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Abstract

We consider linear skew product with the full shift in the base and
non-zero Lyapunov exponent in the fiber. We provide sharp estimate
for the precision of shadowing for a typical pseudotrajectory of finite
length. This result suggests that the high-dimensional analogue of
Hammel-Yorke-Grebogi’s conjecture [8, 9] concerning the interval of
shadowability for a typical pseudotrajectory is not correct. The main
technique is reduction of shadowing problem to the ruin problem for
one-dimensional random walk.

1 Introduction

The theory of shadowing of approximate trajectories (pseudotrajectories)
of dynamical systems is now a well-developed part of the global theory of
dynamical systems (see, the monographs [13, 14] and [15] for overview of
modern results). The shadowing problem is related to the following question:
under which conditions, for any pseudotrajectory of f there exists a close
trajectory?

For a metric space (G, dist), a continuous map f : G → G, d > 0 and an
interval I = (a, b), where a ∈ Z∪{−∞}, b ∈ Z∪{+∞} a sequence of points
{yk}k∈I is called a d-pseudotrajectory if the following inequalities hold

dist(yk+1, f(yk)) < d, k ∈ Z, k, k + 1 ∈ I.

Definition 1. We say that f has the standard shadowing property if for any
ε > 0 there exists d > 0 such that for any d-pseudotrajectory {yk}k∈Z there
exists a trajectory {xk}k∈Z such that

dist(xk, yk) < ε, k ∈ Z. (1)

In this case we say that pseudotrajectory {yk} is ε-shadowed by {xk}.
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The study of this problem was originated by Anosov [2] and Bowen [3].
This theory is closely related to the classical theory of structural stability.

Let G be a smooth compact manifold of class C∞ without boundary
with Riemannian metric dist and f ∈ Diff1(G). It is well known that a
diffeomorphism has shadowing property in a neighborhood of a hyperbolic
set [2, 3] and a structurally stable diffeomorphism has shadowing property
on the whole manifold [11, 19, 21]. At the same time, it is easy to give an
example of a diffeomorphism that is not structurally stable but has standard
shadowing property (see [16], for instance). Thus, structural stability is not
equivalent to shadowing.

Relation between shadowing and structural stability was studied in sev-
eral contexts. It is known that the C1-interior of the set of diffeomorphisms
having shadowing property coincides with the set of structurally stable diffeo-
morphisms [20] (see [17] for a similar result for orbital shadowing property).
Abdenur and Diaz conjectured that a C1-generic diffeomorphism with the
shadowing property is structurally stable; they have proved this conjecture
for so-called tame diffeomorphisms [1].

Analyzing the proofs of the first shadowing results by Anosov [2] and
Bowen [3], it is easy to see that, in a neighborhood of a hyperbolic set,
the shadowing property is Lipschitz (and the same holds in the case of a
structurally stable diffeomorphism [14]).

Definition 2. We say that f has the Lipschitz shadowing property if there
exist ε0, L0 > 0 such that for any ε < ε0 and d-pseudotrajectory {yk}k∈Z
with d = ε/L0 there exists a trajectory {xk}k∈Z such that inequalities (1)
hold.

Recently [18] it was proved that a diffeomorphism f ∈ C1 has Lipschitz
shadowing property if and only if it is structurally stable (see [12, 16] for a
similar results for periodic and variational shadowing properties).

In the present paper we are interested which type of shadowing one can
have for non-hyperbolic diffeomorphisms. The following notion will be im-
portant for us [22]:

Definition 3. We say that f has the Finite Hölder shadowing property
with exponents θ ∈ (0, 1), ω ≥ 0 (FinHolSh(θ, ω)) if there exist constants
d0, L, C > 0 such that for any d < d0 and d-pseudotrajectory {yk}k∈[0,Cd−ω]

there exists a trajectory {xk}k∈[0,Cd−ω] such that

dist(xk, yk) < Ldθ, k ∈ [0, Cd−ω].
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S. Hammel, J. Yorke and C. Grebogi based on results of numerical ex-
periments conjectured the following [8, 9]:

Conjecture 1. A typical dissipative map f : R2 → R
2 satisfies FinHolSh(1/2, 1/2).

