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Abstract

We are interested in the thin-film equation with zero-contact angle and quadratic mobility,
modeling the spreading of a thin liquid film, driven by capillarity and limited by viscosity
in conjunction with a Navier-slip condition at the substrate. This degenerate fourth-
order parabolic equation has the contact line as a free boundary. From the analysis of
the self-similar source-type solution, one expects that the solution is smooth only as a
function of two variables (x, xβ) (where x denotes the distance from the contact line) with

β =
√
13−1
4
≈ 0.6514 irrational. Therefore, the well-posedness theory is more subtle than

in case of linear mobility (coming from Darcy dynamics) or in case of the second -order
counterpart (the porous medium equation).

Here, we prove global existence and uniqueness for one-dimensional initial data that are
close to traveling waves. The main ingredients are maximal regularity estimates in weighted
L2-spaces for the linearized evolution, after suitable subtraction of a(t) + b(t)xβ-terms.
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1. Introduction

1.1. The Free Boundary Problem to the Thin-Film Equation

We study regularity and stability properties of the free boundary problem

∂th+ ∂z
(
h2∂3zh

)
= 0 for t > 0, z ∈ (Z0(t),∞), (1.1a)

h = ∂zh = 0 for t > 0, z = Z0(t), (1.1b)

Ż0(t) = lim
z↘Z0(t)

h∂3zh for t > 0. (1.1c)

Equation (1.1a) is a thin-film equation that can be derived in a lubrication approximation
from the underlying Navier-Stokes equations of a two-dimensional viscous thin film on
a one-dimensional flat solid [1, 2]. The function h(t, z) describes the height of the film,
whereas Z0(t) denotes the position of the free boundary, which, in two space dimensions,
corresponds to the contact line separating the three phases gas, liquid, and solid. Then
h = 0 for z = Z0(t) merely defines the position of the contact line, while ∂zh = 0 for
z = Z0(t) enforces a zero contact angle between the liquid-gas and liquid-solid interfaces.
In a quasi-static model, the contact angle is determined by a local equilibrium of surface
tensions at the interfaces solid-gas, solid-liquid, and liquid-gas. The assumption ∂zh = 0
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at z = Z0(t) then implies that a global equilibrium is never attained, which is why the
film will not stop spreading. This situation is commonly referred to as ’complete wetting
regime’ as opposed to the case of partial wetting, i.e. ∂zh 6= 0.

Equation (1.1a) has the form of a continuity equation

∂th+ ∂z(hV ) = 0,

with V = h∂3zh the velocity with which the film height h is transported. In fact, within
the lubrication approximation, V is the vertically averaged horizontal velocity of the fluid.
The third boundary condition (1.1c) then states that the boundary value V0 of the velocity
V at the contact line equals the velocity Ż0 of the contact line. In particular, (1.1c) implies

that the mass
∫ Z+(t)

Z−(t)
h dz of a droplet with compact support [Z−(t), Z+(t)] is conserved in

time. Equation (1.1a) is a special case of the larger class of thin-film equations

∂th+ ∂z
(
hn∂3zh

)
= 0, (1.2)

with mobility exponents n ∈ (0, 3). Hence the velocity in general reads V = hn−1∂3zh.
The case n = 2 corresponds to the physically relevant situation of linear Navier-slip at
the liquid-solid interface for the underlying Navier-Stokes equations and can be seen as
the typical case for mobility exponents n ∈

(
3
2
, 3
)
, cf. [3, 4]. We remark that the case of

complete wetting for mobility exponent n = 1 was investigated by three, respectively two,
of the authors in earlier works within weighted L2- and Hölder-spaces, respectively [5, 6].
Moreover, this problem in arbitrary space dimensions, i.e.

∂th+∇ · (h∇∆h) = 0

with appropriate boundary conditions, was recently investigated by means of the theory
of singular integral operators in weighted Lp-spaces by John [7]. The latter model, in
the 1 + 1-dimensional case, can be seen as the lubrication approximation of the two-
dimensional Hele-Shaw cell. Indeed in [8], it has been rigorously proven that solutions of
the two-dimensional Hele-Shaw cell converge to solutions of the thin-film equation with
n = 1. A corresponding rigorous lubrication approximation for non-zero contact angle
and for classical solutions has been derived in [9, 10]. The solution h(t, z) turns out to be
smooth up to the boundary in that case.

We mark that the case of partial wetting, i.e. without loss of generality ∂zh = 1 at
z = Z0(t), was treated by one of the authors in earlier works [9–12] covering the range of
exponents n ∈

(
0, 14

5

)
. We also note that an extensive theory for global existence of weak

solutions [13–17] and their qualitative properties [18–28] has been developed in the case of
complete wetting, also in higher space dimensions. On the other hand, the corresponding
theory in the partial wetting case is so far limited to [29, 30]. Referenced discussions may
be found e.g. in [31, 32].
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1.2. Stationary and Traveling Wave Solutions

Stationary solutions to (1.1) have the form

hST = µ0(z − z0)2, (1.3)

where µ0 > 0 and z0 ∈ R are two time-independent parameters. Indeed, these solutions
play an important role in the analysis of the thin-film equation for n ∈

(
0, 3

2

)
. In particular

the mentioned regularity results [5–7] linearize around the profile of the quadratic station-
ary solution (1.3). For the range of mobility exponents n ∈

(
3
2
, 3
)
, however, the expected

generic solutions are traveling waves:

In the case of a traveling wave solution, the film moves with a constant velocity Ż0 =
V0 ∈ R. In fact we will linearize around a traveling wave profile in the following analysis.
We pass to a moving coordinate system1, by considering h(t, z) := HTW(x) with x = z−V0t,
and arrive at

−V0
dHTW

dx
+

d

dx

(
H2

TW

d3HTW

dx3

)
= 0.

We can integrate this equation, by using boundary conditions (1.1b) and (1.1c), addition-
ally assuming without loss of generality that x = 0 defines the contact line, to the result

HTW
d3HTW

dx3
= V0 for x > 0, (1.4a)

HTW =
dHTW

dx
= 0 at x = 0. (1.4b)

We assume V0 < 0. Then, by rescaling x 7→ x
(
−8V0

3

) 1
3 , we can assume without loss of

generality that the speed of the wave is given by −3
8
. Thus the solution of (1.4) reads

HTW = x
3
2 . (1.5)

Note that the leading-order asymptotics as x↘ 0 of the traveling-wave solution (1.5) and
the stationary solution (1.3) differ, unlike in the case of the thin-film equation with n = 1
[5].

1.3. Reformulation of the Problem

It is one of the major aims of this paper to show that the traveling wave solution (1.5) is
stable under small perturbations. We therefore return to the full parabolic free boundary
problem (1.1) and apply the hodograph transform by putting

h (t, Z(t, x)) := x
3
2 . (1.6)

1Coordinates x denote in general coordinates in the moving frame, while coordinates z (or Z) denote
coordinates in the frame fixed to the solid, on which the film adheres.
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This equality implicitly defines the function Z(t, x) for t ≥ 0 and x ≥ 0. We have sev-
eral reasons for choosing the transformation (1.6): First of all we note that in the new
coordinates the free boundary is fixed and the position of the contact line is recovered
by Z0(t) = Z(t, 0). Using the analogy to fluid dynamics, coordinates x can be viewed as
Lagrangian coordinates, while coordinates z are the Eulerian coordinates of the problem.

In the new coordinates the traveling wave solution hTW = x
3
2 =

(
z + 3

8
t
) 3

2 is linear and
given by ZTW(t, x) = x− 3

8
t. We note that the similar von Mises transformation was used

to treat a related problem, the free boundary problem for the porous medium equation

ht − ∂z (hn∂zh) = 0 for t > 0, z ∈ (Z0(t),∞),

h = 0 for t > 0, z = Z0(t),

Ż0(t) = lim
z↘Z0(t)

hn−1∂zh for t > 0,

where n > 0 [33]. We refer to [5, 11] for further discussions on analog results for the porous
medium equation and the choice of boundary conditions, such as [34–36].

Let us reformulate the free boundary problem (1.1) in our new coordinates. Therefore
we set

F (t, x) :=
1

∂xZ(t, x)
(1.7a)

so that the traveling wave is now merely the constant solution F = FTW ≡ 1. Perturbations
of the traveling wave are hence given by

u(t, x) := F (t, x)− 1. (1.7b)

In Appendix A.1 we discuss in detail how we then arrive at the degenerate parabolic
initial value problem

x∂tu+ p(D)u = N (u) for t > 0, x > 0, (1.8a)

u|t=0 = u0 at t = 0, (1.8b)

where we used the following definitions:

• The scaling-invariant logarithmic derivative

D := x∂x =
∂

∂s
, (1.9a)

where s := lnx.

• The 5-linear form2

M (F1, · · · , F5) := F1F2D

(
D +

3

2

)
F3

(
D − 1

2

)
F4

(
D +

1

2

)
F5. (1.9b)

2In the sequel, differential operators act on everything following them: e.g. DFDFDF =
D(FD(FDF )).
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• The fourth-order linear operator

Lu =M(u, 1, · · · , 1) + · · ·+M(1, · · · , 1, u) = p(D)u, (1.9c)

where p(ζ) is a fourth-order polynomial given by

p(ζ) := ζ4 + 2ζ3 − 9

8
ζ =

(
ζ +

3

2

)(
ζ + β +

1

2

)
ζ(ζ − β), (1.9d)

with the irrational number

β =

√
13− 1

4
≈ 0.6514. (1.9e)

• The nonlinearity
N (u) := p(D)u−M(1 + u, · · · , 1 + u). (1.9f)

It is instructive to note that, despite the fact that we deal with a fourth-order PDE, we
do not have to impose boundary conditions on the solution. The boundary conditions
(1.1b) and (1.1c) are implicitly fulfilled by our coordinate transformation (1.6). Also note
that the differential operator p(D), a polynomial in the logarithmic derivative D = x∂x,
remains invariant under the rescaling x 7→ µx for µ > 0. Then we can further conclude
that problem (1.8) remains invariant under the rescaling

(t, x) 7→ (µt, µx) for µ > 0.

Hence the time-variable t and the space-variable x have the same scaling, t ∼ x. Unlike
in the case of linear fourth-order non-degenerate parabolic equations, where t ∼ x4, our
fourth-order degenerate parabolic equation (1.8a) has the scale invariance of a first order
PDE. We can apply the same reasoning to the linear problem associated to (1.8), i.e.

x∂tu+ p(D)u = f for t > 0, x > 0, (1.10a)

u|t=0 = u0 at t = 0. (1.10b)

Again, it is the degeneracy of the linear operator in (1.10a) that leads to the fact that no
boundary conditions need to be imposed.

The rest of the paper will be concerned with the analysis of problem (1.8).

1.4. Notation

Throughout the paper we will write f .S g, whenever a constant C ≥ 1, depending
on the set of parameters S, exists such that f ≤ Cg. We write f ∼S g, if f .S g and
g .S f . We say that a property is true for x�S 1 (x�S 1), whenever a constant C > 0,
depending on parameters S, exists such that the property is true for all x with x ≥ C
(x ≤ 1

C
). If S = ∅ or if the dependence is specified within the text, we just write f . g etc.

The space Ck
0 (U), where U ⊆ Rn and k ∈ N0 ∪ {∞}, denotes the space of test functions

on U , i.e. the set of k-times differentiable functions with compact support contained in U .
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2. An Overview of our Approach

In this section, we motivate the norms we express our main result in. In doing so, we
also give a summary of our approach. Throughout the subsection, estimates may depend
k, `, α, or %, but they are independent of the functions u or w.

At the basis of all estimates is the coercivity of p(D): There is a range of weight
exponents α for which p(D) is coercive with respect to the weighted inner product

(u,w)α := (x−αu, x−αw)0, where (u,w)0 :=

∫ ∞
0

uw
dx

x

is the L2-inner product with respect to the logarithmic variable s = lnx. This actually
means that

(u, p(D)u)α & |u|2α , (2.1)

where |u|2α := (u, u)α. Coercivity will be worked out in Section 5.

We now look at the initial value problem of the linear degenerate parabolic equation
(1.10). By (at least formally) elementary arguments (cf. Subsection 7.1) coercivity of p(D)
with respect to α implies the differential inequality

d

dt

(
|u|2α− 1

2
+ C1

∣∣D`+2u
∣∣2
α− 1

2

)
+ |∂tu|2`,α−1 + |u|2`+4,α . |f |2`,α , (2.2)

where |u|2`,α :=
∑`

m=0 |Dmu|2α and the constant C1 > 0 only depends on ` and α. Estimate
(2.2) is at the basis of all further a priori estimates, which we obtain from it by by inter-
polation and integrating in the time variable t. Since we need the flexibility to introduce
a time weight, we stick to the differential version (2.2) for a while.

In fact, equation (2.2) immediately implies L2-maximal regularity estimates for the
unshifted equation, i.e.

sup
t∈I
|u(t)|2`+2,α− 1

2
+

∫
I

(
|∂tu(t)|2`,α−1 + |u(t)|2`+4,α

)
dt . |u0|2`+2,α− 1

2
+

∫
I

|f(t)|2`,α dt. (2.3)

Note that using the logarithmic transformation s = ln x and setting ũ(s) := e−αsu(es),
f̃(s) := e−αsf(es), and p̃(ζ) := p(ζ + α), equation (1.10a) is equivalent to the problem

es∂tũ+ p̃ (∂s) ũ = f̃ for t > 0 and s ∈ R. (2.4)

The operator p̃(∂s) is formally coercive with respect to the standard L2-scalar product
on R. Replacing p̃(∂s) more generally by a formally coercive pseudo-differential operator
(with certain additional properties), the well-posedness of (2.4) in Lq with q ∈ (1,∞) was
investigated in a work by Prüss and Simonett [37] using semigroup theory: For q = 2
the authors are able to establish (2.2) as well, whereas for q 6= 2 they are able to prove
appropriate estimates for a shifted equation es∂tũ + ωũ + p̃ (∂s) ũ = f̃ , where ω ≥ ω0 is
arbitrary and ω0 ≥ 0 is fixed and unknown.
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We observe, however, that (2.2) or (2.3) are not higher regularity results: sinceD = x∂x,
all estimates have the same scaling with respect to x. Since furthermore α is in the
coercivity range only if α < 0 (cf. Corollary 5.4), none of the norms in (2.2) does control
u|x=0 — no matter how large ` is. Since the treatment of the nonlinearity by a fixed
point argument, which we are aiming for, requires at least control of the supremum norm
supt≥0 ‖u‖ = supt≥0, x≥0 |u| (where ‖·‖ denotes the supremum norm in the space variable
x), (2.2) or (2.3) are not enough. A first attempt is to apply (2.2) with u replaced by ∂xu.
However, because of the commutation relation ∂xD = (D+1)∂x, this means that the elliptic
operator in (1.10a) changes to p(D + 1). From the commutation relation x(D + 1) = Dx
we learn that if α is in the coercivity range of p(D), then α− 1 is in the coercivity range of
p(D + 1). Hence this approach does not yield better regularity near 0 in terms of scaling.
A better idea is to apply (2.2) with u replaced by v := p(D)u. From the commutation
relation Dx = x(D + 1) we learn that v satisfies (1.10) with the elliptic operator p(D)
replaced by p(D − 1):

x∂tv + p(D − 1)v = p(D − 1)f. (2.5)

Now if α is in the coercivity range of p(D), then α+1 is in the coercivity range of p(D−1).
Hence we obtain from (2.2) that

d

dt

(
|v|2α+ 1

2
+ C1

∣∣D`+2v
∣∣2
α+ 1

2

)
+ |∂tv|2`,α + |v|2`+4,α+1 . |f |

2
`+4,α+1 . (2.6)

In formal terms of level of scaling, |v|`+2,α+ 1
2

is indeed stronger than ‖u‖ near x = 0 for

α > −1
2
, and there are such α in the coercivity range; we will argue below that this is

not just formal (cf. (2.9)–(2.11)). This procedure can be iterated and gives control of
|p(D − 1)v|`+2,α+ 3

2
in the second step. However, the use of the second and further steps in

the iteration is limited, as we shall explain below (cf. (2.11)).

In order to leverage (2.6), we have to study another property of the elliptic operator
p(D) next to coercivity, namely maximal regularity : For instance, does |p(D)u|`+4,α+1 =
|v|`+4,α+1 control |u|`+8,α+1? Here we give a short summary of Section 7 (cf. Lemma 7.2):
We have quite generally for a polynomial q(ζ), a weight exponent %, a D-regularity level
`, and any w : (0,∞)→ R that

|w|`+deg,% ∼ |q(D)w|`,% provided w = o(x%) as x↘ 0 and x↗∞, (2.7)

where deg denotes the degree of q(ζ), and provided % does not coincide with the real part
of one of the roots of q(ζ) (cf. Lemma 7.4). Hence the expected regularity as x↘ 0 (and
x↗∞) of the solution to the nonlinear problem (1.8) is crucial. We know from [3] that the
source-type solution (expressed in our coordinates) is an analytic function in the two spatial
variables (x, y), where y := xβ. We expect this to be the generic behavior of solutions of
the nonlinear parabolic equation (1.8), i.e. we expect that u(t, x) = ū

(
t, x, xβ

)
, where

ū(t, x, y) is a smooth function in (x, y) up to the contact line. This behavior is natural:
Since β and 0 are the two largest roots of the quartic polynomial p(ζ), we expect that a
generic solution of x∂tu+p(D)u = f with compactly supported f contains an y = xβ-term
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near x = 0. Because of the x∂tu-term, it also generically contains an x-term. Since for the
nonlinear equation, f is a nonlinear (analytic) function of u (and of Du, D2u, D3u, and
D4u), u will generically contain all monomials xky`. Our study of the resolvent equation
in Section 6 shows that as expected, we also do not need more than these monomials, and
that u can be assumed to decay like a Schwartz function as x↗∞ if f does.

In view of this regularity and since β ∈
(
1
2
, 1
)
, the expected ordered expansion of u

near x = 0 is given by
u = a+ bxβ + cx+ dx2β +O

(
x1+β

)
(2.8)

with t-dependent coefficients a, b, c, and d. Since −β − 1
2

is the first negative root of p(ζ),
we thus obtain from (2.7) applied to q(ζ) = p(ζ) that

|u|`+4,% ∼ |v|`,% for −β − 1
2
< % < 0. (2.9)

Applying (2.7) to w = u− a (2.8)
= O(xβ), we obtain thanks to p(D)a = 0

|u− a|`+4,% ∼ |v|`,% for 0 < % < β. (2.10)

Likewise, applying (2.7) to w = u−a−bxβ (2.8)
= O(x), we obtain thanks to p(D)(a+bxβ) = 0∣∣u− a− bxβ∣∣

`+4,%
∼ |v|`,% for β < % < 1. (2.11)

We can even go to the second step and apply (2.7) to q(ζ) = p(ζ − 1)p(ζ) and to

v = u− a− bxβ − cx (2.8)
= O(x2β)

and obtain because of p(D − 1)p(D)(a+ bxβ + cx) = 0 that∣∣u− a− bxβ − cx∣∣
`+8,%

∼ |p(D − 1)v|`,% for 1 < % < 2β. (2.12)

However, the procedure stops here! Indeed, despite the fact that

u− a− bxβ − cx− dx2β (2.8)
= O

(
x1+β

)
,

it is not true that∣∣u− a− bxβ − cx− dx2β∣∣
`+8,%

. |p(D − 1)v|`,% for 2β < % < 1 + β,

since the monomial y2 = x2β, which is generated by the nonlinearity N (u), is not anni-
hilated by p(D − 1)p(D). Hence besides (2.12), the second and all further steps in the
iteration cannot be leveraged. We thus limit our attention to (2.9)–(2.11). Hence our
entire approach is limited to the construction of solutions of moderate regularity.

Our goal is to capture at least the xβ-term, which means that in view of (2.11) (which in
view of (2.6) we apply for % = α+1) we want the weight exponent α to satisfy β−1 < α < 0,
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say α = β− 1 + δ for some sufficiently small δ > 0, which is compatible with the coercivity
range (cf. Section 5, Corollary 5.4). From integrating (2.6) in t and applying (2.11), we
thus get the following a priori estimate

sup
t≥0
|u− a|2`+6,β− 1

2
+δ +

∫ ∞
0

(
|∂tu|2`+4,β−1+δ +

∣∣u− a− bxβ∣∣2
`+8,β+δ

)
dt

. |u0 − a0|`+6,β− 1
2
+δ +

∫ ∞
0

|f |2`+4,β+δ dt.

