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CHEEGER CONSTANTS, STRUCTURAL BALANCE, AND SPECTRAL

CLUSTERING ANALYSIS FOR SIGNED GRAPHS

FATIHCAN M. ATAY AND SHIPING LIU

Abstract. We introduce a family of multi-way Cheeger-type constants {hσk , k = 1, 2, . . . , N}
on a signed graph Γ = (G, σ) such that hσk = 0 if and only if Γ has k balanced connected
components. These constants are switching invariant and bring together in a unified view-
point a number of important graph-theoretical concepts, including the classical Cheeger
constant, the non-bipartiteness parameter of Desai and Rao, the bipartiteness ratio of
Trevisan, the dual Cheeger constant of Bauer and Jost on unsigned graphs, and the line
index of imbalance of Harary (also called the frustration index) on signed graphs.

We then propose a corresponding spectral clustering algorithm for finding k almost-
balanced subgraphs, each defining a sparse cut. We find that the proper metric for the
clustering algorithm is the metric on a real projective space. Remarkably, this algorithm
includes the traditional spectral clustering algorithm on unsigned graphs via spherical
metrics as a special case. We verify the algorithm theoretically by proving higher-order
signed Cheeger inequalities, and signed improved Cheeger inequalities concerning higher-
order spectral gaps.

We also prove estimates of the extremal eigenvalues of signed Laplace matrix in terms
of number of signed triangles (3-cycles).

1. Introduction

In this paper, we study the interaction between the spectra and the structural balance
theory of signed graphs. Signed graphs and the idea of balance, introduced by Frank Harary
[22] in 1953 and have since then been rediscovered in different contexts many times, are
important models and tools for various research fields. The concepts were motivated and
suggested by problems in social psychology [22, 23, 14] and have stimulated new methods
for analyzing social networks [29, 48, 46], biological networks [45], logical programming [17],
etc. Signed graphs also play important roles in various branches of mathematics, such as
group theory, root systems (see [12] and the references therein), topology [11, 13], and even
physics [9]. By relating signed graphs with 2-lifts of a graph, Bilu and Linial [10] reduce
the problem of constructing expander graphs to finding a signature with small spectral
radius. In a recent breakthrough work, Marcus, Spielman, and Srivastava [37, 38] show
the existence of infinite families of regular bipartite Ramanujan graphs of every degree
larger than 2, by proving a variant conjecture of Bilu and Linial about the existence of the
signature of a given graph with very small spectral radius.

A signed graph Γ = (G, σ) is an undirected graph G = (V,E) with a signature σ :
E → {+1,−1} on the edge set E. One can think of the vertex set V as a social group.
A positive (resp., negative) edge between two vertices indicates that the two members are
friends (resp., enemies). The sign of a cycle in G is defined as the product of the signs
of all edges in it. Γ is called balanced if all cycles in G are positive. This is a crucial
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concept for a signed graph due to Harary [22]. Consider a group of three members a, b and
c, in which a, b are enemies and a, c are enemies. Then the balance of the corresponding
3-cycle requires that b, c are friends. Hence, balance refers to a certain consistency in the
relationship, often expressed as “the enemy of my enemy is my friend”.

Observe that if we reverse the relations between a and b, a and c simultaneously, the
3-cycle is still balanced. In general, a switching operation of the signature σ can be defined.
We call the operation of reversing the signs of all edges connecting a subset S ⊆ V and its
complement as switching the subset S. The sign of a cycle, and hence the property of being
balanced, are switching invariant, i.e. preserved by switching any subset of V .

The properties of being balanced can be characterized by the spectrum of the signed
normalized Laplace matrix

∆σ := I −D−1Aσ,

where I is the identity matrix, D is the diagonal degree matrix, i.e. Duu = du, ∀u ∈ V , du
is the degree of u in G, and Aσ is the signed adjacency matrix. The matrix ∆σ appears
naturally in the context of graph drawing and electrical networks [30]. It is known that the
eigenvalues of ∆σ can be listed (counting with multiplicity) as

0 ≤ λ1(∆σ) ≤ λ2(∆σ) ≤ · · · ≤ λN (∆σ) ≤ 2,

where N is the cardinality of V . Moreover,

Γ has a balanced connected component ⇔ λ1(∆σ) = 0, (1.1)

see e.g. [49, 26, 34]. The eigenvalue λk(∆
σ) is switching invariant for any 1 ≤ k ≤ N (see

[50] or Proposition 1 below). We refer to [25, 33, 21, 5, 8, 41] for more results in the spectral
theory of signed graphs.

In this paper, we define a Cheeger-type constant hσ1 based on Harary’s balance theorem
(see Theorem 8) such that

Γ has a balanced connected component ⇔ hσ1 = 0. (1.2)

In the following, we will refer to this Cheeger-type constant of a signed graph as a signed
Cheeger constant for short. Similarly, we will also speak of signed inequalities and signed
algorithms. The constant hσ1 can be used to obtain a quantitative version of (1.1). (For
previous results in this aspect, see [25, 8].) We prove that hσ1 is switching invariant. This
enables us to show that the signed Cheeger constant hσ1 and its multi-way versions provide
a common extension of the classical Cheeger constant [16, 20, 4, 3], the non-bipartiteness
parameter of Desai and Rao [19] (after a modification), the bipartiteness ratio of Trevisan
[47], and the dual Cheeger constant of Bauer and Jost [6]. Recall that on an unsigned
graph, the Cheeger constant encodes the information of connectivity, while the latter three
constants describe the deviation of the graph from being bipartite.

The introduction of the signed Cheeger constant further enables us to develop corre-
sponding spectral clustering algorithms on signed networks. We propose an algorithm for
finding k almost-balanced subgraphs of a signed graph Γ = (G, σ). The novel point of this
algorithm is that, after embedding the graph into the Euclidean space Rk via eigenfunc-
tions, we find the proper metric for clustering points is a metric on the real projective
space P k−1R studied by the second named author [35]. Interestingly, when we take σ to
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be positive on all edges, this algorithm reduces to the traditional spectral clustering us-
ing a spherical metric (see e.g. [40, 36]) verified theoretically by Lee, Oveis Gharan, and
Trevisan [32]. In other words, within the framework of signed graphs we find a unifica-
tion of the traditional spectral clustering algorithm and the recent algorithm for finding k
almost-bipartite subgraphs proposed in [35].

We further explore the related theoretical analysis of this algorithm. We extend the
higher-order Cheeger [32], the higher-order dual Cheeger [35], and the improved Cheeger
inequalities [31] from unsigned graphs to signed graphs in terms of our singed Cheeger
constants.

Harary [23] defined a signed graph Γ = (G, σ) to be antibalanced if its negation −Γ :=
(G,−σ) is balanced. Thus, Γ is antibalanced if and only if every odd cycle in it is negative
and every even cycle is positive. It is known that a connected signed graph is antibalanced
if and only if λN (∆σ) = 2 (see [34]). We obtain similar results concerning antibalance
and the spectral gap 2− λN (∆) via an antithetical dual signed Cheeger constant (see (1.7)
below).

Finally, we prove estimates for extremal eigenvalues λ1(∆σ), λN (∆σ) in terms of signed
3-cycles (we will speak of signed triangles in the following). By definition, the presence of
positive (resp., negative) triangles implies that Γ can not be antibalanced (resp., balanced).
Therefore, the number of signed triangles relate naturally to the spectral gaps λ1(∆σ) and
2− λN (∆σ).

We now discuss those results in more detail.

1.1. Signed Cheeger constants. We introduce the notation and precise definitions. We
say u, v ∈ V are neighbors when e = {u, v} ∈ E, and write u ∼ v. For ease of notation
we write σ(uv) := σ({u, v}) for the sign of an edge. In addition to the sign, we also
assign a positive symmetric weight wuv to every edge e = {u, v} ∈ E, and set wuv = 0
if e = {u, v} /∈ E. The degree du of a vertex u is defined as du =

∑
v∈V wuv. We will

restrict ourselves to signed simple graphs, i.e., the case when the underlying graph G has
no self-loops and multi-edges. We also consider a general measure µ : V → R on the vertex
set.