There are plenty of not structurally stable examples satisfying FinHolSh(1/2, 1/2),
for instance [22, Example 1] and identical map.

In the present paper we study this conjecture for model example: linear
skew product (see definition in section 2). We give lower and upper bounds
for the precision of shadowing of finite length pseudotrajectories. Those
bounds shows that depending on parameters of the skew product diffeomor-
phism might satisfy and not satisfy analog of Conjecture 1.

We expect that similarly to works [5, 6] such a skew product can be
embedded into a diffeomorphism of a manifold of dimension 4. This will allow
us to construct an open set of diffeomorphisms violating high-dimensional
analog of Conjecture 1. However we do not claim such a construction and
leave it out of the scope of the present paper.

Note that in [22] it was shown that Conjecture 1 cannot be improved (see
also [10] for the discussion on Hölder shadowing for 1-dimensional maps):

Theorem 1. If a diffeomorphism f ∈ C2 satisfies FinHolSh(θ, ω) with

θ > 1/2, θ + ω > 1

then f is structurally stable.

The paper is organized as follows. In Section 2 we formulate exact state-
ments of the results. In Section 3 we formulate a particular problem for
random walks and prove its equivalence to the shadowing property. In Sec-
tion 4 we give a proof of the main result.

2 Main Result

Let Σ = {0, 1}Z. Endow it with the standard metric dist and the standard
probability measure ν. For a sequence ω = {ωi} ∈ Σ denote by t(ω) the 0-th
element of the sequence: t(ω) = ω0. Define the “shift map” σ : Σ → Σ as
the following

(σ(ω))i = ωi+1.
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Consider the space Q = Σ × R. Endow Q with the product measure
µ = ν × Leb and the maximum metric:

dist((ω, x), (ω̃, x̃)) = max(dist(ω, ω̃), dist(x, x̃)).

For q ∈ Q and a > 0 denote by B(a, q) the open ball of radius a centered
at q.

Fix λ0, λ1 ∈ R, satisfying the following conditions

0 < λ0 < 1 < λ1, λ0λ1 6= 1. (2)

Consider map f : Q → Q defined as the following

f(ω, x) = (σ(ω), λt(ω)x).

For q ∈ Q, d > 0, N ∈ N let Ωq,d,N be the set of d-pseudotrajectories
starting at q. If we consider qk+1 being chosen at random in B(d, q) uniformly
with respect to measure µ then Ωq,d,N forms a finite time Markov chain. This
naturally endow Ωq,d,N with a probability measure P . See also [7] for a similar
concept for infinite pseudotrajectories.

For ε > 0 let p(q, d, N, ε) be the probability of pseudotrajectory in Ωq,d,N

to be ε-shadowable. Note that corresponding event is measurable since it is
an open subset of Ωq,d,N .

Lemma 1. Let q = (ω, x), q̃ = (ω, 0). For any d, ε > 0, N ∈ N the following
equality holds:

p(q, d, N, ε) = p(q̃, d, N, ε).

Proof. Consider {qk = (ωk, xk)} ∈ Ωq,d,N . Put rk := xk+1−λt(ωk)xk. Consider
a sequence {q̃k = (ωk, x̃k)}, where

x̃0 = 0, x̃k+1 = λt(wk)xk + rk.

The following holds:

1. the correspondence {qk} ↔ {q̃k} is one-to-one and preserves the prob-
ability measure;

2. for any ε > 0 pseudotrajectory {qk} is ε-shadowed by a trajectory of a
point (ω, x) if and only if {q̃k} is ε-shadowed by a trajectory of a point
(ω, x− x0).
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Those statements completes the proof of the lemma.

For d, ε > 0, N ∈ N define

p(d,N, ε) :=

∫

ω∈Σ

p((ω, 0), d, N, ε)dν.

