Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

Unextendible maximally entangled bases in $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$
by

Yan-Ling Wang, Mao-Sheng Li, and Shao-Ming Fei

Unextendible maximally entangled bases in $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$

Yan-Ling Wang ${ }^{1}$, Mao-Sheng Li^{1} and Shao-Ming Fei ${ }^{2,3}$
${ }^{1}$ Department of Mathematics, South China University of Technology, Guangzhou 510640, P.R.China
${ }^{2}$ School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
${ }^{3}$ Max-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig, Germany

Abstract

We investigate the unextendible maximally entangled bases in $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$ and present a 30 -number UMEB construction in $\mathbb{C}^{6} \otimes \mathbb{C}^{6}$. For higher dimensional case, we show that for a given N-number UMEB in $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$, there is a \widetilde{N}-number, $\widetilde{N}=(q d)^{2}-\left(d^{2}-N\right)$, UMEB in $\mathbb{C}^{q d} \otimes \mathbb{C}^{q d}$ for any $q \in \mathbb{N}$. As an example, for $\mathbb{C}^{12 n} \otimes \mathbb{C}^{12 n}$ systems, we show that there are at least two sets of UMEBs which are not equivalent.

PACS numbers: 03.67.Hk,03.65.Ud

I. INTRODUCTION

Einstein, Podolsky, and Rosen (EPR) proposed a thought experiment which demonstrated that quantum mechanics is not a complete theory of nature [1, 2], quantum entanglement has been shown to be tightly related to some fundamental problems in quantum mechanics such as reality and nonlocality. It was quite surprising when it was found that there are sets of product states which nevertheless display a form of nonlocality [3, 4]. It was shown that there are sets of orthogonal product vectors in $\mathbb{C}^{m} \otimes \mathbb{C}^{n}$ such that there are no further product states which are orthogonal to all the state in the set, even though the space spanned by the set is smaller than $n m$. A set of states satisfying such property is called unextendible product bases (UPBs). Many useful applications have been obtained ever since the concept of UPBs in multipartite quantum systems was introduced [5-7]. It was shown that the UPBs are not distinguishable by local measurements and classical communication, and the space complementary to a UPB contains bound entanglement [5].

In 2009, S. Bravyi and J. A. Smolin generalized the notion of the UPB to unextendible maximally entangled basis [8]: a set of orthonormal maximally entangled states in $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$ consisting of fewer than d^{2} vectors which have no additional maximally entangled vectors that are orthogonal to all of them. The authors proved that there do not exist UMEBs for $d=2$, and constructed a 6 member UMEB for $d=3$ and a 12-member UMEB for $d=4$.

In Ref. [9], B. Chen and S.M. Fei studied the UMEB in $\mathbb{C}^{d} \otimes \mathbb{C}^{d^{\prime}}\left(\frac{d^{\prime}}{2}<d<d^{\prime}\right)$. They constructed a d^{2}-member UMEBs, and left an opem problem for the existence of UMEBs in the case of $\frac{d^{\prime}}{2} \geq d$. Recently, we give an explicit construction of UMEB in $\mathbb{C}^{d} \otimes \mathbb{C}^{d^{\prime}}\left(d<d^{\prime}\right)$ [10]. We show that the states in the complementary space of the UMEBs have Schmidt numbers less than d.

In his paper, we study the unsolved problem of UMEBs in $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$. We start with the construction of a 30 member UMEB in $\mathbb{C}^{6} \otimes \mathbb{C}^{6}$. Then we generalized the example to higher dimension case. We show that for an given N-number UMEB in $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$, there is a \widetilde{N} -
number, $\widetilde{N}=(q d)^{2}-\left(d^{2}-N\right)$, UMEB in $\mathbb{C}^{q d} \otimes \mathbb{C}^{q d}$ for any $q \in \mathbb{N}$. For $\mathbb{C}^{12 n} \otimes \mathbb{C}^{12 n}$ systems, we show that there are at least two sets of UMEBs which are not equivalent.

