
Max-Planck-Institut

für Mathematik

in den Naturwissenschaften

Leipzig

Criterion of Local Unitary Equivalence for

Multipartite States

by

Ting-Gui Zhang, Ming-Jing Zhao, Ming Li, Shao-Ming Fei, and

Xianqing Li-Jost

Preprint no.: 79 2013





Criterion of Local Unitary Equivalence for Multipartite States

Ting-Gui Zhang1, Ming-Jing Zhao2, Ming Li1,3, Shao-Ming Fei1,4 and Xianqing Li-Jost1

1Max-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig, Germany

2Department of Mathematics, School of Science, Beijing Information Science and

Technology University, 100192, Beijing, China

3Department of Mathematics, School of Science, China University of Petroleum,

266555 Qingdao, China

4School of Mathematical Sciences, Capital Normal University, Beijing 100048, China

Abstract

We study the local unitary equivalence of arbitrary dimensional multipartite quantum mixed

states. We present a necessary and sufficient criterion of the local unitary equivalence for general

multipartite states based on matrix realignment. The criterion is shown to be operational even

for particularly degenerated states by detailed examples. Besides, explicit expressions of the local

unitary operators are constructed for locally equivalent states. In complement to the criterion,

an alternative approach based on partial transposition of matrices is also given, which makes the

criterion more effective in dealing with generally degenerated mixed states.
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Quantum entanglement is one of the most extraordinary features of quantum physics.

Multipartite entanglement plays a vital role in quantum information processing [1, 2] and

interferometry [3]. One fact is that the degree of entanglement of a quantum state remains

invariant under local unitary transformations, while two quantum states with the same de-

gree entanglement, e.g. entanglement of formation [4, 5] or concurrence [6, 7]), may be not

equivalent under local unitary transformations. Another fact is that two entangled states are

said to be equivalent in implementing quantum information tasks, if they can be mutually

exchanged under local operations and classical communication (LOCC). LOCC equivalent

states are interconvertible also by local unitary transformations [8]. Therefore, it is impor-

tant to classify and characterize quantum states in terms of local unitary transformations.

To deal with this problem, one approach is to construct invariants of local unitary trans-

formations. The method developed in [9, 10], in principle, allows one to compute all the

invariants of local unitary transformations for bipartite states, though it is not easy to do

this operationally. In [11] a complete set of 18 polynomial invariants is presented for the

local unitary equivalence of two qubits mixed states. Partial results have been obtained for

three qubits states [12, 13], some generic mixed states [14–16], tripartite pure and mixed

states [17]. The local unitary equivalence problem for multipartite pure qubits states has

been solved in [18]. By exploiting the high order singular value decomposition technique and

local symmetries of the states, Ref. [19] presents a practical scheme of classification under

local unitary transformations for general multipartite pure states with arbitrary dimensions,

which extends results of n-qubit pure states [18] to that of n-qudit pure states. For mixed

states, Ref. [20] solved the local unitary equivalence problem of arbitrary dimensional bipar-

tite non-degenerated quantum systems by presenting a complete set of invariants, such that

two density matrices are local unitary equivalent if and only if all these invariants have equal

values. In [21] the case of multipartite systems is studied and a complete set of invariants is

presented for a special class of mixed states. Recently, the authors in [22] have studied the

local unitary equivalence problem for multi-qubit states in terms of Bloch representation.

In this paper, we study the local unitary equivalence problem in terms of matrix re-

alignment [23, 24] and partial transposition [25, 26], the techniques used in dealing with

the separability problem of quantum states and also in generating local unitary invariants

[27]. We present a necessary and sufficient criterion for the local unitary equivalence of

multipartite states, together with explicit forms of the local unitary operators. This gener-
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alizes the results in [20, 33] from non-degenerated states to generally degenerated states for

bipartite case. The criterion is shown to be still operational for states having eigenvalues

with multiplicity no more than 2. It also generalizes the results in [20, 33] from bipartite

states to generally multipartite states. Alternative ways are presented to deal with generally

degenerated states by using our criterion.

