv

= λf(u).

Multiplying through by θ(u) and noting that θ2(v) = 1, we obtain

θ(u)f(u)−
∑

v, v∼u
θ(u)σ(u, v)θ(v)

θ(v)f(v)√
dudv

= λθ(u)f(u),

that is,

fθ(u)−
∑

v, v∼u
σθ(u, v)

fθ(v)√
dudv

= λfθ(u).

showing that fθ is an eigenfunction of L̄(Γθ) corresponding to the eigenvalue λ.

A particular case of interest is signed graphs that are switching-equivalent to unsigned
graphs. This is related to the concept of balanced, introduced as follows. If C is a cycle of
a signed graph Γ, the sign of C is defined by sign(C) =

∏
e∈C σ(e). A cycle whose sign is

+ (resp., −) is said to be positive (resp., negative). A signed graph is said to be balanced
if all its cycles are positive. It can be shown that a signed graph Γ is balanced if and only
if Γ = (G, σ) ∼ (G,+) [11, Theorem 2.5]. Thus, for balanced graphs, L̄(Γ) and L̄(G) are
signature similar and have identical spectrum. According to the matrix-tree theorem for
signed graphs [3, 16], 0 is an eigenvalue of L(Γ) or L̄(Γ) if and only if Γ is balanced [12].
Furthermore, it is well-known for unsigned graphs that 0 is a simple eigenvalue of L(G)
or L̄(G) if and only if G is connected. Combining, we obtain the following lemma.

Lemma 3. For a connected, balanced signed graph Γ = (G, σ), zero is a simple eigenvalue
of both L(Γ) or L̄(Γ).

Finally, for bipartite graphs, the following result carries over from unsigned graphs.

Lemma 4. Let Γ = (G, σ) be a bipartite signed graph. If λ is an eigenvalue of L̄(Γ),
then 2− λ is also an eigenvalue of L̄(Γ).

Proof. Let Γ be a bipartite graph, with the two partitions V1, V2. Let f be an eigenfunc-
tion of L̄(Γ) corresponding to the eigenvalue λ; thus by (1),

(1− λ)f(i) =
∑
j∼i

σ(i, j)f(j)√
didj

. (3)
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Define the function g by

g(i) =

{
f(i) if i ∈ V1,
−f(i) if i ∈ V2.

Then from (3),

(1− λ)g(i) = −
∑
j∼i

σ(i, j)g(j)√
didj

,

since all neighborhoods are across the partitions. It follows that

g(i)−
∑
j∼i

σ(i, j)g(j)√
didj

= (2− λ)g(i),

that is, g is an eigenfunction of L̄ corresponding to the eigenvalue 2− λ.

In the following sections, we obtain further information on the Laplacian eigenvalues
for some basic graph operations.

3. Edge removal and vertex contraction

3.1. Main tools for eigenvalue interlacing

We briefly recall some useful facts from matrix analysis. The following result is one
of the basic tools in eigenvalue interlacing (see e. g., [10]).

Theorem 5. (Cauchy’s interlacing theorem) Let A be a real n × n symmetric matrix
and B be an (n− 1)× (n− 1) principal submatrix of A. If

λ1 ≤ λ2 ≤ · · · ≤ λn and θ1 ≤ θ2 ≤ · · · ≤ θn−1

denote the eigenvalues of A and B, respectively, then

λi ≤ θi ≤ λi+1 for i = 1, 2, . . . , n− 1.

The edge version of the interlacing property for the Laplacian L(G) is given in [9, 13].
Chen et al. [4] studied Cauchy interlacing-type properties of the normalized Laplacian
L̄(G) by using the Courant-Fischer Theorem [10].

Theorem 6. (Courant-Fischer) If M is an n×n real symmetric matrix with eigenvalues

λ1 ≤ λ2 ≤ · · · ≤ λn,

then

λ1 = min

{
〈Mf, f〉
〈f, f〉

: 0 6= f ∈ Rn
}

and

λn = max

{
〈Mf, f〉
〈f, f〉

: 0 6= f ∈ Rn
}
.

Moreover, the k-th smallest eigenvalue λk is given by

λk = min
Sn−k−1

max
f⊥Sn−k−1

f 6=0

〈Mf, f〉
〈f, f〉

= max
Sk

min
f⊥Sk
f 6=0

〈Mf, f〉
〈f, f〉

where St denotes a t-dimensional subspace of Rn and f ⊥ St indicates that f ⊥ g for all
g ∈ St.
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We will also make use of the following lemma.