II. UMEBS IN $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$

A set of states $\left\{\left|\phi_{a}\right\rangle \in \mathbb{C}^{d} \otimes \mathbb{C}^{d}: a=1,2, \cdots, n, n<\right.$ $\left.d^{2}\right\}$ is called an n-number UMEB if and only if (i) $\left|\phi_{a}\right\rangle$, $a=1,2, \cdots, n$, are maximally entangled; (ii) $\left\langle\phi_{a} \mid \phi_{b}\right\rangle=$ $\delta_{a b}$; (iii) if $\left\langle\phi_{a} \mid \psi\right\rangle=0$ for all $a=1,2, \cdots, n$, then $|\psi\rangle$ cannot be maximally entangled.

Here under computational basis a maximally entangled state $\left|\phi_{a}\right\rangle$ can be expressed as

$$
\begin{equation*}
\left|\phi_{a}\right\rangle=\left(I \otimes U_{a}\right) \frac{1}{\sqrt{d}} \sum_{i=1}^{d}|i\rangle \otimes|i\rangle, \tag{1}
\end{equation*}
$$

where I is the $d \times d$ identity matrix, U_{a} is any unitary matrix. According to (1), a set of unitary matrices $\left\{U_{a} \in M_{d}(\mathbb{C}) \mid a=1, \ldots, n\right\}$ gives an n-number UMEB in $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$ if and only if
(i) $n<d^{2}$;
(ii) $\operatorname{Tr}\left(U_{a}^{\dagger} U_{b}\right)=d \delta_{a b}, \quad \forall a, b=1, \cdots, n$;
(iii) For any $U \in M_{d}(\mathbb{C})$, if $\operatorname{Tr}\left(U_{a}^{\dagger} U\right)=0, \forall a=1, \cdots, n$, then U cannot be unitary.

Two n-number UMEBs $\left\{U_{a}\right\}_{a=1}^{n}$ and $\left\{V_{a}\right\}_{a=1}^{n}$ in $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$ are said to be equivalent if there exist $\sigma \in S_{n}$ and $U \in U(d)$ such that $U U_{a} U^{\dagger}=V_{\sigma(a)}$ for $a=1, \ldots, n$, where S_{n} is the permutation group of n elements.

In the following we present a 30 -member UMEB in $\mathbb{C}^{6} \otimes \mathbb{C}^{6}$. Set

$$
\begin{aligned}
& U_{n m} \triangleq \sum_{k=0}^{2} e^{\frac{2 \pi \sqrt{-1}}{3} k n}|k \oplus m\rangle\langle k|, \\
& U_{n m}^{ \pm}=\delta_{ \pm} \otimes U_{n m} \quad n, m=1,2,3,
\end{aligned}
$$

and

$$
U_{i}^{ \pm}=\eta_{ \pm} \otimes U_{i} \quad i=1,2,3,4,5,6,
$$

where $k \oplus m$ denotes the number $k+m \bmod d$,

$$
\delta_{ \pm}=\left(\begin{array}{cc}
0 & 1 \\
\pm 1 & 0
\end{array}\right), \quad \eta_{ \pm}=\left(\begin{array}{cc}
1 & 0 \\
0 & \pm 1
\end{array}\right)
$$

$\left\{U_{i}\right\}_{i=1}^{6}$ are the unitary matrices constructed in $\mathbb{C}^{3} \otimes \mathbb{C}^{3}$ Ref. [8]:

$$
U_{i}=I-\left(1-e^{i \theta}\right)\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|, \quad i=1,2, \ldots, 6
$$

where

$$
\begin{aligned}
\left|\psi_{1,2}\right\rangle & =\frac{1}{\sqrt{1+\alpha^{2}}}(|0\rangle \pm|1\rangle) \\
\left|\psi_{3,4}\right\rangle & =\frac{1}{\sqrt{1+\alpha^{2}}}(|1\rangle \pm|2\rangle) \\
\left|\psi_{5,6}\right\rangle & =\frac{1}{\sqrt{1+\alpha^{2}}}(|2\rangle \pm|0\rangle)
\end{aligned}
$$

