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We investigate the unextendible maximally entangled bases in Cd
⊗

Cd and present a 30-number
UMEB construction in C6

⊗
C6. For higher dimensional case, we show that for a given N-number

UMEB in Cd
⊗

Cd, there is a Ñ -number, Ñ = (qd)2− (d2−N), UMEB in Cqd
⊗

Cqd for any q ∈ N.
As an example, for C12n

⊗
C12n systems, we show that there are at least two sets of UMEBs which

are not equivalent.

PACS numbers: 03.67.Hk,03.65.Ud

I. INTRODUCTION

Einstein, Podolsky, and Rosen (EPR) proposed a
thought experiment which demonstrated that quantum
mechanics is not a complete theory of nature [1, 2], quan-
tum entanglement has been shown to be tightly related
to some fundamental problems in quantum mechanics
such as reality and nonlocality. It was quite surprising
when it was found that there are sets of product states
which nevertheless display a form of nonlocality [3, 4]. It
was shown that there are sets of orthogonal product vec-
tors in Cm

⊗
Cn such that there are no further product

states which are orthogonal to all the state in the set,
even though the space spanned by the set is smaller than
nm. A set of states satisfying such property is called
unextendible product bases (UPBs). Many useful ap-
plications have been obtained ever since the concept of
UPBs in multipartite quantum systems was introduced
[5–7]. It was shown that the UPBs are not distinguish-
able by local measurements and classical communication,
and the space complementary to a UPB contains bound
entanglement [5].
In 2009, S. Bravyi and J. A. Smolin generalized the

notion of the UPB to unextendible maximally entangled
basis [8]: a set of orthonormal maximally entangled states
in Cd

⊗
Cd consisting of fewer than d2 vectors which have

no additional maximally entangled vectors that are or-
thogonal to all of them. The authors proved that there
do not exist UMEBs for d = 2, and constructed a 6-
member UMEB for d = 3 and a 12-member UMEB for
d = 4.
In Ref. [9], B. Chen and S.M. Fei studied the UMEB in

Cd
⊗

Cd′ (d
′

2 < d < d′). They constructed a d2-member
UMEBs, and left an opem problem for the existence of

UMEBs in the case of d′

2 ≥ d . Recently, we give an

explicit construction of UMEB in Cd
⊗

Cd′(d < d′) [10].
We show that the states in the complementary space of
the UMEBs have Schmidt numbers less than d.
In his paper, we study the unsolved problem of UMEBs

in Cd
⊗

Cd. We start with the construction of a 30-
member UMEB in C6

⊗
C6. Then we generalized the

example to higher dimension case. We show that for

an given N -number UMEB in Cd
⊗

Cd, there is a Ñ -

number, Ñ = (qd)2 − (d2 −N), UMEB in Cqd
⊗

Cqd for
any q ∈ N. For C12n

⊗
C12n systems, we show that there

are at least two sets of UMEBs which are not equivalent.

II. UMEBS IN Cd
⊗

Cd

A set of states {|φa〉 ∈ Cd
⊗

Cd : a = 1, 2, · · · , n, n <
d2} is called an n-number UMEB if and only if (i) |φa〉,
a = 1, 2, · · · , n, are maximally entangled; (ii) 〈φa|φb〉 =
δab; (iii) if 〈φa|ψ〉 = 0 for all a = 1, 2, · · · , n, then |ψ〉
cannot be maximally entangled.
Here under computational basis a maximally entangled

state |φa〉 can be expressed as

|φa〉 = (I ⊗ Ua)
1√
d

d∑

i=1

|i〉 ⊗ |i〉, (1)

where I is the d × d identity matrix, Ua is any unitary
matrix. According to (1), a set of unitary matrices
{Ua ∈ Md(C)|a = 1, ..., n} gives an n-number UMEB in
Cd
⊗

Cd if and only if
(i) n < d2;
(ii) Tr(U †

aUb) = d δab, ∀a, b = 1, · · · , n;
(iii) For any U ∈Md(C), if Tr(U

†
aU) = 0, ∀ a = 1, · · · , n,

then U cannot be unitary.

