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I. INTRODUCTION

Quantum entanglement plays important roles in many quantum information processing tasks, such as teleportation,
quantum error correction and quantum secret sharing [1–3]. In order to understand better the quantum entanglement
of quantum states, one needs to investigate equivalence of quantum states under local operations, namely, if a quantum
state can be transformed into another one by local operations. Particularly, if one concerns only the local unitary
operations, the problem becomes local unitary (LU) equivalence [5].
One of the important methods to solve such LU equivalence problem is to construct the invariants under local

unitary transformations. In [4], a complete set of 18 polynomial invariants has been presented for two-qubit mixed
states. In [5, 6] Kraus solved the LU equivalence problem for multi-qubit pure states. However, the LU equivalence
problem still remains open for arbitrary dimensional states. Even for general bipartite mixed states, there are no
efficient approaches to deal with the problem [7, 8].
By using the higher order singular value decomposition (HOSVD) technique, the authors solved the LU equivalence

problem for arbitrary dimensional multipartite pure states in [9, 10].
Nevertheless, if the local symmetries of the HOSVD state are blocks with large size, the reduce problem is still

difficult to tackle with. Our paper give a refinement of such states. One can find that our method is more efficient than
Bin Liu’s through the two given examples. In this paper, we first give a necessary condition for the LU equivalence
of two quantum states. After considering the simultaneously unitary equivalent, we give a reduce form with local
symmetry in smaller size than in [9, 10].
This paper is organized as follows. In section II, we recall some results about the unitary equivalence and some

notations about HOSVD that will be used in our work. In section III, we illustrate our method for the tripartite pure
states, together with detailed some examples. In section IV, we generalize our method to multipartite pure states and
present a reduced form whose symmetry group can be made into smaller blocks than the one in [9].

II. SOME PRELIMINARIES

Definition 1. [14] Let n ∈ N, r1, r2, ..., rm ∈ N+, such that n =
m∑
i=1

ri and {Ei}
s
i=1 be a partition of {1, 2, ...,m}.

The set {H = diag(U1, U2, ..., Um)|Ui ∈ U(ri), Ui = Uj , if ∃ 1 ≤ r ≤ s, i, j ∈ Er} is called a direct group of Mn(C)
with size {ri}

m
i=1 and restricted by {Ei}

s
i=1.

Lemma 1. [12–14] Let H be a direct group of n× n matrix. Then matrices A and B are unitary equivalent under

H if and only if they have the same reduced forms Ã and B̃. Moreover, the invariant group {U ∈ H |UÃU † = Ã} is a
direct subgroup of H .

Corollary 1. Given two sets of matrices {Ai}
m
i=1 and {Bi}

m
i=1 ∈Mn(C). The following two statements are equivalent

(I) ∃U ∈ U(n) such that Bi = UAiU
†, i = 1, 2, ...,m;

(II)A = diag(A1, ..., Am), B = diag(B1, ..., Bm) have the same reduced form under the direct group defined by
{ri = n}mi=1, E1 = {1, 2, ...,m}.

Definition 2. A multipartite pure state |ψ〉 in CI1 ⊗CI2 ⊗ ...⊗CIN is called a HOSVD state if |ψ〉m〈ψ| are diagonal
for m = 1, ..., N , where † denotes the transpose and conjugation, |ψ〉m is ......
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The high order singular value decomposition technique used in [9, 10] can been seen as follows. Let λ
(m)
1 > λ

(m)
2 >

. . . > λ
(m)

t(m) ≥ 0 be distinct m-mode singular values of |ψ〉 with multiplicities µ
(m)
1 , µ

(m)
2 , . . . , µ

(m)

t(m) , respectively, where

t(m)∑
k=1

µ
(m)
k = Im. If Ω is a HOSVD state of |ψ〉, then

N⊗

m=1

(

t(m)⊕

k=1

U
(m)
k )Ω ≡

N⊗

m=1

S(m)Ω

is also a HOSVD state of |ψ〉. Here U
(m)
k ∈M

µ
(m)
k

(C) are µ
(m)
k × µ

(m)
k unitary matrices, and constitute the diagonal

blocks of S(m) which are conformal to those m-mode singular values of |ψ〉.
Through out this paper, we say that a state |ψ〉 is its HOSVD state if |ψ〉m|ψ〉†m are diagonal to