For any two subsets V1, V2 of V , we define |E(V1, V2)| =
∑

u∈V1

∑
v∈V2

wuv and its signed

versions E+, E−:

|E±(V1, V2)| =
∑
u∈V1

∑
v∈V2,σ(uv)=±1

wuv.

When V1 = V2, we write |E(V1)|, |E±(V1)| for short. Keep in mind that in this case every
edge weight is counted twice. For a subset S ⊆ V , we define its volume as volµ(S) =∑

u∈S µ(u).
Let (V1, V2) denote a sub-bipartition of V , i.e. ∅ 6= V1 ∪ V2 ⊆ V , V1 ∩ V2 = ∅. We define

the signed bipartiteness ratio of (V1, V2) to be

βσ(V1, V2) =
2|E+(V1, V2)|+ |E−(V1)|+ |E−(V2)|+ |E(V1 ∪ V2, V1 ∪ V2)|

volµ(V1 ∪ V2)
, (1.3)

where V1 ∪ V2 is the complement of V1 ∪ V2 in V .
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Definition 1 (Signed Cheeger constant). For a signed graph Γ = (G, σ), the Cheeger
constant hσ1 (µ) is defined as

hσ1 (µ) = min
(V1,V2)

βσ(V1, V2), (1.4)

where the minimum is taken over all possible sub-bipartitions of V .

With this definition we have then the statement (1.2), because Harary’s balance theorem
(see Theorem 8) asserts that a signed graph is balanced if and only if there exists a partition
V1, V2 of V such that |E+(V1, V2)| = |E−(V1)| = |E−(V2)| = 0.

Moreover, we prove that hσ1 (µ) is switching invariant (see Proposition 2). If the signature
σ can be changed to σ′ via switching operations, we say σ and σ′ are switching equivalent,
and write σ ≈ σ′. We denote by σ+ (resp., σ−) the all positive (resp., all negative)
signature. By definition, when σ ≈ σ−, the constant hσ1 (µ) reduces to the bipartiteness
ratio of Trevisan [47], or one minus the dual Cheeger constant of Bauer and Jost [6].

We further prove that (see Corollary 1)

hσ1 (µ) = min
σ′, σ′≈σ

min
∅6=S⊆V

|E−(S)|(σ′) + |E(S, S)|
vol(S)

, (1.5)

where the negative edges counted in |E−(S)|(σ′) is decided by the signature σ′. This implies
that if σ ≈ σ+, the constant hσ1 (µ) reduces to the one-way Cheeger constant (see [39, 32])
which trivially vanishes.

The constant hσ1 (µ) can also be expressed from the following viewpoint (see Corollary
2),

hσ1 (µ) = min
∅6=S⊆V

2eσmin(S) + |E(S, S)|
vol(S)

, (1.6)

where eσmin(S) is the minimal number of edges that need to be removed from the induced
subgraph of S to make it balanced. The quantity eσmin(V ) is the line index of imbalance of
Γ introduced by Harary [24] (see also [1]), alternatively called the frustration index [9] and
studied extensively, e.g. [2, 43, 8].

If σ ≈ σ−, after replacing 2eσmin(S) by eσmin(S), the constant (1.6) reduces to the non-
bipartiteness parameter of Desai and Rao [19]. The non-bipartiteness parameter was ex-
tended to signed graphs by Hou [25]. We see that our constant hσ1 (µ) is larger than theirs
in general.

Extending (1.4) in the spirit of [39, 32, 35], we can naturally define a family of multi-way
signed Cheeger constant {hσk(µ), k = 1, 2, . . . N} (see Definition 2). The hσ1 (µ) defined in
(1.4) is the first one of this family. Furthermore, hσ2 (µ) reduces to the classical Cheeger
constant if σ ≈ σ+.

Hence, the signed Cheeger constants provide new insights into existing constants reflect-
ing connectivity or bipartiteness of unsigned graphs in the language of switching within
the framework of signed graphs, thus giving a unified viewpoint about connectivity and
bipartiteness of the underlying graph via assigning signatures.

We also define a natural family of antithetical dual signed Cheeger constants {h̃σk(µ), k =

1, 2, . . . , N} by h̃σk(µ) := h−σk (µ). Dually, we have

Γ has an antibalanced connected component ⇔ h̃σ1 (µ) = 0. (1.7)
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1.2. Cheeger-type estimates. We let µd denote the degree measure on V , i.e. µd(u) =
du, ∀u ∈ V .

1.2.1. Results. We prove the following signed Cheeger inequality.

Theorem 1. Given a signed graph Γ = (G, σ), we have

λ1(∆σ)

2
≤ hσ1 (µd) ≤

√
2λ1(∆σ). (1.8)

We further prove the higher-order versions of the signed Cheeger inequality (1.8).

Theorem 2. There exists an absolute constant C such that for any signed graph Γ = (G, σ)
and any k ∈ {1, 2, . . . , N},

λk(∆
σ)

2
≤ hσk(µd) ≤ Ck3

√
λk(∆σ). (1.9)

This is a generalization of the higher-order Cheeger and dual Cheeger inequalities for
unsigned graphs by Lee, Oveis Gharan, and Trevisan [32] and the second named author
[35].

A natural question is that when can we improve the order of λ1(∆σ) on the right hand
side of (1.8) to be 1. Extending the ideas of Kwok et al. [31], we answer this question by
the following theorem.

Theorem 3. Given a signed graph Γ = (G, σ) and any k ∈ {1, 2, . . . , N},

hσ1 (µd) < 16
√

2k
λ1(∆σ)√
λk(∆σ)

. (1.10)

In other words, when there exists a k such that the gap between λ1 and λk is large, one
can improve the order of λ1 on the r.h.s. of (1.8) to be 1. Actually, a slightly stronger version
of this result can be proved; see Theorem 13. We further have the following higher-order
estimates.

Theorem 4. There exists an absolute constant C such that for any signed graph Γ = (G, σ)
and any 1 ≤ k ≤ l ≤ N ,

hσk(µd) < Clk6 λk(∆
σ)√

λl(∆σ)
. (1.11)

This generalizes the corresponding results for unsigned graphs given in [31] and [35].
The above estimates have two directions of extensions. On the one hand, they have

their corresponding versions for the non-normalized Laplace matrix (or Kirchhoff matrix )
Lσ := D −Aσ; see Theorems 11, 12, 14, and Corollary 3 and 4.

On the other hand, they can be easily translated into estimates for h̃σk(µd) and 2 −
λN−k+1(∆σ) by duality. This is due to the fact that 2 − λN−k+1(∆σ) = λk(∆

−σ) (see
Lemma 1). For example, the dual version of Theorem 1 can be stated as below.

Theorem 5. Given a signed graph Γ = (G, σ), we have

2− λN (∆σ)

2
≤ h̃σ1 (µd) ≤

√
2(2− λN (∆σ)). (1.12)

We omit the dual versions of Theorems 2, 3 and 4 here. Actually, these results are nice
demonstrations of a general antithetical duality principle discussed by Harary [23].
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1.2.2. Ideas for proofs. The proofs of the above results are based on the crucial observation
that the estimation of λ1(∆σ) should be considered as a “mixture” of the estimates of
the smallest and largest eigenvalues of unsigned graphs (for which the smallest eigenvalue
trivially equals 0). This can be seen more clearly from the corresponding Rayleigh quotients.
One can appeal either to the techniques for proving the Cheeger inequality for unsigned
graphs [4, 3, 20] or to those for proving the dual Cheeger inequality [47, 6]. For the former
strategy, one first needs to switch the signature to the one achieving the first minimum in
(1.5). We adopt the latter strategy, which is stable under switching operations. We use
local level dualities to bring the two extremal cases together in the proofs, as in Lemmas 5,
8, 11, Proposition 4(ii), and Claim 1.