(2.13)

If we based our existence result on (2.13), we would require control (and smallness for the
nonlinear equation) of the initial data u0 in |u0 − a0|`+6,β− 1

2
+δ, which is supercritical by

the amount β − 1
2

+ δ. We are a bit more ambitious and want to control the initial data
in a norm that in terms of scaling is closer to the critical norm ‖u0‖, say, the only slightly
supercritical norm |u0|`+6,δ. In order to do so, we employ the following strategy: We use
(2.6) for α = β − 1 + δ (and ` replaced by k) after integration with respect to the time
weight t2β−1 and combine it with the integrated version of (2.6) for α = −1

2
+δ (which also

is in the coercivity range for δ � 1, cf. Section 5, Corollary 5.4). As we argue in Section 7,
for ` ≥ k + 2, this implies with help of the interpolation estimate Lemma 7.5 that

sup
t≥0

(
t2β−1 |u− a|2k+6,β− 1

2
+δ + |u− a|2`+6,δ

)
+

∫ ∞
0

(
t2β−1 |∂tu|2k+4,β−1+δ + |∂tu|2`+4,− 1

2
+δ

)
dt

+

∫ ∞
0

(
t2β−1

∣∣u− a− bxβ∣∣2
k+8,β+δ

+ |u− a|2`+8, 1
2
+δ

)
dt

. |u0 − a0|`+6,δ +

∫ ∞
0

(
t2β−1 |f |2k+4,β+δ + |f |`+4, 1

2
+δ

)
dt,

(2.14)
see the beginning of Section 7 for more details. However, these slightly supercritical norms
by themselves do not yield control of supt≥0 ‖u‖

2. Hence the estimate needs to be combined
with a similar estimate that involves slightly subcritical norms, namely

sup
t≥0

(
t2β−1 |u− a|2k+6,β− 1

2
−δ + |u|2`+6,−δ

)
+

∫ ∞
0

(
t2β−1 |∂tu|2k+4,β−1−δ + |∂tu|2`+4,− 1

2
−δ

)
dt

+

∫ ∞
0

(
t2β−1 |u− a|2k+8,β−δ + |u− a|2`+8, 1

2
−δ

)
dt

. |u0|`+6,−δ +

∫ ∞
0

(
t2β−1 |f |2k+4,β−δ + |f |`+4, 1

2
−δ

)
dt.

(2.15)
As we will see in Section 8, because of the nonlinear term, we will not just need ` ≥ k + 2
but ` ≥ k + 3 which we specify to ` = k + 3. Hence we will work with the following
compound a priori estimate for the linear problem (1.10):

|||u||| . |||u0|||0 + |||f |||1, (2.16)
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where we have used the following abbreviations: The norm for the solution is given via

|||u|||2 := sup
t≥0

(
t2β−1 |u− a|2k+6,β− 1

2
+δ + |u− a|2k+9,δ

)
+ sup

t≥0

(
t2β−1 |u− a|2k+6,β− 1

2
−δ + |u|2k+9,−δ

)
+

∫ ∞
0

(
t2β−1 |∂tu|2k+4,β−1+δ + |∂tu|2k+7,− 1

2
+δ

)
dt

+

∫ ∞
0

(
t2β−1 |∂tu|2k+4,β−1−δ + |∂tu|2k+7,− 1

2
−δ

)
dt

+

∫ ∞
0

(
t2β−1

∣∣u− a− bxβ∣∣2
k+8,β+δ

+ |u− a|2k+11, 1
2
+δ

)
dt

+

∫ ∞
0

(
t2β−1 |u− a|2k+8,β−δ + |u− a|2k+11, 1

2
−δ

)
dt.

(2.17)

The norm for the initial data is given via

|||u0|||20 := |u0 − a0|2k+9,δ + |u0|2k+9,−δ (2.18)

(and is just δ away from a critical norm). Finally the norm for the right hand side is given
by

|||f |||21 :=

∫ ∞
0

(
t2β−1 |f |2k+4,β+δ + |f |2k+7, 1

2
+δ + t2β−1 |f |2k+4,β−δ + |f |2k+7, 1

2
−δ

)
dt. (2.19)

3. Main Result and Discussion

3.1. Well-Posedness in a Quasi-Minimal Setting

We are now ready to state our main result:

Theorem 3.1. Suppose k ∈ N0 and 0 < δ < min
{

1− β, β − 1
2

}
. Then there exists ε > 0

such that for all locally integrable3 u0 : (0,∞) → R with |||u0|||0 < ε, problem (1.8) has a
unique solution u : (0,∞)2 → R that is locally integrable with |||u||| <∞. Furthermore, the
a priori estimate |||u||| .k,δ |||u0|||0 holds.

For a precise discussion of the norms and underlying function spaces, we refer to Sec-
tion 4.

In view of (2.17), we have∫ ∞
0

t2β−1
∣∣u(t)− a(t)− b(t)xβ

∣∣2
k+6,β+δ

dt ≤ |||u|||2 <∞.

3Note that for all locally integrable functions u : (0,∞) → R, the derivatives D`u, ` ∈ N, exist in a
distributional sense. Hence expressions like |u|k,α make sense if allowed to assume the value ∞.
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Since β + δ > 0 and since sufficiently many spatial derivatives of u are locally square
integrable, this implies in particular that u(t, x) has the following expansion close to the
contact line:

u(t, x) = a(t) + b(t)xβ + o(xβ) as x↘ 0 (3.1)

almost everywhere in t > 0. We emphasize that we expect the power series expansion
(3.1) to hold in an even more general fashion, that is, we expect that u(t, x) = ū

(
t, x, xβ

)
,

where ū(t, x, y) is a smooth function up to the contact line in (x, y). As we explained in
Section 2, our method to prove Theorem 3.1 does, however, not generalize in an obvious
way to such higher order regularity results.

Besides that, let us further study the behavior at the contact line: In Appendix A.2 we
show that

V (t, Z(t, x)) = −3

8
(1 + a(t))3 + o(xβ) as x↘ 0. (3.2)

Hence the vertically averaged speed of the droplet, expressed in Lagrangian coordinates,
does not contain the leading order xβ-term. Thinking more generally of an expansion of
V (t, Z(t, x)) as

V (t, Z(t, x)) =
∑

0≤k+β`≤N

ak`(t)x
k+β` + o

(
xN
)

as x↘ 0,

we are not able to conclude that ak`(t) ≡ 0 for ` ≥ 2 or k ≥ 1 and ` ≥ 1. Furthermore,
to our knowledge it is not clear whether the underlying Stokes or Navier-Stokes equations
show an analogous expansion in fractional powers at the contact line.

Remark 3.2. From (3.2) we recover the speed of the moving contact line as

V0(t) = −3

8
(1 + a(t))3. (3.3)

In addition, in Lemma B.4 we prove that a(t) is continuous in time t with the limit a(t)→ 0
as t→∞, i.e. the speed of the contact line converges to the constant −3

8
.

Remark 3.3. Undoing the transformations (1.6) and (1.7) (cf. Appendix A.3), we obtain
the expansion

h(t, z) = x̃
3
2

(
1 + ã(t) + b̃(t)x̃β + o

(
x̃β
))

as x̃↘ 0 (3.4a)

almost everywhere in t > 0, where

x̃ := z − Z0(t), ã(t) := (1 + a(t))
3
2 − 1, b̃(t) :=

3b(t)(1 + a(t))β+
1
2

2(1 + β)
, (3.4b)

and Z0(t) = z0 − 3
8

∫ t
0

(1 + a (t′))3 dt′ identifies the position of the contact line at time t.

Hence, after factoring off the traveling wave ∼ x̃
3
2 , the function h exhibits an analogous

expansion as u, F , or V .
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Remark 3.4. It is interesting to consider the case of the general thin-film equation (1.2)
with n ∈

(
3
2
, 3
)
, since in this range of exponents the traveling wave solution (1.5) generalizes

to HTW = x
3
n . The hodograph transform (1.6) with right hand side x

3
n can be applied as well

and yields structurally the same equation as (1.8a), where p(ζ) is a fourth-order polynomial
and the nonlinearity N (u) is build up of summands consisting of two to five factors u, Du,
D2u, D3u, or D4u. More precisely the polynomial p(ζ) is given by

p(ζ) = (ζ + ν)(ζ + β + 3ν − 4)ζ(ζ − β),

where

ν =
3

n
∈ (1, 2) and β =

√
−3ν2 + 12ν − 8 + 4− 3ν

2
∈ (0, 1).

Then the discussion of the resolvent equation (Section 6) can be carried out only changing
the numerical constants of the equation. However, the argumentation for the linear equation
(Section 7) needed the restriction β > 1

2
, which implies the lower bound

n >
3

17

(
15−

√
21
)
≈ 1.84. (3.5a)

On the other hand, both, β−1 and −1
2

need to be in the coercivity range of p(D). Whereas
the first condition does not lead to any additional constraint on n, the second leads to the
restriction −1

2
> −β − 3ν + 4 or equivalently

n <
3

11
(7 +

√
5) ≈ 2.52. (3.5b)

Then, provided the restrictions (3.5) are fulfilled, the analog of Theorem 3.1 is valid. It
seems that these restrictions are of technical origin and related to the fact that we work in
an L2-setting (rather than e.g. in Lq with q ∈ (1,∞)). Whether a well-posedness result for
the TFE (1.2) for the full range n ∈

(
3
2
, 3
)

(or other mobility exponents) can be achieved,
remains unanswered.

3.2. Outline of the Paper

We briefly outline the content of the paper: In Section 4 we list the norms that are used
in the following sections and summarize some of their properties. In Section 5 we discuss
the coercivity properties of the differential operator p(D) with respect to the inner product
(·, ·)α. We characterize in particular the coercivity range of p(D), i.e., the set of α’s for
which p(D) is coercive (cf. Proposition 5.3 and Corollary 5.4). The coercivity of p(D)
is crucial for proving existence and uniqueness of solutions to the corresponding resolvent
equation

xu+ p(D)u = f (3.6)

(cf. Proposition 5.5). A standard way to obtain smooth solutions to the resolvent prob-
lem for smooth right hand side was carried out in [5] by starting with the Lax-Milgram
solution and proving regularity afterwards. Instead, in this work we opted for ODE-based
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arguments. These have the advantage that they can be carried out independently of a
special choice of norms. For that we construct families of solutions to (3.6) for x� 1 and
x � 1 and characterize their asymptotics explicitly (cf. Section 6). Using coercivity, we
are able to match these families of solutions and to prove well-posedness for the resolvent
problem (3.6) (cf. Proposition 6.3). This was already done similarly by Angenent [35] for
the PME.

In Section 7 we then treat the linear parabolic problem (1.10). Solutions can be obtained
by a time discretization procedure leading to (3.6) as the time-discretized version of (1.10a).
Appropriate maximal regularity estimates of the solution u in terms of the initial data u0
and the right hand side f , however, are then formulated in our L2-setting, as we do not
expect them to hold in sup-norms (cf. Proposition 7.6).

Finally in Section 8 we prove appropriate estimates for the nonlinearity (cf. Lemma 8.1),
leading to well-posedness of (1.8) by a fixed point argument.

Appendix A contains details of the coordinate transformations outlined in the intro-
duction. Appendix B provides interpolation inequalities and approximation results that
are used in Sections 7 and 8.

4. The Norms and their Properties

Let us list the norms introduced in Section 2. For any integrability exponent α ∈ R
and any interval I ⊆ (0,∞), our basic inner product is given by

(u,w)α,I :=

∫
I

x−2αu(x)w(x)
dx

x
. (4.1a)

This inner product induces a norm

|u|α,I :=

(∫
I

x−2α(u(x))2
dx

x

) 1
2

. (4.1b)

We also use the following higher order norms and inner products (cf. (1.9a)):

(u,w)k,α,I :=
k∑
`=0

(D`u,D`w)α,I =
k∑
`=0

∫
I

x−2αD`u(x)D`w(x)
dx

x
, (4.2a)

|u|k,α,I :=
√

(u, u)k,α,I =

(
k∑
`=0

∫
I

x−2α(D`u(x))2
dx

x

) 1
2

. (4.2b)

In the case of I = (0,∞) we omit to specify I, e.g., we write |u|k,α := |u|k,α,(0,∞).

We further note that D is skew-symmetric with respect to (·, ·)0, i.e. (Du,w)0 =
−(u,Dw)0 for all u,w : (0,∞) → R smooth with |u|1 , |w|1 < ∞. By the commutation
relation between multiplication and differentiation operators,

xµD = (D − µ)xµ for µ ∈ R, (4.3)
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we have more generally
(Du,w)α = −(u, (D − 2α)w)α (4.4)

for all u,w : (0,∞)→ R smooth with |u|1,α , |w|1,α <∞.

In fact, we can relate our norms to standard Sobolev norms. To this aim, we recall the
definition of the Fourier transform

FF (ξ) := F̂ (ξ) :=
1√
2π

∫ ∞
−∞

e−iξsF (s)ds (4.5)

for a Schwartz function F : R→ R, and we note that

∂̂sF (ξ) = iξF̂ (ξ). (4.6)

Lemma 4.1. Let k ∈ N and α ∈ R. For ũ(s) := e−αsu(es) (s ∈ R) we have

|u|k,α ∼k,α ‖ũ‖Wk,2(R) . (4.7)

Furthermore if α 6= 0, then
∣∣Dku

∣∣
α
∼k,α ‖ũ‖Wk,2(R).

Proof. Passing to the logarithmic variable, i.e. setting s := lnx, we have D = x∂x = ∂s
and ũ(s) := e−αsu(es) so that we arrive at

∣∣D`u
∣∣2
α

=

∫ ∞
−∞

e−2αs
(
∂`su (es)

)2
ds

(4.3)
=

∫ ∞
−∞

(
(∂s + α)` ũ(s)

)2
ds.

If α = 0, then

|u|2k,0 =
k∑
`=0

∫ ∞
−∞

(∂`sũ(s))2ds = ‖ũ‖2Wk,2(R) ,

hence (4.7). If α 6= 0, in view of (4.5) and (4.6), we know that∫ ∞
−∞

(
(∂s + α)` ũ(s)

)2
ds =

∫ ∞
−∞

(ξ2 + α2)` |F ũ(ξ)|2 dξ ∼α,`
∫ ∞
−∞

(1 + ξ2`) |F ũ(ξ)|2 dξ

=

∫ ∞
−∞

(
ũ2(s) + (∂`sũ(s))2

)
ds ∼` ‖ũ‖W `,2(R) ,

which implies (4.7).

Remark 4.2. We note that the space of test functions C∞0 (R) is dense in W k,2(R) for
k ∈ N0 and the transformation u 7→ ũ, with ũ(s) := e−αsu(es) (s ∈ R), is a bijection
C∞0 ((0,∞)) → C∞0 (R). Thus the equivalence (4.7) shows that we can approximate every
locally integrable u : (0,∞)→ R with |u|k,α <∞ by a sequence of functions in C∞0 ((0,∞))
in the norm |·|k,α.
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For later purposes (cf. Section 8) we also introduce the corresponding supremum norms,
i.e. for any k ∈ N0 and any interval I ⊆ (0,∞), we set

‖u‖k,I := max
`=0,··· ,k

∥∥D`u
∥∥
I

where ‖w‖I := sup
x∈I
|w(x)| . (4.8)

If I = (0,∞), we just write ‖·‖k := ‖·‖k,I and ‖·‖ := ‖·‖I .
We now discuss the norms which we will use for our solutions: For the initial data we

use the following norm:

|||u0|||0 := inf
a0∈R

(
|u0|2k+9,−δ + |u0 − a0|2k+9,δ

) 1
2

(4.9)

for a locally integrable u0 : (0,∞) → R. One easily sees that if |||u0|||0 < ∞ then the
minimizer a0 is uniquely determined and a0 = limx↘0 u0(x). This proves the equivalence
to the definition in (2.18).

For any interval I = (0, τ) ⊆ (0,∞), k ∈ N0, and δ > 0, we define ||| · |||I as

|||u|||2I := inf
a,b:I→R

(
sup
t∈I

t2β−1
(
|u− a|2k+6,β− 1

2
+δ + |u− a|2k+6,β− 1

2
−δ

)
+ sup

t∈I

(
|u− a|2k+9,δ + |u|2k+9,−δ

)
+

∫
I

(
t2β−1 |∂tu|2k+4,β−1+δ + |∂tu|2k+7,− 1

2
+δ

)
dt

+

∫
I

(
t2β−1 |∂tu|2k+4,β−1−δ + |∂tu|2k+7,− 1

2
−δ

)
dt

+

∫
I

(
t2β−1

∣∣u− a− bxβ∣∣2
k+8,β+δ

+ |u− a|2k+11, 1
2
+δ

)
dt

+

∫
I

(
t2β−1 |u− a|2k+8,β−δ + |u− a|2k+11, 1

2
−δ

)
dt

)

(4.10)

for a locally integrable u : I × (0,∞) → R, where the infimum is taken among all locally
integrable a : I → R and b : I → R. As before, if |||u|||I < ∞, then a and b are uniquely
defined almost everywhere in time t and given by the boundary values

a(t) := lim
x↘0

u(t, x) and b(t) := lim
x↘0

(u(t, x)− a(t))x−β. (4.11)

This also demonstrates that the definitions in (2.17) and (4.10) are equivalent. For I =
(0,∞) we just write ||| · ||| := ||| · |||(0,∞) (cf. (2.17)).

Furthermore, the norm for the right hand side of (1.8a) and (1.10a), i.e. a locally
integrable f : I× (0,∞)→ R, is defined as in (2.19) where the time integrals are restricted
to I instead of (0,∞).

We have the following linear estimates for the boundary values:
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Lemma 4.3. Suppose k ∈ N with k ≥ 2, δ > 0, and let I = (0, τ) ⊆ (0,∞). Then the
following estimates hold true:

(a) For every locally integrable u0 : (0,∞)→ R such that |||u0|||0 <∞, we have

|a0| .δ |||u0|||0. (4.12)

(b) For every locally integrable u : I × (0,∞)→ R such that |||u|||I <∞, we have

sup
t∈I
|a(t)|2 +

∫
I

t2β−1 |b(t)|2 dt .δ |||u|||2I . (4.13)

Proof. For part (a) we observe that

|a0|2 =

∫ 2

1

|a0|2 dx .
∫ 2

1

|u0(x)− a0|2 dx+

∫ 2

1

|u0(x)|2 dx

.δ

∫ ∞
0

x−2δ |u0(x)− a0|2
dx

x
+

∫ ∞
0

x2δ |u0(x)|2 dx

x

≤ |u0|2k+9,−δ + |u0 − a0|2k+9,δ = |||u0|||20.

The same calculation also shows that

|a(t)|2 .δ |u(t)|2k+9,−δ + |u(t)− a(t)|2k+9,δ for t ∈ I.

Taking the supremum yields the desired estimate for the first summand on the left hand
side of (4.13). For the second one observe that

|b(t)|2 .
∫ 2

1

∣∣b(t)xβ∣∣2 dx

.
∫ 2

1

|u(t, x)− a(t)|2 dx+

∫ 2

1

∣∣u(t, x)− a(t)− b(t)xβ
∣∣2 dx

.δ

∫ ∞
0

x−2(β−δ) |u(t, x)− a(t)|2 dx

x
+

∫ ∞
0

x−2(β+δ)
∣∣u(t, x)− a(t)− b(t)xβ

∣∣2 dx

x

≤ |u(t)− a(t)|2k+8,β−δ +
∣∣u(t)− a(t)− b(t)xβ

∣∣2
k+8,β+δ

.

We can multiply this expression with t2β−1 and integrate over t to obtain∫
I

t2β−1 |b(t)|2 dt .δ

∫
I

t2β−1 |u(t)− a(t)|2k+8,β−δ dt

+

∫
I

t2β−1
∣∣u(t)− a(t)− b(t)xβ

∣∣2
k+8,β+δ

dt ≤ |||u|||2I .