Lemma 7. [4] Suppose that for real a, b, and γ,

a2 − 2γ2 ≥ 0, b2 − γ2 > 0, and
a2

b2
≤ 2. (4)

Then
a2 − 2γ2

b2 − γ2
≤ a2

b2
. (5)

3.2. Edge removal and addition

Eigenvalue interlacing results with respect to the removal of an edge are well known
for unsigned graphs. Our next result gives an extension to the normalized Laplacian
of signed graphs. It obviously pertains also to edge addition by reversing the roles of
graphs.

Theorem 8. Let Γ be a signed graph without isolated vertices and let Γ− e be the signed
graph obtained from Γ by removing an edge e. If

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn and 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θn

are the eigenvalues of L̄(Γ) and L̄(Γ− e), respectively, then

λi−1 ≤ θi ≤ λi+1 (6)

for each i = 1, 2, . . . , n, with the convention that λ0 = 0 and λn+1 = 2.

Proof. Consider the Rayleigh quotient given in (2), with g = D1/2f . Since D1/2 is an
invertible matrix, its action on a t-dimensional subspace yields again a t-dimensional
subspace. Thus, the Courant-Fisher theorem for the kth smallest eigenvalue λk of L̄(Γ)
can be expressed as

λk = min
Sn−k−1

max
g⊥Sn−k−1

g>L̄(Γ)g

g>g

= min
Sn−k−1

max
D1/2f⊥Sn−k−1

D1/2f 6=0

f>L(Γ)f

f>Df

= min
S
′
n−k−1

max
f⊥
f 6=0

S
′
n−k−1

∑
i∼j

(fi − σ(i, j)fj)
2∑

i

f2
i di

. (7)

Similarly,

λk = max
S
′
k

min
f⊥
f 6=0

S
′
k

∑
i∼j

(fi − σ(i, j)fj)
2∑

i

f2
i di

. (8)
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Suppose now the edge e = v1v2 ∈ E is removed from Γ and assume that σ(v1, v2) = −.
The degrees of v1 and v2 decrease by one after removing the edge v1v2 ∈ E. So, the
denominator above changes to∑

j

f2
j dj →

∑
j

f2
j dj − f2

1 − f2
2 ,

and, due to changing neighborhood relations, the numerator becomes∑
i∼j

(fi − σ(i, j)fj)
2 →

∑
i∼j

(fi − σ(i, j)fj)
2 − (f1 + f2)2,

where the summations on the right are taken in the original graph. Thus,

θk = max
S
′
k

min
f⊥
f 6=0

S
′
k

∑
i∼j

(fi − σ(i, j)fj)
2 − (f1 + f2)2∑

j

f2
j dj − f2

1 − f2
2

≤ max
S
′
k

min
f⊥S′k

f1=f2, f 6=0

∑
i∼j

(fi − σ(i, j)fj)
2 − (f1 + f2)2∑

j

f2
j dj − f2

1 − f2
2

= max
S
′
k

min
f⊥S′k
f 6=0

and f⊥e1−e2

∑
i∼j

(fi − σ(i, j)fj)
2 − 4f2

1∑
j

f2
j dj − 2f2

1

(9)

where the vectors e1 and e2 denote the standard basis vectors. We will use Lemma 7
with γ2 = 2f2

1 , a2 =
∑
i∼j(fi − σ(i, j)fj)

2, and b2 =
∑
j f

2
j dj and recall from Section 2

that the eigenvalues are bounded from above by 2. Thus, continuing from (9),

θk ≤ max
S
′
k

min
f⊥S′k
f 6=0

,and f⊥e1−e2

∑
i∼j

(fi − σ(i, j)fj)
2∑

j

f2
j dj

≤ max
S
′
k+1

min
f⊥S′k+1
f 6=0

∑
i∼j

(fi − σ(i, j)fj)
2∑

j

f2
j dj

= λk+1. (10)
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Similarly, using the min-max form of the Courant-Fisher theorem,

θk = min
S
′
n−k−1

max
f⊥S′n−k−1

f 6=0

∑
i∼j

(fi − σ(i, j)fj)
2 − (f1 + f2)2∑

j

f2
j dj − f2

1 − f2
2

≥ min
S
′
n−k−1

max
f⊥S′n−k−1

f 6=0

f1=−f2

∑
i∼j

(fi − σ(i, j)fj)
2 − (f1 + f2)2∑

j

f2
j dj − f2

1 − f2
2

≥ min
S
′
n−k−1

max
f⊥S′n−k−1 and f⊥e1+e2

f 6=0

∑
i∼j

(fi − σ(i, j)fj)
2∑

j

f2
j dj − 2f2

1

≥ min
S
′
n−k

max
f⊥S′n−k
f 6=0

∑
i∼j

(fi − σ(i, j)fj)
2∑

j

f2
j dj

= λk−1 (11)

Combining (10) and (11) proves (6). The case when σ(v1, v2) = + is proved similarly.