λ
(m)
1 , ..., λ

(m)
1︸ ︷︷ ︸

µ
(m)
1

, ..., λ
(m)

t(m) , ..., λ
(m)

t(m)︸ ︷︷ ︸
µ
(m)

t(m)

, m = 1, 2, ..., N , and with local symmetry
⊗N

m=1 S
(m).

III. LU EQUIVALENCE FOR TRIPARTITE STATES

We first consider the tripartite case. For a general tripartite pure state |ψ〉, we have

|ψ〉 =
t(1)∑
k=1

µ
(1)
k∑
l=1

λ
(1)
k |n

(1),k
l 〉1 ⊗ |v

(1),k
l 〉

¬1

=
t(2)∑
k=1

µ
(2)
k∑
l=1

λ
(2)
k |n

(2),k
l 〉2 ⊗ |v

(2),k
l 〉

¬2

=
t(3)∑
k=1

µ
(3)
k∑
l=1

λ
(3)
k |n

(3),k
l 〉3 ⊗ |v

(3),k
l 〉

¬3,

where n
(i),k
l = l+

k−1∑
s=1

µ
(i)
s , |v

(i),k
l 〉¬i is just the normalized vector when we collect the n

(i),k
l -th term of the i-th system

of |ψ〉. Hence |ψ〉 can be viewed as the purification of the following mixed bipartite states,

ρ(1) =
t(1)∑
k=1

λ
(1)
k

2 µ
(1)
k∑
l=1

|v
(1),k
l 〉¬1¬1〈v

(1),k
l |,

ρ(2) =
t(2)∑
k=1

λ
(2)
k

2 µ
(2)
k∑
l=1

|v
(2),k
l 〉¬2¬2〈v

(2),k
l |,

ρ(3) =
t(3)∑
k=1

λ
(3)
k

2 µ
(3)
k∑
l=1

|v
(3),k
l 〉¬3¬3〈v

(3),k
l |.

Denote

|ψ(i),k〉 = λ
(i)
k

µ
(i)
k∑

l=1

|n
(i),k
l 〉i ⊗ |v

(i),k
l 〉

¬i
,

which can be viewed as the purification of the ¬i bipartite mixed state,

ρ
(i)
k = λ

(i)
k

2
µ
(i)
k∑

l=1

|v
(i),k
l 〉¬i〈v

(i),k
l |,
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where super-index (i) stands for the i-th auxiliary system to purify the ¬i bipartite mixed state ρ
(i)
k , while ρ

(i)
k is the

k-th part of ρ(i). From the m-mode decomposition of the state |ψ(i),k〉, we have the matrix M i,k
ψ,m,

M
i,k
ψ,m

.
= |ψ(i),k〉m〈ψ(i),k|, 1 ≤ m 6= i ≤ 3, k = 1, 2, ..., t(i).

Theorem 1. Let |ψ〉 and |φ〉 be two HOSVD pure states in CI1 ⊗ CI2 ⊗ CI3 . If

U1 ⊗ U2 ⊗ U3|ψ〉 = |φ〉, (1)

then

UmM
i,k
ψ,m U

†
m =M

i,k
φ,m, 1 ≤ m 6= i ≤ 3, k = 1, 2, ..., t(i).