We first review some definitions and results about matrix realignment from matrix anal-

ysis [28]. For any M ×N matrix A with entries aij, vec(A) is defined by

vec(A) ≡ [a11, · · · , aM1, a12 · · · , aM2, · · · , a1N , · · · , aMN ]T ,

where T denotes transposition. Let Z be an M ×M block matrix with each block of size

N ×N , the realigned matrix Z̃ is defined by

Z̃ ≡ [vec(Z11), · · · , vec(ZM1), · · · , vec(Z1M), · · · , vec(ZMM)]T .

Based on these operations, the authors in [29, 30] proved that

Lemma 1: Assume that the matrix Z̃ has singular value decomposition, Z̃ = UΣV †, then

Z =
∑r

i=1 Xi⊗Yi, where vec(Xi) =
√

αiσiµi, vec(Yi) =
√

1
αi

σiν
∗
i , αi 6= 0, Σ = diag(σi) with

σ1 ≥ σ2 ≥ · · · ≥ σq ≥ 0, {σi}q
i=1 are the singular values of the matrix Z̃, q = min(M2, N2), r

is the number of nonzero singular values σi (the rank of the matrix Z̃), U = [µ1µ2 · · ·µM2 ] ∈
CM2×M2

and V = [ν1ν2 · · · νN2 ] ∈ CN2×N2
are unitary matrices, with µi and νi the singular

vectors of σi.

Lemma 1 implies that [31],

Lemma 2 An MN ×MN unitary matrix U can be expressed as the tensor product of an

M ×M unitary matrix u1 and an N × N unitary matrix u2 such that U = u1 ⊗ u2 if and

only if rank (Ũ) = 1.

Remark 1: Following Lemma 1, when rank(Ũ) = 1, vec(X) =
√

α1σ1µ1 and vec(Y ) =√
1

α1
σ1ν

∗
1 , where µ1 and ν1 are the eigenvectors of Ũ Ũ † and Ũ †Ũ corresponding to non-zero

eigenvalues. Therefore, from Lemma 2, the detailed form of u1 and u2 can be obtained.

Now consider the case of multipartite states. Let H1, H2, · · · , Hn be complex

Hilbert spaces of finite dimensions N1, N2, · · · , Nn, respectively. Let {|j〉k}Nk
j=1, k =

1, 2, · · · , n, be an orthonormal basis of Hk. A mixed state ρ ∈ H1 ⊗ H2 ⊗
· · · ⊗ Hn can be written in terms of the spectral decomposition form of ρ, ρ =
∑N1N2···Nn

i=1 λi|φi〉〈φi|, where |φi〉 =
∑N1

j=1

∑N2

k=1 · · ·
∑Nn

l=1 ai
jk···l|j〉1|k〉2 · · · |l〉n, ai

jk···l ∈ C satis-

fying
∑N1

j=1

∑N2

k=1 · · ·
∑Nn

l=1 ai
jk···la

i†
jk···l = 1.
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Two multipartite mixed states ρ and ρ′ in H1 ⊗H2 ⊗ · · · ⊗Hn are said to be equivalent

under local unitary transformations if there exist unitary operators ui on the i-th Hilbert

space Hi such that

ρ′ = (u1 ⊗ u2 ⊗ · · · ⊗ un)ρ(u1 ⊗ u2 ⊗ · · · ⊗ un)†. (1)

In the following, for any N1N2 · · ·Nn×N1N2 · · ·Nn matrix T , we denote Ti|̂i the Ni×Ni

block matrix with each block of size N1N2 · · ·Ni−1Ni+1 · · ·Nn × N1N2 · · ·Ni−1Ni+1 · · ·Nn.

