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Abstract. We study the mathematical structures and relations among

some quantities in the theory of quantum entanglement, such as sepa-

rability, weak Schmidt decompositions, Hadamard matrices etc.. We

provide an operational method to identify the Schmidt-correlated states

by using weak Schmidt decomposition. We show that a mixed state is

Schmidt-correlated if and only if its spectral decomposition consists of

a set of pure eigenstates which can be simultaneously diagonalized in

weak Schmidt decomposition, i.e. allowing for complex-valued diagonal

entries. For such states, the separability is reduced to the orthogonal-

ity conditions of the vectors consisting of diagonal entries associated to

the eigenstates; moreover, for a special subclass of these states this is

surprisingly related to the so-called complex Hadamard matrices. Using

the Hadamard matrices, we provide a variety of generalized maximal

entangled Bell bases.

Keywords: quantum entanglement, Schmidt-correlated states, weak Schmidt
decompositions, complex-valued simultaneous diagonalization, Hadamard
matrices, generalized Bell bases.

1. Introduction

As one of the most striking features of quantum systems, quantum entan-
glement [1] plays crucial roles in quantum information processing [2] such
as quantum computation, quantum teleportation, dense coding, quantum
cryptographic schemes, quantum radar, entanglement swapping and remote
states preparation. Nevertheless, many significant open problems in charac-
terizing the entanglement of quantum systems still remain open.

Let H = HA⊗HB ≃ C
n⊗C

n be a bipartite composite system. The math-
ematical problem consists in deriving separability criteria of mixed quantum
states, and more generally, in quantifying their degree of entanglement. Such
basic problems in the theory of quantum entanglement turn out to be sur-
prisingly difficult, see e.g. [3] for a monographic treatment. Reasons for
the difficulty are that the representations of a mixed state ρ as a (statisti-
cal) ensemble of pure states are not unique, and that the pure states in a
representation in general cannot be simultaneously diagonalized in terms of
suitable bases of HA and HB (Schmidt decomposition).
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One of the main idea of the paper is that one can weaken the requirement
of simultaneous Schmidt diagonalization to a more general complex ver-
sion, that is, the generalized Schmidt coefficients are allowed to be complex-
valued, see Section 2. We call it the weak Schmidt decomposition. It was first
introduced by [4] to study quantum states. In our applications, this concept
will invoke the Hadamard matrices, a class of matrices that already have
received considerable mathematical attention, though some basic problems
still remain unresolved, see [5] for a survey.

We first recall some basic concepts in the theory of quantum entangle-
ment. The entanglement of formation [6–9] and concurrence [10–13] are
among the important measures to quantify the entanglement. However,
due to the extremizations involved in the computation, only a few ana-
lytic formulae have been obtained for states like two-qubit ones [10, 14],
isotropic states [15] and Werner states [16]. Instead of analytic formulas,
some progress has been made toward the lower and upper bounds [17–26].

A mixed state ρ is called Schmidt-correlated, or maximally correlated [4,
27, 28], if there exists an orthonormal basis, {|ejfl〉}nj,l=1, of H such that

ρ =

n
∑

j,l=1

Cjl |ejfj〉 〈elfl| . (1)

It is called maximally correlated since for any classical measurement on HA

or HB, Alice and Bob will always obtain the same result. One readily sees
that Schmidt-correlated states are at most of rank n. It turns out that this
class of states exhibits many excellent properties [4, 27, 29–33]. However,
given a general state ρ written in the computational basis, any operational
method to decide whether it is Schmidt-correlated is still missing in the lit-
erature. In this paper, we show that to find out whether a state is Schmidt-
correlated it suffices to check whether its spectral decomposition consists of
pure eigenstates which can be simultaneously diagonalized in weak Schmidt
decomposition, see Theorem 3.1. Although the spectral decomposition may
not be unique in the case that it possesses eigenvalues of high multiplicity
and it is very possible that the property of simultaneously diagonalization
in weak Schmidt decomposition strongly depends on the choice of the en-
sembles (or eigenstates), our theorem indicates that it is sufficient to check
only one of the ensembles. In fact, one can derive that all ensembles of a
mixed state can be simultaneously diagonalized in weak Schmidt decompo-
sition if and only if one of them can be, for which we present a direct proof
by the Schrödinger’s mixture theorem (Theorem 8.2 in [3]), see [33] for an
alternative proof. The criteria for this simultaneous diagonalization then
are expressed in terms of standard matrix theory, see [4, 34, 35]. In this
way, we provide an operational method to solve the problem.