Theorem 2 is a mixture of the higher-order Cheeger [32] and dual Cheeger [35] inequal-
ities, the proofs of which utilize spectral clustering algorithms via metrics on spheres and
real projective spaces, respectively. One might anticipate at first that the proper metrics
for proving Theorem 2 are a mixture of those two kinds of metrics. It is somewhat surpris-
ing that the latter metrics [35] themselves are competent for the proof and provide unified
spectral clustering algorithms. We will make this point more clear in the next subsection.

1.3. Signed spectral clustering algorithm. In order to prove Theorem 2, we develop
a signed spectral clustering algorithm for finding k subsets whose induced subgraphs are
nearly balanced. The connections among those k subsets, regardless of their signs, are very
sparse. We explain the key points of this algorithm.

Let {φ1, φ2, . . . , φN} be an orthonormal system of eigenfunctions corresponding to λ1(∆σ), λ2(∆σ), . . . , λN (∆σ).

(1) Spectral embedding. Using the first k eigenfunctions, we obtain a coordinate system
for the vertices via the map

Φ : V → Rk, v 7→ (φ1(v), φ2(v), . . . , φk(v)).

(2) Normalization. We further map ṼΦ := {v : Φ(v) 6= 0} to the unit sphere,

Φnor : ṼΦ → Sk−1, v 7→ Φ(v)

‖Φ(v)‖
.

(3) Clustering the points. We use the following pseudometric dΦ on ṼΦ studied in [35]

dΦ(u, v) := min {‖Φnor(u) + Φnor(v)‖ , ‖Φnor(u)− Φnor(v)‖} , (1.13)

where ‖ · ‖ stands for the Euclidean norm in Rk.
Recall that the projective space P k−1R is obtained from Sk−1 by identifying the antipodal
points,

Pr : Sk−1 → P k−1R : x,−x 7→ [x],

where x are the unit vectors in Rk. The metric (1.13) is induced from the following metric
on P k−1R,

d([x], [y]) := min{‖x+ y‖, ‖x− y‖}, ∀[x], [y] ∈ P k−1R.
If σ = σ+, we have λ1(∆σ) = 0 and φ1 is the constant function φ1 ≡ 1/

√
volµd(V ).

Therefore, Φnor maps all the vertices to the hemisphere {x ∈ Sk−1 : x1 > 0} and the metric
(1.13) reduces to

dΦ(u, v) = ‖Φnor(u)− Φnor(v)‖ ,
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which is the spherical metric (or the radial projection distance) used in the traditional
clustering algorithms verified by Lee, Oveis Gharan, and Trevisan [32]. Hence, the algorithm
developed here is a natural extension of the traditional spectral clustering algorithm [36, 40]
for unsigned graphs.

If, on the other hand, σ = σ−, our algorithm reduces to finding k almost-bipartite
subgraphs, since (G, σ−) is balanced if and only if G is bipartite. This is exactly the one
proposed in [35].

Theorem 2 provides the worst-case performance guarantee of the algorithm described
above. Further, Theorems 3 and 4 suggest that the well-known eigengap heuristic [36, 31]
for the traditional algorithm still holds for signed networks. That is, in case that λk(∆

σ)
is small and λk+1(∆σ) is large, it is better to cluster the data into k almost-balanced
subgraphs.

We remark that if we use the last k eigenfunctions φN−k+1, φN−k+2, . . . , φN instead of
the first k eigenfunctions in the step of spectral embedding, we will obtain an algorithm for
finding k subsets whose induced subgraphs are nearly antibalanced, each defining a sparse
cut.

1.3.1. Further related work. For any signed graph (or subgraph), one can continue to do the
next-level clustering. Roughly speaking, the objective is to find two subsets whose signed
bipartiteness ratio is small. The heuristics of the spectral method for such clustering was
discussed in [30, 28, 15]. Actually, the proof of Theorem 1 (especially Lemma 6 below) pro-
vides a theoretical guarantee for their heuristic arguments. We can achieve this clustering
by the threshold sets Vf (t) := {u ∈ V : f(u) ≥ t} and Vf (−t) := {u ∈ V : f(u) ≤ −t} of a
certain function f .

There are studies about another kind of multi-way clustering of signed networks, called
the correlation clustering. It aims at finding k non-trivial disjoint subsets V1, V2, . . . , Vk such
that edges connecting two vertices from the same subset are almost all positive and edges
connecting two vertices from different subsets are almost all negative. Heuristic spectral
algorithms for such clustering were studied in, e.g., [29, 30, 28, 46, 45, 15]; for non-spectral
algorithms, see e.g. [44].

1.4. Signed Triangles. We denote the number of signed triangles ]+(u, v), ]−(u, v) in-
cluding an edge {u, v} by

]±(u, v) := ]{u′|u′ ∼ u, u′ ∼ v, σ(uv)σ(vu′)σ(u′u) = ±1}.
Note that the quantities ]+(u, v), ]−(u, v) are switching invariant and their unsigned coun-
terpart has interesting close relation with the coarse Ricci curvature of the underlying graph
G [27, 7]. We prove the following theorem.

Theorem 6. Given a signed graph Γ = (G, σ), we have

w2

W

minu∼v ]
−(u, v)

maxu du
≤ λ1(∆σ) ≤ · · · ≤ λN (∆σ) ≤ 2− w2

W

minu∼v ]
+(u, v)

maxu du
, (1.14)

where w = minu∼v wuv and W = maxu∼v wuv.

This result is obtained by considering the iterated matrix ∆σ[2] (see (7.1) below), ex-
tending an idea of Bauer, Jost and the second named author [7] for unsigned case. For the
signed non-normalized Laplace matrix Lσ, similar estimates hold.
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Theorem 7. Given a signed unweighted graph Γ = (G, σ), we have

λN (Lσ) ≤ max
u∼v
{du + dv − ]+(u, v)}. (1.15)

However, the proof for this case follows from different ideas, which are adapted from
Das [18]. In Theorem 15 we present the corresponding results for weighted graphs. This
result improves the estimate λN (Lσ) ≤ maxu∼v{du + dv} by Hou, Li and Pan [26]. In fact,
Theorem 7 answers the question asked in their paper [26, remark after Theorem 3.5].

2. Preliminaries

2.1. Harary’s balance theorem and bipartition. The following structure theorem for
balance was proved in [22].

Theorem 8 (Harary’s Balance Theorem). A signed graph Γ is balanced if and only if there
exists a bipartition of V into two disjoint subsets V1 and V2 (one of which may be empty)
such that each positive edge connects two vertices of the same subset and each negative edge
connects two vertices of different subsets.

By reversing the signature, Harary gave the antithetical dual result for antibalance.

Theorem 9. [23] A signed graph Γ is antibalanced if and only if there exists a bipartition of
V into two disjoint subsets V1 and V2 (one of which may be empty), such that each negative
edge connects two vertices of the same subset and each positive edge connects two vertices
of different subsets.

2.2. Switching equivalence. A function θ : V → {+1,−1} is called a switching function.
Switching the signature of Γ = (G, σ) by θ refers to the operation of changing σ to σθ via

σθ(uv) := θ(u)σ(uv)θ(v), ∀ {u, v} ∈ E.
Two signatures σ and σ′ are called to be switching equivalent if there exists a switching
function θ such that σ′ = σθ. We write σ ≈ σ′ in this case. Switching equivalence is an
equivalence relation on signatures of a fixed underlying graph. We call the corresponding
equivalent classes the switching classes, and denote the switching class of σ by [σ].

Stated differently, switching σ by θ means reversing the signs of all edges between the
set V −θ := {u ∈ V : θ(u) = −1} and its complement. Therefore, we also refer to this

operation as switching the subset V −θ of V . Given v ∈ V , define θv(u) = −1 if u = v and
+1 otherwise. A vertex switching at v, i.e. switching the vertex v, means switching σ by
θv. Note that θ =

∏
v∈V −θ

θv; thus, switching a subset of V is equivalent to switching every

vertex in it one after another.
Zaslavsky [49] proved the following useful characterization.