Namely, we view T as a bipartite partitioned matrix Ti|̂i with partitions Hi and H1 ⊗
H2...Hi−1 ⊗Hi+1...Hn. Accordingly, we have the realigned matrix T̃i|̂i.

Lemma 3 Let U be an N1N2 · · ·Nn × N1N2 · · ·Nn unitary matrix, there exist Ni × Ni

unitary matrices ui, i = 1, 2, · · · , n, such that U = u1 ⊗ u2 ⊗ · · · ⊗ un if and only if the

rank(Ũi|̂i) = 1 for all i.

Proof First, if there exist Ni × Ni unitary matrices ui, i = 1, 2, · · · , n, such that U =

u1⊗ u2⊗ · · · ⊗ un, by viewing U in bipartite partition and using Lemma 2, one has directly

that rank(Ũi|̂i) = 1 for all i.

On the other hand, if rank(Ũi|̂i) = 1, for any given i, we prove the conclusion by induction.

First, for n = 3, from Lemma 2, we have U = u1 ⊗ u23 = u2 ⊗ u13, i.e, (u†1 ⊗ I2 ⊗ I3)U =

I1 ⊗ u23 = u2 ⊗ ((u†1 ⊗ I3)u13). By tracing over the first subsystem, we get N1u23 = u2 ⊗
Tr1((u

†
1 ⊗ I3)u13), i.e, u23 = u2 ⊗ u′3 with u′3 = Tr1((u

†
1 ⊗ I3)u13)/N1. Assume that the

conclusion is also true for n−1. Then for n, from Lemma 2, we have U = u1⊗u1̂ = u2⊗u2̂ =

· · · = un⊗un̂, where ui is an Ni×Ni unitary matrix and uî is an N1N2 · · ·Ni−1Ni+1 · · ·Nn×
N1N2 · · ·Ni−1Ni+1 · · ·Nn unitary matrix, i = 1, 2, · · · , n. Hence (I1 ⊗ · · · ⊗ In−1 ⊗ u†n)U =

(I1 ⊗ · · · ⊗ In−1 ⊗ u†n)(u1 ⊗ u1̂) = · · · = un̂ ⊗ INn . By tracing the last subsystem we get

u1⊗(Trn(I2⊗· · ·⊗INn−1⊗u†n)u1̂) = · · · = (Trn(I1⊗· · ·⊗In−2⊗u†n))⊗(un−1) = Nnun̂. Based

on the assumption, we have that un̂ can be written as the tensor of local unitary operators.

Therefore, U also can be written as the tensor product of local unitary operators.

If two density matrices ρ1 and ρ2 in H1⊗H2⊗· · ·⊗Hn are equivalent under local unitary

transformations, they must have the same set of eigenvalues λk, k = 1, 2, · · · , N1N2 · · ·Nn.

Let X = (x1, x2, · · · , xN1N2···Nn) and Y = (y1, y2, · · · , yN1N2···Nn) be the unitary matrices that

diagonalize the two density matrices, respectively,

ρ1 = XΛX†, ρ2 = Y ΛY †, (2)
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where {xi} and {yi} are the normalized eigenvectors of states ρ1 and ρ2,

Λ = diag(λ1In1 , λ2In2 , · · · , λrInr),

with r ≤ N1N2 · · ·Nn,
∑r

k=1 nk = N1N2 · · ·Nn, nk is the multiplicity of the kth eigenvalue

λk. Therefore X†ρ1X = Λ = Y †ρ2Y . Due to the degeneracy of ρ1 and ρ2, X and Y are not

fixed in the sense that X†ρ1X = Y †ρ2Y is inveriant under X → XU and Y → Y U , for any

U = diag(un1 , un2 , · · · , unr), (3)

where unk
are nk × nk unitary matrices, k = 1, · · · , r. Thus for given X and Y ,

Y U †X†ρ1XUY † = ρ2.