Generally, it is of significance to find a complete basis of maximal en-
tanglement, e.g. the Bell states for qubits. In this paper, we use complex
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Hadamard matrices to introduce a wide class of bases consisting of gener-
alized Bell states of maximal entanglement, which contains the well-known
Weyl operator basis [4, 36–41] as a special case.

The paper is organized as follows. In section 2, we introduce the main
concept of the paper, simultaneous diagonalizations in weak singular value
decomposition (weak Schmidt decomposition). In Section 3, we prove our
main result, Theorem 3.1, and use it to identify all Schmidt-correlated states.
Section 4 is devoted to the separability criteria of Schmidt-correlated states.
In section 6, we explore the deep connections among the separability cri-
terion, Hadamard matrices and generalized Bell bases. Conclusion and re-
marks are given in the last section.

2. Weak Schmidt decomposition

Let H = HA ⊗ HB ≃ C
n ⊗ C

n be a bipartite composite system and
{|jl〉}nj,l=1 the computational basis of H. In this basis, any pure state can be

written as |ψ〉 =∑n
j,l=1 ajl |jl〉 which associates with a matrix A = (ajl)n×n.

The Schmidt decomposition asserts that there exists an orthonormal basis
of H, {|ejfl〉}nj,l=1, such that |ψ〉 =

∑n
j=1

√

λj |ej〉 |fj〉 where λj ≥ 0 and
∑n

j=1 λj = 1. This follows from the singular value decomposition, SVD in
short, of the matrix A, i.e. there exist n×n unitary matrices U and V such
that

UAV t =











√
λ1 √

λ2
. . . √

λn











n×n

,

where t denotes the transpose.
A pure state |ψ〉 is called separable if it is a product state, i.e. |ψ〉 =

|ψ1〉⊗|ψ2〉 , |ψ1〉 ∈ HA, |ψ2〉 ∈ HB . A mixed state ρ is a statistical ensemble

of pure states, denoted by {pk, |ψk〉}Ki=1 with pk > 0 and
∑K

k=1 pk = 1, that
is,

ρ :=
K
∑

k=1

pk |ψk〉 〈ψk| . (2)

A mixed state ρ is separable if it can be expressed as a convex combina-
tion of separable pure states, i.e., there exists an ensemble of separable pure
states, otherwise it is called entangled [42]. In general, it is difficult to decide
whether a given mixed state is separable or not, because the ensembles of a
mixed state are generically non-unique. There are neither operational suffi-
cient and necessary criteria for judging the separability in general, nor ana-
lytical formulae for entanglement of formation or concurrence for arbitrary
mixed states. However, if one could carry out the Schmidt decomposition
simultaneously for all the pure states in an ensemble of a mixed state, then
the calculation would be much easier. Therefore the question is under which
conditions one can diagonalize a set of pure states in SVD simultaneously.
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This is answered by Wiegmann’s theorem [34]: A set of matrices {Ak}Kk=1
can be simultaneously diagonalized in SVD iff for any 1 ≤ i, j ≤ K

AiA
†
j = AjA

†
i and A†

iAj = A†
jAi.

However, this demand is too strong for our purposes, as is already evident
from the following example,

|ψ1〉 ∼ A1 =





1
ω

ω2



 , |ψ2〉 ∼ A2 =





1
ω2

ω



 ,

where ω = 1
2 + i

√
3
2 . Direct calculation shows that A1 and A2 cannot be

transformed to SVD simultaneously, although they are already in complex
diagonal form.