Theorem 10 (Zaslavsky’s switching lemma). A signed graph Γ = (G, σ) is balanced if and
only if σ is switching equivalent to the all-positive signature, and it is antibalanced if and
only if σ is switching equivalent to the all-negative signature.

A significant invariant of a switching class is the spectrum (see e.g. [50]). Let D(θ) be
the diagonal matrix with D(θ)uu = θ(u). It is then easily checked that

Aσ
θ

= D(θ)−1AσD(θ). (2.1)

Therefore, we have the following fundamental property for the spectrum of ∆σ or Lσ.
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Proposition 1. The spectrum of ∆σ or Lσ for a signed graph Γ = (G, σ) is switching
invariant.

For more details and history about switching, see [50] and the references therein.

2.3. Basic spectral theory. The operator form of ∆σ can be expressed by its action on
any function f : V → R and any u ∈ V as

∆σf(u) =
1

µd(u)

∑
v,v∼u

wuv(f(u)− σ(uv)f(v)). (2.2)

Replacing µd above by the constant measure µ1 ≡ 1 yields the operator form for Lσ. For a
general measure µ, we denote the corresponding inner product of two functions f, g : V → R
by

(f, g)µ =
∑
u∈V

µ(u)f(u)g(u).

The signed Rayleigh quotient of a map Φ : V → Rk is given by

Rσ(Φ) =

∑
u∼v wuv‖Φ(u)− σ(uv)Φ(v)‖2∑

u∈V µ(u)‖Φ(u)‖2
. (2.3)

We also define a dual version of the Rayleigh quotient of Φ by

R̃σ(Φ) =

∑
u∼v wuv‖Φ(u) + σ(uv)Φ(v)‖2∑

u∈V µ(u)‖Φ(u)‖2
. (2.4)

The Courant-Fisher-Weyl min-max principle says that the k-th eigenvalue λk of ∆σ (or Lσ)
satisfies

λk = min
f1,f2,...,fk 6≡0

(fi,fj)µ=0,∀i 6=j

max
f 6≡0

f∈span{f1,f2,...,fk}

Rσ(f). (2.5)

In particular, we have

λ1(∆σ) = min
f 6≡0
Rσ(f), and 2− λN (∆σ) = min

f 6≡0
R̃σ(f). (2.6)

Lemma 1. For any 1 ≤ k ≤ N , it holds that 2− λN−k+1(∆σ) = λk(∆
−σ).

This follows immediately from the fact that R̃σ(f) = R−σ(f). The support of a map Φ
is defined as

supp(Φ) := {u ∈ V : Φ(u) 6= 0}.

By (2.5), one can derive the following lemma (see e.g. [31]).

Lemma 2. For any k disjointly supported functions f1, f2, . . . , fk : V → R,

λk ≤ 2 max
1≤i≤k

Rσ(fi). (2.7)
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3. (Multi-way) Signed Cheeger constants

In this section, we discuss the properties of the signed Cheeger constant hσ1 (µ) and define
the corresponding multi-way signed Cheeger constants.

First, we prove the switching invariance of hσ1 (µ).

Proposition 2. Let Γ = (G, σ) be a signed graph. For any switching function θ : V →
{+1,−1},

hσ1 (µ) = hσ
θ

1 (µ). (3.1)

This property is a direct corollary of the following lemma.

Lemma 3. For any switching function θ : V → {+1,−1} and any sub-bipartition (V1, V2),
there exists a sub-bipartition (V ′1 , V

′
2), such that V ′1 ∪ V ′2 = V1 ∪ V2, and

βσ
θ
(V ′1 , V

′
2) = βσ(V1, V2). (3.2)

Proof. We only need to prove the lemma for a vertex switching at u ∈ V , that is, a switching
of σ by θu. If u ∈ V1 ∪ V2, the vertex switching at u does not change the signed bipartiteness
ratio; hence choosing V ′1 = V1 and V ′2 = V2 gives (3.2). Suppose, on the other hand, that
u ∈ V1 ∪ V2. W.l.o.g., we suppose u ∈ V1. After the vertex switching at u, we have

(βσ
θu

(V1, V2)− βσ(V1, V2))volµ(V1 ∪ V2)

=2
∑
v∈V2

σ(uv)=−1

wuv − 2
∑
v∈V2

σ(uv)=+1

wuv + 2
∑
v∈V1

σ(uv)=+1

wuv − 2
∑
v∈V1

σ(uv)=−1

wuv.

Then we move u from V1 to V2, i.e. we choose V ′1 = V1 \ {u} and V ′2 = V2 ∪ {u}. Now we
calculate

(βσ
θu

(V ′1 , V
′

2)− βσθu (V1, V2))volµ(V ′1 ∪ V ′2)

=− 2
∑
v∈V1

σθu (uv)=−1

wuv + 2
∑
v∈V1

σθu (uv)=+1

wuv − 2
∑
v∈V2

σθu (uv)=+1

wuv + 2
∑
v∈V2

σθu (uv)=−1

wuv.

Combining the above two equalities, we arrive at (3.2). �

We recall the bipartiteness ratio of Trevisan [47] given by

β : = min
(V1,V2)

2|E+(V1, V2)|+ |E−(V1)|+ |E−(V2)|+ |E(V1 ∪ V2, V1 ∪ V2)|
volµ(V1 ∪ V2)

= 1− max
(V1,V2)

2|E(V1, V2)|
vol(V1 ∪V2)

:= 1− h,

where h is the dual Cheeger constant of Bauer and Jost [6]. It is easy to see that if σ ≈ σ−,
i.e. if Γ = (G, σ) is antibalanced, then hσ1 (µ) reduces to β = 1− h.

The expansion (or conductance) of a subset S ⊆ V is defined as

ρ(S) :=
|E(S, S)|
volµ(S)

. (3.3)
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We define a signed expansion of S ⊆ V in Γ to be

ρσ(S) :=
|E−(S)|+ |E(S, S)|

volµ(S)
. (3.4)

We have the following relations between hσ1 (µ) and signed expansions.

Corollary 1. Let Γ = (G, σ) be a signed graph. Then,

hσ1 (µ) = min
σ′∈[σ]

min
∅6=S⊆V

ρσ
′
(S). (3.5)

Proof. We denote by (V1, V2)S a bipartition of S, i.e., V1 ∪ V2 = S, V1 ∩ V2 = ∅. We claim
that

min
(V1,V2)S

βσ(V1, V2) = min
σ′∈[σ]

ρσ
′
(S). (3.6)

Let V 0
1 , V 0

2 be the bipartition of S which achieves the minimum in the l.h.s. of (3.6).
Suppose that σ is changed to be σ0 by switching the subset V 0

1 . Then the proof of Lemma
3 gives

βσ(V 0
1 , V

0
2 ) = βσ0(S, ∅) = ρσ0(S) ≥ min

σ′∈[σ]
ρσ
′
(S). (3.7)

Moreover, the inequality above can only be an equality. For otherwise, there would exist a
σ′ ∈ [σ], such that

βσ
′
(S, ∅) = ρσ

′
(S) < βσ(V 0

1 , V
0

2 ).

By Lemma 3, we could then find a bipartition V ′1 , V ′2 of S, such that

βσ
′
(S, ∅) = βσ(V ′1 , V

′
2) < βσ(V 0

1 , V
0

2 ),

which is a contradiction. Hence (3.6) holds. Then (3.5) follows directly. �

Therefore, when σ ≈ σ+, i.e. when Γ = (G, σ) is balanced, hσ1 (µ) reduces to the one-way
Cheeger constant, which trivially vanishes.