Remark 9. It is known that the eigenvalues of the Laplacian L of unsigned graphs
decrease or stay the same when an edge is removed [13]. Theorem 8 shows that for
the normalized Laplacian L̄ of signed graphs, the eigenvalues may in fact increase, in
which case the theorem gives an upper bound to the increase. As an example, consider
the signed graph shown in Figure 1 and the two graphs obtained from it by removing an
edge. Comparing their Laplacian spectra shows that eigenvalues may increase or decrease
when an edge is removed.

3.3. Vertex contraction

Let G be a graph and let v ∈ V (G). The open neighborhood of v ∈ V (G) is the set

N(v) = {u ∈ V : uv ∈ E}

and the closed neighborhood of v is N [v] = N(v) ∪ {v}. For any two vertices u and v of
G, we use G/{u, v} to denote the graph obtained from G by contracting u and v to a
single vertex, i. e., by deleting the vertices u and v and adding a new vertex (uv) such
that the neighborhood of (uv) is the union of neighborhoods of u and v. When u and v
are adjacent, G/{u, v} is the graph obtained from G by contracting the edge uv.

The contraction operation can similarly be defined for a signed graph by preserving
the signs provided that the signs on the edges can be assigned consistently, i.e., when
the edges from u and v to any common neighbor have the same signs. We say that
Γ/{u, v} is an allowable contraction for a signed graph Γ if σ(x, u) = σ(x, v) for all x ∈
N(u)∩N(v). Hence, an allowable contraction is a signed graph Γ/{u, v} obtained from Γ
by deleting the vertices u and v and adding a new vertex (uv) such that the neighborhood
of (uv) is the union of neighborhoods of u and v, and σ(x, (uv)) = σ(x, u) = σ(x, v)
for all x ∈ N(u) ∪ N(v). In particular, Γ/{u, v} is an allowable contraction whenever
N(u) ∩N [v] = ∅. The next interlacing result pertains to this case.
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Γ Γ− e Γ− e′

λ1 = 0.1852 θ1 = 0.1968 θ̄1 = 0.2019
λ2 = 0.5978 θ2 = 0.6667 θ̄2 = 0.4980
λ3 = 1.0661 θ3 = 0.8315 θ̄3 = 1.0000
λ4 = 1.4718 θ4 = 1.5289 θ̄4 = 1.5020
λ5 = 1.6792 θ5 = 1.7761 θ̄5 = 1.7981

Figure 1: A signed graph Γ and two graphs, Γ − e and Γ − e′, obtained from it by removing an edge,
together with the eigenvalue spectra of their normalized Laplacians L̄. It can be seen that removing an
edge may increase (e.g. θ2) or decrease (e.g. θ̄2) the eigenvalues.

Theorem 10. Let Γ be a signed graph and let u and v be two vertices of Γ such that
N(u) ∩N [v] = ∅. Let

λ1 ≤ λ2 ≤ · · · ≤ λn and θ1 ≤ θ2 ≤ · · · ≤ θn−1

denote the eigenvalues of L̄(Γ) and L̄(Γ/{u, v}) respectively. Then

λi−1 ≤ θi ≤ λi+1,

with the convention that λ0 = 0 and λn+1 = 2.

Proof. We denote u = v1 and v = v2. Let J be an index set such that j ∈ J if and
only if vj ∈ N(v1). Since N(v1) ∩ N [v2] = ∅, Γ/{v1, v2} can be seen as the operation
of removing edges v1vj and simultaneously adding edges v2vj , while preserving signs
of them. Thus, using the Courant-Fisher theorem (7) and arguing as in the proof of
Theorem 8, the eigenvalues θk of L̄(Γ/{u, v}) can be expressed as

θk = min
S
′
n−k−1

max
f⊥S′n−k−1

f 6=0

∑
i∼j

(fi − σ(i, j)fj)
2 +

∑
j∈J

(f2 − σ(v2, vj)fj)
2 − (f1 − σ(v1, vj)fj)

2∑
j

f2
j dj − d1f2

1 + d1f2
2

Here the summations are understood to be taken in the original graph Γ. Hence, similar
to the case of unsigned graphs [4], taking f1 = f2 yields the lower bound λk−1. The
upper bound λk+1 follows analogously from the max min statement (8) of Courant-Fisher
theorem. Therefore, λi−1 ≤ θi ≤ λi+1, as required.
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Figure 2: Example of a signed graph Γ and a dominating set S = {3, 7}. The vertices 1, 2 and 4 are
S-private neighbors of vertex 3, and the vertices 5 and 6 are S-private neighbors of vertex 7. Note that
N(3) ∩N(7) = ∅.