Our idea is to investigate when the pure states of an ensemble of a mixed
state can be simultaneously diagonalized in complex-valued form. Namely,
we consider the case that is more general than SVD in which we allow
complex-valued entries for the diagonal matrices. We say that {|ψk〉}Kk=1
can be simultaneously diagonalized in weak SVD if there exist n×n unitary
matrices U and V such that UAkV

t (1 ≤ k ≤ K) are complex-valued diag-
onal matrices, where Ak are the matrix representations of |ψk〉 . This kind
of diagonalization can be regarded as a “weak Schmidt decomposition.” A
mixed state ρ is called simultaneously diagonalizable in weak SVD if there
exists an ensemble {pi, |ψi〉} of ρ such that {|ψi〉} can be simultaneously di-
agonalized in weak SVD. The previous example shows that this simultaneous
diagonalization is really weaker than classical simultaneous diagonalization
in SVD.

By matrix theory, see Wiegmann [34] and Gibson [35], the set of matrices
{Ak}Kk=1 can be simultaneously diagonalized in weak SVD if and only if

AjA
†
kAl = AlA

†
kAj, ∀1 ≤ j, k, l ≤ K, (3)

or if and only if A†
kAl is normal and

AjA
†
kAkA

†
l = AkA

†
lAjA

†
k, ∀1 ≤ j, k, l ≤ K. (4)

This simultaneous diagonalization was first introduced to study quantum
states by [4].

The following example (whose general nature will become apparent in
Section 6) shows the advantage of this generalized diagonalization. Consider
a 3× 3 mixed state,

ρ :=

3
∑

k=1

pk |ψk〉 〈ψk| ,

where

|ψ1〉 =
1

3
(1, 1, 1|1, ω, ω2 |1, ω2, ω)t,

|ψ2〉 =
1

3
(1, ω, ω2|1, ω2, ω|1, 1, 1)t
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and

|ψ3〉 =
1

3
(1, ω2, ω|1, 1, 1|1, ω, ω2)t,

pk > 0, 1 ≤ k ≤ 3 and
∑3

k=1 pk = 1. While {|ψi〉}3i=1 have the same
singular values, they cannot be simultaneously diagonalized in SVD in the
classical sense. However, they can be simultaneously diagonalized in weak
SVD through

U =
1√
3





1 1 1
1 ω ω2

1 ω2 ω





†

, V = I,

where I stands for the identity matrix. Corresponding to this simultaneous
diagonalization, one has

ρ :=

3
∑

k=1

pk |φk〉 〈φk| ,

where

|φ1〉 =
1√
3
(1, 0, 0|0, 1, 0|0, 0, 1)t ,

|φ2〉 =
1√
3
(1, 0, 0|0, ω, 0|0, 0, ω2)t,

|φ3〉 =
1√
3
(1, 0, 0|0, ω2 , 0|0, 0, ω)t .

Obviously this ensemble has a much clearer internal structure than the pre-
vious one. We shall discuss such states in detail in next sections.

3. Schmidt-correlated states and simultaneous diagonalization

in weak SVD

Schmidt-correlated states have proven to be quite useful, see [4, 27, 29–
33]. However, given a general state ρ written in the computational basis
{|jl〉}1≤j,l≤n,

ρ =
∑

i,j,k,l

ρij,kl |ij〉 〈kl| ,

it is a hard problem to decide whether it is Schmidt-correlated. In this
section, we provide an operational method to solve this problem.

Theorem 3.1. For a mixed state ρ, the following are equivalent:

(a) ρ is Schmidt-correlated.
(b) ρ is simultaneously diagonalizable in weak SVD, i.e. there exists an

ensemble of ρ, {pk, |ψk〉}Kk=1, such that {|ψk〉} is simultaneously diago-
nalized in weak SVD.