[Proof] For HOSVD states

|ψ〉 =

t(i)∑

k=1

µ
(i)
k∑

l=1

λ
(i)
k |n

(i),k
l 〉i,⊗|v

(i),k
l 〉

¬i
, (2)

|φ〉 =

t(i)∑

k=1

µ
(i)
k∑

l=1

λ
(i)
k |n

(i),k
l 〉i ⊗ |w

(i),k
l 〉

¬i
, (3)

U1 ⊗ U2 ⊗ U3|ψ〉 = |φ〉 implies that Ui ∈ S(i) are block unitary matrices with size {µ
(i)
k }t

(i)

k=1. Suppose

Ui =
t(i)⊕

k=1

U
(i)
k . (4)

From equations (1), (2), (3) and (4), we have

U
(i)
k ⊗ (U1 ⊗ U2 ⊗ U3)¬i

µ
(i)
k∑

l=1

λ
(i)
k |n

(i),k
l 〉i ⊗ |v

(i),k
l 〉¬i =

µ
(i)
k∑

l=1

λ
(i)
k |n

(i),k
l 〉i ⊗ |w

(i),k
l 〉¬i.

That is

U
(i)
k ⊗ (U1 ⊗ U2 ⊗ U3)¬i|ψ

(i)
k 〉 = |φ

(i)
k 〉, (5)

where (U1 ⊗ U2 ⊗ U3)¬i denotes a matrix with the i-th unitary matrix Ui being removed from the expression (U1 ⊗
U2 ⊗ U3), for instance, (U1 ⊗ U2 ⊗ U3)¬3 = (U1 ⊗ U2).

Taking into account the m-mode of the purified states, we have U (m)|ψ
(i)
k 〉m(U

(i)
k ⊗ (U1 ⊗U2 ⊗U3)¬i)

t
¬m = |φ

(i)
k 〉m.

Hence U (m)|ψ
(i)
k 〉m|ψ

(i)
k 〉†mU

(m)† = |φ
(i)
k 〉m|φ

(i)
k 〉†m.

From the theorem 1, for 1 ≤ m ≤ 3, there are two groups of matrices Lm =
3∑

i=1,l 6=m

t(i) in MIm(C) corresponding

to the LU equivalent states |ψ〉 and |φ〉. They are simultaneously unitary equivalent. Denote

Mψ,1 = diag(M2,1
ψ,1, ...,M

2,t(2)

ψ,1 ,M
3,1
ψ,1, ...,M

3,t(3)

ψ,1 ),

Mψ,2 = diag(M1,1
ψ,2, ...,M

1,t(1)

ψ,2 ,M
3,1
ψ,2, ...,M

3,t(3)

ψ,2 ),

Mψ,3 = diag(M1,1
ψ,3, ...,M

1,t(1)

ψ,3 ,M
2,1
ψ,3, ...,M

2,t(2)

ψ,3 ).

Let HM
m be the direct group of MLm×Im(C) defined by {rk = Im}Lmk=1 and E1 = {1, 2, ..., Lm}, and Hm be the set

of the Im-th sequential principal minors of the matrices in HM
m . Obviously, Hm is a direct group of MIm(C). Then



4

the matrices in HM
m are just Lm copies of the matrices in Hm. That is, the matrices in HM

m are just of the form
diag(Hm, ..., Hm︸ ︷︷ ︸

Lm

).

For a given matrix Mψ,m, by the algorithm in [14], there is a matrix U ψ̃,Mψ,m which transfers Mψ,m into its canonical

form M0
ψ,m with invariant subgroup H̃M

m = diag(H̃m, ..., H̃m︸ ︷︷ ︸
Lm

). Suppose

U
ψ̃,M
ψ,m = diag(U ψ̃,mψ,m , ..., U

ψ̃,m
ψ,m︸ ︷︷ ︸

Lm

) ∈ HM
m

with U ψ̃,mψ,m in the Im-th sequential principal minor. By calculating all the three unitary matrices {U ψ̃,mψ,m ; m = 1, 2, 3},

one gets a state |ψ̃〉 defined by

|ψ̃〉 = U
ψ̃,1
ψ,1 ⊗ U

ψ̃,2
ψ,2 ⊗ U

ψ̃,3
ψ,3 |ψ〉.

|ψ̃〉 is called a reduced form of |ψ〉.