with $\alpha=(1+\sqrt{5}) / 2$.
We now prove that $\left\{U_{n m}^{ \pm}, U_{i}^{ \pm}, n, m=1,2,3 ; i=\right.$ $1, \ldots, 6\}$ give rise to a 30 -member UMEB in $\mathbb{C}^{6} \otimes \mathbb{C}^{6}$.
(1) Since $\left\{U_{n m}\right\}$ and $\left\{U_{i}\right\}$ are unitary, it is easily seen that $\left\{U_{n m}^{ \pm}, U_{i}^{ \pm}\right\}$are also unitary.
(2) To prove the orthogonality of these unitary states, we consider three different cases:
(i) inner product between two elements in $\left\{U_{n m}^{ \pm}\right\}$,

$$
\begin{aligned}
\operatorname{Tr}\left(\left(\delta_{+} \otimes U_{n m}\right)^{\dagger}\left(\delta_{ \pm} \otimes U_{\widetilde{n} \tilde{m}}\right)\right) & = \pm \operatorname{Tr}\left(\eta_{ \pm} \otimes U_{n m}^{\dagger} U_{\widetilde{n} \tilde{m}}\right) \\
& =6 \delta_{+ \pm} \delta_{n \widetilde{n}} \delta_{m \tilde{m}}
\end{aligned}
$$

(ii) inner product between two elements in $\left\{U_{i}^{ \pm}\right\}$, $\operatorname{Tr}\left(\left(\eta_{+} \otimes U_{i}\right)^{\dagger} \eta_{ \pm} \otimes U_{\widetilde{i}}\right)=\operatorname{Tr}\left(\eta_{+} \eta_{ \pm}\right) \operatorname{Tr}\left(U_{i}^{\dagger} U_{\widetilde{i}}\right)=6 \delta_{+ \pm} \delta_{\widetilde{i}}$; (iii) the inner product between one elements in $\left\{U_{n m}^{ \pm}\right\}$ and the one in $\left\{U_{i}^{ \pm}\right\}, \operatorname{Tr}\left(\left(\delta_{p m} \otimes U_{n m}\right)^{\dagger} \eta_{ \pm} \otimes U_{i}\right)=$ $\operatorname{Tr}\left(\delta_{ \pm} \eta_{ \pm}\right) \operatorname{Tr}\left(U_{n m}^{\dagger} U_{i}\right)=0$.
(3) Assume that $U \in M_{6}(\mathbb{C})$ satisfy:

$$
\operatorname{Tr}\left(U^{\dagger} U_{n m}^{ \pm}\right)=0 \text { and } \operatorname{Tr}\left(U^{\dagger} U_{i}^{ \pm}\right)=0
$$

Let $V_{1}=\operatorname{span}\left\{U_{n m}^{ \pm}\right\}, \operatorname{dim} V_{1}=18$. Denote

$$
V_{2}=\left\{\left.\left(\begin{array}{cc}
A & \mathbf{0} \\
\mathbf{0} & B
\end{array}\right) \right\rvert\, A, B \in M_{3}(\mathbb{C})\right\}
$$

$\operatorname{dim} V_{2}=18$. Since the canonical inner product

$$
\operatorname{Tr}\left(\left(\begin{array}{cc}
A & \mathbf{0} \\
\mathbf{0} & B
\end{array}\right)^{\dagger}\left(\begin{array}{cc}
\mathbf{0} & U_{n m} \\
\pm U_{n m} & \mathbf{0}
\end{array}\right)\right)=0
$$

one has $V_{1}^{\perp}=V_{2}$. Now let $V_{3}=\operatorname{span}\left\{U_{n m}^{ \pm}, U_{i}^{ \pm}\right\}$. We have $\operatorname{dim} V_{3}=30$ and $V_{3}^{\perp} \subset V_{1}^{\perp}=V_{2}$. Therefore $U \in$ V_{3}^{\perp}, and the matrix U has the form $U=\operatorname{diag}\left(W_{1}, W_{2}\right)$, where $W_{1}, W_{2} \in M_{3}(\mathbb{C})$. As U satifies

$$
\operatorname{Tr}\left(\left(\begin{array}{cc}
W_{1} & \mathbf{0} \\
\mathbf{0} & W_{2}
\end{array}\right)^{\dagger}\left(\begin{array}{cc}
U_{i} & \mathbf{0} \\
\mathbf{0} & \pm U_{i}
\end{array}\right)\right)=0
$$