(c) For all ensembles of ρ, {qs, |φs〉}Ss=1, {|φs〉} are simultaneously diago-
nalized in weak SVD.
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Proof. (a) =⇒ (b): Let ρ be of the form (1). One can show that the matrix
C = (Cjl)n×n is positive semidefinite and has trace 1. Hence the spectral
theorem implies that

Cjl =

n
∑

k=1

λkv
j
k(v

l
k)

∗, 1 ≤ j, l ≤ n,

where λk are the eigenvalues of C satisfying λk ≥ 0 and
∑n

k=1 λk = 1,
and (v1k, v

2
k, · · · , vnk )t are the normalized eigenvectors pertaining to λk. This

yields

ρ =
n
∑

k=1

λk





n
∑

j=1

vjk |ejfj〉





(

n
∑

l=1

(vlk)
∗ 〈elfl|

)

.

By setting pk = λk and |ψk〉 =
∑n

j=1 v
j
k |ejfj〉 , we prove (b).

(b) =⇒ (a): This follows from direct computation.
(c) =⇒ (b): This is trivial.
(a) =⇒ (c): This follows directly from Schrödinger’s mixture theorem,

Theorem 8.2 in [3]. (One can also show this by an argument in [33].) By
“(a) =⇒ (b)” above, the ensemble of eigenstates of ρ =

∑n
k=1 λk |ψk〉 〈ψk| is

simultaneously diagonalizable. Schrödinger’s mixture theorem implies that
for any ensemble of ρ, {qs, |φs〉}Ss=1, there exists an S × S unitary matrix U
such that

|φs〉 =
1√
qs

n
∑

k=1

Usk

√

λk |ψk〉 .

Since {|ψk〉}nk=1 is simultaneously diagonalizable, so is {|φs〉}Ss=1. �

This theorem suggests an operational method to check whether a mixed
state ρ is Schmidt-correlated. First at all, we write ρ in the spectral de-
composition, i.e. ρ =

∑K
k=1 λk |ψk〉 〈ψk| where {λk}Kk=1, are eigenvalues of

ρ and {|ψk〉}Kk=1 are the corresponding eigenstates. Although the spectral
decomposition may not be unique, e.g. the eigenvalues has high multiplic-
ity, by our result it suffices to check whether a particular ensemble {|ψk〉} is
simultaneously diagonalized in weak SVD. As we know, this reduces to the
criteria of the simultaneous diagonalization in weak SVD by Wiegmann [34]
and Gibson [35], see (3) or (4). Furthermore, one can use the process of si-
multaneous diagonalization to calculate the basis {|ejfl〉} which diagonalizes
{|ψk〉}.
Remark 3.1. Of course, since finding the eigenvalue decomposition of a gen-
eral state involves finding the root of polynomial, this cannot be explicitly
carried out in general for dimension higher than four (in practice higher than
two), and it is therefore not computationally operational, but only numeri-
cal with finite accuracy. More precisely, any ensemble is valid for checking
the Schmidt-correlated property, and the operational method to decompose
a density matrix into a sum of projectors consists in decomposing it into the
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projector onto the first column and the reminder, and to iterate this. This
works by polynomial formulas and together with Wiegmann’s theorem it is
then operational to check the property of being Schmidt correlated.

4. Separability of Schmidt-correlated states

While the problem of separability of a general mixed state is hard, for
Schmidt-correlated states, i.e. simultaneously diagonalizable in weak SVD
states, the criteria of separability is quite simple once we know the basis
{|ejfl〉} which diagonalizes the state. Let ρ be a mixed state of ensemble
{pk, |ψk〉}Kk=1,

ρ :=
K
∑

k=1

pk |ψk〉 〈ψk| , (5)

where {|ψk〉}Kk=1 can be simultaneously diagonalized in a new orthonormal
basis {|ejfl〉}1≤j,l≤n such that

|ψk〉 :=
n
∑

j=1

αj,k |ejfj〉 ∼ Ak =











α1,k

α2,k

. . .

αn,k











n×n

with diagonal entries αj,k ∈ C and
∑n

j=1 |αj,k|2 = 1. The following theorem
gives a necessary and sufficient condition for the separability of ρ.