In Subsection B.2, we provide approximation results by smooth functions with specific
properties for the norms ||| · |||0 and ||| · |||I .
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5. The Coercivity Range

In this section we consider a general differential operator P (D), where

P (ζ) = (ζ − γ1)(ζ − γ2)(ζ − γ3)(ζ − γ4) (5.1)

is a polynomial of fourth-order with ordered zeros γ1 ≤ γ2 ≤ γ3 ≤ γ4. Recalling the
definition (4.5) of the Fourier transform and (4.6), we see that the differential operator
P (D) transforms into a multiplication with P (iξ) for the Fourier transform.

Let α ∈ R. Further recalling the symmetry property of D (cf. (4.4)), the polynomial
P (D) induces a bilinear form

Bα(ϕ, ψ) := ((D − γ1)(D − γ2)ϕ, (D + γ3 − 2α)(D + γ4 − 2α)ψ)α ,

with ϕ, ψ ∈ C∞0 ((0,∞)).

Definition 5.1. We call P (D) formally coercive with respect to |·|α, if and only if there
exists a λ > 0 such that for all ϕ ∈ C∞0 ((0,∞))

Bα(ϕ, ϕ) = (P (D)ϕ, ϕ)α ≥ λ |ϕ|2α

holds. The set of α ∈ R for which P (D) is formally coercive with respect to |·|α, is called
the coercivity range of P (D).

We can characterize the coercivity range by its symbol:

Lemma 5.2. For the operator P (D) defined in (5.1) and α ∈ R the following statements
are equivalent:

(a) P (D) is formally coercive with respect to |·|α.

(b) There exists λ > 0 such that Re P (iξ + α) ≥ λ for all ξ ∈ R.

(c) There exists λ′ > 0 such that for all ϕ ∈ C∞0 ((0,∞))

Bα(ϕ, ϕ) = (P (D)ϕ, ϕ)α ≥ λ′ |ϕ|22,α .

(d) There exists λ′ > 0 such that for all locally integrable ϕ : (0,∞)→ R with |ϕ|2,α <∞

Bα(ϕ, ϕ) ≥ λ′ |ϕ|22,α .

Proof. Obviously (d) implies (c) and (d) follows from (c) by approximation (cf. Re-
mark 4.2). By Definition 5.1 and since |ϕ|2,α ≥ |ϕ|α, (c) implies (a).

In order to show the other implications we note that, letting ϕ̃(s) = e−αsϕ(es), we have

(P (D)ϕ, ϕ)α =

∫ ∞
−∞

e−2αsϕ(es)P (∂s)ϕ(es) ds =

∫ ∞
−∞

ϕ̃(s)P (∂s + α)ϕ̃(s) ds,
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where we used the commutator relation [∂s, e
−αs] = −αe−αs. We can now apply Plancherel’s

Theorem and arrive at

(P (D)ϕ, ϕ)α
(4.6)
=

∫ ∞
−∞
|F ϕ̃(ξ)|2P (iξ + α) dξ =

∫ ∞
−∞
|F ϕ̃(ξ)|2Re P (iξ + α) dξ. (5.2)

In the last identity we used that the inner product (P (D)ϕ, ϕ)α is real.

We now show that (a) implies (b): Indeed, suppose (b) does not hold, i.e. ξ0 ∈ R
exists such that Re P (iξ0 + α) = 0. Then we can choose a sequence (ϕn)n∈N such that
ϕ̃n(s) := e−αsϕn(es) are Schwartz functions obeying |F ϕ̃n|2 → δξ0 as distributions. Then
by (5.2) (P (D)ϕn, ϕn)α → 0, which implies that (a) does not hold.

It remains to show that (b) implies (c): If (b) holds, then Re P (iξ+α) ≥ λ′(1+ξ2+ξ4)
for some λ′ ∈ (0, λ) (since the polynomial P (ζ) is of fourth-order), and (c) follows.

We can derive a partial but explicit characterization of the coercivity range:

Proposition 5.3. The operator P (D) of the form defined in (5.1) is formally coercive with
respect to |·|α, if the following conditions hold:

α ∈ (−∞, γ1) ∪ (γ2, γ3) ∪ (γ4,∞), (5.3a)

|α−m(γ)| ≤ 1√
3
σ(γ). (5.3b)

Here m(γ) denotes the algebraic mean of the zeros γ`, i.e.

m(γ) :=
1

4

4∑
`=1

γ`,

and σ(γ) the nonnegative root of the variance

σ2(γ) =
1

4

4∑
`=1

γ2` −m2(γ) =
1

4

4∑
`=1

(γ` −m(γ))2 .

Evaluating equations (5.3) for the polynomial (1.9d) of interest shows:

Corollary 5.4. The operator p(D) defined through equation (1.9d) is formally coercive
with respect to |·|α if α ∈ (−1, 0).

Proof of Proposition 5.3. Because of P (−iξ+α) =
∏4

`=1(−iξ− (γ`−α)) and the fact that
odd powers of ξ in the symbol P (−iξ + α) have imaginary pre-factors, we obtain

Re P (−iξ + α) = κ2 − 2aκ+ b, where κ := ξ2 ≥ 0,

and

a :=
1

2

∑
1≤j<`≤4

(γj − α)(γ` − α), b := (γ1 − α)(γ2 − α)(γ3 − α)(γ4 − α).
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Hence in view of Lemma 5.2 (b), P (D) is formally coercive with respect to |·|α if and only
if

(a ≤ 0 and b > 0) or (a > 0 and b > a2). (5.4)

Since it can be characterized explicitly in terms of α, we focus on the first part of (5.4),
thus deriving a sufficient criterion for coercivity. Clearly, the condition b > 0 is equivalent
to (5.3a). In order to see that a ≤ 0 is equivalent to (5.3b), we note that by definition of
a and γj:

2a = 6α2− 3

(
4∑
j=1

γj

)
α+

∑
1≤j<`≤4

γjγ` = 6

(
α− 1

4

4∑
j=1

γj

)2

− 3

8

(
4∑
j=1

γj

)2

+
∑

1≤j<`≤4

γjγ`.

It remains to notice that

3

8

(
4∑
j=1

γj

)2

−
∑

1≤j<`≤4

γjγ` =
1

2

4∑
j=1

γ2j −
1

8

∑
1≤j,`≤4

γjγ` = 2

1

4

4∑
j=1

γ2j −

(
1

4

4∑
j=1

γj

)2
 ,

showing
2a = 6(α−m(γ))2 − 2σ2(γ).

The coercivity of P (D) is essential for characterizing the coercivity of its associated
resolvent operator:

Proposition 5.5. Suppose that u ∈ C∞((0,∞)) solves

xu+ P (D)u = 0 in (0,∞). (5.5)

If |u|2,α <∞ for some α ∈ R in the coercivity range of P (D), then u(x) ≡ 0.

Proof. We set ũ(s) := u(es) so that (5.5) turns into

esũ+ P (∂s)ũ = 0. (5.6)

Next we take η ∈ C∞0 (R) with 0 ≤ η ≤ 1, η(s) = 1 for |s| ≤ 1, and η(s) = 0 for |s| ≥ 2, and
set ηn(s) := η

(
s
n

)
. Then we test equation (5.6) with e−2αsηnũ and perform an integration

by parts so that
(ηnũ, ũ)α− 1

2
+ B̃α (ũ, ηnũ) = 0,

with

B̃α(ũ1, ũ2) :=

∫ ∞
−∞

e−2αs((D − γ1)(D − γ2)ũ1)((D + γ3 − 2α)(D + γ4 − 2α)ũ2) ds.

Obviously (ηnũ, ũ)α− 1
2
≥ 0 so that B̃α(ũ, ηnũ) ≤ 0. By Lebesgue’s theorem on domi-

nated convergence it is elementary to see that |ũ− ηnũ|2,α → 0 as n → ∞. Then also

B̃α(ũ, ηnũ) → B̃α(ũ, ũ) as n → ∞, i.e. B̃α(ũ, ũ) ≤ 0. Since B̃α(ũ, ũ) = Bα(u, u) ≥ λ′ |u|22,α
with λ′ > 0 by Lemma 5.2 (d), we need to have |u|2,α = 0, viz. u(x) ≡ 0.

20



6. The Resolvent Equation

6.1. The Main Result

In this section we construct a unique solution to the resolvent equation

xu+ p(D)u = f for x > 0. (6.1)

The understanding of solutions to (6.1) will be crucial in order to understand the linear
parabolic equation associated to (1.8a), (6.1) being its time-discrete analog. Here well-
posedness of (6.1) holds for functions u(x) and data f(x) that are regular and bounded as
x↘ 0 and decay as x↗∞. More precisely we define:

Definition 6.1. A function f ∈ C∞((0,∞)) is said to satisfy (G0), if there exist ε > 0
and a function f̄(x, y), analytic in [0, ε] × [0, εβ], with (f̄ , ∂yf̄)(0, 0) = (0, 0) such that
f(x) = f̄(x, xβ) for 0 ≤ x ≤ ε.

Definition 6.2. A function f ∈ C∞((0,∞)) is said to satisfy (G∞), if

lim sup
x→∞

∣∣∣e4ν 4√x∂jxf(x)
∣∣∣ <∞ for all j ∈ N0 and all ν ∈

[
0, 1√

2

)
.

The main result of this section then reads:

Proposition 6.3 (Resolvent equation). Suppose f ∈ C∞((0,∞)) satisfies (G0) and (G∞).
Then there exists exactly one solution u(x) to the resolvent equation (6.1) such that |u|2,α <
∞ for some α in the coercivity range of p(D). In addition, u satisfies (G0) and (G∞).

We obtain solutions to (6.1) in three steps:

1. We construct a two-parameter family of solutions to (6.1) for x� 1 satisfying (G0).

2. We construct a two-parameter family of solutions to (6.1) for x > 0 fulfilling (G∞).

3. Using the coercivity result, Proposition 5.5, we find exactly one solution of (6.1)
obeying both (G0) and (G∞).

6.2. The Resolvent Equation for x� 1

For the first step we notice that the term xu can be treated as a perturbation of the
fourth-order equation

p(D)u = f. (6.2)

The corresponding homogeneous equation has two linearly independent bounded solutions,
namely x0 and xβ. Hence one expects that a generic bounded solution u(x) to (6.2) behaves
as

u = a1 + a2x
β + o(xβ) as x↘ 0, with a1, a2 ∈ R (6.3)

and that f = o(xβ) as x↘ 0. Therefore it is convenient to unfold the singular behavior at
x↘ 0 by introducing a second spatial variable according to

u(x) = ū(x, xβ), f(x) = f̄(x, xβ) (6.4)
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and to identify the derivative D with

D̄ := x∂x + βy∂y, (6.5)

i.e. Dv(x) = D̄v(x, xβ) whenever v̄(x, y) and v(x) = v̄(x, xβ) are smooth in (x, y) and x,
respectively (cf. [3]). Then, instead of solving equation (6.2), we look for solutions to the
equation

p(D̄)ū = f̄ for (x, y) ∈ Q := [0, `x]× [0, `y] (6.6a)

for some `x, `y > 0. Instead of (6.3), we impose the boundary conditions

(ū, ∂yū)(0, 0) = (a1, a2). (6.6b)

Then, solving problem (6.6) and using the identification (6.4) as defining equations for
u(x) and f(x), we also obtain a solution of (6.2) obeying the boundary behavior (6.3).
Exploiting the linearity of (6.6a), we can write ū = a1 + a2y + ū0, where ū0 satisfies
(6.6) with homogeneous boundary conditions. Hence it is sufficient to consider the case
a1 = a2 = 0.

Lemma 6.4. Let Q = [0, `x] × [0, `y] with `x, `y > 0. For all f̄(x, y) smooth in Q such
that

(
f̄ , ∂yf̄

)
(0, 0) = (0, 0), there exists ū(x, y) =:

(
T f̄
)

(x, y) smooth satisfying (6.6a) and
(ū, ∂yū)(0, 0) = (0, 0). Furthermore ū(x, y) obeys the estimates

4∑
m=0

∥∥D̄m∂kx∂
`
yū
∥∥
C0(Q)

.
∥∥∂kx∂`yf̄∥∥C0(Q)

(6.7)

for all (k, `) ∈ N2
0 \ {(0, 0), (0, 1)}.

Proof. We will not go into the details of the proof of Lemma 6.4, as it is mainly contained
in a previous work by three of the authors [3]. The crucial point is to notice that the
product form of p(D̄)

p(D̄) =

(
D̄ +

3

2

)(
D̄ + β +

1

2

)
D̄
(
D̄ − β

)
induces a product form of the solution operator T as

T = TβT0T−β− 1
2
T− 3

2
.

Here Tγ for γ ∈
{
−3

2
,−β − 1

2
, 0, β

}
is the solution operator associated to the problem{

(D̄ − γ)v̄ = ḡ for (x, y) ∈ Q, ,
(v̄, ∂yv̄)(0, 0) = (0, 0),

where ḡ(x, y) is smooth with (ḡ, ∂yḡ) (0, 0) = (0, 0). The solution has an explicit represen-
tation

v̄(x, y) = (Tγ ḡ)(x, y) =

∫ 1

0

r−γ ḡ(rx, rβy)
dr

r
, (6.8)
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which is finite for all γ ∈ {−3
2
,−β − 1

2
, 0, β} only if (ḡ, ∂yḡ) (0, 0) = (0, 0). Differentiating

(6.8), we obtain

∂kx∂
`
yv̄(x, y) =

∫ 1

0

r−γ+k+β`∂̄kx∂
`
yḡ(rx, rβy)

dr

r
.

For (k, `) ∈ N2
0 \ {(0, 0), (0, 1)}, the power of r in the integrand is larger than −1 and

estimates (6.7) follow directly.

We now return to the resolvent equation (6.1) and apply the unfolding described above,
leading to {

xū+ p(D̄)ū = f̄ for (x, y) ∈ Q,
(ū, ∂yū)(0, 0) = (a1, a2).

(6.9)

We can accomplish the first step, outlined at the beginning of this section, by employing
Lemma 6.4 and using a fixed point argument:

Lemma 6.5 (The resolvent equation for x� 1). There exists ε > 0 such that for any L >
0, any a1, a2 ∈ R, and any f̄(x, y) analytic in Q = [0, ε]× [0, L] with

(
f̄ , ∂yf̄

)
(0, 0) = (0, 0)

and
∞∑

k,`=0

εkL`

k!`!

∥∥∂kx∂`y(f̄ − a1x− a2xy)
∥∥
C0(Q)

=: K <∞, (6.10)

problem (6.9) has an analytic solution ū(x, y). Furthermore

∞∑
k,`=0

4∑
m=0

εkL`

k!`!

∥∥∂kx∂`yD̄m(ū− a1 − a2y)
∥∥
C0(Q)

. K. (6.11)

In particular, u(x) := ū(x, xβ) is a solution to (6.1) for x ≤ ε with

u = a1 + a2x
β + o(xβ) as x↘ 0.

Proof. We write

ū0 := ū− a1 − a2y and f̄0 := f̄ − a1x− a2xy,

so that problem (6.9) is equivalent to{
xū0 + p(D̄)ū0 = f̄0 for (x, y) ∈ Q,

(ū0, ∂yū0) = (0, 0).

Note that
(
f̄0, ∂yf̄0

)
(0, 0) =

(
f̄ , ∂yf̄

)
(0, 0) = (0, 0) holds, too. Hence we can apply the

solution operator T constructed in Lemma 6.4, which leaves us with the fixed point equation

ū0 = T [ū0] := T
[
f̄0 − xū0

]
= T f̄0 − T [xū0] . (6.12)
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For applying the contraction mapping theorem, we introduce the norms

‖ū0‖1 :=
∞∑

k,`=0

4∑
m=0

εkL`

k!`!

∥∥∂kx∂`yD̄mū0
∥∥
C0(Q)

(6.13)

and ∥∥f̄0∥∥0 :=
∞∑

k,`=0

εkL`

k!`!

∥∥∂kx∂`yf̄0∥∥C0(Q)
, (6.14)

mimicking the Taylor series of ū0 and f̄0.

The maximal regularity estimates (6.7) of Lemma 6.4 cease to hold for the cases (k, `) ∈
{(0, 0), (0, 1)}. Therefore, we need to show that the norms ‖·‖0 and ‖·‖1 are equivalent
to the ones not containing the indices (k, `) ∈ {(0, 0), (0, 1)}. This follows from the basic
estimate

‖ḡ‖+ L ‖∂yḡ‖ . ε ‖∂xḡ‖+ L2
∥∥∂2y ḡ∥∥ (6.15)

for all smooth ḡ(x, y) with (ḡ, ∂yḡ)(0, 0) = (0, 0). In order to show (6.15), by scaling
x = εx̂ and y = Lŷ, it is enough to treat the case of ε = L = 1. Then estimate (6.15) is
an immediate consequence of the representations

ḡ(x, y) =

∫ x

0

∂xḡ (x′, y) dx′ +

∫ y

0

∫ y′

0

∂2y ḡ (0, y′′) dy′′ dy′,

which yields ‖ḡ‖ ≤ ‖∂xḡ‖+
∥∥∂2y ḡ∥∥, and

∂yḡ(x, y) = ḡ(x, 1)− ḡ(x, 0) +

∫ y

0

y′∂2y ḡ (x, y′) dy′ −
∫ 1

y

(1− y′) ∂2y ḡ (x, y′) dy′,

demonstrating ‖∂yḡ‖ . ‖ḡ‖+
∥∥∂2y ḡ∥∥.

It follows from (6.15) and (6.7) that there exists a universal constant M ∈ (0,∞) such
that

‖T ḡ‖1 ≤M ‖ḡ‖0 (6.16)

for all smooth ḡ(x, y) with (ḡ, ∂yḡ) (0, 0) = (0, 0).

For ε > 0 we introduce the complete metric space

XC := {ū0 : ‖ū0‖1 ≤ CK, (ū0, ∂yū0)(0, 0) = (0, 0)}, (6.17a)

with K as in (6.10), endowed with the distance function

dX

(
ū
(1)
0 , ū

(2)
0

)
:=
∥∥∥ū(1)0 − ū

(2)
0

∥∥∥
1
. (6.17b)
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We will specify the constant C > 0 further below. Using Leibniz’ rule, we obtain

‖T [xū0]‖1
(6.16)

≤ M ‖xū0‖0
(6.14)
= M

∞∑
k,`=0

εkL`

k!`!

∥∥∂kx∂`y(xū0)∥∥C0(Q)

≤ M

∞∑
k=1

∞∑
`=0

εkL`

k!`!
k
∥∥∂k−1x ∂`yū0

∥∥
C0(Q)

+M
∞∑

k,`=0

εkL`

k!`!
‖x‖C0(Q)

∥∥∂kx∂`yū0∥∥C0(Q)

≤ Mε

∞∑
k,`=0

εkL`

k!`!

∥∥∂kx∂`yū0∥∥C0(Q)
+Mε

∞∑
k,`=0

εkL`

k!`!

∥∥∂kx∂`yū0∥∥C0(Q)

≤ 2Mε ‖ū0‖0 , (6.18)

where in the third inequality we have used the gain in scaling encoded in the two summands
by the index k and by the ‖x‖C0(Q) term, respectively. Therefore∥∥∥T [ū(1)0

]
− T

[
ū
(2)
0

]∥∥∥
1

(6.12)
=

∥∥∥T [x(ū(1)0 − ū
(2)
0

)]∥∥∥
1

(6.18)

≤ 2Mε
∥∥∥ū(1)0 − ū

(2)
0

∥∥∥
0

≤ 2Mε
∥∥∥ū(1)0 − ū

(2)
0

∥∥∥
1

(6.19)

and

‖T [ū0]‖1
(6.12)

≤
∥∥T f̄0∥∥1 + ‖T [xū0]‖1

(6.16),(6.18)

≤ M
∥∥f̄0∥∥0 + 2Mε ‖ū0‖0

(6.10),(6.14),(6.17a)

≤ M(2Cε+ 1)K. (6.20)

Choosing C := 2M and ε ≤ 1
4M

, we infer from (6.20) that ‖T [ū0]‖1 ≤ CK. Together with
(6.19), this shows that the mapping T maps XC into itself and is a contraction provided
ε ≤ 1

4M
. Hence we obtain a unique fixed point ū(x, y), which by (6.17a) obeys (6.11).