Two n-number UMEBs {Ua}na=1 and {Va}na=1 in
Cd
⊗

Cd are said to be equivalent if there exist σ ∈ Sn

and U ∈ U(d) such that UUaU
† = Vσ(a) for a = 1, .., n,

where Sn is the permutation group of n elements.
In the following we present a 30-member UMEB in

C6
⊗

C6. Set

Unm ,

2∑

k=0

e
2π

√
−1

3
kn|k ⊕m〉〈k|,

U±
nm = δ± ⊗ Unm n,m = 1, 2, 3,

and

U±
i = η± ⊗ Ui i = 1, 2, 3, 4, 5, 6,



2

where k ⊕m denotes the number k +m mod d,

δ± =

(
0 1
±1 0

)
, η± =

(
1 0
0 ±1

)
,

{Ui}6i=1 are the unitary matrices constructed in C3
⊗

C3

Ref. [8]:

Ui = I − (1− eiθ)|ψi〉〈ψi|, i = 1, 2, ..., 6,

where

|ψ1,2〉 =
1√

1 + α2
(|0〉 ± |1〉),

|ψ3,4〉 =
1√

1 + α2
(|1〉 ± |2〉),

|ψ5,6〉 =
1√

1 + α2
(|2〉 ± |0〉),

with α = (1 +
√
5)/2.

We now prove that {U±
nm, U±

i , n,m = 1, 2, 3; i =
1, ..., 6} give rise to a 30-member UMEB in C6

⊗
C6.

(1) Since {Unm} and {Ui} are unitary, it is easily seen
that {U±

nm, U
±
i } are also unitary.

(2) To prove the orthogonality of these unitary states,
we consider three different cases:
(i) inner product between two elements in {U±

nm},

Tr((δ+ ⊗ Unm)
†
(δ± ⊗ Uñm̃)) = ±Tr(η± ⊗ U †

nmUñm̃)

= 6δ+±δnñδmm̃;

(ii) inner product between two elements in {U±
i },

Tr((η+ ⊗ Ui)
†
η±⊗Uĩ) = Tr(η+η±)Tr(U

†
i Uĩ) = 6δ+±δĩi;

(iii) the inner product between one elements in {U±
nm}

and the one in {U±
i }, Tr((δpm ⊗ Unm)†η± ⊗ Ui) =

Tr(δ±η±)Tr(U
†
nmUi) = 0.

(3) Assume that U ∈M6(C) satisfy:

Tr(U †U±
nm) = 0 and Tr(U †U±

i ) = 0.

Let V1 = span{U±
nm}, dimV1 = 18. Denote

V2 =

{(
A 0

0 B

)
|A,B ∈M3(C)

}
,

dimV2 = 18. Since the canonical inner product

Tr

((
A 0

0 B

)†(
0 Unm

±Unm 0

))
= 0,

one has V ⊥
1 = V2. Now let V3 = span{U±

nm, U
±
i }. We

have dimV3 = 30 and V ⊥
3 ⊂ V ⊥

1 = V2. Therefore U ∈
V ⊥
3 , and the matrix U has the form U = diag(W1,W2),

where W1,W2 ∈M3(C). As U satifies

Tr

((
W1 0

0 W2

)† (
Ui 0

0 ±Ui

))
= 0,

i.e. Tr(W1
†Ui)± Tr(W2

†Ui) = 0, we have Tr(W1
†Ui) =

Tr(W2
†Ui) = 0 for i = 1, 2, · · · , 6, which implies that

W1,W2 /∈ U(3). Hence U /∈ U(6). Therefore we conclude
that {U±

nm, U
±
i } is a 30-member UMEB in C6

⊗
C6.

Now we show that for any UMEB in Cd
⊗

Cd, there
will be an UMEB in Cqd

⊗
Cqd for any q ∈ N.

Theorem 1. If there is an N -number UMEB in
Cd
⊗

Cd, then for any q ∈ N, there is a Ñ -number,

Ñ = (qd)2 − (d2 −N), UMEB in Cqd
⊗

Cqd.
Proof: Denote

S =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0



,

W =




1 1 1 · · · 1
1 ζq ζ2q · · · ζq−1

q

1 ζ2q ζ4q · · · ζ
2(q−1)
q

...
...