Theorem 2. Let |ψ〉 and |φ〉 be two HOSVD states. |ψ〉 and |φ〉 are LU equivalent if and only if |ψ̃〉 can be

transformed to |φ̃〉 under H̃1 ⊗ H̃2 ⊗ H̃3.

[Proof] If Uφ,1ψ,1 ⊗ U
φ,2
ψ,2 ⊗ U

φ,3
ψ,3 |ψ〉 = |φ〉, by the definitions of |ψ̃〉 and |φ̃〉, we have

(U φ̃,1φ,1U
φ,1
ψ,1U

ψ̃,1
ψ,1

†

)⊗ (U φ̃,2φ,2U
φ,2
ψ,2U

ψ̃,2
ψ,2

†

)⊗ (U φ̃,3φ,3U
φ,3
ψ,3U

ψ̃,3
ψ,3

†

)|ψ̃〉 = |φ̃〉. (6)

With respect to the four states |ψ〉, |φ〉, |ψ̃〉 and |φ̃〉, we can constructMψ,m, Mφ,m, Mψ̃,m
, M

φ̃,m
, respectively. Then

we have the following commutative diagram,

Mψ,m

U
φ,M

ψ,m

−−−−→ Mφ,m

U
ψ̃,M

ψ,m

y
yU φ̃,Mφ,m

M
ψ̃,m

−−−−→
U
φ̃,M

ψ̃,m

M
φ̃,m

where

U
φ̃,M

ψ̃,m
= diag(U φ̃,mφ,mU

φ,m
ψ,mU

ψ̃,m
ψ,m

†

, ..., U
φ̃,m
φ,mU

φ,m
ψ,mU

ψ̃,m
ψ,m

†

︸ ︷︷ ︸
Lm

).

The canonical forms M0
ψ,m, M

0
φ,m of Mψ,m, Mφ,m are just M

ψ̃,m
,M

φ̃,m
. Namely U φ̃,M

ψ̃,m
transforms M0

ψ,m to M0
φ,m.

By lemma 1, we have

U
φ̃,M

ψ̃,m
∈ H̃M

m .

That is,

(U φ̃,mφ,mU
φ,m
ψ,mU

ψ̃,m
ψ,m

†

) ∈ H̃m,m = 1, 2, 3.

From equation (6), |ψ̃〉 can be transformed to |φ̃〉 under H̃1 ⊗ H̃2 ⊗ H̃3.

Conversely, if |ψ̃〉 can be transformed to |φ̃〉 under H̃1 ⊗ H̃2 ⊗ H̃3, it is straightforward to see that |ψ〉 and |φ〉 are
LU equivalent.
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Remark: Since |ψ〉 and |φ〉 are HOSVD states, we can choose Hm = S(m). Then the unitary transformations that

transform Mψ,m to Mφ,m must lie in HM
m = diag(S(m), ..., S(m)). Clearly, H̃m ⊆ Hm. From this point of view, our

method can make the symmetry group into smaller blocks than the HOSVD decomposition technique.

Example 1. Let us consider the state |ψ〉 =
√

1

6
|111〉 +

√

1

4
|123〉 +

√

1

12
|132〉 +

√

1

8
|212〉 +

√

1

24
|221〉 +

√

1

3
|233〉 in

C2 ⊗ C3 ⊗ C3.
By the method in [9], one gets

|ψ〉1〈ψ| =

[
1
2

1
2

]
, |ψ〉2〈ψ| =




7
24

7
24

5
12


 , |ψ〉3〈ψ| =




5
24

5
24

7
12


 .

Hence |ψ〉 itself is a HOSVD state. From the HOSVD decomposition, S(1) ⊗ S(2) ⊗ S(3) has the following form

U(2)⊗

[

U(2)
eiθ1

]

⊗

[

U(2)
eiθ2

]

.