Theorem 4.1. Let ρ be a Schmidt-correlated state written in the orthonor-
mal basis {|ejfl〉}

ρ =

n
∑

j,l=1

Cjl |ejfj〉 〈elfl| .

Then the following are equivalent:

(a) ρ is separable.
(b) ρ is PPT (positive partial transposition).
(c) Cjl = 0, ∀j 6= l.

(d) For any ensemble {pk, |ψk〉}Kk=1 of ρ, denoted by |ψk〉 :=
∑n

j=1 αj,k |ejfj〉 ,
we have

K
∑

k=1

pkαj,kα
∗
l,k = 0 (6)

for all j 6= l, 1 ≤ j, l ≤ n, where ∗ denotes complex conjugate.
(e) For any ensemble of ρ, (6) holds.

Remark 4.1. For states of rank at most n, the separability is equivalent to
the PPT property which has been obtained by Horodecki-Lewenstein-Vidal-
Cirac [43]. For special Schmidt-correlated states, we give a simple proof here
by direct calculation.
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Proof. Direct computation shows that (c), (d), (e) are equivalent.
(a) =⇒ (b): This follows from a theorem of Peres [44].
(b) =⇒ (c): We use a contradiction argument. Suppose there exist 1 ≤

j0 < l0 ≤ n such that Cj0l0 6= 0, then we will show that ρ is NPPT (non-
positive partial transposition). In fact, taking the partial transpose of the
second subsystem of ρ yields

ρTB =
∑

1≤j,l≤n

Cjl |ejfl〉 〈elfj| .

Since one of the principal minors of order two of ρTB reads as
∣

∣

∣

∣

(ρTB )j0l0,j0l0 (ρTB )j0l0,l0j0
(ρTB )l0j0,j0l0 (ρTB )l0j0,l0j0

∣

∣

∣

∣

= − |Cj0l0 |2 < 0,

we have ρTB 6≥ 0. Hence, ρ is NPPT.
(c) =⇒ (a): Obviously, ρ =

∑

j Cjj |ejfj〉 〈ejfj| is separable. �

5. Entanglement of Schmidt-correlated states

The states we are considering provide us more information about the
entanglement. Let us first consider a 2× 2 pure entangled state

|ψ〉 = α |00〉+ β |11〉 ∈ H = H2
A ×H2

B,

where |α|2 + |β|2 = 1. It yields the density matrix

ρ = |ψ〉 〈ψ| =











|α|2 0 0 αβ̄

0 0 0 0
0 0 0 0

ᾱβ 0 0 |β|2











.

It is entangled if α, β 6= 0. Defined by the von Neumann entropy of the
reduced density matrices, the entanglement of formation is given by

E(|ψ〉) = −|α|2 log |α|2 − |β|2 log |β|2. (7)

Consider a mixed state,

ρ = p |ψ〉 〈ψ|+ p′
∣

∣ψ′〉 〈ψ′∣
∣ =











p|α|2 + p′|α′|2 0 0 pαβ̄ + p′α′β̄′

0 0 0 0
0 0 0 0

pᾱβ + p′ᾱ′β′ 0 0 p|β|2 + p′|β′|2











.

where p, p′ ≥ 0, p + p′ = 1, |ψ〉 = (α, 0|0, β)t and |ψ′〉 = (α′, 0|0, β′)t with
α, β, α′, β′ ∈ C and |α|2 + |β|2 = 1, |α′|2 + |β′|2 = 1. Then ρ is separable if
and only if pαβ̄ + p′α′β̄′ = 0. In fact, the concurrence of ρ is given by

C(ρ) = 2|pαβ̄ + p′α′β̄′|. (8)

From (7) and (8) it is clear that, for a pure state the entanglement is given by
the diagonal elements in the Schmidt form. Nevertheless, for mixed states,
the diagonal elements do not play such “important roles”.
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Now we turn to the 3× 3 case. Let |ψ〉 = (α, 0, 0|0, β, 0|0, 0, γ)t . Then

ρ = |ψ〉 〈ψ| =





























|α|2 0 0 0 αβ̄ 0 0 0 αγ̄

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

ᾱβ 0 0 0 |β|2 0 0 0 βγ̄

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

ᾱγ 0 0 0 β̄γ 0 0 0 |γ|2





























.