...
. . .

...

1 ζq−1
q ζ

2(q−1)
q · · · ζ

(q−1)2

q



,

where ζq = e
2π

√
−1

q and

Unm =

d−1∑

k=0

e
2π

√
−1

d
kn|k ⊕m〉〈k|, m, n = 0, 1, · · · , d− 1.

In the following for any q × q matrix M with entries
mij , we define M i = diag(mi+1,1,mi+1,2, ...,mi+1,q), i ∈
{0, 1, · · · , q − 1}.
Let {Un}, n = 1, 2, · · · , N < d2, be the set of unitary

matrices that give rise to the UMEB in Cd
⊗

Cd. Set

U ij
nm = (W iSj)⊗ Unm,

where i, j = 0, · · · , q − 1,m, n = 0, · · · , d− 1, and

U i
n =W i ⊗ Un, i = 0, 1, · · · , q − 1, n = 1, 2, · · · , N < d2.

Let Ñ denote the number of matrices in {U ij
nm, U

i
n}. We

have

Ñ = q(q − 1)d2 + qN = (qd)2 − (d2 −N) < q2d2.

Next we prove that {U ij
nm, U

i
n} give a Ñ -member

UMEB in Cqd
⊗

Cqd.
(1) SinceW i, Sj, Unm are all unitary, so are {U ij

nm, U
i
n}.

So the given set of matrices satisfy the first condition of
UMEB.
(2) In order to prove the orthogonality of the related

basic states, we need to check the inner products between
two elements in {U ij

nm}, between two elements in {U i
n},

and between one in {U ij
nm} and the other one in {U i

n}. It
is direct to verify that
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(i) Tr((U ij
nm)

†
U ĩj̃

ñm̃
) = qdδ

ĩi
δ
jj̃
δnñδmm̃;

(ii) Tr((W i ⊗ Un)
†
(W ĩ ⊗ Uñ)) = qdδ

ĩi
δnñ;

(iii) Tr((U ij
nm)

†
U ĩ
ñ) = Tr((Sj)

†
(W i)

†
W ĩ ⊗ U †

nmUn) = 0.
(3) Let V1 = span{U ij

nm} be a subspace of Mqd(C),
dimV1 = q(q − 1)d2. Denote

V2 = {diag(A1, A2, ..., Aq)|Ai ∈Md(C), i = 1, 2, ..., q} .

It is seens that dimV2 = qd2. For any matrix A ∈ V2 and
i, j ∈ {0, 1, · · · , q− 1}, m, n ∈ {0, 1, · · · , d− 1}, we have
Tr(A†U ij

nm) = 0. Thus for any matrixA ∈ V2 andB ∈ V1,
Tr(A†B) = 0. Namely, V2 ⊆ V ⊥

1 . Accounting to the
dimensions of V1, V2 and Mqd(C), we obtain V ⊥

1 = V2.
Set V3 = span{U ij

nm, U
i
n}. Clearly, V ⊥

3 ⊂ V ⊥
1 . Hence any

U ∈ V ⊥
3 has the following form

U = diag (W1,W2, ...,Wq) where Wi ∈Md(C).

In addition, from Tr(U †U i
n) = 0, for i = 1, ..., q, we

have

Tr(diag (W1,W1, ...,Wq) diag (wi1Un, wi2Un, ..., wiqUn)) = 0,

i.e.,

wi1Tr(W
†
1Un)+· · ·+wiqTr(W

†
qUn) = 0, i = 1, ..., q. (2)

Noting that

det(W ) = det




1 1 1 · · · 1
1 ζq ζ2q · · · ζq−1

q

1 ζ2q ζ4q · · · ζ
2(q−1)
q

...
...

...
. . .

...

1 ζq−1
q ζ

2(q−1)
q · · · ζ

(q−1)2

q




6= 0,

from equation (2) we obtain Tr(W †
1Un) = · · · =

Tr(W †
qUn) = 0, for n = 1, · · · , N. Therefore Wi /∈ U(d),

and hence U /∈ U(qd). From (1), (2) and (3), we conclude

that {U ij
nm, U

i
n} is an Ñ -member UMEB in Cqd

⊗
Cqd.