6.3. The Resolvent Equation for x� 1

We now derive the two-parameter family of solutions, which are well-behaved for x� 1.
The solutions are characterized in the following way:

Lemma 6.6 (The resolvent equation for x� 1). Assume f ∈ C∞((0,∞)) satisfies (G∞).
Then:

(a) there exists a smooth solution u∞(x) of the resolvent equation (6.1) that satisfies
(G∞);

(b) there exist two linearly independent solutions u3, u4 of the resolvent equation (6.1)
with f = 0 that satisfy (G∞);

(c) there exists a two-parameter family of solutions of (6.1) that satisfy (G∞) and that
is of the form

u(x) = u∞(x) + a3u3(x) + a4u4(x) for x > 0, a1, a2 ∈ R.

Proof. We split the proof into three parts:
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Proof of (a): Construction of a particular solution. Using the transformations

r := 4 4
√
x, ũ(r) := u(x), and f̃(r) := x−1f(x), (6.21)

and noting that x∂x = 1
4
r∂r, equation (6.1) may be rewritten as(
1 + ∂4r

)
ũ+ r−1q

(
r−1, ∂r

)
ũ = f̃ for r > 0, (6.22)

where

q

(
1

r
, ∂r

)
= 14∂3r + α2r

−1∂2r + α3r
−2∂r, (6.23)

is a homogeneous polynomial of degree 3 (mind the scaling) with α2, α3 ∈ R.

Take a smooth cut-off function η0(r) with η0(r) = 1 for r ≥ 1, η0(r) = 0 for r ≤ 1
2
, and

let η(r) = η0
(
r
R

)
for some R ≥ 1 (to be specified later), so that |∂jrη(r)| .j R

−j for j ≥ 0.
We seek a solution ṽ of(

1 + ∂4r
)
ṽ +Q

(
r−1, ∂r

)
ṽ = ηf̃ for r ∈ R, (6.24)

where
Q
(
r−1, ∂r

)
:= η(r)r−1q

(
r−1, ∂r

)
=: β1(r)∂

3
r + β2(r)∂

2
r + β3(r)∂r.

Then, for r ≥ R, ṽ(r) is a solution of (6.22) that, by standard ODE theory, can be extended
to a solution ũ(r) of (6.22) for all r > 0. Undoing our transformation, we can define u∞(x)
by u∞(x) := ũ(4 4

√
x) for x > 0.

By construction, the coefficients βj(r) vanish for r ≤ R
2

and obey
∣∣∂krβj(r)∣∣ .k R

−k−j

for k ≥ 0. The fundamental solution g(r) of the operator (1 + ∂4r ) is defined by

(1 + ∂4r )g = δ0, and lim
r→±∞

g(r) = 0. (6.25)

It is explicitly given by

g(r) =


1√
2

sin
(

r√
2

)
e

r√
2 − 1√

2
cos
(

r√
2

)
e

r√
2 for r < 0,

− 1√
2

sin
(

r√
2

)
e
− r√

2 − 1√
2

cos
(

r√
2

)
e
− r√

2 for r > 0.
(6.26)

Convolving (6.24) with g, we arrive at the equivalent fixed point problem

ṽ = g ∗
(
ηf̃
)
− g ∗

(
Q
(
r−1, ∂r

)
ṽ
)

for r ∈ R. (6.27)

It is our aim to apply the contraction mapping theorem to equation (6.27). Therefore,
in view of (6.27) and the decay properties of g (cf. (6.26)), we define the norms

‖ṽ‖N,ν := sup
r∈R

max
j=0,··· ,N

∣∣eνr∂jr ṽ(r)
∣∣
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with ν ∈
[
0, 1√

2

)
. Using (6.26), we notice that for j = 0, 1, 2, 3, eνr∂jrg(r) exists and decays

exponentially as r → ±∞. In particular eνr∂jrg(r) is absolutely integrable for j = 0, 1, 2, 3.
We further use ∂4rg = δ0−g (cf. (6.25)) and the general fact that eν·(f ∗g) = (eν·f)∗ (eν·g),
so that for any j ≥ 0 and any ṽ ∈ Cmax{j−1,3}(R) we can estimate

sup
r∈R

∣∣eνr∂jr (g ∗ (Q (r−1, ∂r) ṽ))∣∣ = sup
r∈R

∣∣(eνr∂min{4,j}
r g) ∗

(
eνr∂max{0,j−4}

r Q
(
r−1, ∂r

)
ṽ
)∣∣

. sup
r∈R

∣∣eνr∂max{0,j−4}
r

(
Q
(
r−1, ∂r

)
ṽ
)∣∣

.j
1

R
sup
r∈R

max
k=1,··· ,max{j−1,3}

∣∣eνr∂kr ṽ∣∣ . (6.28)

In the same way we obtain for any j ≥ 0

sup
r∈R

∣∣∣eνr∂jr (g ∗ (ηf̃)
)∣∣∣ .j sup

r∈R

∣∣∣eνr∂max{0,j−4}
r (ηf̃)

∣∣∣ . (6.29)

Recalling (6.21) and since f satisfies (G∞), the right hand side of (6.29) is finite for all

j ≥ 0 and all ν ∈
[
0, 1√

2

)
.

We seek a solution to (6.27) as a fixed point in the Banach space

Xν :=
{
ṽ ∈ C4(R) : ‖ṽ‖4,ν <∞

}
for the mapping

T [ṽ] := g ∗ (ηf̃)− g ∗
(
Q
(
r−1, ∂r

)
ṽ
)

for r ∈ R.

Inequalities (6.28) and (6.29) imply that

‖T [ṽ]‖4,ν .
∥∥∥ηf̃∥∥∥

0,ν
+ ‖ṽ‖4,ν <∞.

Hence T maps Xν into itself. Inequality (6.28) together with the linearity of T implies
that

‖T [ṽ1]− T [ṽ2]‖4,ν .
1

R
‖ṽ1 − ṽ2‖4,ν .

Therefore T is a contraction in Xν for R� 1.

Hence we have shown the existence and uniqueness of a solution to (6.27) in Xν for any

ν ∈
[
0, 1√

2

)
. Since the spaces Xν are nested, the solution is the same for all ν ∈

[
0, 1√

2

)
.

Finally, we have

‖ṽ‖N,ν
(6.27)

≤
∥∥∥g ∗ (ηf̃)

∥∥∥
N,ν

+
∥∥g ∗ (Q (r−1, ∂r) ṽ)∥∥N,ν (6.29),(6.28)

.N

∥∥∥ηf̃∥∥∥
N−4,ν

+
1

R
‖ṽ‖N−1,ν ,

hence a repeated application of this formula starting from N = 5 yields ‖ṽ‖N,ν < ∞ for

any N ∈ N and ν ∈
[
0, 1√

2

)
. Undoing transformation (6.21) completes the proof of (a).
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Proof of (b): Construction of u3 and u4. Let u(x) solve the resolvent equation (6.1) with
right hand side f(x) ≡ 0. Again we carry out the change of variables (6.21). Then ũ(r)
solves the homogeneous analog of (6.22), i.e.

(1 + ∂4r )ũ+ r−1q
(
r−1, ∂r

)
ũ = 0 for r > 0, (6.30)

with q (r−1, ∂r) given by (6.23). It is convenient to apply the following transformation:

ũ(r) =: rαeµrv(r), α := −7

2
, (6.31)

where µ is one of the two fourth roots of −1 with Re µ < 0. Without loss of generality we
focus on µ := i−1√

2
. The reason for choosing transformation (6.31) is two-fold:

• Because of ∂4re
µr = eµr(µ + ∂r)

4, the factor eµr splits off the behavior of solutions
(1 + ∂4r )ũ = 0, which we expect to play the dominant role as r ↗∞.

• The perturbation r−1q (r−1, ∂r) of the operator (1 + ∂4r ) is of order O (r−1) as r ↗
∞, the leading order perturbation being given by 14 r−1∂3r (cf. (6.23)). Since r−1

is not integrable around r = ∞, one cannot use Duhamel’s principle to treat the
perturbation by a contraction argument. Because of ∂4rr

α = rα (∂r + αr−1)
4
, the

factor rα annihilates the term 14r−1∂3r for α = −14
4

= −7
2
, so that the remainder is

of order O (r−2) and thus behaves well (in the sense sketched above) as r ↗∞.

We expect the function v(r) to converge to a constant as r ↗∞, without loss of generality
limr↗∞ v(r) = 1. This means that solutions to the perturbed equation (6.30) do not stay
close to the solutions of (1 + ∂4r )ũ = 0, but in fact differ by an algebraic pre-factor rα.

Applying the transformation (6.31) to (6.30) by using Leibniz’ rule, we arrive at the
problem [

(µ+ ∂r)
4 + 1

]
v + r−2q̃

(
r−1, ∂r

)
v = 0 for r > 0, (6.32a)

v → 1 as r ↗∞, (6.32b)

where

q̃
(
r−1, ∂r

)
= γ1∂

2
r +

(
a2,1 + a2,2r

−1)︸ ︷︷ ︸
=:γ2(r)

∂r +
(
a3,1 + a3,2r

−1 + a3,3r
−1)︸ ︷︷ ︸

=:γ3(r)

, (6.32c)

with numerical constants γ1, a2,1, a2,2, a3,1, a3,2, a3,3 ∈ C. Writing v =: 1 + w, we can
reformulate system (6.32) as[

(µ+ ∂r)
4 + 1

]
w + r−2q̃

(
r−1, ∂r

)
w = −γ3(r)r−2 for r > 0 (6.33a)

w → 0 as r ↗∞. (6.33b)

Our next step is to construct a linear solution operator T to the leading order equation[
(µ+ ∂r)

4 + 1
]
w = f for r > 0, (6.34)
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with the condition w → 0 as r ↗ ∞, for a smooth and sufficiently decaying f(r). By
construction, the zeros of the characteristic polynomial associated to the linear differential
operator [(µ+ ∂r)

4 + 1] are those of (1 + ∂4r ) shifted by −µ. Hence the zeros are explicitly
given by

ζ1 = 0, ζ2 = −i
√

2, ζ3 =
√

2(1− i), and ζ4 =
√

2, (6.35)

where we ordered them so that Re ζj = 0 for j = 1, 2 and Re ζj > 0 for j = 3, 4. We can
factorize the solution operator T into T = Tζ4Tζ3T0, where T0 and Tζ are defined through

∂r(∂r − ζ2)T0f(r) = f(r), (∂r − ζ)Tζf(r) = f(r) for ζ ∈ {ζ3, ζ4}, (6.36)

and explicitly given by

(T0f)(r) =
1

ζ2

∫ ∞
0

(
1− e−ζ2r′

)
f(r + r′) dr′, (6.37a)

(Tζf)(r) =

∫ ∞
0

e−ζr
′
f(r + r′) dr′ for ζ ∈ {ζ3, ζ4}. (6.37b)

We now show that the explicit representations (6.37), together with the fact that Re ζ2 = 0
andRe ζj > 0 for j = 3, 4, imply the following maximal regularity estimates for the solution
operator:

sup
r≥R

k=0,1,2

∣∣r∂j+kr (T0f)(r)
∣∣ . sup

r≥R

∣∣r2∂jrf(r)
∣∣ , (6.38a)

sup
r≥R
k=0,1

∣∣r∂j+kr (Tζf)(r)
∣∣ . sup

r≥R

∣∣r∂jrf(r)
∣∣ for ζ ∈ {ζ3, ζ4}, (6.38b)

for j ∈ N0 and R > 0 arbitrary. First of all, since ∂r commutes with Tζ and T0, it is enough
to consider the case of j = 0. Furthermore, an integration by parts of (6.37a) yields

∂r(T0f)(r) = −
∫ ∞
0

e−ζ2r
′
f(r + r′) dr′. (6.39)

Hence we can estimate

sup
r≥R
|r(T0f)(r)|

(6.37a)

≤ sup
r≥R

r
2

|ζ2|

∫ ∞
0

|f(r + r′)| dr′

≤ sup
r≥R

r
2

|ζ2|

∫ ∞
0

1

(r + r′)2
dr′ sup

r≥R

∣∣r2f(r)
∣∣

=
2

|ζ2|
sup
r≥R

∣∣r2f(r)
∣∣ , (6.40a)

sup
r≥R
|r(Tζf)(r)|

(6.37b)

≤
∣∣∣∣∫ ∞

0

e−ζr
′
dr′
∣∣∣∣ sup
r≥R
|rf(r)| ≤ 1

|Re ζ|
sup
r≥R
|rf(r)| (6.40b)
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for ζ ∈ {ζ3, ζ4}, and

sup
r≥R
|r∂r(T0f)(r)|

(6.39)

≤ sup
r≥R

r

∫ ∞
0

|f(r + r′)| dr′ ≤ sup
r≥R

r

∫ ∞
0

1

(r + r′)2
dr′ sup

r≥R

∣∣r2f(r)
∣∣

= sup
r≥R

∣∣r2f(r)
∣∣ . (6.40c)

By using equations (6.36), we can further upgrade estimates (6.40) to one derivative higher
and obtain the maximal regularity estimates (6.38) for j = 0.

Estimates (6.38) for T0, Tζ3 , and Tζ4 can be combined to obtain the following maximal
regularity estimate for the linear solution operator T :

sup
r≥R

k=0,1,2,3,4

∣∣r∂j+kr (T f)(r)
∣∣ . sup

r≥R

∣∣r2∂jrf(r)
∣∣ (6.41)

for j ∈ N0 and R > 0 arbitrary.

In order to solve the fixed point equation

w = S[w] := −T
[
r−2q̃

(
r−1, ∂r

)
w + γ3(r)r

−2] (6.42)

that we obtain by applying T to (6.33), we introduce the Banach spaces

XN,R :=

{
w : sup

r≥R

∣∣r∂jrw∣∣ <∞ for all j = 0, · · · , N + 4

}
, (6.43)

where N ∈ N0 is arbitrary and R > 0 will be chosen later. We then note that

sup
r≥R

j=0,··· ,N+4

∣∣r∂jrT [γ3(r)r−2]∣∣ (6.41). sup
r≥R

j=0,··· ,N

∣∣r2∂jrγ3(r)r−2∣∣ (6.32c)< ∞, (6.44a)

as well as

sup
r≥R

j=0,··· ,N+4

∣∣r∂jrT [r−2q̃ (r−1, ∂r)w]∣∣ (6.41)

. sup
r≥R

j=0,··· ,N

∣∣r2∂jrr−2q̃ (r−1, ∂r)w∣∣
(6.32c)

.N sup
r≥R

j=0,··· ,N+2

∣∣∂jrw∣∣
≤ 1

R
sup
r≥R

j=0,··· ,N+4

∣∣r∂jrw∣∣ . (6.44b)

Then we see by the triangle inequality

sup
r≥R

j=0,··· ,N+4

∣∣r∂jrS[w]
∣∣ (6.42)

≤ sup
r≥R

j=0,··· ,N+4

∣∣r∂jrT [r−2q̃ (r−1, ∂r)w]∣∣
+ sup

r≥R
j=0,··· ,N+4

∣∣r∂jrT [γ3(r)r−2]∣∣ (6.43),(6.44)< ∞.
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Thus we recognize that S maps XN,R into itself. Furthermore, from (6.44b) we obtain

sup
r≥R

j=0,··· ,N+4

∣∣r∂jrS[w1 − w2]
∣∣ = sup

r≥R
j=0,··· ,N+4

∣∣r∂jrT [r−2q̃ (r−1, ∂r) (w1 − w2)
]∣∣

.N
1

R
sup
r≥R

j=0,··· ,N+4

∣∣r∂jr(w1 − w2)
∣∣

for wj ∈ XN,R. Hence S is a contraction for any R ≥ RN �N 1. The contraction mapping
theorem yields for every N and every R ≥ RN a unique fixed point wN,R solving (6.33).
Obviously wN,RN

|[R,∞) is a fixed point in XN,R, hence wN,RN
|[R,∞) = wN,R by the uniqueness

part of the contraction mapping theorem. Let wN := wN,RN
. If we now pick two integers

N1, N2 ∈ N0 with N1 < N2, then we can take R := max {RN1 , RN2}. In view of the above,
wNi
|[R,∞) are the unique fixed points in XNi,R. Since XN1,R ⊃ XN2,R, we have wN1 = wN2 in

[R,∞), again by the uniqueness part of the contraction mapping theorem. As any solution
of (6.33) for r � 1 can be uniquely extended to a solution of (6.33) for r > 0 by standard
ODE theory, this defines a unique function w : (0,∞) → C such that w|[R,∞) is a fixed
point in XN,R for all R ≥ RN . Hence w is a smooth solution of (6.33) such that

lim sup
r→∞

∣∣r∂jrw∣∣ <∞ for all j ∈ N0.

Undoing the transformation v = 1 + w, (6.31), and (6.21), we obtain a solution of the
resolvent equation (6.1) for all x > 0 with the asymptotic behavior

u(x) = x−
7
8 exp

[
− 4√

2
4
√
x

] [
cos

(
4√
2

4
√
x

)
+ i sin

(
4√
2

4
√
x

)]
· (1 + o(1))

as x ↗ ∞. We can define u3(x) and u4(x) as real and imaginary parts of u(x) (note
that the coefficients of (6.1) are all real) and obtain two smooth and linearly independent
solutions of (6.1) that obey the decay properties of the lemma.

Proof of (c): Construction of a two-parameter family of solutions. This follows directly
from assertions (a) and (b) of the lemma.

6.4. Matching of the Regimes x� 1 and x� 1

Lemmas 6.5 and 6.6 can be combined to the desired result on solutions to equation (6.1):

Proof of Proposition 6.3. Let ū1(x, y) and ū2(x, y) denote the solutions of (6.9) for (a1, a2) =
(1, 0) and (a1, a2) = (0, 1) and right hand side f(x) ≡ 0 that we constructed in Lemma 6.5.
These are analytic in a sufficiently small rectangle [0, ε]× [0, εβ]. Hence u1(x) := ū1(x, x

β)
and u2(x) := ū2(x, x

β), x ∈ [0, ε], are solutions of (6.1) that satisfy (G0). These func-
tions can, by standard ODE theory, be extended to solutions of the resolvent equation for
0 < x < ∞: we denote these extensions again by u1(x) and u2(x). The solutions (u1, u2)
to (6.1) are linearly independent (as their asymptotic behavior as x ↘ 0 is different, cf.
(6.11)).
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By construction, the solutions (u3, u4) of the homogeneous resolvent equation, defined
in Lemma 6.6 (b), are linearly independent. We argue that also u1, · · · , u4 are linearly
independent and thus span the four-dimensional solution space of the homogeneous resol-
vent equation (6.1). Let (a1, · · · , a4) ∈ R4 be arbitrarily such that a1u1 + · · · + a4u4 = 0.
Consider

u := a1u1 + a2u2 = −a3u3 − a4u4.

From the first representation we learn that u satisfies (G0) and from the second one we
learn that it also satisfies (G∞). In particular |u|2,α < ∞ for some α in the coercivity
range of p(D). Hence, by Proposition 5.5 u(x) ≡ 0, which by the definition of u amounts
to a1u1 + a2u2 = a3u3 + a4u4 = 0. Since (u1, u2) as well as (u3, u4) are both linearly
independent, we necessarily have a1 = a2 = 0 as well as a3 = a4 = 0.

By Lemma 6.5 there exists a particular solution u0 of (6.1) that satisfies (G0) and by
Lemma 6.6 there exists a particular solution u∞ of (6.1) that satisfies (G∞). By the above,
we learn that u∞ − u0 = a1u1 + · · ·+ a4u4 for certain a1, · · · , a4 ∈ R. Now consider

u := u0 + a1u1 + a2u2 = u∞ − a3u3 − a4u4.

Then u solves (6.1). From the first representation we learn that u satisfies (G0) and from
the second we learn that u satisfies (G∞). In particular |u|2,α < ∞ for every α in the
coercivity range of p(D). This establishes the existence part of the proposition.