Desai and Rao [19] introduced the non-bipartiteness parameter

α := min
∅6=S⊆V

emin(S) + |E(S, S)|
volµ(S)

, (3.8)

where emin(S) is the minimum number of edges that need to be removed from the induced
subgraph of S to make it bipartite. Hou [25] extend this notion to a signed graph Γ = (G, σ)
as

ασ := min
∅6=S⊆V

eσmin(S) + |E(S, S)|
volµ(S)

, (3.9)

where eσmin(S) is the same as in (1.6). By definition, (G, σ−) is balanced if and only if G
has no odd cycles, i.e. G is bipartite. Therefore, ασ− = α.

For a subset S, we modify the above notion as

ασ(S) :=
2eσmin(S) + |E(S, S)|

volµ(S)
. (3.10)

Corollary 2. Let Γ = (G, σ) be a signed graph. Then

hσ1 (µ) = min
∅6=S⊆V

ασ(S). (3.11)
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Thus the constant hσ1 (µ) is larger than ασ in general. Corollary 2 follows directly from
the following lemma.

Lemma 4. For any ∅ 6= S ⊆ V , we have

min
(V1,V2)S

βσ(V1, V2) = min
σ′∈[σ]

ρσ
′
(S) = ασ(S). (3.12)

Proof. The first equality follows from (3.6). To prove the second equality, let ΓS denote

the induced signed graph of S. Also let σ0 be the signature that achieves minσ′∈[σ] ρ
σ′(S).

It is easy to see that

2eσmin(S) ≤ |E−(S)|(σ′).
Therefore, we obtain ασ(S) ≤ minσ′∈[σ] ρ

σ′(S).
Let Γ′S be the balanced graph obtained from ΓS by deleting eσmin(S) edges. By Theorem

8, there exists a bipartition V1, V2 of S such that

|E+
|Γ′S

(V1, V2)| = |E−|Γ′S (V1)| = |E−|Γ′S (V2)| = 0.

This implies

2eσmin(S) = 2|E+
|ΓS (V1, V2)|+ |E−|ΓS (V1)|+ |E−|ΓS (V2)|.

Hence ασ(S) ≥ min(V1,V2)S β
σ(V1, V2). This proves the second equality. �

Remark 1. The equality 2eσmin(S) = minσ′∈[σ] |E−(S)|(σ′) seems to be folklore for experts;
see Theorem 3.3 in [51]. We include a proof here for completeness.

We can compare our constants with the degree of balance b(Γ) of a signed graph Γ
introduced by Cartwright and Harary [14]. In [14], they also aimed at quantifying the
deviation of a signed graph from being balanced. Their constant b(Γ) is defined as

b(Γ) :=
the number of positive cycles of Γ

the number of cycles of Γ
. (3.13)

Observe b(Γ) ∈ [0, 1]. Smaller values of 1 − b(Γ) imply that Γ is closer to being balanced.
Consider the signed graph Γ = (CN , σ) where CN is the unweighted cycle graph on N
vertices and σ is the signature such that Γ has exactly one negative edge. Intuitively, Γ is
close to being balanced. Actually, we have

1− b(Γ) = 1 and hσ1 (µd) =
1

N
. (3.14)

This shows that the constant hσ1 (µd) is finer than b(Γ).
We now define the multi-way signed Cheeger constants.

Definition 2. Given 1 ≤ k ≤ N , the k-way signed Cheeger constant hσk(µ) of a signed
graph Γ = (G, σ) is defined as

hσk(µ) := min
{(V2i−1,V2i)}ki=1

max
1≤i≤k

βσ(V2i−1, V2i). (3.15)

where the minimum is taken over the space of all possible k pairs of disjoint sub-bipartitions
(V1, V2), (V3, V4), . . . , (V2k−1, V2k). To ease the notation, we denote this space by Pair(k) and
call every element of Pair(k) a k-sub-bipartition of V .
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Note that we have the monotonicity hσk(µ) ≤ hσk+1(µ). Moreover, Theorem 8 implies the
following property.

Proposition 3. For a signed graph Γ = (G, σ) and 1 ≤ k ≤ N , we have hσk(µ) = 0 if and
only if Γ has k balanced connected components.

Roughly speaking, the k-way signed Cheeger constant is a “mixture” of the k-way
Cheeger constant hk(µ) introduced by Miclo [39] (see also [32]) and the k-way dual Cheeger
constant hk(µ) in [35] for unsigned graphs.

By Lemma 3, hσk(µ) is switching invariant for any 1 ≤ k ≤ N . Furthermore, Lemma 4
implies the following equivalent expressions for hσk(µ):

hσk(µ) = min
σ′∈[σ]

min
{Si}ki=1

max
1≤i≤k

ρσ
′
(Si)

= min
{Si}ki=1

max
1≤i≤k

ασ(Si),

where the minimum min{Si}ki=1
is taken over the space of all possible k-subpartitions,

S1, S2, . . . , Sk, where Si 6= ∅ for any 1 ≤ i ≤ k.

4. Signed Cheeger inequality

In this section, we prove Theorem 1. The lower bound estimate in (1.8) is easier. For
any (V1, V2), we choose a particular function given by,

f(u) =

 1, if u ∈ V1;
−1, if u ∈ V2;

0, otherwise.

We calculate

Rσ(f) =
4|E+(V1, V2)|+ 2|E−(V1)|+ 2|E−(V2)|+ |E(V1 ∪ V2, V1 ∪ V2)|

volµ(V1 ∪ V2)

≤ 2βσ(V1, V2).

Then (2.6) implies λ1 ≤ 2hσ1 (µ).
The upper bound estimate in (1.8) is essential. To prove it, we adapt an idea of Trevisan

[47] for proving the dual Cheeger inequality for unsigned graphs.
Given a non-zero function f : V → R and a real number t ≥ 0, we define the following

subsets of V ,

Vf (t) := {u ∈ V : f(u) ≥ t}, Vf (−t) := {u ∈ V : f(u) ≤ −t}.

Suppose maxu∈V f(u)2 = 1. For any t ∈ [0, 1], we define the vector Y (t) ∈ {−1, 0, 1}V as

Yu(t) =

 1, if u ∈ Vf (
√
t);

−1, if u ∈ Vf (−
√
t);

0, otherwise.

The following lemma is crucial for our purpose.



14 FATIHCAN M. ATAY AND SHIPING LIU

Lemma 5. For any {u, v} ∈ E, we have∫ 1

0
|Yu(t)− σ(uv)Yv(t)| dt ≤ |f(u)− σ(uv)f(v)|(|f(u)|+ |f(v)|). (4.1)

Proof. First observe that we only need to prove that the inequality∫ 1

0
|Yu(t)− Yv(t)| dt ≤ |f(u)− f(v)|(|f(u)|+ |f(v)|), (4.2)

holds for any two real numbers f(u), f(v) ∈ [−1, 1], since we can then apply (4.2) to the
two numbers g(u) := f(u) and g(v) := σ(uv)f(v) ∈ [−1, 1] to obtain (4.1).

Now we prove (4.2). W.l.o.g., we suppose |f(u)| ≥ |f(v)|.
Case 1: f(u) and f(v) have different signs. We have

|Yu(t)− Yv(t)| =

 2, if t ≤ f(v)2;
1, if f(v)2 < t ≤ f(u)2;
0, if t > f(u)2.

Therefore,∫ 1

0
|Yu(t)− Yv(t)| dt = f(u)2 + f(v)2 ≤ (|f(u)|+ |f(v)|)2

≤ |f(u)− f(v)|(|f(u)|+ |f(v)|).

Case 2: f(u) and f(v) have the same sign. We have

|Yu(t)− Yv(t)| =

 0, if t ≤ f(v)2;
1, if f(v)2 < t ≤ f(u)2;
0, if t > f(u)2.