Theorem 1 Let ρ1 and ρ2 be two multipartite mixed quantum states given in (2), ρ1 =

XΛX† and ρ2 = Y ΛY †. ρ1 and ρ2 are local unitary equivalent if and only if there exists an

N1N2 · · ·Nn × N1N2 · · ·Nn unitary matrix U of the form (3) such that rank(X̃UY †)i|̂i = 1

for i = 1, 2, · · · , n.

Proof: If ρ1 and ρ2 are equivalent under local unitary transformations, i.e. (u1 ⊗ u2 ⊗
· · · ⊗ un)ρ1(u1 ⊗ u2 ⊗ · · · ⊗ un)† = ρ2, then there exists a unitary matrix U of the form (3)

such that Y = (u1 ⊗ u2 ⊗ · · · ⊗ un)XU . From Lemma 3 the rank(X̃UY †)i|̂i = 1, where

(XUY †)i|̂i = ui ⊗ (u1 ⊗ · · · ⊗ ui−1 ⊗ ui+1 ⊗ · · · ⊗ un), i = 1, 2, · · · , n.

On the other hand, if there is an N1N2 · · ·Nn ×N1N2 · · ·Nn unitary matrix U such that

rank(X̃UY †)i|̂i = 1, for any i, by Lemma 3 we have XUY † = u1 ⊗ u2 ⊗ · · · ⊗ un. Then

Y U †X†ρ1XUY † = ρ2 gives rise to (u1 ⊗ u2 ⊗ · · · ⊗ un)†ρ1(u1 ⊗ u2 ⊗ · · · ⊗ un) = ρ2, which

ends the proof.

Remark 2: If there exists an N1N2 · · ·Nn × N1N2 · · ·Nn unitary matrix U of the form

(3) such that rank(X̃UY †)i|̂i = 1, for any i = 1, 2, · · · , n, then ρ1 and ρ2 are local unitary

equivalent. From Lemma 1, we can get the explicit expressions of the local unitary matrices

ui in the following way. First, we view XUY † as an N1 ×N1 block matrix with each block

of size N2N3 · · ·Nn × N2N3 · · ·Nn. Following Lemma 1, we have that XUY † = u1 ⊗ u1̂,

where u1 and u1̂ have explicit expressions from Remark 1, and u1̂ is an N2N3 · · ·Nn ×
N2N3 · · ·Nn unitary matrix. By viewing u1̂ as an N2 ×N2 block matrix with each block of

size N3N4 · · ·Nn×N3N4 · · ·Nn, we get the expression of u2 in u1̂ = u2⊗ u2̂. In this way, we

can get all the detailed expressions of u1, u2, · · · , un, such that XUY † = u1 ⊗ u2 ⊗ · · · ⊗ un.

Theorem 1 has many advantages compared with the previous results about local unitary

equivalence. It generalizes the results for non-degenerated bipartite states in [20] to general
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bipartite mixed states including degenerated ones, for which the problem becomes quite

difficult usually and many criteria become non-operational [20]. Our criterion can be also

operational for particular degenerated bipartite states. Let us consider that ρ1, ρ2 ∈ H1⊗H2

have s different eigenvalues with multiplicity 2 and the rest eigenvalues with multiplicity 1.

According to Theorem 1, ρ1 and ρ2 are local unitary equivalent if and only if there exists a

unitary matrix

U = diag(u1, · · · , us, e
iθs+1 , · · · , eiθN1N2 ), (4)

with ur ∈ U(2), r = 1, · · · , s, s = 0, 1, · · · , [N1N2

2
], such that rank(X̃UY †) = 1, where [x]

denotes the integer part of x.

Any unitary matrix in U(2) can be written as, up to a constant phase, tI + i
∑3

j=1 zjσj

with t2 +
∑3

j=1 z2
j = 1, where I is the 2 × 2 identity matrix and σj are the Pauli matrices.