In [8] a 6-member UMEB for d = 3 and a 12-member
UMEB for d = 4 have been constructed. We have con-
structed in this paper a 30-member UMEB for d = 6.

From our theorem, for d = 12, one con construct Ñ =
(qd)2 − (d2 − N)-number UMEBs in Cqd

⊗
Cqd, by re-

spectively taking N = 3, 4, 6 and q = 4, 3, 2. Therefore
in C12

⊗
C12 there are three ways to construct UMEBs

from the UMEBs of dimension 3,4 and 6. In the following
we show that at least two of the three UMEBs obtained
in this way are not equivalent.
Let {U1, ..., U6} be the 6-member UMEB in C3

⊗
C3

presented in [8]. We note that the eigenvalues of

U1, ..., U6 are all {1, 1, e
√
−1θ}, where cos θ = − 7

8 . But

in Ref. [11] one can see that cos2( n
m
π) ∈ Q if and only

if cos2( n
m
π) ∈ {0, 14 , 12 , 34 , 1}. So cos2 θ = 49

64 implies
that θ is not of the form n

m
π. Hence for any n ∈ N,

(e
√
−1θ)

n 6= 1. Since U i
n = W i ⊗ Un, the eigenvalues

TABLE I: Order of eigenvalues of UMEBs in C12
⊗

C12

Omin(U
i
n) Omax(U

i
n) Omin(U

i,j
m,n) Omax(U

i,j
m,n)

C3
⊗

C3 1 ∞ 1 12

C4
⊗

C4 1 12 1 12

TABLE II: Results about UMEBs in Cd
⊗

Cd′

condition number in UMEB reference

d = d′ = 2 none [8]

d = d′ = 3 6 [8]

d = d′ = 4 12 [8]

d < d′ < 2d d2 [9]

d′ = qd+ r, 0 < r < d qd2 [10]

d′ > d d(d′ − 1) [10]

d = d′ = 3n d(d− 1) This paper

d = d′ = 4n d(d− 1) This paper

of U i
n are {1, ..., ζ3i4 , 1, ..., ζ3i4 , e

√
−1θ, ..., e

√
−1θζ3i4 }. If we

consider the order of the eigenvalue, then the order of

e
√
−1θζ3i4 is infinite. The orders of the eigenvalues of

U i,j
m,n are all less or equal than 12. Similarly, we can

calculate the orders of eigenvalues of U i
n, U

i,j
m,n derived

from the UMEB in C4
⊗

C4 as above. The minimal
and maximal order of the eigenvalues of U i

n, U
i,j
m,n are

presented in Table I. By the definition of equivalence be-
tween two UMEBs, they should share the the same eigen-
values. There are 12 elements of the UMEB derived from
C3
⊗

C3 with infinite order eigenvalues, but all the el-
ements of the UMEB derived from C4

⊗
C4 only have

finite order eigenvalues. Hence they are not equivalent.
Moreover, the above conclusion can be generalized to

C12n
⊗

C12n. One can show that in C12n
⊗

C12n, there
exist two sets of UMEBs which are not equivalent.

III. CONCLUSION

We have studied the UMEBs in Cd
⊗

Cd and presented
a 30-number UMEB construction in C6

⊗
C6. By using

approach in [10], we have presented the construction of
an UMEB in Cqd

⊗
Cqd from an UMEB in Cd

⊗
Cd. In

particular, we can obtain UMEBs in C3n
⊗

C3n and
C4n

⊗
C4n from the results in [8]. By analysing the or-

der of the eigenvalues of UMEB in C12
⊗

C12 derived
from the UMEBs in C3

⊗
C3 and in C4

⊗
C4, it has

been shown that the two sets of UMEBs in C12
⊗

C12,
obtained from our theorem, are not equivalent. Similarly
there are two sets of UMEBs in C12n

⊗
C12n which are

not equivalent. As a summary, Table II shows the known
results about the UMEBs Cd

⊗
Cd′

.
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