Therefore, ∫ 1

0
|Yu(t)− Yv(t)| dt = f(u)2 − f(v)2

= |f(u)− f(v)| (|f(u)|+ |f(v)|).
�

Furthermore, one can check
∫ 1

0 |Yu(t)| dt = f(u)2. Then we obtain

I : =

∫ 1
0

∑
u∼v wuv|Yu(t)− σ(uv)Yv(t)|dt∫ 1

0

∑
u∈V µ(u)|Yu(t)|dt

≤
∑

u∼v wuv|f(u)− σ(uv)f(v)|(|f(u)|+ |f(v)|)∑
u µ(u)f(u)2

≤
√∑

u∼v wuv|f(u)− σ(uv)f(v)|2
√∑

u∼v wuv(|f(u)|+ |f(v)|)2∑
u µ(u)f(u)2

.

Observing that∑
u∼v

wuv(|f(u)|+ |f(v)|)2 ≤ 2 max
u

{∑
v,v∼uwuv

µ(u)

}∑
u

µ(u)f(u)2, (4.3)
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we arrive at

I ≤

√
max
u

{∑
v,v∼uwuv

µ(u)

}√
2Rσ(f).

In the following, we write dwµ := maxu

{∑
v,v∼u wuv
µ(u)

}
for short. It is easy to check that∑

u∼v
wuv|Yu(t)− σ(uv)Yv(t)| = 2|E+(Vf (

√
t), Vf (−

√
t))|+ |E−(Vf (

√
t))|

+ |E−(Vf (−
√
t))|+ |E(Vf (

√
t) ∪ Vf (−

√
t), Vf (

√
t) ∪ Vf (−

√
t))|,

and
∑

u µ(u)|Yu(t)| = volµ(Vf (
√
t)∪Vf (−

√
t)). Hence, we have proved the following lemma.

Lemma 6. For any non-zero function f : V → R, there exists a t′ ∈ [0,maxu∈V f
2(u)]

such that

βσ(Vf (
√
t′), Vf (−

√
t′)) ≤

√
2dwµRσ(f). (4.4)

The upper bound estimate of (1.8) is then a direct corollary of Lemma 6 by taking the
function to be the first eigenfunction φ1 and µ = µd.

By assigning µ = µ1, we obtain an estimate for signed non-normalized Laplace matrix.

Theorem 11. Let Γ = (G, σ) be a signed graph. Then

λ1(Lσ)

2
≤ hσ1 (µ1) ≤

√
2dmaxλ1(Lσ). (4.5)

where dmax = maxu∈V du.

Remark 2. If we adapt a constructive method of Hou [25] (see Theorem 3.4 there), which
is extended from Desai and Rao [19], we can obtain slightly stronger estimates. In fact, the
following lemma can be proved.

Lemma 7. For any non-zero function f : V → R, there exist two subsets V1, V2 ⊆ supp(f)
such that V1 ∩ V2 = ∅, V1 ∪ V2 6= ∅, and

Rσ(f) ≥ dwµ −
√

(dwµ )2 − βσ(V1, V2).

This implies λ1(∆σ) ≥ 1−
√

1− hσ1 (µ)2 ≥ hσ1 (µ)2/2.

5. Higher-order signed Cheeger inequalities

In this section, we prove Theorem 2.
Again, the lower bound estimate in (1.9) is easier. Given {(V2i−1, V2i)}ki=1 ∈ Pair(k), we

define for each i,

fi(u) =

 1, if u ∈ V2i−1;
−1, if u ∈ V2i;

0, otherwise.

Let f =
∑k

i=1 aifi, a1, . . . , ak ∈ R be a function in span{f1, . . . , fk}. Recall

Rσ(f) =

∑
u∼v wuv(f(u)− σ(uv)f(v))∑

u µ(u)f(u)2
.
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We have ∑
u

µ(u)f(u)2 =
k∑
i=1

a2
i

∑
u

µ(u)fi(u)2 =
k∑
i=1

a2
i volµ(V2i−1 ∪ V2i).

It is also not hard to check that∑
u∼v

wuv(f(u)− σ(uv)f(v)) ≤2
k∑
i=1

a2
i (2|E+(V2i−1, V2i)|+ |E−(V2i−1)|

+ |E−(V2i−1)|+ |E(V2i−1 ∪ V2i, V2i−1 ∪ V2i)|).

Hence,

max
a1,...,ak

Rσ(f) ≤ 2 max
1≤i≤k

βσ(V2i−1, V2i). (5.1)

By (2.5), we arrive at λk ≤ 2hσk(µ).
We now prove the remaining upper bound estimate of (1.9). Let φ1, φ2, . . . , φN be an

orthonormal system of eigenfunctions corresponding to λ1, λ2, . . . , λN , respectively. We
construct the map

Φ : V → Rk : v 7→ (φ1(v), φ2(v), . . . , φk(v)).

Since λi = Rσ(φi), i = 1, 2, . . . , k, we have

λk ≥
∑

u∼v wuv‖Φ(u)− σ(uv)Φ(v)‖2∑
u∈V µ(u)‖Φ(u)‖2

= Rσ(Φ). (5.2)

In the following, we try to find k disjointly supported maps {Ψi}ki=1 by localizing Φ, such
that Rσ(Ψi) can be bounded above by Rσ(Φi) (up to a polynomial of k). Recall the

pseudometric space (ṼΦ, dΦ) from Section 1.3. In order to localize Φ, we need the following
cut-off function: Given Si ⊆ V and ε > 0, define

θi(v) =

{
0, if Φ(v) = 0;

max
{

0, 1− dΦ(v,Si∩ṼΦ)
ε

}
, otherwise,

through which we can localize Φ as

Ψi := θiΦ : V → Rk.

Observe that Ψi|Si = Φ|Si and

supp(Ψi) ⊆ Nε(Si ∩ ṼΦ, dΦ) := {v ∈ ṼΦ : dΦ(v, Si ∩ ṼΦ) < ε}.

We have the following important lemma which is an extension of Lemma 5.3 in [35] and
Lemma 3.3 in [32].

Lemma 8. Given 0 < ε < 2, Let Ψi be defined as above. Then for any {u, v} ∈ E,

‖Ψi(u)− σ(uv)Ψi(v)‖ ≤
(

1 +
2

ε

)
‖Φ(u)− σ(u, v)Φ(v)‖. (5.3)

Proof. If either Φ(u) or Φ(v) vanishes, (5.3) follows from the fact that |θi| ≤ 1. So we only

need to prove (5.3) for u, v ∈ ṼΦ.
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We calculate

‖Ψi(u)− σ(uv)Ψi(v)‖ = ‖θi(u)F (u)− σ(uv)θi(v)F (v)‖
≤ |θi(u)|‖Φ(u)− σ(uv)Φ(v)‖+ |θi(u)− θi(v)|‖Φ(v)‖. (5.4)

We claim that

|θi(u)− θi(v)|‖Φ(v)‖ ≤ 2

ε
‖Φ(u)− σ(uv)Φ(v)‖. (5.5)

Note that (5.3) follows immediately from (5.4) and (5.5). Hence, the remaining task is
proving (5.5). By a similar argument as in the beginning of the proof for Lemma 5, we only
need to show

|θi(u)− θi(v)| ‖Φ(v)‖ ≤ 2

ε
‖Φ(u)− Φ(v)‖ (5.6)

for any two vectors Φ(u),Φ(v) ∈ Rk \ {0}. This is proved in the following two cases.

Case 1: If {u, v} satisfies dΦ(u, v) =
∥∥∥ F (u)
‖F (u)‖ −

F (v)
‖F (v)‖

∥∥∥, then 〈Φ(u),Φ(v)〉 ≥ 0, where

〈·, ·〉 stands for the inner product of vectors in Rk. Hence,

|θi(u)− θi(v)|‖Φ(v)‖ ≤ 1

ε
dΦ(u, v)‖Φ(v)‖ =

1

ε

∥∥∥∥‖Φ(v)‖
‖Φ(u)‖

Φ(u)− Φ(v)

∥∥∥∥
≤ 1

ε
‖Φ(u)− Φ(v)‖+

1

ε

∥∥∥∥‖Φ(v)‖
‖Φ(u)‖

Φ(u)− Φ(u)

∥∥∥∥
≤ 1

ε
‖Φ(u)− Φ(v)‖+

1

ε
|‖Φ(v)‖ − ‖Φ(u)‖| ≤ 2

ε
‖Φ(u)− Φ(v)‖.