Therefore U has the following form:

U =




t1 + iz3 z1 + iz2 · · · 0 0 0 · · · 0 0

−z1 + iz2 t1 − iz3 · · · 0 0 0 · · · 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · ts + iz3s z3s−2 + iz3s−1 0 · · · 0 0

0 0 · · · −z3s−2 + iz3s−1 ts − iz3s 0 · · · 0 0

0 0 · · · 0 0 eiθs+1 · · · 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · 0 0 · · · · · · 0 eiθN1N2




,

(5)

where t2j + z2
3j + z2

3j−1 + z2
3j−2 = 1 for j = 1, ..., s. One just needs to verify the existence

of the unitary matrix U such that rank(X̃UY †) = 1. The calculation of the rank of X̃UY

only concerns the quadratic homogeneous equations and can be done simply by using the

algorithm in Ref. [32] for solving systems of multivariate polynomial equations called XL

(eXtended Linearizations or multiplication and linearlization) algorithm. As an example,

let us consider

ρ1 =




1/4 0 0 1/4

0 1/4 1/4 0

0 1/4 1/4 0

1/4 0 0 1/4




, ρ2 =




1/4 0 1/4 0

0 1/4 0 −1/4

1/4 0 1/4 0

0 −1/4 0 1/4




.
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Here ρ1 and ρ2 are degenerated states with the eigenvalues set Λ = diag(1
2
, 1

2
, 0, 0). Following

(3), U has the form

U =




t1 + iz3 z1 + iz2 0 0

−z1 + iz2 t1 − iz3 0 0

0 0 t2 + iz6 z4 + iz5

0 0 −z4 + iz5 t2 − iz6




.

Correspondingly,

X =




1/
√

2 0 −1/
√

2 0

0 1/
√

2 0 −1/
√

2

0 1/
√

2 0 1/
√

2

1/
√

2 0 1/
√

2 0




, Y =




1/
√

2 0 −1/
√

2 0

0 −1/
√

2 0 1/
√

2

1/
√

2 0 1/
√

2 0

0 1/
√

2 0 1/
√

2




.

It is easily verified that there are many matrices of the form (5) satisfying rank(X̃UY †) = 1,

for instance,

U =




− 1√
2

1√
2

0 0

− 1√
2
− 1√

2
0 0

0 0 − 1√
2

1√
2

0 0 − 1√
2
− 1√

2




.

Therefore ρ1 and ρ2 are local unitary equivalent. In fact, from singular values decomposition

of X̃UY †, we can get the unique nonzero singular values 1
2

with multiplicity 2. Using Lemma

1, we have µ1 = 1√
2
(−1, 0, 0, 1) and ν1 = 1

2
(1,−1, 1, 1). Therefore, from Lemma 2, we can

choose vec(X1) =
√

2u1 and vec(Y1) =
√

2v1, such that X1 and Y1 are unitary matrices, and

(X1 ⊗ Y1)ρ1(X1 ⊗ Y1)
† = ρ2.

Concerning multipartite mixed states, let us consider two density matrices in H1⊗H2⊗H3
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with N1 = N2 = N3 = 2,