Note that integral exists since for fixed d, N , ε the value p((ω, 0), d, N, ε)
depends only on finite number of entries of ω. The quantity p(d,N, ε) can
be interpreted as the probability of a d-pseudotrajectory of length N to be
ε-shadowed.

The main result of the paper is the following:

Theorem 2. For any λ0, λ1 ∈ R satisfying (2) there exists ε0 > 0, 0 < c0 <
∞ such that for any ε < ε0 the following holds

1. If c < c0 then limN→∞ p(ε/N c, N, ε) = 0;

2. If c > c0 then limN→∞ p(ε/N c, N, ε) = 1.

Remark 1. Later (Lemma 2) we prove that for any N ∈ N, L > 0, ε1, ε2 ∈
(0, ε0) the following equality holds:

p(ε1/L,N, ε1) = p(ε2/L,N, ε2).

Hence statement of Theorem 2 actually does not depend on the value of ε.

Remark 2. Analog of Hammel-Grebogi-Yorke conjectured for map f due
to Remark 1 suggests that p(ε/N,N, ε) is close to 1. Hence if c0 > 1 then
Hammel-Grebogi-Yorke conjecture is not satisfied. For the example of such
parameters see Remark 3.

3 Equivalent Formulation

Let a0 = lnλ0, a1 = lnλ1. Consider the following random variable

γ =

{

a0 with probability 1/2,

a1 with probability 1/2.

Fix N > 0. Consider random walk {Ai}i∈[0,∞) generated by γ and inde-
pendent uniformly distributed in [−1, 1] variables {ri}i∈[0,∞).
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Define sequence {zi}i∈[0,N ] by the following

z0 = 0, zi+1 = zi +
ri+1

eAi+1
. (3)

For a given sequences ({Ai}i∈[0,N ], {ri}i∈[0,N ]) define

B(k, n) :=
eAk+An

eAk + eAn

|zn − zk| =
eAn

eAk + eAn

∣

∣eAkzn − eAkzk
∣

∣ ,

K({Ai}, {ri}) := max
0≤k<n≤N

B(k, n),

s(N,L) := P (K({Ai}i∈[0,N ], {ri}i∈[0,N ]) < L),

where P (·) is the probability of a certain event.
Below we prove the following lemma.

Lemma 2. There exists ε0 > 0, L0 > 0 such that for any d ≥ 0, L > L0,
N ∈ N, satisfying Ld < ε0 the following equality holds

p(d,N, Ld) = s(N,L).

Proof. Let us choose ε0, L0 > 0 such that if dist(ω, ω̃) < ε0 then t(ω) = t(ω̃)
and map σ satisfies the Lipschitz shadowing property with constants ε0, L0.

Fix d < d0, N > 0 and L > L0 satisfying Ld < ε0. Let us choose ω
at random according to the probability measure ν and a pseudotajectory
{qk} = {(ωk, xk)} ∈ Ω(ω,0),d,N . Consider the sequences

γk = at(ωk), Ak =
k
∑

i=0

γi, rk = (xk − λt(ωk−1)xk−1)/d.

Note that rk are independent uniformly distributed in [−1, 1] and γk are
independent and distributed according to γ.

Below we prove that the sequence {qk} can be Ld-shadowed if and only
if

L ≥ K({Ai}, {ri}). (4)

Assume that pseudotrajectory (ωk, xk) is Ld-shadowed by the exact tra-
jectory (ξk, yk). By the choice of ε0 the following equality holds

t(ωk) = t(ξk). (5)

6



Now let us investigate behavior of the second coordinate. Note that

yk+1 = λt(ξk)yk = eγkyk, yn = eAn−Akyk, (6)

xn = eAn−Akxk + eAk(zn − zk),

where zk are defined by (3). Hence

(yn − xn) = eAn−Ak(yk − xk) + eAk(zn − zk).

From this equality it is easy to deduce that

max(|yk − xk|, |yn − xn|) ≥ B(k, n).

and the equality holds if (yk −xk) = −(yn−xn). Hence inequality (4) holds.