i.e. $\operatorname{Tr}\left(W_{1}^{\dagger} U_{i}\right) \pm \operatorname{Tr}\left(W_{2}^{\dagger} U_{i}\right)=0$, we have $\operatorname{Tr}\left(W_{1}{ }^{\dagger} U_{i}\right)=$ $\operatorname{Tr}\left(W_{2}{ }^{\dagger} U_{i}\right)=0$ for $i=1,2, \cdots, 6$, which implies that $W_{1}, W_{2} \notin U(3)$. Hence $U \notin U(6)$. Therefore we conclude that $\left\{U_{n m}^{ \pm}, U_{i}^{ \pm}\right\}$is a 30 -member UMEB in $\mathbb{C}^{6} \otimes \mathbb{C}^{6}$.

Now we show that for any UMEB in $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$, there will be an UMEB in $\mathbb{C}^{q d} \otimes \mathbb{C}^{q d}$ for any $q \in \mathbb{N}$.
Theorem 1. If there is an N-number UMEB in $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$, then for any $q \in \mathbb{N}$, there is a \widetilde{N}-number, $\tilde{N}=(q d)^{2}-\left(d^{2}-N\right)$, UMEB in $\mathbb{C}^{q d} \otimes \mathbb{C}^{q d}$.
Proof: Denote

$$
\begin{gathered}
S=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
1 & 0 & 0 & \cdots & 0
\end{array}\right) \\
W=\left(\begin{array}{cccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \zeta_{q} & & \zeta_{q}^{2} & \cdots & \zeta_{q}^{q-1} \\
1 & \zeta_{q}^{2} & \zeta_{q}^{4} & \cdots & \zeta_{q}^{2(q-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \zeta_{q}^{q-1} & \zeta_{q}^{2(q-1)} & \cdots & \zeta_{q}^{(q-1)^{2}}
\end{array}\right)
\end{gathered}
$$

where $\zeta_{q}=e^{\frac{2 \pi \sqrt{-1}}{q}}$ and

$$
U_{n m}=\sum_{k=0}^{d-1} e^{\frac{2 \pi \sqrt{-1}}{d} k n}|k \oplus m\rangle\langle k|, m, n=0,1, \cdots, d-1
$$

In the following for any $q \times q$ matrix M with entries $m_{i j}$, we define $M^{i}=\operatorname{diag}\left(m_{i+1,1}, m_{i+1,2}, \ldots, m_{i+1, q}\right), i \in$ $\{0,1, \cdots, q-1\}$.

Let $\left\{U_{n}\right\}, n=1,2, \cdots, N<d^{2}$, be the set of unitary matrices that give rise to the UMEB in $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$. Set

$$
U_{n m}^{i j}=\left(W^{i} S^{j}\right) \otimes U_{n m}
$$

where $i, j=0, \cdots, q-1, m, n=0, \cdots, d-1$, and

$$
U_{n}^{i}=W^{i} \otimes U_{n}, i=0,1, \cdots, q-1, n=1,2, \cdots, N<d^{2}
$$

Let \widetilde{N} denote the number of matrices in $\left\{U_{n m}^{i j}, U_{n}^{i}\right\}$. We have