ρ1 =
1

K




1 0 0 0 0 0 0 1

0 a 0 0 0 0 0 0

0 0 b 0 0 0 0 0

0 0 0 c 0 0 0 0

0 0 0 0 1
c

0 0 0

0 0 0 0 0 1
b

0 0

0 0 0 0 0 0 1
a

0

1 0 0 0 0 0 0 1




, ρ2 =
1

K




1+b
2

0 b−1
2

0 0 1
2

0 1
2

0 a+c
2

0 c−a
2

0 0 0 0

b−1
2

0 1+b
2

0 0 −1
2

0 1
2

0 c−a
2

0 a+c
2

0 0 0 0

0 0 0 0 1
2c

+ 1
2a

0 1
2a
− 1

2c
0

1
2

0 −1
2

0 0 1
2b

+ 1
2

0 1
2
− 1

2b

0 0 0 0 1
2a
− 1

2c
0 1

2c
+ 1

2a
0

1
2

0 −1
2

0 0 1
2
− 1

2b
0 1

2
+ 1

2b




,

where the normalization factor K = 2 + a + b + c + 1
a

+ 1
b

+ 1
c
. ρ1 and ρ2 have the same

eigenvalue set Λ = 1
K

diag(2, 0, 1
a
, a, 1

b
, b, 1

c
, c). For the case a 6= b 6= c 6= 0 6= 1 6= 2 6= 1

2
, ρ1

and ρ2 are not degenerated. In this case, one has

X =




1√
2
− 1√

2
0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

1√
2

1√
2

0 0 0 0 0 0




, Y =




1
2
−1

2
0 0 0 1√

2
0 0

0 0 0 − 1√
2

0 0 0 1√
2

−1
2

1
2

0 0 0 1√
2

0 0

0 0 0 1√
2

0 0 0 1√
2

0 0 1√
2

0 0 0 − 1√
2

0

1
2

1
2

0 0 − 1√
2

0 0 0

0 0 1√
2

0 0 0 1√
2

0

1
2

1
2

0 0 1√
2

0 0 0




.

From (3), U is of the form U = diag(eiθ1 , eiθ2 , eiθ3 , eiθ4 , eiθ5 , eiθ6 , eiθ7 , eiθ8). Hence

XUY † =
1√
2




eiθ1+eiθ2

2
0 − eiθ1+eiθ2

2
0 0 eiθ1−eiθ2

2
0 eiθ1−eiθ2

2

0 −eiθ4 0 eiθ4 0 0 0 0

eiθ6 0 eiθ6 0 0 0 0 0

0 eiθ8 0 eiθ8 0 0 0 0

0 0 0 0 −eiθ7 0 eiθ7 0

0 0 0 0 0 −eiθ5 0 eiθ5

0 0 0 0 eiθ3 0 eiθ3 0

eiθ1−eiθ2

2
0 eiθ2−eiθ1

2
0 0 eiθ1+eiθ2

2
0 eiθ1+eiθ2

2




.

It is easily verified that rank(X̃UY †)i|̂i = 1 for θ1 = θ2 = θ3 = θ6 = θ8 = 0, θ4 = θ5 =

θ7 = π, i = 1, 2, 3. Therefore from Theorem 1 ρ1 and ρ2 are local unitary equivalent.
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In fact, taking i = 1, from the singular values decomposition of (X̃UY †)1|1̂, we can get

the unique nonzero singular values 2
√

2. From Lemma 1, we get u1 = 1√
2
(1, 0, 0, 1) and

v1 = 1
2
√

2
(1, 0, 1, 0, 0, 1, 0, 1,−1, 0, 1, 0, 0,−1, 0, 1). Therefore, we can choose vec(X1) =

√
2u1

and vec(X2) = 2v1 such that they are unitary. Then X1 = I2 ∈ H1 and

X2 =
1√
2




1 0 −1 0

0 1 0 −1

1 0 1 0

0 1 0 1



∈ H2 ⊗H3.

One can easily find that rank(X̃2) = 1. From the singular value decomposition of X̃2, using

Lemma 1 again, we get Y1 =




1√
2
− 1√

2

1√
2

1√
2


, Y2 = I2, such that X2 = Y1 ⊗ Y2 is unitary.

That is, (X1 ⊗ Y1 ⊗ Y2)ρ1(X1 ⊗ Y1 ⊗ Y2)
† = ρ2.

Our criterion is both necessary and sufficient for local equivalence of arbitrary multi-

partite mixed quantum systems. However, for general degenerated states, it could be less

operational. In the following, complement to Theorem 1, we present an alternative way to

judge the local equivalence based on partial transposition of matrices. For a density matrix

ρ ∈ H1 ⊗ H2 with entries ρmµ,nν = 〈em ⊗ fµ|ρ|en ⊗ fν〉, the partial transposition of ρ is

defined by [26]:

ρT2 = (I ⊗ T )ρ =
∑

mn,µν

ρmν,nµ|em ⊗ fµ〉〈en ⊗ fν |,

where ρT2 denotes the transposition of ρ with respect to the second system, |en〉 and |fν〉
are the bases associated with H1 and H2 respectively.