It remains to prove the uniqueness of u. Let ũ(x) be another solution of (6.1) with
|ũ|2,α <∞ for some α in the coercivity range of p(D). We set w(x) := u(x)− ũ(x). Then
|w|2,α < ∞ and w(x) solves (6.1) with f(x) ≡ 0. By Proposition 5.5 we need to have
w(x) ≡ 0, which completes the proof of Proposition 6.3.

7. The Linear Degenerate Parabolic Equation

In this section we consider the linear degenerate parabolic problem (1.10), i.e.

x∂tu+ p(D)u = f for t ∈ I, x > 0, (7.1)

with u|t=0 = u0 for some given initial data u0 and where I = (0, τ) ⊆ (0,∞) is an interval.
Note that if u is a distributional solution of (7.1) such that |||u|||I <∞, then both (7.1) and
u|t=0 = u0 hold classically (cf. Remark 7.7). The aim is to derive the maximal regularity
estimate (2.16), i.e.

|||u|||I .k,δ |||u0|||0 + |||f |||1,I . (7.2)

In parallel, we derive a corresponding existence and uniqueness result. The technical
derivation of both will be based on a time discretization and the existence and regularity
result for the resolvent equation, Proposition 6.3. Since deriving the a priori estimates on
the level of the time discretized equation is somewhat cumbersome, we start by a formal
derivation of (7.2).
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7.1. Heuristics

Throughout the subsection estimates may depend on k, `, and α. The main ingredients
for the formal derivation of (7.2) (which we will work out without loss of generality for
I = (0,∞), since we may otherwise extend f by 0 in time t) are the coercivity and the
maximal regularity of p(D), cf. Corollary 5.4 and Lemma 7.2, respectively.

We first formally argue how to get the parabolic estimate (2.2), i.e.

d

dt

(
|u|2α− 1

2
+ C1

∣∣D`+2u
∣∣2
α− 1

2

)
+ |∂tu|2`,α + |u|2`+4,α . |f |2α (7.3)

for ` ∈ N0 and some constant C1 > 0 only depending on ` and α, from the coercivity
estimate (2.1), i.e.

(u, p(D)u)α & |u|2α . (7.4)

Testing equation (7.1) with u in the inner product (·, ·)α and using Young’s inequality for
the right hand side, we obtain from (7.4)

d

dt
|u|2α− 1

2
+ |u|2α . |g|2α . (7.5)

This basic estimate serves as an anchoring for estimates containing higher powers of D.
For the latter we test equation (7.1) with (D + 2α − 1)`+2D`+2u. Due to the symmetry
properties of D (cf. (4.4)) integrating by parts yields

d

dt

∣∣D`+2u
∣∣2
α− 1

2

+
(
(D − 1)`p(D − 1)u, (D + 2α− 1)2D`+2u

)
α

=
(
(D − 1)`f, (D + 2α− 1)2D`+2u

)
α
.

(7.6)

By interpolation (cf. Lemma B.1) we know that(
(D − 1)`p(D − 1)u, (D + 2α− 1)2D`+2u

)
α
&
∣∣D`+4u

∣∣2
α
− C |u|2α (7.7)

for a sufficiently large C <∞. Again by interpolation and by the Cauchy-Schwarz inequal-
ity we have (

(D − 1)`f, (D + 2α− 1)2D`+2u
)
α
. |f |`,α

√
|u|2α + |D`+4u|2α. (7.8)

The combination of (7.7) and (7.8) in (7.6) implies

d

dt

∣∣D`+2u
∣∣2
α− 1

2

+
∣∣D`+4u

∣∣2
α
− C |u|2α . |f |2`,α

for sufficiently large C < ∞. Adding a large multiple of (7.5) and using once more
equation (7.1) to obtain control over the time derivative ∂tu, we arrive at (7.3).

In Section 2, we have already argued that (7.3) yields (2.6), i.e.

d

dt

(
|v|2α+ 1

2
+ C1

∣∣D`+2v
∣∣2
α+ 1

2

)
+ |∂tv|2`,α + |v|2`+4,α+1 . |f |

2
`+4,α+1 , (7.9)
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where v := p(D)u. We now assume that

β − 1± δ,−1

2
± δ are in the coercivity range, (7.10)

which is the case for 0 < δ � 1 (cf. Section 5, Corollary 5.4). Under the assumption
(7.10) we shall argue that (7.9) implies for ` ≥ k + 2 the following preliminary version of
the maximal regularity estimates (2.14) and (2.15):

sup
t≥0

(
t2β−1 |v|2k+2,β− 1

2
±δ + |v|2`+2,±δ

)
+

∫ ∞
0

(
t2β−1 |∂tv|2k,β−1±δ + |∂tv|2`,− 1

2
±δ

)
dt

+

∫ ∞
0

(
t2β−1 |v|2k+4,β±δ + |v|2`+4, 1

2
±δ

)
dt

. |v0|`+2,±δ +

∫ ∞
0

(
t2β−1 |f |2k+4,β±δ + |f |`+4, 1

2
±δ

)
dt.

(7.11)

Integrating (7.9) in time, we obtain

sup
t≥0
|v|2`+2,α+ 1

2
+

∫ ∞
0

(
|∂tv|2`,α + |v|2`+4,α+1

)
dt . |v0|2`+2,α+ 1

2
+

∫ ∞
0

|f |2`+4,α+1 dt. (7.12)

Multiplying (7.9) (with ` replaced by k) with the time weight t2σ (σ > 0) and integrating,
we likewise obtain

sup
t≥0

t2σ |v|2k+2,α+ 1
2

+

∫ ∞
0

t2σ
(
|∂tv|2k,α + |v|2k+4,α+1

)
dt

.
∫ ∞
0

t2σ−1 |v|2k+2,α+ 1
2

dt+

∫ ∞
0

t2σ |f |2k+4,α+1 dt.

(7.13)

In view of (7.10), we may use (7.12) for α = −1
2
± δ and (7.13) for α = β − 1 ± δ and

σ = β − 1
2
> 0:

sup
t≥0
|v|2`+2,±δ +

∫ ∞
0

(
|∂tv|2`,− 1

2
±δ + |v|2`+4, 1

2
±δ

)
dt . |v0|2`+2,±δ +

∫ ∞
0

|f |2`+4, 1
2
±δ dt (7.14)

and

sup
t≥0

t2β−1 |v|2k+2,β− 1
2
±δ +

∫ ∞
0

t2β−1
(
|∂tv|2k,β−1±δ + |v|2k+4,β±δ

)
dt

.
∫ ∞
0

t2β−2 |v|2k+2,β− 1
2
±δ dt+

∫ ∞
0

t2β−1 |f |2k+4,β±δ dt.

(7.15)

From Lemma 7.5 (see below) applied to v = p(D)u, we learn that the first right hand side
term of (7.15) is estimated by the left hand side of (7.14) for ` ≥ k+ 2. For later purposes
(cf. Lemma 8.1), we choose ` = k + 3. Then adding a large multiple of (7.14) to (7.15)
yields (7.11).
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We recall from Section 4 that, in order to derive control of u itself from control of
v = p(D)u, we need to apply elliptic maximal regularity for p(D). To this aim, we need
to control the behavior of u as x ↘ 0 and x ↗ ∞: In this formal discussion on the time
continuum level we shall assume that we have

u = a+ bxβ +O(x) as x↘ 0

and
u = O(x−%) as x↗∞ for all % <∞.

Below we shall make this rigorous on the time discrete level based on the precise regularity
result for the resolvent equation, Proposition 6.3. Furthermore, we note that for 0 < δ � 1
the weights stay away from the zeros of p(ζ):

−β − 1

2
< −δ < 0, 0 < δ, β − 1

2
± δ, 1

2
± δ, β − δ < β, β < β + δ < 1.

This is all we need to apply elliptic maximal regularity for p(D) in form of (2.9)–(2.11)
(cf. Lemma 7.2 for the precise statement). Hence (7.11) with the + sign turns into

sup
t≥0

(
t2β−1 |u− a|2k+6,β− 1

2
+δ + |u− a|2`+6,δ

)
+

∫ ∞
0

(
t2β−1 |∂tu|2k+4,β−1+δ + |∂tu|2`+4,− 1

2
+δ

)
dt

+

∫ ∞
0

(
t2β−1

∣∣u− a− bxβ∣∣2
k+8,β+δ

+ |u− a|2`+8, 1
2
+δ

)
dt

. |u0 − a0|`+6,δ +

∫ ∞
0

(
t2β−1 |f |2k+4,β+δ + |f |`+4, 1

2
+δ

)
dt

(7.16)
and (7.11) with the − sign turns into

sup
t≥0

(
t2β−1 |u− a|2k+6,β− 1

2
−δ + |u|2`+6,−δ

)
+

∫ ∞
0

(
t2β−1 |∂tu|2k+4,β−1−δ + |∂tu|2`+4,− 1

2
−δ

)
dt

+

∫ ∞
0

(
t2β−1 |u− a|2k+8,β−δ + |u− a|2`+8, 1

2
−δ

)
dt

. |u0|`+6,−δ +

∫ ∞
0

(
t2β−1 |f |2k+4,β−δ + |f |`+4, 1

2
−δ

)
dt.

(7.17)
After taking the sum of (7.16) and (7.17), we obtain (7.2), the desired estimate.

7.2. Statement of Results

Here we provide the rigorous arguments for the construction of solutions to the linear
degenerate parabolic equation (7.1) with initial condition u|t=0 = u0.

In order control the boundary values of u, we will employ the mentioned time discretiza-
tion procedure and derive maximal regularity estimates for v := p(D)u. We first consider

35



a single discrete time step where the initial data for t = 0 is given by u0(x). Then, for
t = h� 1, u(t, x) approximately solves

x
u− u0
h

+ p(D)u = f. (7.18)

The solution to this equation is obtained by Proposition 6.3. We additionally prove ap-
propriate L2-based estimates:

Lemma 7.1. Assume that f, u0 ∈ C∞((0,∞)) satisfy (G0) and (G∞). Then there exists
a solution u ∈ C∞((0,∞)) to (7.18) which satisfies (G0) and (G∞). Furthermore for all
α ∈ R in the coercivity range of p(D) and all ` ∈ N0 there exist C1, C2 ∈ (0,∞), which
only depend on ` and α, such that∣∣D`+2v

∣∣2
α+ 1

2

+C1 |v|2α+ 1
2
+
h

C2

|v|2`+4,α+1 ≤
∣∣D`+2v0

∣∣2
α+ 1

2

+C1 |v0|2α+ 1
2
+C2h |f |2`+4,α+1 , (7.19)

where v = p(D)u and v0 = p(D)u0.

The following elliptic estimates then permit to control u itself and its traces in terms
of p(D)u:

Lemma 7.2. Let k ∈ N0 and 0 < δ < min
{

1− β, β − 1
2

}
. Furthermore suppose that

u ∈ C∞((0,∞)) satisfies (G0), |u|k+9,−δ <∞, and

D`u(x) = o(x−δ) as x↗∞ for all 0 ≤ ` ≤ k + 11. (7.20)

We set a = ū(0, 0), b := ∂yū(0, 0) (where ū(x, y) is defined as in Definition 6.1), and
v := p(D)u. Then the following elliptic estimates, only depending on k and δ, hold:

|u|k+9,−δ ∼ |v|k+5,−δ , |u− a|k+9,δ ∼ |v|k+5,δ ,

|u− a|k+6,β− 1
2
−δ ∼ |v|k+2,β− 1

2
−δ , |u− a|k+6,β− 1

2
+δ ∼ |v|k+2,β− 1

2
+δ ,

|u− a|k+11, 1
2
−δ ∼ |v|k+7, 1

2
−δ , |u− a|k+11, 1

2
+δ ∼ |v|k+7, 1

2
+δ ,

|u− a|k+8,β−δ ∼ |v|k+4,β−δ ,
∣∣u− a− bxβ∣∣

k+8,β+δ
∼ |v|k+4,β+δ .

Remark 7.3. We note that all the norms of u in the statement are finite: the first one,
|u|k+9,−δ, is explicitly assumed to be; the other ones are since u satisfies (G0) and decays
as in (7.20).

It will turn out that Lemma 7.2 is in fact a corollary of the following basic estimate:

Lemma 7.4. Suppose that w ∈ C∞((0,∞)), γ, % ∈ R with γ 6= %, |w|1,% <∞, and

w(x) = o(x%) as

{
x↘ 0 if γ < %.

x↗∞ if γ > %.

Then
|w|1,% .γ,% |(D − γ)w|% (7.21)

36



As explained in Subsection 7.1 (see (7.15) and the sentence below), we need the following
interpolation inequality in order to derive the maximal regularity estimate (7.2):

Lemma 7.5. For any weight exponents α ∈ R, β ∈ (1
2
, 1), and any order of derivative

k ∈ N0, we have the interpolation estimate∫ ∞
0

t2β−2 |v|2k,α+β dt .
∫ ∞
0

|∂tv|2k,α dt+

∫ ∞
0

|v|2k+1,α+1 dt

for all locally integrable v = v(t, x) : (0,∞)2 → R.

Note that, though β =
√
13−1
4

is a fixed constant throughout the paper (fulfilling 1
2
<

β < 1), within Lemma 7.5 we treat it as a parameter for the sake of generality. Note also
that the constant in the estimate only depends on α, β, and k, and blows up as β ↘ 1

2
.

Finally we can prove maximal regularity with respect to the norm ||| · ||| (cf. equa-
tion (4.10)):

Proposition 7.6. Suppose I = (0, τ) ⊆ (0,∞), k ∈ N0, and δ as in Lemma 7.2. Then for
every locally integrable u0 : (0,∞) → R such that |||u0|||0 < ∞ and every locally integrable
f : I×(0,∞)→ R such that |||f |||1,I <∞, there exists exactly one solution u : I×(0,∞)→
R of (7.1) that is locally integrable with |||u|||I < ∞ and u|t=0 = u0. This solution obeys
the maximal regularity estimate (7.2).

Remark 7.7. Since u : I × (0,∞) → R with |||u|||I < ∞ implies that sufficiently many
spatial derivatives of u and ∂tu are locally in space square integrable, we infer that:

• u is continuous,

• p(D)u is continuous and defined classically,

• the initial condition u|t=0 = u0 holds in the classical sense.

For quantitative estimates we refer to Lemma 4.3 and the proof of Lemma 8.1.

Note that since we do not control ∂2t u, the derivative ∂tu is only defined distributionally,
i.e. the linear equation (7.1) is only fulfilled in the sense of distributions. However, we can
differentiate the nonlinear equation (1.8a) in time t and thus also obtain control on ∂2t u,
that is, ∂2t u is locally square integrable. Hence the nonlinear equation (1.8a) is fulfilled
classically.

7.3. Proofs

We now turn to the proofs of Lemmas 7.1, 7.2, 7.4, and Proposition 7.6:

Proof of Lemma 7.1. By rescaling x 7→ x
h
, equation (7.18) is equivalent to

xu+ p(D)u = xu0 + f. (7.22)
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Since the assumptions of Proposition 6.3 are fulfilled (in particular, xu0 satisfies (G0) and
(G∞) since u0 does), there exists a solution to (7.18) which satisfies (G0) and (G∞). It
hence remains to show estimate (7.19). Rescaling x 7→ x

h
it is enough to show∣∣D`+2v

∣∣2
α+ 1

2

+ C1 |v|2α+ 1
2

+
1

C2

|v|2`+4,α+1 ≤
∣∣D`+2v0

∣∣2
α+ 1

2

+ C1 |v0|2α+ 1
2

+ C2 |g|2`,α+2 (7.23)

for all ` ≥ 0, where we recall that v = p(D)u, v0 = p(D)u0, and put g = p(D − 1)f .

By applying p(D−1) to (7.22) and using the commutator relation [D, x] = x, we obtain:

xv + p(D − 1)v = xv0 + g. (7.24)

We test equation (7.24) with v in the inner product (·, ·)α+1 and get

(xv, v)α+1 + (p(D − 1)v, v)α+1 = (xv0, v)α+1 + (g, v)α+1. (7.25)

Since α is in the coercivity range of p(D), p(D − 1) is formally coercive with respect to
|·|α+1 (cf. Proposition 5.3). Hence by Lemma 5.2 (d), there exists a constant λ > 0 such

that (p(D − 1)v, v)α+1 ≥ λ |v|2α+1. Trivially (xv, v)α+1 = |v|2α+ 1
2

and by Young’s inequality

the other terms in (7.25) simplify to

(xv0, v)α+1 ≤
1

2
|v0|2α+ 1

2
+

1

2
|v|2α+ 1

2
and (g, v)α+1 ≤

1

2λ
|g|2α+1 +

λ

2
|v|2α+1 .

Then (7.25) yields the estimate

|v|2α+ 1
2

+ λ |v|2α+1 ≤ |v0|
2
α+ 1

2
+

1

λ
|g|2α+1 . (7.26)

We now want to upgrade the basic estimate (7.26) to obtain (7.23). Therefore, we test
equation (7.24) with (D+2α+1)`+2D`+2v with respect to (·, ·)α+1, so that by the symmetry
properties (4.4) of D we get∣∣D`+2v

∣∣2
α+ 1

2

+
(
(D − 1)`p(D − 1)v, (D + 2α + 1)2D`+2v

)
α+1

=
(
D`+2v0, D

`+2v
)
α+ 1

2

+ ((D − 1)`g, (D + 2α + 1)2D`+2v)α+1.
(7.27)

The first term on the right hand side of (7.27) is estimated by Young’s inequality:(
D`+2v0, D

`+2v
)
α+ 1

2

≤ 1

2

∣∣D`+2v0
∣∣2
α+ 1

2

+
1

2

∣∣D`+2v
∣∣2
α+ 1

2

.

For the last term on the right hand side of (7.27), by applying the Cauchy-Schwarz and
the Young inequality and the interpolation estimate (B.1b) (cf. Lemma B.1), we obtain(

(D − 1)`g, (D + 2α + 1)2D`+2v
)
α+1
≤
√
C |g|`,α+1

√
|v|2α+1 + |D`+4v|2α+1

≤ C |g|2`,α+1 +
1

4

(
|v|2α+1 +

∣∣D`+4v
∣∣2
α+1

)
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for some C ∈ (0,∞) (depending only on ` and γ). Making once more use of the interpo-
lation estimates (B.1b) (cf. Lemma B.1), we get for the second term on the left hand side
of (7.27)(

(D − 1)`p(D − 1)v, (D + 2α + 1)2D`+2v
)
α+2
≥ 3

4

∣∣D`+4v
∣∣2
α+1
− C |v|2α+1 ,

upon possibly enlarging C. We insert these inequalities into (7.27) which yields∣∣D`+2v
∣∣2
α+ 1

2

+
∣∣D`+4v

∣∣2
α+1
−
(

2C +
1

2

)
|v|2α+1 ≤

∣∣D`+2v0
∣∣2
α+ 1

2

+ 2C |g|2`,α+1 .

We add C1 times inequality (7.26) (where C1 will be chosen below), so that(∣∣D`+2v
∣∣2
α+ 1

2

+ C1 |v|2α+ 1
2

)
+
∣∣D`+4v

∣∣2
α+1

+

(
C1λ− 2C − 1

2

)
|v|2α+1

≤
(∣∣D`+2v0

∣∣2
α+ 1

2

+ C1 |v0|2α+ 1
2

)
+ 2C |g|2`,α+1 +

C1

λ
|g|2α+1 .

(7.28)

Then we choose C1 so large that C1λ − 2C − 1
2

= 1. Using the interpolation inequality
(B.1b) (cf. Lemma B.1) one last time for the second and third term in (7.28), we obtain
estimate (7.23) for sufficiently large C2 ∈ (0,∞).

Proof of Lemma 7.4. Throughout the proof, estimates only depend on γ and %.

We first note that

|(D − γ)w|2% = |Dw|2% − 2γ(Dw,w)% + γ2 |w|2% . (7.29)

For γ 6= 0 by Young’s inequality we have

|(Dw,w)%| ≤
1

4 |γ|
|Dw|2% + |γ| |w|2% . (7.30)

The combination of (7.29) and (7.30) shows

|(D − γ)w|2% ≥
1

2
|Dw|2% − γ

2 |w|2% , (7.31)

which is trivially true for γ = 0. Next we observe that

|(D − γ)w|%
(4.1b)
=
∣∣x−γ(D − γ)w

∣∣
%−γ =

∣∣D(x−γw)
∣∣
%−γ .