ρ is entangled if at least one of the terms αβ̄, αγ̄, βγ̄ is nonvanishing.
Similarly for a 3× 3 mixed state ρ = p |ψ〉 〈ψ| + p′ |ψ′〉 〈ψ′|+ p′′ |ψ′′〉 〈ψ′′|

with p, p′, p′′ ≥ 0, p+ p′ + p′′ = 1,

|ψ〉 = (α, 0, 0|0, β, 0|0, 0, γ)t ,
∣

∣ψ′〉 = (α′, 0, 0|0, β′, 0|0, 0, γ′)t,
∣

∣ψ′′〉 = (α′′, 0, 0|0, β′′ , 0|0, 0, γ′′)t,
where α, β, γ, α′, β′, γ′, α′′, β′′, γ′′ ∈ C, |α|2 + |β|2 + |γ|2 = 1, |α′|2 + |β′|2 +
|γ′|2 = 1 and |α′′|2 + |β′′|2 + |γ′′|2 = 1. The corresponding density matrix ρ
is
































p|α|2 + p′|α′|2 + p′′|α′′|2 0 0 0 pαβ̄ + p′α′β̄′ + p′′α′′β̄′′ 0 0 0 pαγ̄ + p′α′γ̄′ + p′′α′′γ̄′′

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

pᾱβ + p′ᾱ′β′ + p′′ᾱ′′β′′ 0 0 0 p|β|2 + p′|β′|2 + p′′|β′′|2 0 0 0 pβγ̄ + p′β′γ̄′ + p′′β′′γ̄′′

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

pᾱγ + p′ᾱ′γ′ + p′′ᾱ′′γ′′ 0 0 0 pβ̄γ + p′β̄′γ′ + p′′β̄′′γ′′ 0 0 0 p|γ|2 + p′|γ′|2 + p′′|γ′′|2

































.

The three key entries in ρ are T1,2 := pαβ̄ + p′α′β̄′ + p′′α′′β̄′′, T1,3 :=
pαγ̄ + p′α′γ̄′ + p′′α′′γ̄′′ and T2,3 := pβγ̄ + p′β′γ̄′ + p′′β′′γ̄′′. The mixed state
ρ is entangled if and only if at least one of the terms T1,2, T1,3 and T2,3 is
nonzero. These three quantities provide more detailed information about
the entanglement. In fact, one can somehow quantify the entanglement of
the state by the vector (T1,2, T1,3, T2,3).

Obviously, the previous discussions apply to any n × n bipartite system
for such special states.

6. Generalized Bell bases and complex Hadamard matrices

In this section, we introduce generalized Bell bases and explore their con-
nections with Hadamard matrices and the separability criterion. This is
motivated by the fact that the computational basis |jl〉, while usually used



10 BOBO HUA, SHAOMING FEI, JÜRGEN JOST, AND XIANQING LI-JOST

when investigating entanglement, is not always the most suitable one for
our purposes. In particular, mixed states that have ensembles of pure states
which can be simultaneously diagonalized should rather be investigated in
that diagonalized form as this involves the least number of parameters. As
the separability concerns the question to what extent a state behaves like a
product state, the non-separability is however quantified by entanglement.
Hence one should look at the length of the projection of a given state onto
the maximally entangled states. Therefore we introduce a new kind of bases
consisting of maximal entangled states, called generalized Bell bases (see (9)
below), which contains the specific Bell-states for the case of qubit pairs.

First we want to find nontrivial solutions of the system of equations (6).
We restrict to the following class of states.