$$
\widetilde{N}=q(q-1) d^{2}+q N=(q d)^{2}-\left(d^{2}-N\right)<q^{2} d^{2}
$$

Next we prove that $\left\{U_{n m}^{i j}, U_{n}^{i}\right\}$ give a \widetilde{N}-member UMEB in $\mathbb{C}^{q d} \otimes \mathbb{C}^{q d}$.
(1) Since $W^{i}, S^{j}, U_{n m}$ are all unitary, so are $\left\{U_{n m}^{i j}, U_{n}^{i}\right\}$. So the given set of matrices satisfy the first condition of UMEB.
(2) In order to prove the orthogonality of the related basic states, we need to check the inner products between two elements in $\left\{U_{n m}^{i j}\right\}$, between two elements in $\left\{U_{n}^{i}\right\}$, and between one in $\left\{U_{n m}^{i j}\right\}$ and the other one in $\left\{U_{n}^{i}\right\}$. It is direct to verify that
(i) $\operatorname{Tr}\left(\left(U_{n m}^{i j}\right)^{\dagger} U_{\widetilde{n} \widetilde{m}}^{\widetilde{i}}\right)=q d \delta_{\widetilde{i}} \delta_{j \widetilde{j}} \delta_{n \widetilde{n}} \delta_{m \widetilde{m}}$;
(ii) $\operatorname{Tr}\left(\left(W^{i} \otimes U_{n}\right)^{\dagger}\left(W^{\tilde{i}} \otimes U_{\tilde{n}}\right)\right)=q d \delta_{\tilde{i}} \delta_{n \widetilde{n}}$;
(iii) $\operatorname{Tr}\left(\left(U_{n m}^{i j}\right)^{\dagger} U_{\widetilde{n}}^{\widetilde{i}}\right)=\operatorname{Tr}\left(\left(S^{j}\right)^{\dagger}\left(W^{i}\right)^{\dagger} W^{\widetilde{i}} \otimes U_{n m}^{\dagger} U_{n}\right)=0$.
(3) Let $V_{1}=\operatorname{span}\left\{U_{n m}^{i j}\right\}$ be a subspace of $M_{q d}(\mathbb{C})$, $\operatorname{dim} V_{1}=q(q-1) d^{2}$. Denote

$$
V_{2}=\left\{\operatorname{diag}\left(A_{1}, A_{2}, \ldots, A_{q}\right) \mid A_{i} \in M_{d}(\mathbb{C}), i=1,2, \ldots, q\right\}
$$

It is seens that $\operatorname{dim} V_{2}=q d^{2}$. For any matrix $A \in V_{2}$ and $i, j \in\{0,1, \cdots, q-1\}, m, n \in\{0,1, \cdots, d-1\}$, we have $\operatorname{Tr}\left(A^{\dagger} U_{n m}^{i j}\right)=0$. Thus for any matrix $A \in V_{2}$ and $B \in V_{1}$, $\operatorname{Tr}\left(A^{\dagger} B\right)=0$. Namely, $V_{2} \subseteq V_{1}^{\perp}$. Accounting to the dimensions of V_{1}, V_{2} and $M_{q d}(\mathbb{C})$, we obtain $V_{1}^{\perp}=V_{2}$. Set $V_{3}=\operatorname{span}\left\{U_{n m}^{i j}, U_{n}^{i}\right\}$. Clearly, $V_{3}^{\perp} \subset V_{1}^{\perp}$. Hence any $U \in V_{3}^{\perp}$ has the following form

$$
U=\operatorname{diag}\left(W_{1}, W_{2}, \ldots, W_{q}\right) \quad \text { where } W_{i} \in M_{d}(\mathbb{C})
$$

In addition, from $\operatorname{Tr}\left(U^{\dagger} U_{n}^{i}\right)=0$, for $i=1, \ldots, q$, we have

TABLE I: Order of eigenvalues of UMEBs in $\mathbb{C}^{12} \otimes \mathbb{C}^{12}$

	$O_{\min }\left(U_{n}^{i}\right)$	$O_{\max }\left(U_{n}^{i}\right)$	$O_{\min }\left(U_{m, n}^{i, j}\right)$	$O_{\max }\left(U_{m, n}^{i, j}\right)$
$\mathbb{C}^{3} \otimes \mathbb{C}^{3}$	1	∞	1	12
$\mathbb{C}^{4} \otimes \mathbb{C}^{4}$	1	12	1	12

TABLE II: Results about UMEBs in $\mathbb{C}^{d} \otimes \mathbb{C}^{d^{\prime}}$

condition	number in UMEB	reference
$d=d^{\prime}=2$	none	$[8]$
$d=d^{\prime}=3$	6	$[8]$
$d=d^{\prime}=4$	12	$[8]$
$d<d^{\prime}<2 d$	d^{2}	$[9]$
$d^{\prime}=q d+r, 0<r<d$	$q d^{2}$	$[10]$
$d^{\prime}>d$	$d\left(d^{\prime}-1\right)$	$[10]$
$d=d^{\prime}=3 n$	$d(d-1)$	This paper
$d=d^{\prime}=4 n$	$d(d-1)$	This paper