By assumption, x−%w(x) = o(1) as x ↘ 0 if γ < %, or x ↗ ∞ if γ > %. Hence we may
apply Hardy’s inequality (cf. [5, Lemma A.1] for a proof):∣∣D(x−γw)

∣∣
%−γ &

∣∣x−γw∣∣
%−γ .

Using also the identification |w|% = |x−γw|%−γ (cf. (4.1b)), we obtain that

|(D − γ)w|% & |w|% . (7.32)

The combination of (7.31) and (7.32) yields estimate (7.21).
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Proof of Lemma 7.2. Throughout the proof, estimates only depend on k and % and all
norms of u are finite in view of Remark 7.3.

First of all, we note that estimating |v|`,% in terms of |u|`+4,% if % < 0, |u− a|`+4,% if

0 < % < β, or
∣∣u− a− bxβ∣∣

`+4,%
if β < % < 1, directly follows from applying the triangle

inequality.

For the nontrivial estimates we start with the last inequality of the lemma. In fact, we
will more generally show that∣∣u− a− bxβ∣∣

k+4,%
. |p(D)u|k,% for all % ∈ (γ4, 1) = (β, 1), (7.33)

from which the last estimate follows:

% = β + δ ∈ (β, 1) ⇐⇒ 0 < δ < 1− β.

By the definition of the norms (cf. (4.2b)) and using the factorization

p(ζ) = (ζ − γ4)(ζ − γ3)(ζ − γ2)(ζ − γ1),

where the γj are given by (1.9d), (7.33) follows from∣∣Dk
(
u− a− bxβ

)∣∣
%
.
∣∣(D − γ4)(D − γ3)(D − γ2)(D − γ1)Dku

∣∣
%

for all k ∈ N0. Because of γ4 = β and γ3 = 0, this can be reformulated in terms of
u− a− bxβ solely:∣∣Dk

(
u− a− bxβ

)∣∣
%
.
∣∣(D − γ4)(D − γ3)(D − γ2)(D − γ1)Dk

(
u− a− bxβ

)∣∣
%
.

In order to establish this estimate, we will iteratively apply Lemma 7.4 with weight ex-
ponent % and roots γ = γj, j = 1, · · · , 4, on functions w that are linear combinations of
Dk
(
u− a− bxβ

)
. Because of the assumption % > β and since γj ≤ β, we are in the case

of % > γ in Lemma 7.4. In this case, we have to check that Dk
(
u− a− bxβ

)
= o (x%) as

x ↘ 0. For this, we use the lemma’s assumption that u satisfies (G0), which means
that its extension ū is smooth in (x, y) with a = ū(0, 0) and b = ∂yū(0, 0), yielding
D̄k(ū−a−by) = O(x)+O(y2)+O(xy) as x, y ↘ 0, which because of β ≥ 1

2
translates back

into Dk
(
u− a− bxβ

)
= O(x) as x ↘ 0. This yields as desired Dk

(
u− a− bxβ

)
= o (x%)

if % < 1.

Let us now prove the estimates which involve u − a. In fact, we will more generally
show that

|u− a|k+4,% . |p(D)u|k,% for all % ∈ (γ3, γ4) = (0, β). (7.34)

from which the estimates follow: indeed,

% = β − δ ∈ (0, β) ⇐⇒ 0 < δ < β ⇐ 0 < δ < β − 1
2

% = 1
2

+ δ ∈ (0, β) ⇐⇒ −1
2
< δ < β − 1

2
⇐ 0 < δ < β − 1

2

% = 1
2
− δ ∈ (0, β) ⇐⇒ 1

2
− β < δ < 1

2
⇐ 0 < δ < 1− β (since β ≥ 1

2
)

% = β − 1
2

+ δ ∈ (0, β) ⇐⇒ 1
2
− β < δ < 1

2
⇐ 0 < δ < 1− β (since β ≥ 1

2
)

% = β − 1
2
− δ ∈ (0, β) ⇐⇒ −1

2
< δ < β − 1

2
⇐ 0 < δ < β − 1

2

% = δ ∈ (0, β) ⇐⇒ 0 < δ < β ⇐ 0 < δ < 1− β (since β ≥ 1
2
).
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As above, (7.34) follows from∣∣Dk(u− a)
∣∣
%
.
∣∣(D − γ4)(D − γ3)(D − γ2)(D − γ1)Dku

∣∣
%
.

Because of γ3 = 0, this can be reformulated in terms of u− a solely:∣∣Dk(u− a)
∣∣
%
.
∣∣(D − γ4)(D − γ3)(D − γ2)(D − γ1)Dk(u− a)

∣∣
%
.

As above, we apply Lemma 7.4 four times:

• For the root γ4 = β, we use Lemma 7.4 with % < γ = β on w = (D−γ3)(D−γ2)(D−
γ1)D

k(u− a).

• For the other roots, we have γ3, γ2, γ1 ≤ 0 and therefore we use it with % > γ and on
w = (D − γ2)(D − γ1)Dk(u− a), w = (D − γ1)Dk(u− a), and w = Dk(u− a).

In order to be able to apply Lemma 7.4, we need to check the assumptions as x↗∞ and
x↘ 0, respectively:

• In case of γ4, we need that (D − γ3)Dk(u − a) = Dk+1(u − a) = Dk+1u = o (x%) as
x↗∞, which is implied by the lemma’s assumption (7.20).

• In case of γ3, γ2, and γ1, we need Dk(u− a) = o (x%) as x ↘ 0. For this we use the
lemma’s assumption that u satisfies (G0), which yields D̄k(ū− a) = O(x) + O(y) as

x, y ↘ 0. Because of β ≤ 1, this translates back into Dk(u− a) = O
(
xβ
) %<β

= o (x%).

Let us finally prove the estimate which involves u alone. In fact, we will more generally
show that

|u|k+4,% . |p(D)u|k,% for all % ∈ (γ2, γ3) =

(
−β − 1

2
, 0

)
. (7.35)

from which the estimate follows: indeed,

% = −δ ∈ (γ2, 0) ⇐⇒ 0 < δ < −γ2 = β +
1

2
⇐ 0 < δ < β − 1

2
.

As above, (7.34) follows from∣∣Dku
∣∣
%
.
∣∣(D − γ4)(D − γ3)(D − γ2)(D − γ1)Dku

∣∣
%
.

This time, we apply Lemma 7.4 four times:

• For the roots γ3 = 0 and γ4 = β, we use Lemma 7.4 with % < γ on w = (D−γ2)(D−
γ1)D

ku.

• For the other roots we have γ1 ≤ γ2 < % and therefore we use it with % > γ on
w = (D − γ1)Dk(u− a), and w = Dk(u− a).
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In order to be able to apply Lemma 7.4, we need to check the assumptions as x↗∞ and
x↘ 0, respectively:

• In case of γ3 and γ4, we need that Dku = o (x%) as x ↗ ∞, which holds by the
lemma’s assumption (7.20).

• In case of γ2 and γ1, we need Dku = o (x%) as x ↘ 0. For this, we use the lemma’s
assumption that u satisfies (G0), which yields D̄ku = O(1) = o(x%) as x ↘ 0 since
% < 0.

Proof of Lemma 7.5. Throughout the proof, estimates may depend on α, β, and k.

By first approximating in x as in Remark 4.2, then cutting of in time t, and then
convolving, we can without loss of generality assume that v = v(t, x) ∈ C∞0 ([0,∞)t ×
(0,∞)x). We further note that it suffices to consider the case of k = 0 (since we can apply
it to D`v, ` = 0, · · · , k, and then sum). We then note that we only need to treat the case

of α = −1
2

(apply to x−
1
2
−αv), that is,∫ ∞

0

t2β−2 |v|2− 1
2
+β dt .

∫ ∞
0

(
|∂tv|2− 1

2
+ |Dv|21

2

)
dt,

which by definition of the norms |·|α (cf. (4.1b)) and of D = x∂x follows from∫∫
(0,∞)2

t−2(1−β)x−2βv2 dx dt .
∫∫

(0,∞)2

(
(∂tv)2 + (∂xv)2

)
dx dt. (7.36)

We note that (7.36) amounts to an anisotropic type of Hardy’s inequality with criti-
cal scaling (meaning that both sides are invariant under isotropic rescaling of (t, x)) ;
in particular, it is wrong for β = 1

2
, since the left hand side of (7.36) then dominates∫∫

(0,∞)2
(t2 + x2)−1v2 dx dt and the isotropic critical Hardy inequality is known to fail.

We proceed as for the proof of the isotropic Hardy inequality: For the weight function

ω := t2β−2x−2β, (7.37)

we construct a vector field q = (qt, qx) in time-space with the following properties

ω . ∂tqt + ∂xqx, (7.38a)

q2t + q2x . ω, (7.38b)

qt = 0 for t = 0. (7.38c)

We first argue why (7.38) yields (7.36). Indeed, using (7.38a) we have∫∫
(0,∞)2

ωv2 dx dt .
∫∫

(0,∞)2
(∂tqt + ∂xqx)v

2 dx dt.
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Because v satisfies v = 0 in a neighborhood of x = 0, x = ∞, t = ∞, and because of
(7.38c), we may integrate the last term by parts:∫∫

(0,∞)2
ωv2 dx dt .

∫∫
(0,∞)2

(qt∂tv + qx∂xv)v dx dt.

Using Cauchy-Schwarz’ inequality and inserting (7.38b) yields as desired∫∫
(0,∞)2

ωv2 dx dt .

(∫∫
(0,∞)2

(q2t + q2x)v
2 dx dt

) 1
2
(∫∫

(0,∞)2

(
(∂tv)2 + (∂xv)2

)
dx dt

) 1
2

.

(∫∫
(0,∞)2

ωv2 dx dt

) 1
2
(∫∫

(0,∞)2

(
(∂tv)2 + (∂xv)2

)
dx dt

) 1
2

.

We now construct q explicitly:

q :=

{(
εt2β−1x−2β,−tβ−1x−β

)
for x ≥ t(

εtβ−1x−β,−t2β−2x−2β+1
)

for x ≤ t
, (7.39)

where ε ≥ 0 will be adjusted. We note that (qt, qx) is continuous and that

∂tqt + ∂xqx =

{
ε(2β − 1)t2β−2x−2β + βtβ−1x−β−1 for x > t

ε(β − 1)tβ−2x−β + (2β − 1)t2β−2x−2β for x < t

}
(7.37)
= ω

{
ε(2β − 1) + βt−β+1xβ−1 for x > t

ε(β − 1)t−βxβ + (2β − 1) for x < t

}
β∈[0,1]
≥ min {ε(2β − 1), ε(β − 1) + (2β − 1)} ω.

Because by assumption 2β − 1 > 0, we see that this implies (7.38a) for 0 < ε � 1.
Rewriting (7.39) as

q = tβ−1x−β

{(
εtβx−β,−1

)
for x ≥ t(

ε,−tβ−1x−β+1
)

for x ≤ t

}

and using β ∈ [0, 1], we learn (7.38b). Finally, (7.38c) can be directly read off from (7.39),
using once more 2β − 1 > 0.

Proof of Proposition 7.6. Throughout the proof estimates may depend on k, `, and δ.

Existence. Since for finite time intervals I we can extend f by 0, it suffices to consider the
case I = (0,∞). By the identification (4.7) we can, by the standard theory of Sobolev
spaces, approximate every f by a sequence of functions fn ∈ C∞0 ((0,∞)2) with respect to
||| · |||1. Furthermore in Lemma B.3 we prove that u0 can be approximated in the norm ||| · |||0
by a sequence of functions u0,n ∈ C0

0([0,∞)) ∩ C∞((0,∞)) which satisfy (G0). Proving
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the assertions of the proposition for u0,n and fn instead of u0 and f , the general case can
be treated by linearly extending the solution operator, the latter being bounded through
the maximal regularity estimate (7.2). Hence in the following we assume without loss of
generality f ∈ C∞0 ((0,∞)2) and u0 ∈ C0

0([0,∞)) ∩ C∞((0,∞)) satisfying (G0).

For j ∈ N0 and h > 0, we define thj := jh, fhj := 1
h

∫ thj+1

thj
f(t) dt, and uh0 := u0. By

Lemma 7.1, there exists a solution uh1 of

x
uh1 − uh0

h
+ p(D)uh1 = fh0

which satisfies (G0) and (G∞). Since both
fh1
x

and x
uh1
x

= uh1 satisfy (G∞), and both fh1
and xuh1 satisfy (G0), Lemma 7.1 can be iteratively applied: For j ≥ 1, we let uhj+1 be the
solution of

x
uhj+1 − uhj

h
+ p(D)uhj+1 = fhj . (7.40a)

By applying p(D − 1) to (7.40a), using the commutator relation [D, x] = x and setting
vhj := p(D)uhj , we arrive at

x
vhj+1 − vhj

h
+ p(D − 1)vhj+1 = p(D − 1)fhj . (7.40b)

Let k, ` ≥ 0. Since −1
2
± δ and β − 1 ± δ belong to the coercivity range of p(D)

(cf. Corollary 5.4), applying (7.19), we obtain(∣∣D`+2vhj+1

∣∣2
±δ + C1

∣∣vhj+1

∣∣2
±δ

)
−
(∣∣D`+2vhj

∣∣2
±δ + C1

∣∣vhj ∣∣2±δ)+
h

C2

∣∣vhj+1

∣∣2
`+4, 1

2
±δ

≤ C2h
∣∣fhj ∣∣2`+4, 1

2
±δ ,

(7.41a)

respectively

(thj )
2β−1

(∣∣Dk+2vhj+1

∣∣2
β− 1

2
±δ + C1

∣∣vhj+1

∣∣2
β− 1

2
±δ

)
− (thj )

2β−1
(∣∣Dk+2vhj

∣∣2
β− 1

2
±δ + C1

∣∣vhj ∣∣2β− 1
2
±δ

)
+ (thj )

2β−1 h

C2

∣∣vhj+1

∣∣2
k+4,β±δ ≤ C2(t

h
j )

2β−1h
∣∣fhj ∣∣2k+4,β±δ .

(7.41b)
We sum (7.41) over j from 0 to J and reorder the resulting expression, demonstrating

(∣∣D`+2vhJ+1

∣∣2
±δ + C1

∣∣vhJ+1

∣∣2
±δ

)
+

h

C2

J∑
j=0

∣∣vhj+1

∣∣2
`+4, 1

2
±δ

≤
(∣∣D`+2v0

∣∣2
±δ + C1 |v0|2±δ

)
+ C2h

J∑
j=0

∣∣fhj ∣∣2`+4, 1
2
±δ ,

(7.42a)
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and

(
thJ
)2β−1 (∣∣Dk+2vhJ+1

∣∣2
β− 1

2
±δ + C1

∣∣vhJ+1

∣∣2
β− 1

2
±δ

)
+

h

C2

J∑
j=0

(thj )
2β−1 ∣∣vhj+1

∣∣2
k+4,β±δ

− h
J∑
j=1

(thj+1)
2β−1 − (thj )

2β−1

h

(∣∣Dk+2vhj
∣∣2
β− 1

2
±δ + C1

∣∣vhj ∣∣2β− 1
2
±δ

)
≤ C2h

J∑
j=0

(thj )
2β−1 ∣∣fhj ∣∣2k+4,β±δ .

(7.42b)

Taking J → ∞, further using the interpolation inequality (B.1a) of Lemma B.1, equa-
tion (7.40b), and the fact that the right hand side of (7.42) monotonically increases, we
arrive at

sup
j≥0

∣∣vhj+1

∣∣2
`+2,±δ + h

∞∑
j=0

∣∣vhj+1

∣∣2
`+4, 1

2
±δ . |v0|

2
`+2,±δ + h

∞∑
j=0

∣∣fhj ∣∣2`+4, 1
2
±δ (7.43a)

and

sup
j≥0

(thj )
2β−1 ∣∣vhj+1

∣∣2
k+2,β− 1

2
±δ + h

∞∑
j=0

(thj )
2β−1 ∣∣vhj+1

∣∣2
k+4,β±δ

− h
∞∑
j=1

(thj+1)
2β−1 − (thj )

2β−1

h

∣∣vhj ∣∣2k+2,β− 1
2
±δ . h

∞∑
j=0

(thj )
2β−1 ∣∣fhj ∣∣2k+4,β±δ .

(7.43b)

We interpolate uhj and vhj linearly in time t:

uh :=
∞∑
j=0

1

h

((
thj+1 − t

)
uhj +

(
t− thj

)
uhj+1

)
1[thj ,thj+1)

, (7.44a)

vh := p(D)uh =
∞∑
j=0

1

h

((
thj+1 − t

)
vhj +

(
t− thj

)
vhj+1

)
1[thj ,thj+1)

. (7.44b)

Additionally, we define fh(t) as piecewise constant by averaging f(t) on time intervals of
length h:

fh :=
∞∑
j=0

fhj 1[thj ,thj+1)
=
∞∑
j=0

1

h

∫ thj+1

thj

f(t) dt.

We then have

x∂tvh = x
vhj+1 − vhj

h

(7.40b)
= p(D − 1)fhj − p(D − 1)vhj+1 on [thj , t

h
j+1) (7.45)
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and furthermore∣∣∣∣1h ((thj+1 − t
)
vhj +

(
t− thj

)
vhj+1

)∣∣∣∣2
k+4,β±δ

.
∣∣vhj ∣∣2k+4,β±δ +

∣∣vhj+1

∣∣2
k+4,β±δ

for t ∈
[
thj , t

h
j+1

)
, so that estimates (7.43) turn into

sup
t≥0
|vh(t)|2`+2,±δ +

∫ ∞
0

(
|∂tvh(t)|2`,− 1

2
±δ + |vh(t)|2`+4, 1

2
±δ

)
dt

. |v0|2`+2,±δ +

∫ ∞
0

|fh(t)|2`+4, 1
2
±δ dt,

(7.46a)

sup
t≥0

t2β−1 |vh(t)|2k+2,β− 1
2
±δ +

∫ ∞
0

t2β−1
(
|∂tvh(t)|2k,β−1±δ + |vh(t)|2k+4,β±δ

)
dt

.
∫ ∞
0

t2β−1 |fh(t)|2k+4,β±δ dt+ (2β − 1)

∫ ∞
0

t2β−2 |vh(t)|2k+2,β− 1
2
±δ dt,

(7.46b)

where we used that t 7→ t2β−1 is monotonically increasing and the fundamental theorem of
calculus in the form

h
(thj+1)

2β−1 − (thj )
2β−1

h
= (2β − 1)

∫ thj+1

thj

t2β−2 dt.

In order to absorb the last term on the right hand side of (7.46b), we apply the inter-
polation result of Lemma 7.5 (with α = −1

2
± δ):∫ ∞

0

t2β−2 |vh(t)|2k+2,β− 1
2
±δ dt .

∫ ∞
0

|∂tvh(t)|2k+2,− 1
2
±δ dt+

∫ ∞
0

|vh(t)|2k+3, 1
2
±δ dt.