Now let us assume that (4) holds and prove that (wk, xk) can be Ld-
shadowed. Let us choose sequence {ξk} which Ld-shadows {wk}, then equal-
ities (5) hold.

For any y0 ∈ R we can find yk by the equation (6). Let us define function
F : R → R by the following

F (y0) = max
0≤k≤N

|yk − xk|.

Since function F is continuous it is easy to show that for some y0 it has a
minimum. Denote L′ := miny0∈R F (y0) and let y0 is such that L′ = F (y0).
Let D = {k ∈ [0, N ] : |yk − xk| = F (y0)}. Let us consider two cases.

Case 1. For all k ∈ D the value yk − xk has the same sign. Without loss
of generality we can assume that it is positive. Then for small enough δ > 0
the inequality F (y0−δ) < F (y0) holds, which contradicts to the choice of y0.

Case 2. There exists indexes k, n ∈ D such that the values yk − xk

and yn − xn have different signs. Then (yk − xk) = −(yn − xn) and hence
L′ = B(k, n) ≤ K({Ai}, {zi}).

4 Proof of Theorem 2

Note that shadowing problems for maps f and f−1 are equivalent (up to a
constant multiplier on d). In what follows we assume that λ0λ1 > 1. Put

v := E(γ) = (a0 + a1)/2 > 0, M := (lnN)2, w := v/2.

In the proof of Theorem 2 we use the following statements.

7



Lemma 3 (Large Deviation Principle, [23, Secion 3]). There exists an in-
creasing function h : (0,∞) → (0,∞) such that for any ε > 0 and δ > 0 for
large enough n the following inequalities hold

P

(

An

n
−E(γ) < −ε

)

< e−(h(ε)−δ)n.

P

(

An

n
−E(γ) < −ε

)

> e−(h(ε)+δ)n.

Lemma 4 (Ruin Problem, [4, Chapter XII, §4, 5]). Let b be the unique
positive root of the equation

1

2

(

e−ba0 + e−ba1
)

= 1.

For any δ > 0 for large enough C > 0 the following inequalities hold

P (∃i ≥ 0 : Ai ≤ −C) ≤ e−C(b−δ), (7)

P (∃i ≥ 0 : Ai ≤ −C) ≥ e−C(b+δ), (8)

Put c0 = 1/b. Due to Lemma 2 it is enough to prove the following:

(S1) If c < c0 then limN→∞ s(N,N c) = 0.

(S2) If c > c0 then limN→∞ s(N,N c) = 1.

Remark 3. For λ0 = 1/2, λ1 = 3 the inequalities b < 1, c0 > 1 holds
and hence due to Remark 2 the statement of Conjecture 1 does not hold.
Similarly c0 > 1 for λ0 = 1/3, λ1 = 2.

Below we prove items (S1) and (S2).

4.1 Proof of (S1)

Assume that c < 1/b. Let us choose c1 ∈ (c, 1/b) and δ > 0, satisfying

c1(b+ δ) < 1. (9)
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Consider the following events:

I = {∃i ∈ [0,M ] : Ai ≤ −c1 lnN ; and A2M ≥ 0} ,

I1 = {∃i ∈ [0,M ] : Ai ≤ −c1 lnN} ,

I2 = {∃i ∈ [0,M ] : Ai ≤ −wM} ,

I3 = {A2M − AM ≤ wM} .

The following holds.

P (I) ≥ P (I1)− P (I2)− P (I3), (10)

P (I1) ≥ P (∃i ≥ 0 : Ai ≤ −c1 lnN)− P (∃i > M : Ai ≤ −c1 lnN)

≥ e−c1 lnN(b+δ) −

N
∑

i=M+1

P (Ai ≤ 0) ≥ N−c1(b+δ) −

N
∑

i=M+1

e−ih(v)

≥ N−c1(b+δ) −
1

1− e−h(v)
e−(M+1)h(v) ≥ N−c1(b+δ) + o(N−2). (11)

Similarly

P (I2) ≤

∞
∑

i=M+1

P (Ai ≤ 0) = o(N−2), (12)

P (I3) ≤ e−Mh(v−w) = o(N−2). (13)

Summarizing (10)-(13) we conclude that

P (I) ≥ N−c1(b+δ) + o(N−2). (14)

Assume that event I has happened and let i ∈ [0,M ] be one of the
indexes satisfying inequality Ai < −c1 lnN . Note that the following events
are independent

J1 = {ri ∈ [1/2; 1]}, J2 =
{

z2M − z0 ≥
ri
eAi

}

.