of U_{n}^{i} are $\left\{1, \ldots, \zeta_{4}^{3 i}, 1, \ldots, \zeta_{4}^{3 i}, e^{\sqrt{-1} \theta}, \ldots, e^{\sqrt{-1} \theta} \zeta_{4}^{3 i}\right\}$. If we consider the order of the eigenvalue, then the order of $e^{\sqrt{-1} \theta} \zeta_{4}^{3 i}$ is infinite. The orders of the eigenvalues of $U_{m, n}^{i, j}$ are all less or equal than 12. Similarly, we can calculate the orders of eigenvalues of $U_{n}^{i}, U_{m, n}^{i, j}$ derived from the UMEB in $\mathbb{C}^{4} \bigotimes \mathbb{C}^{4}$ as above. The minimal and maximal order of the eigenvalues of $U_{n}^{i}, U_{m, n}^{i, j}$ are presented in Table I. By the definition of equivalence between two UMEBs, they should share the the same eigenvalues. There are 12 elements of the UMEB derived from $\mathbb{C}^{3} \otimes \mathbb{C}^{3}$ with infinite order eigenvalues, but all the elements of the UMEB derived from $\mathbb{C}^{4} \bigotimes \mathbb{C}^{4}$ only have finite order eigenvalues. Hence they are not equivalent.

Moreover, the above conclusion can be generalized to $\mathbb{C}^{12 n} \otimes \mathbb{C}^{12 n}$. One can show that in $\mathbb{C}^{12 n} \otimes \mathbb{C}^{12 n}$, there exist two sets of UMEBs which are not equivalent.

III. CONCLUSION

We have studied the UMEBs in $\mathbb{C}^{d} \bigotimes \mathbb{C}^{d}$ and presented a 30-number UMEB construction in $\mathbb{C}^{6} \otimes \mathbb{C}^{6}$. By using approach in [10], we have presented the construction of an UMEB in $\mathbb{C}^{q d} \otimes \mathbb{C}^{q d}$ from an UMEB in $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$. In particular, we can obtain UMEBs in $\mathbb{C}^{3 n} \otimes \mathbb{C}^{3 n}$ and $\mathbb{C}^{4 n} \otimes \mathbb{C}^{4 n}$ from the results in [8]. By analysing the order of the eigenvalues of UMEB in $\mathbb{C}^{12} \otimes \mathbb{C}^{12}$ derived from the UMEBs in $\mathbb{C}^{3} \otimes \mathbb{C}^{3}$ and in $\mathbb{C}^{4} \otimes \mathbb{C}^{4}$, it has been shown that the two sets of UMEBs in $\mathbb{C}^{12} \otimes \mathbb{C}^{12}$, obtained from our theorem, are not equivalent. Similarly there are two sets of UMEBs in $\mathbb{C}^{12 n} \otimes \mathbb{C}^{12 n}$ which are not equivalent. As a summary, Table II shows the known results about the UMEBs $\mathbb{C}^{d} \otimes \mathbb{C}^{d^{\prime}}$.

Acknowledgments This work is supported by the NSFC under number 11275131.
[1] A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935).
[2] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information(Cambridge University Press, Cambridge, U.K., 2004).
[3] C.H. Bennett, D.P. DiVincenzo, T. Mor, P.W. SHor, J.A.Smolin and B.M. Terhal, Phys. Rev. Lett. 82, 5385 (1999).
[4] D.P. DiVincenzo, T. Mor, P.W. Shor, J.A. Smolin, and B.M. Terhal, Commun. Math. Phys. 238, 379(2003).
[5] Bound entanglement was defined in P. Horodecki, Phys.

Lett. A 232, 333(1997).
[6] M. Horodecki, Quantum Inf. Comput.1, 3 (2001).
[7] R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki, Rev. Mod. Phys 81, 865 (2009).
[8] S. Bravyi, and J. A. Smolin, Phys. Rev. A 84, 042306 (2011).
[9] B. Chen and S.M. Fei, Phys. Rev. A 88,034301 (2013).
[10] M.S. Li, Y.L. Wang, Z.J. Zheng, Phys. Rev. A 89, 062313 (2014).
[11] J.L. Varona, Cent. Eur. J. Math. 4, no. 2, 319-322 (2006).