Hence the last term on the right hand side of (7.46b) can be absorbed into the left hand
side of (7.46a) provided ` ≥ k + 2 and `+ 4 ≥ k + 3, i.e. ` ≥ k + 2. For later purposes, we
choose ` = k + 3. Summing up, we obtain

sup
t≥0
|vh(t)|2k+5,±δ +

∫ ∞
0

(
|∂tvh(t)|2k+3,− 1

2
±δ + |vh(t)|2k+7, 1

2
±δ

)
dt

+ sup
t≥0

t2β−1 |vh(t)|2k+2,±δ +

∫ ∞
0

t2β−1
(
|∂tvh(t)|2k,β−1±δ + |vh(t)|2k+4,β±δ

)
dt

. |v0|2k+5,±δ +

∫ ∞
0

|fh(t)|2k+7, 1
2
±δ dt+

∫ ∞
0

t2β−1 |fh(t)|2k+4,β±δ dt

. |||u0|||0 + |||fh|||1

(7.47)

where in the last inequality we have used that v0 = p(D)u0 and Lemma 7.2.
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For every j ≥ 0 we know that uhj satisfies (G0), hence in particular uhj (x) = ahj + bhjx
β +

O(x) as x↘ 0. We now use the same linear interpolation in time as in (7.44) to define

ah(t) :=
∞∑
j=0

1

h

((
thj+1 − t

)
ahj +

(
t− thj

)
ahj+1

)
1[thj ,thj+1)

, (7.48a)

bh(t) :=
∞∑
j=0

1

h

((
thj+1 − t

)
bhj +

(
t− thj

)
bhj+1

)
1[thj ,thj+1)

. (7.48b)

Since ah(t) = limx↘0 uh(t, x) and bh(t) = limx↘0(u(t, x) − a(t))x−β, by using Lemma 7.2,
we see that |||uh||| < ∞ and that the left hand side of (7.47) controls |||uh||| (cf. (4.10)).
Hence we obtain the estimate

|||uh||| . |||u0|||0 + |||fh|||1. (7.49)

By the definition of fh one sees that |||fh − f |||1 → 0 as h ↘ 0. In particular |||fh|||1
is bounded so that by (7.49) also |||uh||| is. Hence in particular, uh is locally uniformly
integrable on (0,∞)2, so that, up to a subsequence, it converges weakly to some locally
integrable u. By the weak lower-semicontinuity of ||| · |||, the maximal regularity estimate
(7.2) also holds in the limit. Likewise, the distributional form of equation (7.1) is preserved
under weak convergence. Finally, H1

t -convergence locally in (0,∞)x implies C0
t convergence

of u, whence the initial condition is fulfilled classically.

Uniqueness. Due to linearity we may assume f ≡ 0 and u0 ≡ 0. Since v := p(D)u =
p(D)(u− a), from the definition of ||| · ||| by (4.10) and by Lemma 7.2, we see in particular
that

sup
t∈I
|v|25,δ +

∫
I

|v|27, 1
2
+δ dt <∞. (7.50)

We pass to the logarithmic variable s := ln x and test x∂tv + p(D − 1)v = 0 with η2nv,
where ηn(s) = η

(
s
n

)
and η is a symmetric cut off:

(xη2nv, ∂tv) 1
2
+δ + (η2nv, p(D − 1)v) 1

2
+δ = 0.

We rewrite this as

(xη2nv, ∂tv) 1
2
+δ + (ηnv, p(D − 1)ηnv) 1

2
+δ = Rn,

where the remainder term Rn comes from permuting ηn with p(D−1) and therefore contains
at least one spatial derivative on ηn so that Rn . 1

n
|v|23, 1

2
+δ. From equation (7.1) (with

f ≡ 0) and (7.50) we get
∫
I
|∂tv|23,− 1

2
+δ dt <∞, whence in particular

(xη2nv, ∂tv) 1
2
+δ =

1

2

d

dt
(xη2nv, v) 1

2
+δ.
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Since 1
2

+ δ is in the coercivity range of p(D − 1) (cf. Lemma 5.2 (d) and Corollary 5.4),
we arrive at

sup
t∈I

1

2
|ηnv(t)|2δ + λ′

∫
I

|ηnv|22, 1
2
+δ dt ≤ 1

2

∣∣ηnv|t=0

∣∣2
δ

+

∫
I

Rn dt

for some λ′ > 0. Since v|t=0 ≡ 0, trivially |ηnvt=0|2δ = 0 and passing to the limit n→∞ also∫
I
Rn dt → 0 as n → ∞. Hence by dominated convergence supt∈I

1
2
|v(t)|2δ ≤ 0 implying

v = p(D)u = 0. As the kernel of p(D) is spanned by 1, xβ, x−
3
2 , and x−β−

1
2 , we know that

u(t, x) = a1(t) + a2(t)x
β + a3(t)x

− 3
2 + a4(t)x

−β− 1
2 .

By the definition of ||| · ||| (cf. (4.10)) we have supt∈I |u|
2
k+8,−δ ≤ |||u||| < ∞. Therefore,

a1(t) ≡ a2(t) ≡ 0 (since −δ < 0, β) and a3(t) ≡ a4(t) ≡ 0 (since −δ > −β − 1
2
,−3

2
).

8. The Nonlinear Problem

In this section we prove Theorem 3.1. The main ingredient for the proof is the following
estimate on the nonlinearity N (u) defined in (1.9f):

Lemma 8.1. Let I = (0, τ) ⊆ (0,∞) be an interval, 0 < δ < min
{

1− β, β − 1
2

}
, and

k ∈ N0. For all smooth functions u, u1, u2 : I × (0,∞) → R, the following estimates for
the nonlinearity N (u) hold:

|||N (u)|||1,I .k,δ max
j=2,··· ,7

|||u|||jI , (8.1a)

|||N (u1)−N (u2)|||1,I .k,δ max
j=1,··· ,6

(|||u1|||I + |||u2|||I)
j |||u1 − u2|||I , (8.1b)

Proof. Throughout the proof, all estimates depend on k and δ.

Preliminaries. We recall the norm for the solution (cf. (4.10)):

|||u|||2I ≥ sup
t∈I

(
|u− a|2k+9,δ + |u|2k+9,−δ

)
+

∫
I

(
t2β−1

∣∣u− a− bxβ∣∣2
k+8,β+δ

+ |u− a|2k+11, 1
2
+δ

)
dt

+

∫
I

(
t2β−1 |u− a|2k+8,β−δ + |u− a|2k+11, 1

2
−δ

)
dt.

(8.2)

We dropped the time-weighted contribution to the trace norm, since we do not need it in
the nonlinear estimate. The norm for the right hand side (cf. (2.19)) reads

|||f |||21,I =

∫
I

(
t2β−1 |f |2k+4,β+δ + |f |2k+7, 1

2
+δ + t2β−1 |f |2k+4,β−δ + |f |2k+7, 1

2
−δ

)
dt. (8.3)
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We start by deriving uniform estimates in time and space (cf. (4.8) for the definition
of norms), that is,

‖u− a‖k+8,(0,1] . |u− a|k+9,δ and ‖u‖k+8,[1,∞) . |u|k+9,−δ . (8.4)

As the arguments are the same, we focus on proving the first inequality. It suffices to
establish ‖u− a‖(0,1] . |u− a|1,δ. Choosing ũ(s) := u(es), η̃(s) := η(es), and a smooth cut
off η : (0,∞)→ R with η(x) ≡ 1 for x ≤ 1 and η(x) ≡ 0 for x ≥ 2, we infer

‖u− a‖2(0,1] ≤ ‖η(u− a)‖2 = sup
s∈R
|(η̃(s) (ũ(s)− a))|2 .

1∑
`=0

∫ ∞
−∞

(
∂`s (η̃(s) (ũ(s)− a))

)2
ds

. |u− a|21,0,(0,2) . |u− a|
2
1,δ .

Estimate (8.4) with (4.13) (cf. Lemma 4.3) and (8.2) implies supt∈I ‖u− a‖
2
k+8 . |||u|||2I .

For later reference, we combine this with (4.13) to

sup
t∈I

(
‖u− a‖2k+8 + |a|2

)
+

∫
I

t2β−1 |b|2 dt . |||u|||2I . (8.5)

Proof of estimate (8.1a). We denote byMsym the symmetrization ofM. Because of multi-
linearity of Msym, N (u) is a linear combination of terms of the form

Msym(u, u, w3, w4, w5), where w3, w4, w5 ∈ {u, 1}.

Once again by multi-linearity, these terms can be written as linear combinations of terms
of the form

Msym(w1, w2, w3, w4, w5), where w1, w2 ∈ {u− a, a} and w3, w4, w5 ∈ {u− a, a, 1}.

However, since

Msym(1, · · · , 1)
(1.9c)
=

1

5
p(D)1

(1.9d)
= 0, (8.6)

the only spatially non-constant term u − a has to appear at least once as one of the five
arguments, so that the latter reduces to

Msym(u− a, w2, w3, w4, w5), where w2 ∈ {u− a, a} and w3, w4, w5 ∈ {u− a, a, 1}. (8.7)

We recall that Msym distributes 4 derivations D onto its five arguments. Hence by the
product rule, D`N (u), ` ≤ k + 4 or ` ≤ k + 7 respectively, is a linear combination of
products w1 × · · · × w5 with

w1 = D`1(u− a) with `1 ≤ `+ 4,

w2 ∈ {D`2(u− a), a} with `2 ≤
1

2
(`+ 4) ≤ k + 8,

w3, w4, w5 ∈ {D`3(u− a), a, 1} with `3 ≤
1

3
(`+ 4) ≤ k + 8.
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In view of (8.2), we see that w2, · · · , w5 can be controlled by sup-bounds in time, and
only w1 requires an L2-bound in time. This yields an estimate on the “subcritical” part of
norm, i.e., the part which is unaffected by the xβ-behavior near x = 0:∫

I

(
t2β−1 |N (u)|2k+4,β−δ + |N (u)|2k+7, 1

2
±δ

)
dt

.
∫
I

(
t2β−1 |u− a|2k+8,β−δ + |u− a|2k+11, 1

2
±δ

)
dt

× sup
t∈I

(
‖u− a‖2k+8 + |a|2

)(
1 +

(
sup
t∈I

(
‖u− a‖2k+8 + |a|2

))3
)

(8.2),(8.5)

. |||u|||4I
(
1 + |||u|||6I

)
. (8.8)

For the “supercritical” part of the nonlinear estimate, we have to go one step further
in the decomposition. Because of linearity in the first argument, the terms in (8.7) can be
written as linear combinations of terms of the following two forms:

Msym

(
u− a− bxβ, w2, w3, w4, w5

)
with w2 ∈ {u− a, a}, w3, w4, w5 ∈ {u− a, a, 1}, (8.9)

Msym(bxβ, w2, w3, w4, w5) with w2 ∈ {u− a, a}, w3, w4, w5 ∈ {u− a, a, 1}.
(8.10)

However, since

Msym(xβ, 1, · · · , 1)
(1.9c)
=

1

5
p(D)xβ

(1.9d)
= 0, (8.11)

the spatially non-constant term u−a has to appear at least once in the last four arguments
in (8.10), so that the latter reduces to

Msym

(
bxβ, u− a, w3, w4, w5

)
where w3, w4, w5 ∈ {u− a, a, 1}. (8.12)

We recall that Msym distributes 4 derivations D onto its five arguments. Hence by the
product rule, D`N (u) for ` ≤ k + 4, is a linear combination of products w1 × · · · × w5 of
two types, depending on whether they come from (8.9) or from (8.12). For terms of the
type (8.9), we obtain

w1 = D`1(u− a− bxβ) with `1 ≤ `+ 4 ≤ k + 8

w2 ∈ {D`2(u− a), a} with `2 ≤ `+ 4 ≤ k + 8,

w3, w4, w5 ∈ {D`3(u− a), a, 1} with `3 ≤
1

2
(`+ 4) ≤ k + 8,

so that

|w1 × · · · × w5|2β+δ .
∣∣u− a− bxβ∣∣2

k+8,β+δ

×
(
‖u− a‖2k+8 + |a|2

) (
1 +

(
‖u− a‖2k+8 + |a|2

)3)
.

(8.13)
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Since D`xβ = β`xβ, the terms of the type (8.12) are given by linear combination of products
w1 × · · · × w5 of the form

w1 = b,

w2 = xβD`1(u− a) with `1 ≤ `+ 4 ≤ k + 8,

w3, w4, w5 ∈ {D`2(u− a), a, 1} with `2 ≤
1

2
(`+ 4) ≤ k + 8,

so that here we obtain using
∣∣xβ·∣∣

β+δ
= | · |δ

|w1 × · · · × w5|2β+δ . |b|
2 |u− a|2k+8,δ

(
1 +

(
‖u− a‖2k+8 + |a|2

)3)
. (8.14)

From (8.13) and (8.14) we obtain, using the weighted L2-bound in time on the first term
and the sup-bounds in time for the remaining ones,∫

I

t2β−1 |N (u)|2k+4,β+δ dt

.
∫
I

t2β−1
(∣∣u− a− bxβ∣∣2

k+8,β+δ
+ |b|2

)
dt

× sup
t≥0

(
‖u− a‖2k+8 + |a|2 + |u− a|2k+8,δ

)(
1 +

(
‖u− a‖2k+8 + |a|2

)3)
(8.2),(8.5)

. |||u|||4I
(
1 + |||u|||6I

)
. (8.15)

In view of the definition (8.3), (8.1a) follows from adding (8.8) and (8.15), and taking the
square root.

Proof of estimate (8.1b). Because of multi-linearity of Msym, N (u1) − N (u2) is a linear
combination of terms of the form

Msym(u1 − u2, w2, w3, w4, w5), where w2 ∈ {u1, u2}, w3, w4, w5 ∈ {u1, u2, 1}.

Once again by multi-linearity, these terms can be written as linear combinations of terms
of the form

Msym(w1, w2, w3, w4, w5), where


w1 ∈ {(u1 − a1)− (u2 − a2), a1 − a2},
w2 ∈ {u1 − a1, u2 − a2, a1, a2},
w3, w4, w5 ∈ {u1 − a1, u2 − a2, a1, a2, 1}.

Note that now we cannot argue that (u1 − a1) − (u2 − a2) always appears once, whence
the second possible form of w1. The arguments for the case w1 = u1 − a1 − (u2 − a2) are
identical to the ones above. Hence we are left with the case

Msym(a1 − a2, w2, w3, w4, w5), where

{
w2 ∈ {u1 − a1, u2 − a2, a1, a2},
w3, w4, w5 ∈ {u1 − a1, u2 − a2, a1, a2, 1}.
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In fact, since spatially non-constant terms have two appear at least once (cf. (8.6)),

Msym(a1 − a2, w2, w3, w4, w5), where

{
w2 ∈ {u1 − a1, u2 − a2}
w3, w4, w5 ∈ {u1 − a1, u2 − a2, a1, a2, 1}.

(8.16)
For the subcritical part, as above we see that D`N (u), for ` ≤ k+ 4 respectively ` ≤ k+ 7,
is a linear combination of products w1 × · · · × w7 of the form

w1 = a1 − a2,
w2 ∈ {D`1(ui − ai)} with `1 ≤ `+ 4,

w3, w4, w5 ∈ {D`2(ui − ai), ai, 1} with `2 ≤
1

2
(`+ 4) ≤ k + 8.

Hence the subcritical part of the estimate follows similarly to (8.13), using the L2-bound
in time for w2 and the sup-bounds on the remaining terms. For the supercritical part we
further decompose (8.16) into

Msym(a1−a2, w2, w3, w4, w5), where

{
w2 ∈ {u1 − a1 − b1xβ, u2 − a2 − b2xβ}
w3, w4, w5 ∈ {u1 − a1, u2 − a2, a1, a2, 1}

(8.17)

and

Msym(a1 − a2, w2, w3, w4, w5), where

{
w2 ∈ {b1xβ, b2xβ}, w3 ∈ {u1 − a1, u2 − a2},
w4, w5 ∈ {u1 − a1, u2 − a2, a1, a2, 1},

(8.18)
where due to (8.11) without loss of generality w3 is non-constant. In case (8.17), as above
we see that D`N (u), for ` ≤ k+ 4, is a linear combination of products w1× · · ·×w5 of the
form

w1 = a1 − a2,
w2 ∈ {D`1(ui − ai − bixβ)} with `1 ≤ `+ 4 ≤ k + 8,

w3, w4, w5 ∈ {D`2(ui − ai), ai, 1} with `2 ≤ `+ 4 ≤ k + 8,

which is estimated similarly to (8.15), using the weighted L2-bound in time on w2. In
case (8.18), as above we see that D`N (u), for ` ≤ k+4, is a linear combination of products
w1 × · · · × w5 of the form

w1 = a1 − a2,
w2 ∈ {bi},
w3 ∈ {xβD`1(ui − ai)} with `1 ≤ `+ 4 ≤ k + 8,

w4, w5 ∈ {D`2(ui − ai), ai, 1} with `2 ≤
1

2
(`+ 4) ≤ k + 8,

which is also estimated similarly to (8.14), using the weighted L2-bound in time on w2.

We are now ready to prove our main result:

Proof of Theorem 3.1. Throughout the proof, all estimates depend on k and δ.
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Existence. Let ε > 0 yet to be determined and u0 : (0,∞)→ R be locally integrable with
|||u0|||0 < ε. We define the space

S :=
{
u : (0,∞)2 → R locally integrable : |||u||| < η, u|t=0 = u0

}
for some η > 0 to be specified later. Note that by Remark 7.7 the boundary value u|t=0

is well defined. Let T denote the solution operator of Proposition 7.6. Then the nonlinear
parabolic equation (1.8) is equivalent to the fixed point equation

u = T (u) := TN (u).

We will now show that the mapping T : S → S is a contraction for ε > 0 sufficiently
small. For this, note that by the maximal regularity estimate (7.2) of Proposition 7.6 and
the nonlinear estimate (8.1a) of Lemma 8.1 we can show for u ∈ S

|||T (u)||| = |||TN (u)|||
(7.2)

. |||u0|||0 + |||N (u)|||1
(8.1a)

. |||u0|||0 + max
j=2,··· ,5

|||u|||j . ε+ η2.

for η ≤ 1. Choosing η � 1 and ε � η, we can infer from (8) that T maps S into itself.
For u1, u2 ∈ S we can estimate by the maximal regularity estimate (7.2) of Proposition 7.6
and estimate (8.1b) for the nonlinearity (cf. Lemma 8.1)

|||T (u1)− T (u2)||| = |||T (N (u1)−N (u2))|||
(7.2)

. |||N (u1)−N (u2)|||1
(8.1b)

. sup
j=1,··· ,6

(|||u1|||+ |||u2|||)j · |||u1 − u2||| . η|||u1 − u2|||.

for η ≤ 1. This shows that T is a contraction for η � 1. We apply the contraction mapping
theorem, showing the existence part of the theorem.

Uniqueness. Let u denote the above constructed solution and w denote another solution of
(1.8). Suppose that there exists a t > 0 such that u(t) and w(t) differ. Then, by continuity
in time (cf. Lemma B.4), there exists a maximal t∗ ≥ 0 such that

(a) u(t, x) = w(t, x) for all t ∈ (0, t∗] and x > 0,

(b) u(t) and w(t) differ for t > t∗ sufficiently small.

We can use u (t∗) = w (t∗) as initial data and obtain for I := (t∗, t∗ + τ)

|||u− w|||I = |||T (u)− T (w)|||I
(7.2),(8.1b)

. max
j=1,··· ,6

(|||u|||I + |||w|||I)
j · |||u− w|||I . (8.19)

By Lemma B.4 we know |||u|||I → |||u (t∗) |||0 and |||w|||I → |||u (t∗) |||0 as τ ↘ 0. Since
|||u (t∗) |||0 ≤ |||u||| ≤ η, we obtain from (8.19) that |||u− w|||I ≤ 0 for τ � 1 and η � 1.
This shows u = w for t ∈ I = (t∗, t∗ + τ), which is a contradiction to the maximality of
t∗.
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A. Coordinate Transformations

In this appendix we discuss details of the coordinate transformations that have not
been given in the introduction.

A.1. Derivation of (1.8)

Differentiating the hodograph transform, equation (1.6), with respect to time t, we
obtain:

∂th+ ∂zh∂tZ = 0. (A.1)

Furthermore we can make use of the transformation of derivatives

∂z =
1

∂xZ
∂x = F∂x, (A.2)

where we have introduced F := 1
∂xZ

(cf. (1.7a)). Using (1.6), (A.1), and (A.2) in the
thin-film equation (1.1a), we get

−∂tZF∂xx
3
2 + F∂xx

3(F∂x)
3x

3
2 = 0,

i.e.

− ∂tZ +
2

3
x−

1
2∂xx

3(F∂x)
3x

3
2 = 0. (A.3)

Using furthermore that ∂tF = − 1
(∂xZ)2

∂t∂xZ = −F 2∂x∂tZ, applying F 2∂x to (A.3) we
obtain

Ft +
2

3
F 2∂xx

− 1
2∂xx

3(F∂x)
3x

3
2 = 0.