Case 2: If {u, v} ∈ E satisfies dΦ(u, v) =
∥∥∥ F (u)
‖F (u)‖ + F (v)

‖F (v)‖

∥∥∥, then 〈Φ(u),Φ(v)〉 ≤ 0.

Thus,

|θi(u)− θi(v)|‖Φ(v)‖ ≤ ‖Φ(v)‖ ≤ ‖Φ(u)− Φ(v)‖.
�

Applying the padded random partition theory to (ṼΦ, dΦ) (see e.g. [35]), we can find k

disjoint subsets of ṼΦ with good properties.

Lemma 9. There exist k non-empty, mutually disjoint subsets S1, S2, . . . , Sk ⊆ ṼΦ and an
absolute constant C0 > 1, such that

• for any 1 ≤ i 6= j ≤ k,

dΦ(Si, Sj) ≥
1

C0k
5
2

; (5.7)

• for any 1 ≤ i ≤ k,∑
u∈Si

µ(u)‖Φ(u)‖2 ≥ 1

2k

∑
u∈V

µ(u)‖Φ(u)‖2. (5.8)

Since the signature plays no role in this lemma, we refer to [35, Section 6] for the proof.
Combining Lemma 8 and Lemma 9, we arrive at the following result.
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Lemma 10. For any k ∈ {1, 2, . . . , N}, there exist k disjointly supported functions ψ1, ψ2, . . . , ψk :
V → R such that for each 1 ≤ i ≤ k,

Rσ(ψi) ≤ Ck6Rσ(F ), (5.9)

where C is an absolute constant.

Proof. Let {θi}ki=1 be the k cut-off functions corresponding to {Si}ki=1 obtained in Lemma

9, and set ε = 1/(2C0k
5
2 ). For each i, we define Ψi = θiF . By Lemma 8,∑

u∼v
wuv‖Ψi(u)− σ(uv)Ψi(v)‖2 ≤

(
1 +

2

ε

)2∑
u∼v

wuv‖Φ(u)− σ(uv)Φ(v)‖2.

By Lemma 9, ∑
u∈V

µ(u)‖Ψi(u)‖2 ≥ 1

2k

∑
u∈V

µ(u)‖Φ(u)‖2.

Therefore,

Rσ(Ψi) ≤ 2k(1 + 2C0k
5
2 )2Rσ(Φ) ≤ Ck6Rσ(Φ). (5.10)

If we write Ψi = (Ψ1
i ,Ψ

2
i , . . . ,Ψ

k
i ) : V → Rk, we can always find j0 ∈ {1, 2, . . . , k} such that

Rσ(Ψj0
i ) ≤ Rσ(Ψi).

Choosing ψi := Ψj0
i , 1 ≤ i ≤ k, completes the proof. �

Assigning µ = µd, Lemma 6, (5.2) and Lemma 10 imply the lower bound estimate in
(1.9). If we assign µ = µ1 instead, we obtain the following estimate for Lσ.

Theorem 12. There exists an absolute constant C such that for any signed graph Γ =
(G, σ) and any k ∈ {1, 2, . . . , N},

λk(L
σ)

2
≤ hσk(µ1) ≤ Ck3

√
dmaxλk(Lσ). (5.11)

6. Signed Cheeger constants and higher order spectral gaps

In this section, we prove Theorem 3 and Theorem 4. Actually, we shall prove the following
slightly stronger result.

Theorem 13. Given a signed graph Γ = (G, σ) and k ∈ {1, 2, . . . , N}, at least one of the
following holds,

(i). hσ1 (µd) ≤ 8kλ1(∆σ); (ii). hσ1 (µd) < 16
√

2k
λ1(∆σ)√
λk(∆σ)

. (6.1)

Theorem 3 is a direct corollary of this theorem and the fact that 0 ≤ λk(∆σ) ≤ 2.
We first prove the following crucial lemma, which should be compared with Lemma 6.

Lemma 11. For any non-zero function f : V → R, there exists a t′ ∈ [0,maxu∈V |f(u)|],
such that

βσ(Vf (t′), Vf (−t′)) ≤
∑

u∼v wuv|f(u)− σ(uv)f(v)|∑
u µ(u)|f(u)|

. (6.2)
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Proof. We can assume maxu∈V |f(u)| = 1 since the r.h.s. of (6.2) in invariant under scaling
of f . For t ∈ [0, 1], we define a vector X(t) ∈ {−1, 0, 1}V by

Xu(t) =

 1, if f(u) ≥ t;
−1, if f(u) ≤ −t;

0, otherwise.
(6.3)

We claim that, for any {u, v} ∈ E,∫ 1

0
|Xu(t)− σ(uv)Xv(t)|dt = |f(u)− σ(uv)f(v)|. (6.4)

Similar to Lemma 5, we only need to prove∫ 1

0
|Xu(t)−Xv(t)|dt = |f(u)− f(v)| (6.5)

for any two numbers f(u), f(v) ∈ [−1, 1]. W.l.o.g. suppose |f(u)| ≥ |f(v)|. If f(u) and
f(v) have different signs,

|Xu(t)−Xv(t)| =

 2, if t ≤ |f(v)|;
1, if |f(v)| < t ≤ |f(u)|;
0, if t > |f(u)|.

(6.6)

Then,
∫ 1

0 |Xu(t) −Xv(t)| dt = |f(u)| + |f(v)| = |f(u) − f(v)|. If, on the other hand, f(u)
and f(v) have the same sign,

|Xu(t)−Xv(t)| =

 0, if t ≤ |f(v)|;
1, if |f(v)| < t ≤ |f(u)|;
0, if t > |f(u)|.

(6.7)

Then
∫ 1

0 |Xu(t)−Xv(t)|dt = |f(u)| − |f(v)| = |f(u)− f(v)|. Therefore (6.4) holds.

Furthermore,
∫ 1

0 |Xu(t)|dt = |f(u)|. By a similar argument as in the proof of Lemma 6,
there exists a t′ ∈ [0, 1] such that

βσ(Vf (t′), Vf (−t′)) ≤
∫ 1

0

∑
u∼v wuv|Xu(t)− σ(uv)Xv(t)|dt∫ 1

0

∑
u µ(u)|Xu|dt

=

∑
u∼v wuv|f(u)− σ(uv)f(v)|∑

u µ(u)|f(u)|
.

�

For any non-zero function f : V → R, we define a step function approximation: For
k ∈ N, let

0 = t0 ≤ t1 ≤ · · · ≤ t2k (6.8)

be a sequence of real numbers with t2k = maxu∈V |f(u)|. Define the step function approxi-
mation g by

g(u) = ψ−t2k,...,−t1,0,t1,...,t2k(f(u)) := arg min
t∈{−t2k,...,0,...,t2k}

|f(v)− t|. (6.9)

That is, g(u) equals one of the constants {−t2k, . . . , 0, . . . , t2k} that is closest to f(u).
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We further construct an auxiliary function F : V → R. First, define η : [−t2k, t2k] → R
by

η(x) = |x− ψ−t2k,...,−t1,0,t1,...,t2k(x)|. (6.10)

Note that η(−x) = −η(x). Then for each u ∈ V , we assign

F (u) :=

∫ f(u)

0
η(x) dx. (6.11)

The function F has the following properties.