The LU equivalent problem of |ψ〉 and another state |φ〉 is then reduced to judge if there is a solution in S(1)⊗S(2)⊗S(3)

which transforms |ψ〉 to a core state of |φ〉.
Nevertheless, by our method, we only need to calculate the three matrices Mψ,1, Mψ,2 and Mψ,3 defined above,

Mψ,1 = diag

[[
5
12

1
6

]
,

[
1
12

1
3

]
,

[
1
4

1
6

]
,

[
1
4

1
3

]]
,

Mψ,2 = diag






7
24

7
24

5
12


 ,




7
24

1
24

1
12


 ,



0

1
4

1
3




 ,

Mψ,3 = diag








5
24

5
24

7
12



 ,




5
24

1
8

1
4



 ,




0

1
12

1
3







 .

Actually all these three matrices are the canonical forms of themselves under their direct groups HM
1 , HM

2 and HM
3 .

The direct group H̃1 ⊗ H̃2 ⊗ H̃3 of the canonical form |ψ̃〉 has the following form

[
eiθ1

eiθ2

]
⊗



eiθ3

eiθ4

eiθ5


⊗



eiθ6

eiθ7

eiθ8


 .

Hence the problem to decide whether |ψ〉 is LU equivalent to another state |φ〉 or not can be reduced to judge if there

is a solution in H̃1 ⊗ H̃2 ⊗ H̃3 that transforms |ψ̃〉 to |φ̃〉, which is an easier problem.

Example 2. Let us consider another example, |ψ〉 =
√

2
15 |113〉 +

√
1
6 |121〉 +

√
1
15 |132〉 +

√
1
5 |212〉 +

√
1
15 |223〉 +√

1
10 |231〉+

√
1
15 |311〉+

√
1
15 |323〉+

√
2
15 |333〉, a state in C3 ⊗ C3 ⊗ C3.

In this case, one has

|ψ〉1〈ψ| =




11
30

11
30

4
15



 , |ψ〉2〈ψ| =




2
5

3
10

3
10



 , |ψ〉3〈ψ| =




1
3

1
3

1
3



 .

We can see that |ψ〉 itself is a HOSVD state. By the HOSVD decomposition, S(1)⊗S(2)⊗S(3) has the following form

[
U(2)

eiθ1

]
⊗

[
eiθ2

U(2)

]
⊗ U(3).

That is, if one uses the approach in [9], the LU equivalent problem of |ψ〉 and another state |φ〉 reduces to whether
there is a solution in S(1) ⊗ S(2) ⊗ S(3) that transforms |ψ〉 to the core state of |φ〉. But this is also a complicated
problem.



6

Now, in terms of our approach, we have the three matrices Mψ,1, Mψ,2 and Mψ,3,

Mψ,1 = diag






11
30

11
30

4
15


 ,




2
15

1
5

1
15


 ,




7
30

1
6

1
5




 ,

Mψ,2 = diag








2
5

3
10

3
10



 ,




1
15

1
15

2
15



 ,




1
3

7
30

1
6







 ,

Mψ,3 = diag






4
15

4
15

1
5


 ,




1
15

1
15

2
15


 ,




1
15

1
5

2
15


 ,




4
15

2
15

1
5




 .

Clearly, these three matrices are the canonical forms of themselves under their direct groups HM
1 , HM

2 and HM
3 . The

direct group H̃1 ⊗ H̃2 ⊗ H̃3 of the canonical form |ψ̃〉 has the following form


eiθ1

eiθ2

eiθ3


⊗



eiθ4

eiθ5

eiθ6


⊗



eiθ7

eiθ8

eiθ9


 .

Hence the problem to decide whether |ψ〉 is LU equivalent to another state |φ〉 or not can be reduced to whether there

is a solution in H̃1 ⊗ H̃2 ⊗ H̃3 that transforms |ψ̃〉 to |φ̃〉.
From the above two examples, it can be seen that our method is more effective than the one in [9].