Hence

P

(

z2M − z0 ≥
1

2eAi

)

≥ P (J1)P (J2) = 1/4 · 1/2 = 1/8
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and

P (B(0, 2M) > N c1/4) ≥
1

8
P (I) =

1

8
N−c1(b+δ) + o(N−2).

Note that for large enough N the inequality N c < N c1/4 holds and hence

P (B(0, 2M) > N c) ≥
1

8
N−c1(b+δ) + o(N−2).

Similarly for any k ∈ [0, N − 2M ]:

P (B(k, k + 2M) > N c) ≥
1

8
N−c1(b+δ) + o(N−2).

Note that events in the last expression for k = 0, 2M, 2 ·2M, . . . ([N/(2M)]−
1)2M are independent and hence

P (∃k ∈ [0, N − 2M ] : B(k, k + 2M) > N c) ≥

1−

(

1−

(

1

8
N−c1(b+δ) + o(N−2)

))[N/(2M)]

. (15)

Using (9) we conclude that

(

1

8
N−c1(b+δ) + o(N−2)

)

[N/(2M)] ≥

(

1

8
N−c1(b+δ) + o(N−2)

)(

N

2(lnN)2
− 1

)

=
1

16(lnN)2
N1−c1(b+δ) + o(N−1) →N→∞ ∞

and hence

(

1−

(

1

8
N−c1(b+δ) + o(N−2)

))[N/(2M)]

→N→∞ 0. (16)

Relations (15), (16) implies that

P (K({Ai}i∈[0,N ], {ri}i∈[0,N ]) > N c) → 1.

Hence
lim

N→∞
s(N,N c) = 0.
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4.2 Proof of (S2)

Let c > 1/b. Let us choose c1 ∈ (1/b, c) and δ > 0, satisfying c1(b− δ) > 1.
Note that for any n > k the following inequalities hold:

eAk |zn − zk| ≤
n
∑

i=k

e−(Ai−Ak)

eAn

eAk + eAn

≤ 1.

Hence

K({Ai}, {ri}) ≤ max
0≤k<n≤N

n
∑

i=k

e−(Ai−Ak) ≤ max
0≤k≤N

N
∑

i=k

e−(Ai−Ak) =: D({Ai}).

(17)
The following holds:

P (D({Ai}) < N c) ≥ 1− P

(

∃k ∈ [0, N ] :

N
∑

i=k

e−(Ai−Ak) > N c

)

≥ 1−NP

(

N
∑

i=0

e−(Ai−Ak) > N c

)

.

Note that if
∑N

i=0 e
−(Ai−Ak) > N c then one of the following hold

∃i ∈ [0,M ] : e−Ai >
N c

2M
,

∃i ∈ [M,N ] : e−Ai >
N c−1

2
.

Note that for large enough N the following inequalities hold

N c

2M
> N c1 , N c−1/2 > e−wM

and hence (arguing similarly to the previous section) for large enough N

P

(

N
∑

i=0

e−(Ai−Ak) > N c1

)

≤ P (∃i ∈ [0,M ] : Ai < −c1 lnN) + P (∃i ∈ [M,N ] : Ai < wM)

≤ e−(b−δ)c1 lnN + o(N−2) = N−(b−δ)c1 + o(N−2).
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Finally

P (D({Ai}) ≤ N c) ≥ 1−N(N−(b−δ)c1 + o(N−2)) →N→∞ 1,

and hence relations (17) imply

lim
N→∞

s(N,N c) = 1.
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