Assumption 6.1. The Schmidt-correlated state ρ written in (5) satisfies

(a) K = n,
(b) |αj,k| = aj 6= 0 for any 1 ≤ j, k ≤ n,
(c) pk = 1/n for all 1 ≤ k ≤ n.

The normalization conditions require that
∑n

j=1 a
2
j = 1. In polar co-

ordinates, one can write αj,k = aje
iθj,k . In fact, we will figure out soon

that only the phases (eθj,k) matter for the separability of ρ in this case. In
characterizing all the solutions of (6), the key observation is that the or-
thogonality conditions of Theorem 4.1 translates into the conditions for a
complex Hadamard matrix. Here, an n × n complex matrix H is called a
complex Hadamard matrix, see [5, 45, 46], if |Hj,k| = 1 for all 1 ≤ j, k ≤ n

and HH† = nI. Equivalently, 1√
n
H is a unitary matrix.

Theorem 6.1. Let ρ be a Schmidt-correlated state which is an ensemble of
{pk, |ψk〉}Kk=1 with |ψk〉 =

∑K
j=1 αj,k |ejfj〉 for an orthonormal basis |ejfl〉

satisfying Assumption 6.1. Then ρ is separable if and only if (eiθj,k)n×n is
a complex Hadamard matrix, where eiθj,k is the phase factor of αj,k.

Proof. It follows from Theorem 4.1 that the separability is equivalent to
the equations (6). It is obvious that |eiθj,k | = 1 for all 1 ≤ j, k ≤ n. By
Assumption 6.1, pk = 1/n, αj,k = aje

iθj,k , we have

(6) ⇐⇒ 1

n
ajak

n
∑

k=1

eiθj,k(eiθl,k)∗ = 0 (j 6= l),

⇐⇒
n
∑

k=1

eiθj,k(eiθl,k)∗ = 0 (j 6= l).

This is equivalent to the property that (eiθj,k)n×n is a complex Hadamard
matrix. �

Remark 6.1. The moduli of the diagonal entries, aj, in Assumption 6.1 can
be chosen arbitrarily (as long as the normalization condition

∑n
j=1 a

2
j = 1
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holds). This theorem indicates that when the phase factors (eiθj,k) constitute
a complex Hadamard matrix, no matter what aj are, the state ρ becomes
separable.

By the theory of complex Hadamard matrices, there always exists a so-
lution to (6) for any n ∈ N under Assumption 6.1. For instance, for any n

the Fourier matrix Fn := (Hj,k)n×n := (ei(j−1)(k−1) 2π
n )n×n is an Hadamard

matrix. Two Hadamard matrices, H1 and H2, are called equivalent if there
exist diagonal unitary matrices D1 and D2 and permutation matrices P1

and P2 such that

H1 = D1P1H2P2D2.

For the classification up to this equivalence of Hadamard matrices for
n ≤ 5, see e.g. Tadej and Zyczkowski [5]. For instance, the Fourier matrix
is the only Hadamard matrix for n = 3 and n = 5. For n = 4, there
is a continuous non-equivalent family of Hadamard matrices. For n ≥ 6,
things become more complicated. In particular, a complete classification of
Hadamard matrices of order 6 is still unknown.

For n = 3, ρ = 1/n
∑n

k=1 |ψk〉 〈ψk| is then separable if and only if, up to
the equivalence of Hadamard matrices,

(eiθj,k)3×3 =





1 1 1
1 ω ω2

1 ω2 ω



 ,

where ω = 1
2 + i

√
3
2 , i.e.,

|ψ1〉 ∼





a1
a2

a3



 , |ψ2〉 ∼





a1
a2ω

a3ω
2



 , |ψ3〉 ∼





a1
a2ω

2

a3ω



 .

In higher dimensions, there are more freedom for the existence of Hadamard
matrices and the corresponding constructions of separable states. Our result
connnects the separability problem to the study of Hadamard matrices.