3.4. Dominating sets and successive contractions

Following the contraction of two vertices v1, v2, we can consider the contraction of the
new vertex (v1v2) with another vertex v3, obtaining a new graph (G/{v1, v2})/{(v1v2), v3}.
To reduce notational burden, we denote the ensuing graph simply by G/{v1, v2, v3}. By
generalization, we can consider k−1 successive contractions yielding a graphG/{v1, v2, . . . , vk}.
Before giving the interlacing result, we study the problem of when such a sequence of
contractions is well-defined for signed graphs.

A set S ⊆ V of vertices in graph G = (V,E) is called a dominating set if for every
vertex v ∈ V − S, there exists a vertex u ∈ S such that v is adjacent to u. The
domination number of G, denoted by γ(G), is the minimum cardinality of dominating
sets in G. A dominating set of G which has cardinality γ(G) is called a γ(G)-set. If
S is a dominating set, a vertex w ∈ V is called an S-private neighbor of v ∈ S if
N [w] ∩ S = {v}. The S-private neighborhood of v ∈ S, denoted pn[v, S], is the set of
all S-private neighbors of v. The open S-private neighborhood is defined analogously by
the condition N(w) ∩ S = {v}. For a survey of the subject of domination in graphs, the
reader is referred to [8]. If every vertex in V is an S-private neighbor of some vi ∈ S
then

⋂γ(G)
i=1 N(vi) = ∅ (see Figure 2 for an illustration). Furthermore, in this case the

successive contractions Γ/{v1, v2, v3, . . . , vk} is a well-defined operation.

Theorem 11. Let Γ = (G, σ) be a signed graph, γ(G) = k, and S = {v1, . . . , vk} be a
γ(G)-set, and suppose the successive contractions Γ/{v1, v2, v3, . . . , vk} are well-defined.
Let

λ1 ≤ λ2 ≤ · · · ≤ λn and θ
(k−1)
1 ≤ θ(k−1)

2 ≤ · · · ≤ θ(k−1)
n−(k−1)

be the eigenvalues of L̄(Γ) and L̄(Γ/{v1, v2, v3, . . . , vk}), respectively. Then

λi−k+1 ≤ θ(k−1)
i ≤ λi+k−1, (12)

with the convention λi = 0 if i ≤ 0 and λi = 2 if i > n.
10



Proof. By Theorem 10, the eigenvalues of L̄(Γ) and L̄(Γ/{v1, v2}) satisfy

λi−1 ≤ θi ≤ λi+1.

Similarly, after contracting (v1v2) and v3 the eigenvalues of L̄(Γ/{v1, v2}) and L̄(Γ/{v1, v2, v3})
satisfy

λi−2 ≤ θi−1 ≤ θ(2)
i ≤ θi+1 ≤ λi+2.

Repeating the argument yields (12).

4. Vertex and motif replication

4.1. Vertex replication

Let Γ = (G, σ) be a signed graph on n vertices and v ∈ V (Γ). We consider the oper-
ation of replicating v, that is, adding a new vertex v′ and connecting it to all neighbors
of v, preserving the signs between them. In other words, x ∈ N(v′) iff x ∈ N(v), and
σ(v′, x) = σ(v, x) ∀x ∈ N(v′). We denote the resulting graph by Γv. The next theorem
pertains to the Laplacian eigenvalues of Γv.

Theorem 12. Let Γ be a signed graph on n vertices and Γv be the graph obtained from
Γ by replicating a vertex. Let

λ1 ≤ λ2 ≤ · · · ≤ λn+1 and θ1 ≤ θ2 ≤ · · · ≤ θn

denote the eigenvalues of L̄(Γv) and L̄(Γ), respectively. Then,

θi ≤ λi+1 ≤ θi+2,

with the convention that θn+1 = θn+2 = 2.