Theorem 2 Two mixed states ρ1 and ρ2 in H1 ⊗ H2 are local unitary equivalent if and

only if ρT2
1 and ρT2

2 are local unitary equivalent.

Proof Without loss of generality, we assume that ρ1 =
∑

ρmµ,nν |em〉〈en| ⊗ |fµ〉〈fν |. Then

ρT2
1 =

∑
ρmν,nµ|em〉〈en| ⊗ |fµ〉〈fν |. On the one hand, if ρ1 and ρ2 are equivalent under local

unitary transformations, one has

ρ2 = (u1 ⊗ u2)ρ1(u1 ⊗ u2)
† =

∑
ρmµ,nν(u1|em〉〈en|u†1)⊗ (u2|fµ〉〈fν |u†2).

Hence

ρT2
2 =

∑
ρmµ,nν(u1|em〉〈en|u†1)⊗ (u∗2|fν〉〈fµ|uT

2 )

=
∑

ρmµ,nν(u1 ⊗ u∗2)(|em〉〈en| ⊗ |fν〉〈fµ|)(u1 ⊗ u∗2)
†

= (u1 ⊗ u∗2)ρ
T2
1 (u1 ⊗ u∗2)

†.
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Therefore, ρT2
2 and ρT2

1 are also local unitary equivalent.

On the other hand, since (ρT2)T2 = ρ, if ρT2
1 and ρT2

2 are equivalent under local uni-

tary transformations, one can derive that ρ1 and ρ2 are also equivalent under local unitary

transformations.

The Theorem 2 is also true for ρT1 . Generally the partial transposed states are no longer

semi positive. They are just Hermitian matrices. Nevertheless Theorem 2 still works for the

local unitary equivalence for Hermitian matrices. Theorem 2 can be directly generalized to

multipartite systems:

Theorem 3 Two mixed states ρ1 and ρ2 in H1⊗H2⊗· · ·⊗Hn are local unitary equivalent

if and only if ρTk
1 and ρTk

2 are local unitary equivalent, where k ∈ {1, 2, ..., n}, ρTk denotes

the transposition of ρ with respect to the kth system.

Theorem 3 provides us an alternative way to determine the local unitary equivalence of

multipartite states. If the given states are degenerated, the criterion given by Theorem 1

would be less operational. In this case one may consider the partial transposition of the

states. For bipartite states, if the partially transposed states are not degenerated, we can

check the local unitary equivalence by using the Theorem 1 and obtain the explicit local

unitary matrices. There are many degenerated states such that their partially transposed

ones are not degenerated, for example,

ρ =




1
4

0 0 1
16

0 1
8

0 0

0 0 1
8

0

1
16

0 0 1
2




.

If the partially transposed states are still degenerated, but less degenerated such that they

have s different eigenvalues with multiplicity 2 and the rest eigenvalues with multiplicity

1, then the Theorem 1 can applied to determine the local unitary equivalence. For the

multipartite states, the Theorem 3 could be applied to simplify problem.

In summary, based on matrix realignment we have presented a necessary and sufficient

criterion of the local unitary equivalence for general multipartite mixed quantum states, and

the corresponding explicit expression of the local unitary operators. The criterion proposed

in [33] is a special case of Theorem 1 for bipartite case. Our criterion is even operational

for a class of degenerated states. To deal with the general degenerated states, we have also

10



presented another criterion based on state partial transpositions, which, in complement to

our criterion based on matrix realignment, may transform an un-operational problem to be

an operational one, so as to make our criteria more effective. Detailed examples have been

presented. Our approach gives a new progress toward to the local equivalence of multipartite

mixed states.
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