We now construct generalized Bell bases for Hn
A × Hn

B by Hadamard
matrices. Let

∣

∣ψ1
l

〉

=
1√
n

n
∑

j=1

eiφ
1

j,l |j, j〉 ,

∣

∣ψ2
l

〉

=
1√
n

n
∑

j=1

eiφ
2

j,l |j, j + 1〉 , (9)

· · · · · ·

|ψn
l 〉 =

1√
n

n
∑

j=1

eiφ
n
j,l |j, j + n− 1〉 ,

where we count j + n− 1 (mod n), 1 ≤ l ≤ n, and (eiφ
s
j,l)j,l is a Hadamard

matrix for any fixed 1 ≤ s ≤ n. One finds that
{∣

∣ψk
l

〉}

1≤l,k≤n
constitute
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an orthonormal basis of Hn
A ×Hn

B. By using Hadamard matrices, we know

that |ψk
l 〉, 1 ≤ l, k ≤ n, is maximally entangled. Therefore, any mixed state

ρ can be written as

ρ =
∑

1≤l,k,m,j≤n

ρlk,mj

∣

∣

∣ψk
l

〉

〈

ψj
m

∣

∣ .

When we choose (eφ
s
j,l)n×n = Fn in (9) for 1 ≤ s ≤ n, where Fn is

the Fourier matrix of order n, we recover the well-known Weyl operator
basis. The Weyl operators have been introduced in the context of quantum
teleportation [36] and investigated thoroughly in the literature (see e.g. [37–
40]). Note that our generalized Bell bases possess more freedom, as we
may choose any complex Hadamard matrices. In higher dimensions, there
exist plenty of complex Hadamard matrices, offering a potential for new
applications. Let us consider an example:

Example 6.1. For n = 4, besides the Weyl basis there exist many other
Bell bases. Let

(eφ
s
j,l)4×4 =









1 1 1 1
1 ieias −1 −ieias
1 −1 1 −1
1 −ieias −1 ieias









,

where 1 ≤ s ≤ 4 and as ∈ R. These are Hadamard matrices, see (65) in
Section 5.4 [5]. Then for any as ∈ R, 1 ≤ s ≤ 4, we have the following Bell
basis:








1
1

1
1









,









1
ieia1

−1
−ieia1









,









1
−1

1
−1









,









1
−ieia1

−1
ieia1









;









1
1

1
1









,









1
ieia2

−1
−ieia2









,









1
−1

1
−1









,









1
−ieia2

−1
ieia2









;









1
1

1
1









,









1
ieia3

−1
−ieia3









,









1
−1

1
−1









,









1
−ieia3

−1
ieia3









;









1
1

1
1









,









1
ieia4

−1
−ieia4









,









1
−1

1
−1









,









1
−ieia4

−1
ieia4









.

In [47] the case of

ρ =
∑

1≤j,l≤n

ρjl,jl

∣

∣

∣
ψj
l

〉〈

ψj
l

∣

∣

∣
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for n = 3 has been investigated. In the present paper, we have studied in
detail the mixed state

ρ =
∑

1≤l≤n

ρjl,jl

∣

∣

∣ψ
j
l

〉〈

ψj
l

∣

∣

∣ (10)

for fixed j, 1 ≤ j ≤ n, and arbitrary dimension n ≥ 2.

7. Conclusion and remarks

We have studied the weak Schmidt decomposition of quantum states in
which the generalized Schmidt coefficients are allowed to be complex-valued.
Using this concept, we can identify all so-called Schmidt-correlated states
by verifying the spectral decomposition of the states, hence provide an op-
erational method to the identification of Schmidt-correlated states. The
separability of such states has been translated into the orthogonality con-
dition of the diagonal entries of eigenstates of any ensemble. Moreover, we
have introduced generalized Bell bases and presented their connections with
Hadamard matrices and separability criteria. Our construction of gener-
alized Bell bases includes the well-known Weyl operator basis as a special
case. These mathematical structures and relations among the separability,
weak Schmidt decompositions, Hadamard matrices, generalized Bell bases
etc. may help in the further characterization of quantum entanglement.
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