Multiplying by x and carrying out the derivative ∂xx
3
2 , this equation can be rewritten as

xFt + xF 2∂xx
− 1

2∂xx
3F∂xF∂xx

1
2F = 0.

We introduce the logarithmic derivative D := x∂x (cf. (1.9a)). Together with the commu-
tation relation Dxµ = xµ(D + µ), we obtain the problem

xFt +M(F, · · · , F ) = 0 for x, t > 0, (A.4a)

F|t=0 = F0 at t = 0 and for x > 0, (A.4b)

where we introduced the 5-linear form

M(F1, · · · , F5) := F1F2D

(
D +

3

2

)
F3

(
D − 1

2

)
F4

(
D +

1

2

)
F5. (A.5)

For the new unknown F (t, x), the traveling-wave solution

HTW = x
3
2 =

(
z +

3

8
t

) 3
2

or ZTW = x− 3

8
t
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translates into FTW = 1. Since the traveling-wave solution is a solution of (A.4a), we
necessarily have M(1, · · · , 1) = 0, which can also be validated by the definition of M, as
the logarithmic derivative D appears as a single factor. Therefore it seems reasonable to
consider perturbations of the traveling wave, i.e. to set u := F − 1 (cf. (1.7b)). We can
now define the linearization of (A.4a) through

Lu :=M(u, 1, · · · , 1) + · · ·+M(1, · · · , 1, u). (A.6)

An elementary calculation shows that L = p(D), with the polynomial p(ζ) defined in
(1.9d). Now, using the definition of the nonlinearity (1.9f), we obtain the parabolic initial
value problem (1.8).

A.2. The Speed of the Contact Line

Let us now give an argument for the boundary behavior (3.2) of the vertically averaged
speed V (t, Z(t, x)) of the fluid: For that we notice that in view of the hodograph transform
(1.6) and the transformation of derivatives (A.2), the speed V = h∂3zh transforms into

V (t, Z(t, x)) = x
3
2 (F∂x)

3x
3
2 = M̃(F, F, F ) (A.7a)

with

M̃(F1, F2, F3) :=
3

2
F1

(
D − 1

2

)
F2

(
D +

1

2

)
F3. (A.7b)

Let M̃sym denote the symmetrization of M̃. In view of (A.7), writing F = 1 + u =
(1 + a) + (u − a) where a(t) = limx↘0 u(t, x), and making use of the multi-linearity of
M̃sym, we obtain

V (t, Z(t, x)) = ∂tZ(t, x) = A(t) +B(t, x) + C(t, x),

where

A = −3

8
(1 + a)3,

B = 3(1 + a)2M̃sym(u− a, 1, 1),

C = 3(1 + a)M̃sym(u− a, u− a, 1) + M̃sym(u− a, u− a, u− a).

We further note that B(t) can be simplified as

B =
3

2
(1 + a)2p̃(D)(u− a),

with the second order polynomial

p̃(ζ) = ζ2 +
1

2
ζ − 3

4
=

(
ζ + β +

1

2

)
(ζ − β) .

The fact that p̃(ζ) has the root β together with the insight that the leading power of C is
x2β shows that (3.2) holds true.

55



A.3. The Singular Expansion of h

Using (3.1) in (1.7) and expanding, we obtain

∂xZ(t, x) =
1

1 + a(t)
− b(t)

(1 + a(t))2
xβ + o(xβ) as x↘ 0

almost everywhere in t > 0. Integrating this expression, we conclude

x̃
(3.4b)
= Z(t, x)− Z0(t) = x

(
1

1 + a(t)
− b(t)

(1 + β)(1 + a(t))2
xβ + o(xβ)

)
as x↘ 0

almost everywhere in t > 0. We may invert this expression and get

x = (1 + a(t))x̃

(
1 +

b(t)(1 + a(t))β−1

1 + β
x̃β + o

(
x̃β
))

as x̃↘ 0 (A.8)

almost everywhere in t > 0. Inserting (A.8) into (1.6) and expanding the resulting expres-
sion, we are left with (3.4). Since the contact line obeys Z0(t) = z0 +

∫ t
0
V0 (t′) dt′, (3.3)

implies that Z0(t) = z0 − 3
8

∫ t
0

(1 + a (t′))3 dt′.

B. Interpolation and Approximation

B.1. Interpolation Inequalities

Lemma B.1 (interpolation inequalities). Suppose α ∈ R. Then, for all k, `,m ∈ N0 with
k ≤ ` ≤ m, we have∣∣(D + α)`v

∣∣
α

.
∣∣(D + α)kv

∣∣m−`
m−k

α
|(D + α)mv|

`−k
m−k
α , (B.1a)

|v|`,α . |v|
m−`
m−k

k,α |v|
`−k
m−k
m,α , (B.1b)

for all locally integrable v : (0,∞) → R for which both factors on the right hand sides are
finite. The constants in (B.1) only depend on k, `, m, and α.

Proof. Keeping the identification of the norms |·|k,α with the usual Sobolev norms ‖·‖Wk,2(R)
in mind (cf. (4.7)), inequalities (B.1b) are the standard interpolation inequalities. For
inequality (B.1a) we use

∣∣(D + α)`v
∣∣2
α

=

∫ ∞
0

x−2α((D + α)`v(x))2
dx

x
=

∫ ∞
−∞

(
∂`sṽ(s)

)2
ds =

∥∥∂`sṽ∥∥2L2(R) ,

where we put ṽ(s) := e−αsv(es). Again, inequality (B.1a) follows from the standard homo-
geneous interpolation inequalities.
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Lemma B.2 (trace estimate). Let k, ` ∈ N0, α ∈ R, I = (0, τ) ⊆ (0,∞), and β ∈ R.
Then for all locally integrable v = v(t, x) : I × (0,∞)→ R we have

sup
t∈I

t2β−1 |v(t)|2k+`,α+ 1
2
.
∫
I

t2β−1
(
|∂tv(t)|2k,α + |v(t)|2k+2`,α+1

)
dt+

∫
I

t2β−2 |v(t)|2k+`,α+ 1
2

dt,

(B.2a)
and for β = 1

2
and I = (0,∞)

sup
t≥0
|v(t)|2k+`,α+ 1

2
.
∫ ∞
0

(
|∂tv(t)|2k,α + |v(t)|2k+2`,α+1

)
dt. (B.2b)

where the constants in (B.2) only depend on β, k, `, and α.

We note that within this lemma we do not fix the value of β (unlike in the rest of the

paper, where β =
√
13−1
4

).

Proof. Throughout the proof, estimates may depend on β, k, `, and α.

Proof of (B.2a). By writing w(t) = x−α−
1
2v(t) and using Dw(t)=x−α−

1
2 (D−α− 1

2
)v(t), we

see that |v(t)|m,α+ 1
2
+γ ∼ |w(t)|m,γ for γ ∈

{
0, 1

2

}
and |∂tv(t)|k,α ∼ |∂tw(t)|k,− 1

2
. Replacing

w by Dmw, it is enough to prove the homogeneous version, that is,

sup
t∈I

t2β−1
∣∣D`w(t)

∣∣2
0
.
∫
I

t2β−1
(
|∂tw(t)|2− 1

2
+
∣∣D2`w(t)

∣∣2
1
2

)
dt+

∫
I

t2β−2
∣∣D`w(t)

∣∣2
0

dt.

By the symmetry of (·, ·)0 (cf. (4.4) and Remark 4.2), it suffices to establish

sup
t∈I

t2β−1
∣∣D`w(t)

∣∣2
0
.
∫
I

t2β−1
∣∣(∂tD`w(t), D`w(t)

)
0

∣∣ dt +

∫
I

t2β−2
∣∣D`w(t)

∣∣2
0

dt.

Setting f(t) := tβ−
1
2D`w(t) this follows from

sup
t∈I
|f(t)|20 .

∫
I

∣∣(∂tf(t), f(t))20
∣∣ dt+

∫
I

1

t
|f(t)|20 dt.

By cut off and convolution it suffices to assume that f ∈ C∞0 (It × (0,∞)x) and therefore
we only need to show

sup
t∈I
|f(t)|20 .

∫
I

∣∣∣∣ d

dt
|f(t)|0

∣∣∣∣ dt+

∫
I

1

t
|f(t)|20 dt. (B.3)

Since
∫
I

1
t
|f(t)|20 dt ≥ 1

τ

∫
I
|f(t)|20 dt, by scaling t with τ and setting g(t) := |f(t)|20,

(B.3) follows from the basic estimate

sup
0≤t≤1

g(t) .
∫ 1

0

∣∣∣∣ d

dt
g(t)

∣∣∣∣ dt+

∫ 1

0

g(t) dt

which is a consequence of the fundamental theorem of calculus.
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Proof of (B.2a). First we note that we can assume that v ∈ C∞0 ([0,∞)t × (0,∞)x) (by
first approximating in x as in Remark 4.2, then cutting off at t =∞, and then convolving).
Instead of (B.3), we may establish the simpler

sup
t≥0
|f(t)|20 .

∫ ∞
0

∣∣∣∣ d

dt
|f(t)|20

∣∣∣∣ dt

which, by again setting g(t) := |f(t)|20, reduces to

sup
t≥0

g(t) .
∫ ∞
0

∣∣∣∣ d

dt
g(t)

∣∣∣∣ dt.

Since g(t) ≡ 0 for t � 1, the estimate follows from the fundamental theorem of calculus
by integrating from t =∞.

B.2. Approximation Results

Lemma B.3. Suppose k ∈ N0 and δ > 0. Then for each locally integrable u0 : (0,∞)→ R
with |||u0|||0 < ∞ there exists a sequence (un)n in C∞((0,∞)) ∩ C0

0([0,∞)) with un(x) =
an + bnx

β for x�n 1 (where an, bn ∈ R) and |||un − u0|||0 → 0 as n→∞. In particular un
satisfies (G0) (cf. Definition 6.1).

Proof. We set v0 := p(D)u0. Since |v0|k+5,±δ . |||u0|||0 < ∞ and using the identifica-
tion (4.7), we know that there exists a sequence (vn)n ∈ C∞0 ((0,∞)) with |vn − v0|k+5,±δ →
0 as n→∞. Next we solve the ODE

p(D)ũn = vn (B.4)

in the following way:

(a) Global solutions satisfying (G0). Since vn(x) ≡ 0 for x �n 1, the family ũ
(1)
n (x) =

a1,n + a2,nx
β with a1,n, a2,n ∈ R solves (B.4) for x �n 1 and satisfies (G0). Further-

more, by standard ODE theory we can extend u
(1)
n to a family of solutions of (B.4)

in (0,∞) of the form ũ
(1)
n (x) = a1,n + a2,nx

β +wn(x), where wn is a global particular
solution of (B.4) with wn(x) ≡ 0 for x�n 1.

(b) Local solutions for x�n 1. For x�n 1 we have vn(x) ≡ 0. Hence the two-parameter

family ũ
(2)
n (x) = a3,nx

− 3
2 + a4,nx

−β− 1
2 (with a3,n, a4,n ∈ R) of algebraically decaying

functions solves (B.4) for x�n 1.

The family

un(x) = a1,n + a2,nx
β + a3,nx

−β− 1
2 + a4,nx

− 3
2 + wn(x) with aj,n ∈ R (B.5)

spans the affine space of all solutions to (B.4) for x�n 1. In particular, there exists a set

of parameters aj,n ∈ R such that un(x) defined through (B.5) coincides with ũ
(2)
n (x) for
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x �n 1 and hence decays algebraically as x → ∞. This property still remains true if we
subtract a3,nx

− 3
2 and a4,nx

−β− 1
2 . But then

ũn(x) := un(x)− a3,nx−
3
2 − a4,nx−β−

1
2 = a1,n + a2,nx

β + wn(x)

is both: algebraically decaying and obeying (G0) (since it is of the form in (a)).

These decay properties also ensure that the solution obeys |||ũn|||0 <∞. By Lemma 7.2
we know that

|||ũn − ũm|||0 . |vn − vm|k+5,−δ + |vn − vm|k+5,δ .

Hence (ũn)n is a Cauchy sequence with respect to ||| · |||0 and we denote by ũ0 its limit.
Since (B.4) is preserved under this convergence, we obtain p(D)ũ0 = v0 = p(D)u0. Hence

we know that u0 − ũ0 ∈ span
{

1, xβ, x−
3
2 , x−β−

1
2

}
. As on the one hand |||u0 − ũ0|||0 ≤

|||u0|||0 + |||ũ0|||0 <∞ and on the other hand

|||a1 + a2x
β + a3x

−β− 1
2 + a4x

− 3
2 ||| =∞

for each non-zero tuple (aj)
4
j=1, we have u0 = ũ0 and hence |||ũn − u0||| → 0 as n→∞.

Now take a smooth cut off η ∈ C∞ ((0,∞)) with η(x) ≡ 1 for x ≤ 1 and η(x) ≡ 0
for x ≥ 2. We set ηk(x) := η

(
x
k

)
. Then |||ηkũn − ũn|||0 → 0 as k → ∞ by dominated

convergence. Then there exists a sub-sequence kn such that un(x) := ηkn(x)ũn(x) fulfills
the assertions of the lemma.

Lemma B.4. Let k ∈ N0 and 0 < δ < min
{

1− β, β − 1
2

}
. Suppose u : (0,∞)2 → R is

locally integrable with |||u||| < ∞. Then there exists a sequence (un)n in C∞ ((0,∞)2) ∩
C0

0 ([0,∞)2) with

(a) for every t ∈ [0,∞) we have un(t, x) = an(t)+bn(t)xβ for x�n 1, where an(t), bn(t) ∈
R are smooth functions of t (in particular un(t) satisfies (G0), cf. Definition 6.1);

(b) |||u− un|||I → 0 as n→∞.

Furthermore, I 3 τ 7→ |||u|||(0,τ) is continuous and bounded with the limit |||u|||(0,τ) →
|||u(0)|||0 as τ ↘ 0. The trace a(t) := limx↘0 u(t, x) is continuous and bounded with
limt→∞ a(t) = 0.

Proof. Throughout the proof estimates may depend on k and δ.

Similar to the proof of Lemma B.3, we can approximate each term of the sum in the
definition of ||| · ||| (cf. (2.17)) point wise in time by a sequence of functions satisfying (G0)
and with support away from t =∞. Therefore, passing to v := p(D)u, we may apply the
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estimates of Lemma 7.2 (and analogous estimates for ∂tu) which yield

|||u|||2 ∼ sup
t≥0

(
t2β−1 |v|2k+2,β− 1

2
+δ + |v|2k+5,δ + t2β−1 |v|2k+2,β− 1

2
−δ + |v|2k+5,−δ

)
+

∫ ∞
0

(
t2β−1 |∂tv|2k,β−1+δ + |∂tv|2k+3,− 1

2
+δ + t2β−1 |∂tv|2k,β−1−δ + |∂tv|2k+3,− 1

2
−δ

)
dt

+

∫ ∞
0

(
t2β−1 |v|2k+4,β+δ + |v|2k+7, 1

2
+δ + t2β−1 |v|2k+4,β−δ + |v|2k+7, 1

2
−δ

)
dt.

(B.6)
We claim that

|||u||| ∼ |||v|||∗ (B.7a)

where

|||v|||2∗ :=

∫ ∞
0

(
t2β−1 |∂tv|2k,β−1+δ + |∂tv|2k+3,− 1

2
+δ + t2β−1 |∂tv|2k,β−1−δ + |∂tv|2k+3,− 1

2
−δ

)
dt

+

∫ ∞
0

(
t2β−1 |v|2k+4,β+δ + |v|2k+7, 1

2
+δ + t2β−1 |v|2k+4,β−δ + |v|2k+7, 1

2
−δ

)
dt

+

∫ ∞
0

t2β−2
(
|v|2k+2,β− 1

2
−δ + |v|2k+2,β− 1

2
+δ

)
dt.

(B.7b)
Applying the trace estimate (cf. Lemma B.2), we obtain |||u||| . |||v|||∗. On the other hand,
by Lemma 7.5 the last term on the right-hand side of (B.7b) is estimated by∫ ∞

0

t2β−2 |v|2k+2,β− 1
2
±δ dt .

(∫ ∞
0

|∂tv|2k+2,− 1
2
±δ dt+

∫ ∞
0

|v|2k+3, 1
2
±δ dt

)
,

hence in view of (B.6), |||v|||∗ . |||u||| and (B.7a) holds.

By approximation (first approximating in x as in Remark 4.2, then cutting off at t =∞,
and then convolving), we can approximate v by a sequence of functions vn = vn(t, x) ∈
C∞0 ([0,∞)t × (0,∞)x) with respect to ||| · |||∗. Then, as in the proof of Lemma B.3, we
can solve the equation p(D)ũn = vn which uniquely determines a sequence of functions
ũn ∈ C∞ ([0,∞)t × (0,∞)x) such that ũn(t, x) ≡ 0 for t �n 1 and for all t ≥ 0 ũn(t)

satisfies ũn(t, x) = an(t) + bn(t)xβ for x�n 1 and decays as O
(
x−

1
2
−β
)

as x→∞. Since

the right hand side of the equation p(D)ũn = vn depends smoothly on time t, so does the
solution ũn. By (B.7a) this sequence satisfies the Cauchy property:

|||ũn − ũm||| . |||vn − vm|||∗ → 0 as m,n→∞.

The limit ũ of this sequence meets p(D)ũ = v = p(D)u, whence

ũ− u ∈ span
{

1, xβ, x−
1
2
−β, x−

3
2

}
.
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Together with |||ũ− u||| <∞, this implies ũ = u. Now take a smooth cut off η ∈ C∞([0,∞))
with η(x) ≡ 1 for x ≤ 1 and η(x) ≡ 0 for x ≥ 2 and set ηk(x) := η

(
x
k

)
. Then there exists

a sequence kn so that un(t, x) := ũn(t, x)ηkn(x) fulfills the assertions of the lemma.

We now turn our attention to the continuity and limit properties: In view of |||ũn − u||| →
0 as n → ∞ and since the constructed approximation sequence has compact support in
time, by estimate (4.13) of Lemma 4.3 the limit a(t)→ 0 as t→∞ follows. Likewise, we
have

sup
t≥0
|||u− un|||20 = sup

t≥0

(
|(u− a)− (un − an)|2k+9,δ + |u− un|2k+9,−δ

)
→ 0 (B.8)

as n→∞ and

sup
t≥0

t2β−1 |(u− a)− (un − an)|2k+6,β− 1
2
±δ → 0 as n→∞. (B.9)

As continuity is preserved under uniform convergence, (B.8) implies that the value u(0)
is well-defined with limτ↘0 |||u(τ)− u(0)|||0 = 0. By the reverse triangle inequality, also
τ 7→ supt∈[0,τ) |||u(τ)|||20 is continuous with the limit

lim
τ↘0

sup
t∈[0,τ)

|||u(τ)|||20 = |||u(0)|||20. (B.10)

From (B.9), by the same arguments we also have that

t 7→ t2β−1 |u− a|2k+6,β− 1
2
±δ

is continuous. By the trace estimate (B.2a) of Lemma B.2 in combination with Lemma 7.24,
we additionally have

sup
t∈[0,τ)

t2β−1 |u(t)− a(t)|2k+6,β− 1
2
±δ .

∫ τ

0

t2β−1
(
|∂tv(t)|2k+4,β−1±δ + |v(t)|2k+4,β±δ

)
dt

+

∫ τ

0

t2β−2 |v(t)|2k+2,β− 1
2
±δ dt.

(B.11)

Since by (B.6) and (B.7) the right hand side of (B.11) is bounded for τ = ∞, Lebesgue’s
theorem on dominated convergence leads to

sup
t∈[0,τ)

t2β−1 |u(t)− a(t)|2k+6,β− 1
2
±δ → 0 as τ ↘ 0. (B.12)

Finally, the L2-parts in the norm |||u|||[0,τ) are continuous in time and converge to 0 as τ ↘ 0
by Lebesgue’s theorem on dominated convergence. Together with (B.10) and (B.12), this
proves that |||u|||[0,τ) → |||u(0)|||0 as τ ↘ 0.

4This lemma is applicable e.g. by approximating u with the sequence un.
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