Proof. Let v′ denote the copy of v ∈ V (Γ) and J be an index set such that j ∈ J if and
only if vj ∈ N(v). Since σ(x, v) = σ(x, v′) for all x ∈ N(v) ∩ N(v′), contraction of the
vertices v, v′ in the new graph Γv is an allowable operation; and indeed Γv/{v, v′} = Γ.
Suppose now v′ is removed from Γv. Thus, using the Courant-Fisher theorem (7) and
arguing as in the proof of Theorem 8, the kth smallest eigenvalue θk of L̄(Γ) can be
expressed as

θk = min
S
′
n−k−1

max
f⊥S′n−k−1

f 6=0

∑
i∼j

(fi − σ(i, j)fj)
2 −

∑
j∈J

(fv′ − σ(v′, vj)fj)
2∑

j

f2
j dj − dv′f2

v′ −
∑
j∈J

f2
j

Here the summation over the edges as well as the sum in the denominator are evaluated
in the graph Γv. Define the function f ′ as f ′v′ = 1 and f ′j = −σ(v′, vj)/dv′ for j ∈ J , and

11



0 elsewhere. Then,

θk = min
S
′
n−k−1

max
f⊥S′n−k−1

f 6=0

∑
i∼j

(fi − σ(i, j)fj)
2 −

∑
j∈J

(fv′ − σ(v′, vj)fj)
2∑

j

f2
j dj − dv′f2

v′ −
∑
j∈J

f2
j

≥ min
S
′
n−k−1

max
f⊥S′n−k−1

f 6=0

fj=f
v′/σ(v′,vj),∀j∈J

∑
i∼j

(fi − σ(i, j)fj)
2 −

∑
j∈J

(fv′ − σ(v′, vj)fj)
2∑

j

f2
j dj − dv′f2

v′ −
∑
j∈J

f2
j

≥ min
S
′
n−k−1

max
f⊥S′n−k−1 and f⊥f ′

f 6=0

∑
i∼j

(fi − σ(i, j)fj)
2∑

j

f2
j dj − 2dv′f2

v′

≥ min
S
′
n−k

max
f⊥S′n−k
f 6=0

∑
i∼j

(fi − σ(i, j)fj)
2∑

j

f2
j dj

= λk−1.

Similarly, define f ′′ by f ′′v′ = 1 and f ′′j = σ(v′, vj)/dv′ for all j ∈ J , and 0 elsewhere.
Then, using the max-min form of Courant-Fisher theorem,

θk = max
S
′
k

min
f⊥S′k
f 6=0

∑
i∼j

(fi − σ(i, j)fj)
2 −

∑
j∈J

(fv′ − σ(v′, vj)fj)
2∑

j

f2
j dj − dv′f2

v′ −
∑
j∈J

f2
j

≤ max
S
′
k

min
f⊥S′k
f 6=0

fj=−f
v′/σ(v′,vj),∀j∈J

∑
i∼j

(fi − σ(i, j)fj)
2 −

∑
j∈J

(fv′ − σ(v′, vj)fj)
2∑

j

f2
j dj − dv′f2

v′ −
∑
j∈J

f2
j

≤ max
S
′
k

min
f⊥S′k and f⊥f ′′

f 6=0

∑
i∼j

(fi − σ(i, j)fj)
2 − 4dv′f

2
v′∑

j

f2
j dj − 2dv′f2

v′
(13)

We will use Lemma 7 with γ2 = 2dv′f
2
v′ , a

2 =
∑
i∼j(fi − σ(i, j)fj)

2, and b2 =
∑
j f

2
j dj

and recall from Section 2 that the eigenvalues are bounded from above by 2. Indeed,
it is easy to check that the conditions (4) of Lemma 7 are satisfied; so we can use its
conclusion (5) to continue from (13) as

θk ≤ max
S
′
k

min
f⊥S′k
f 6=0

,and f⊥f ′′

∑
i∼j

(fi − σ(i, j)fj)
2∑

j

f2
j dj

≤ max
S
′
k+1

min
f⊥S′k+1
f 6=0

∑
i∼j

(fi − σ(i, j)fj)
2∑

j

f2
j dj

= λk+1,

12



which implies
λi−1 ≤ θi ≤ λi+1 ≤ θi+2 ≤ λi+3,

thus proving the theorem.