IV. MULTIPARTITE PURE STATES

Our method can be generalized to the case of multipartite pure states. Given an N-partite pure HOSVD state

|ψ〉 ∈ C
I1 ⊗ C

I2 ⊗ ...⊗ C
IN ,

we can write

|ψ〉 =
t(i)∑

k=1

µ
(i)
k∑

l=1

λ
(i)
k |n

(i),k
l 〉i ⊗ |v

(i),k
l 〉

¬i
,

where i = 1, 2, ..., N, n
(i),k
l = l +

k−1∑
s=1

µ
(i)
s and |v

(i),k
l 〉¬i is just the normal vector when we collect the n

(i),k
l -th term of

the i-th system of |ψ〉. For each 1 ≤ i ≤ N , |ψ〉 can be looked as the purification of the mixed N-1 partite state

ρ(i) =
t(i)∑

k=1

λ
(i)
k

2
µ
(i)
k∑

l=1

|v
(i),k
l 〉¬i¬i〈v

(i),k
l |.

Denote

ρ
(i)
k = λ

(i)
k

2
µ
(i)
k∑

l=1

|v
(i),k
l 〉¬i¬i〈v

(i),k
l |.

Purifying ρ
(i)
k , we get an N-partite pure state

|ψ(i),k〉 =

µ
(i)
k∑

l=1

|n
(i),k
l 〉i ⊗ |v

(i),k
l 〉

¬i
.

From the m-mode of |ψ(i),k〉, we have the following matrices

M
i,k
ψ,m = |ψ(i),k〉m〈ψ(i),k|, 1 ≤ m 6= i ≤ N, k = 1, ..., t(i).
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These matrices give rise to

Mψ,m = diag(M1,1
ψ,m, ...,M

1,t(1)

ψ,m , ...,

︷ ︸︸ ︷
M

m,1
ψ,m, ...,M

m,t(m)

ψ,m , ...,M
N,1
ψ,m, ...,M

N,t(N)

ψ,m ),

where the ︷︸︸︷... means that the matrices under the cap are absent from expression.
Let HM

m be the direct group of MLm×Im(C) defined by {rk = Im}Lmk=1 and E1 = {1, 2, ..., Lm}. Given a matrix

Mψ,m, by the algorithm in [14], we have a matrix U ψ̃,Mψ,m transformingMψ,m to its canonical formM0
ψ,m with invariant

subgroup H̃M
m = diag(H̃m, ..., H̃m︸ ︷︷ ︸

Lm

). Suppose

U
ψ̃,M
ψ,m = diag(U ψ̃,mψ,m , ..., U

ψ̃,m
ψ,m︸ ︷︷ ︸

Lm

) ∈ HM
m

with U ψ̃,mψ,m in the Im-th sequential principal minor.
A state

|ψ̃〉
.
= U

ψ̃,1
ψ,1 ⊗ U

ψ̃,2
ψ,2 ⊗ ...⊗ U

ψ̃,N
ψ,N |ψ〉.

is called a reduced form of |ψ〉, where all the unitary matrices {U ψ̃,mψ,m , 1 ≤ m ≤ N} can be calculated explicitly.

Theorem 3. Let |ψ〉 and |φ〉 be two HOSVD states. Then |ψ〉 and |φ〉 are LU equivalent if and only if |ψ̃〉 can be

transformed to |φ̃〉 under H̃1 ⊗ H̃2 ⊗ ...⊗ H̃N .
The proof is of theorem 3 is similar to that of theorem 2.

V. CONCLUSION

We have considered the problem of LU equivalence for tripartite and multipartite pure states. After analyzing the
necessary conditions of the LU equivalence, we have obtained the conclusion of the simultaneously unitary equivalence
of two order sets of matrices. A reduced form for each quantum state has been derived by virtue of the algorithm for
dealing with the unitary equivalence under direct groups. Accordingly, the LU equivalence problem can be reduced
into a simpler one. Our method is more efficient than that in [9]. Hence the algorithm for unitary equivalence under
direct group is a more efficient way to deal with the LU equivalent problem.

Acknowledgments : We would like to thank Xuena Zhu and Pengfei Guo for helpful discussions. We are very
grateful to the referee for carefully reading and helpful comments.
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