4.2. Eigenvalue 1

From the eigenvalue equation (3) for the normalized Laplacian of signed graphs, it is
seen that 1 is an eigenvalue of L̄ iff∑

j, j∼i
σ(i, j)

f(j)√
dj

= 0 ∀i (14)

for some nonzero function f : V → R. It is easy to show that vertex replication generates
an eigenvalue 1. Indeed, suppose Γv is the signed graph obtained from Γ by replicating
the vertex v, end denote the new vertex by v′. Then the localized eigenfunction f defined
by

f(i) =

 1 if i = v
−1 if i = v′

0 otherwise

satisfies (14) and so corresponds to an eigenvalue equal to 1. By extension, a sequence
of m vertex replications will increase the multiplicity of eigenvalue 1 by m.

4.3. Motif replication

More generally, one can consider the replication of subgraphs consisting of several
vertices, or the so-called motifs. For unsigned graphs, motif replication and its effect on
eigenvalue 1 for the normalized Laplacian were studied in [1]. We extend these results
to signed graphs.

Let Σ be a connected subgraph of a signed graph Γ, that is, V (Σ) ⊂ V (Γ), and for
u, v ∈ V (Σ) one has (u, v) ∈ E(Σ) iff (u, v) ∈ E(Γ), with the sign σ(u, v) inherited
from Γ. Such a small connected subgraph is sometimes referred to as a motif. By motif
replication we refer to the enlarged graph ΓΣ that contains a replica of the subgraph
Σ with all its connections. More precisely, if Σ is a motif consisting of the vertices
v1, . . . , vm, and Σ′ denotes its copy with vertices v′1, . . . , v

′
m, then for all v′i, v

′
j ∈ V (Σ′) we

have (v′i, v
′
j) ∈ E(Σ′) iff (vi, vj) ∈ E(Σ), and (v′i, u) ∈ E(ΓΣ) whenever u ∈ N(vi)\V (Σ).

Moreover, the signs of the edges are preserved in the replication, i.e., σ(v′i, u) = σ(vi, u)
for all edges (v′i, u) ∈ E(ΓΣ).

Let Σ be a motif of Γ, and suppose that 1 is an eigenvalue of L̄(Σ) with eigenfunction
f . The function f can be extended to a function f̄ over the whole graph Γ by defining it
to be zero on V (Γ) \ V (Σ); however, f̄ need not be an eigenfunction of L̄(Γ) and 1 need
not be an eigenvalue of L̄(Γ). Nevertheless, if the motif Σ is replicated, then the new
graph ΓΣ also has an eigenvalue 1, as we prove next.

Theorem 13. Let Γ be a signed graph, Σ be a motif of Γ, and ΓΣ be obtained from
Γ by replicating Σ. If L̄(Σ) possesses an eigenvalue 1, then L̄(ΓΣ) also possesses the
eigenvalue 1, with a localized eigenfunction that is nonzero only on Σ and its copy Σ′.

13



Proof. As above, we use the notation vα and v′α, α = 1, . . . ,m, to denote the vertices of Σ
and Σ′, respectively. Let f be an eigenfunction of L̄(Σ) corresponding to the eigenvalue 1.
Then by (14), ∑

j : (i,j)∈E(Σ)

σ(i, j)
f(j)√
dΣ
j

= 0, ∀i ∈ V (Σ),

where dΣ
j denotes the degree of vertex j in Σ. Define the function g on V (ΓΣ) by

g(i) =



f(vα)

√
dvα√
dΣ
vα

if i = vα ∈ V (Σ),

−f(vα)

√
dvα√
dΣ
vα

if i = v′α ∈ V (Σ′),

0 otherwise,

where d denotes the degree in the graph ΓΣ. It is easily checked that∑
j : (i,j)∈E(ΓΣ)

σ(i, j)
g(j)√
dj

= 0, ∀i ∈ V (ΓΣ).

Hence, by (14), 1 is an eigenvalue of L̄(ΓΣ).
If i /∈ V (Σ) or V (Σ′) then∑
j, j∼i

σ(i, j)
g(j)√
didj

=
∑

j∈V (Σ)

σ(i, j)
g(j)√
dj

+
∑

j∈V (Σ′)

σ(i, j)
g(j)√
dj

+
∑

j /∈V (Σ)
j /∈V (Σ′)

σ(i, j)
f(j)√
dj

=
∑

j∈V (Σ)

σ(i, j)
f(j)√
dj
−

∑
j∈V (Σ′)

σ(i, j)
f(j)√
dj

+ 0

= 0

Thus, for all i ∈ V (ΓΣ),
∑
j, j∼i σ(i, j) g(j)√

dj
= 0. Hence, 1 is an eigenvalue of L̄(ΓΣ) with

g the corresponding eigenvector.
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