Proposition 4. (i). For any u ∈ V ,

|F (u)| ≥ 1

8k
|f(v)|2. (6.12)

(ii). For any {u, v} ∈ E,

|F (u)− σ(uv)F (v)| ≤1

2
|f(u)− σ(uv)f(v)|(|f(u)− σ(uv)f(v)|

+ |f(u)− g(u)|+ |f(v)− g(v)|). (6.13)

Proof. (i). First observe that F (u) and f(u) share the same sign. Since η(−x) = −η(x),
we can assume F (u) > 0 and f(u) > 0 for our purposes. Then the proof can be done as in
[31, Claim 3.3]. Since the argument is not long, we recall it here. Suppose f(u) ∈ [ti, ti+1]
for some i. Then by the Cauchy-Schwarz inequality,

f(u)2 =

 i=1∑
j=0

(tj+1 − tj) + (f(u)− ti)

2

≤ 2k

 i=1∑
j=0

(tj+1 − tj)2 + (f(u)− ti)2

 .

Using the definition,

F (u) =
i−1∑
j=0

∫ tj+1

tj

η(x) dx+

∫ f(u)

ti

η(x) dx

≥
i−1∑
j=0

1

4
(tj+1 − tj)2 +

1

4
(f(u)− ti)2 =

1

8k
f(u)2.

(ii). Observing the fact that
∫ σ(uv)f(v)

0 η(x) dx = σ(uv)
∫ f(v)

0 η(x) dx, we only need to prove
(6.13) for the case σ(uv) = +1. W.l.o.g., suppose that |f(u)| ≥ |f(v)|. If f(u) and f(v)
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have different signs, say f(u) ≥ 0, f(v) ≤ 0, then, recalling the fact η(−x) = −η(x),

|F (u)− F (v)| =
∫ f(u)

0
η(x) dx+

∫ −f(v)

0
η(x) dx

≤
∫ f(u)

0
x dx+

∫ −f(v)

0
x dx

=
1

2
(f(u)2 + f(v)2) ≤ 1

2
|f(u)− f(v)|2.

If, on the other hand, f(u) and f(v) have the same sign, we can assume f(u) > 0 and
f(v) > 0 since η(−x) = −η(x) and the step function approximation of −f is −g. Then,

|F (u)− F (v)| =
∫ f(u)

f(v)
η(x) dx ≤ |f(u)− f(v)| · max

f(v)≤x≤f(u)
η(x).

By definition,

max
f(v)≤x≤f(u)

η(x) ≤ min{|x− g(u)|, |x− g(v)|} ≤ 1

2
(|x− g(u)|+ |x− g(v)|)

≤ 1

2
(|x− f(u)|+ |f(u)− g(u)|+ |x− f(v)|+ |f(v)− g(v)|)

=
1

2
(|f(u)− f(v)|+ |f(u)− g(u)|+ |f(v)− g(v)|) .

This proves (6.13). �

Using the above properties and Lemma 11, we can derive the following lemma.

Lemma 12. For any non-zero functions f : V → R and an step function approximation
g of it constructed from 0 = t0 ≤ t1, . . . , t2k as above, there exists a t′ ∈ [0,maxu∈V |f(u)|]
such that

βσ(Vf (t′), V−f (t′)) ≤ 4kRσ(f) + 4
√

2k
‖f − g‖µ
‖f‖µ

√
dwµRσ(f), (6.14)

where ‖f‖2µ :=
∑

u∈V µ(u)f(u)2.

Note that the notation ‖ · ‖µ1 = ‖ · ‖ reduces to the Euclidean norm.

Proof. Applying Lemma 11 to the function F , we find a t ∈ [0,maxu |F (u)|] such that

βσ(VF (t), VF (−t)) ≤
∑

u∼v wuv|F (u)− σ(uv)F (v)|∑
u µ(u)|F (u)|

≤ 4kRσ(f)

+ 4k

∑
u∼v wuv|f(u)− σ(uv)f(v)|(|f(u)− g(u)|+ |f(v)− g(v)|)∑

u µ(u)f(u)2

≤ 4kRσ(f) + 4k
√
Rσ(f)

√∑
u∼v wuv|(|f(u)− g(u)|+ |f(v)− g(v)|)2√∑

u µ(u)f(u)2
,
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where we have used Proposition 4 in the second inequality and the Cauchy-Schwarz in-
equality in the last inequality. The same technique used in (4.3) yields∑

u∼v
wuv|(|f(u)− g(u)|+ |f(v)− g(v)|)2 ≤ 2dwµ ‖f − g‖2µ. (6.15)

Inserting (6.15) into the above calculations and using the fact that f(u) ≥ f(v) if and only
if F (u) ≥ F (v), the proof is completed. �

Now we are prepared for the proof of Theorem 13.

Lemma 13. For any non-zero function f : V → R and any 1 ≤ k ≤ N , there exists a
t′ ∈ [0,maxu∈V |f(u)|], such that at least one of the following estimates holds:

(i) βσ(Vf (t′), Vf (−t′)) ≤ 8kRσ(f);
(ii) there exists k disjointly supported functions f1, f2, . . . , fk : V → R such that for

each 1 ≤ i ≤ k,

Rσ(fi) < 256dwµk
2 Rσ(f)2

βσ(Vf (t′), Vf (−t′))2
. (6.16)

Proof. DenoteM := maxu |f(u)|. We construct 2k+1 real numbers t0 ≤ t1 ≤ · · · ≤ t2k ≤M
as follows: Take t0 = 0. Suppose that we have already fixed t0, t1, . . . , ti−1. Now we try to
find ti ∈ [ti−1,M ] such that∑

u:−ti≤f(u)<−ti−1

µ(u)|f(u)− ψ−ti,−ti−1(f(u))|2

+
∑

u:ti−1<f(u)≤ti

µ(u)|f(u)− ψti−1,ti(f(u))|2 = C, (6.17)

where

C =
βσ(Vf (t′), Vf (−t′))2‖f‖2µ

256k3dwµRσ(f)
.

Recall that ψti−1,ti(f(u)) is the closest one of {ti−1, ti} to f(u), and note that the l.h.s. of
(6.17) is continuous and non-decreasing w.r.t. ti. If we can find such constants satisfying
(6.17), we take the smallest one of them as ti; otherwise, we set ti = M . This procedure is
considered to be successful if t2k = M .

If the procedure succeeds, we define a step function g as in (6.9). Then by definition,

‖f − g‖2µ ≤ 2kC. (6.18)

Applying Lemma 12, we arrive at the inequality

βσ(Vf (t′), Vf (−t′)) ≤ 4kRσ(f) +
βσ(Vf (t′), Vf (−t′))

2
.

Therefore h(∆) ≤ 8kRσ(f) = 8kλ1(∆). Hence, Theorem 13 (i) holds.
If, on the other hand, the procedure fails, we have t2k < M . Then we define the 2k

disjointly supported functions,

fi(u) =

 −|f(u)− ψ−ti−1,ti(f(u))|, if −ti ≤ f(u) ≤ −ti−1;
|f(u)− ψti−1,ti(f(v))| if ti−1 < f(u) ≤ ti;

0 otherwise.
(6.19)
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for 1 ≤ i ≤ k. Recall that (6.17) ensures ‖fi‖2 = C. Next we estimate the Rayleigh
quotient for these functions.

Claim 1. For any {u, v} ∈ E,

2k∑
i=1

|fi(u)− σ(uv)fi(v)|2 ≤ |f(u)− σ(uv)f(v)|2. (6.20)

As in Lemma 5, we only need to prove the claim when σ(uv) = +1.

Case 1: u, v lie in the support of the same function fi. In this case,

2k∑
i=1

|fi(u)− fi(v)|2 = |fi(u)− fi(v)|.

If f(u) and f(v) have the same sign, say f(u) ≥ 0, f(v) ≥ 0, then

|fi(u)− fi(v)|2 =
∣∣|f(u)− ψti−1,ti(f(u))| − |f(v)− ψti−1,ti(f(v))|

∣∣2
≤ |f(u)− f(v)|2.

If f(u) and f(v) have different signs, say f(u) > 0, f(v) < 0, then

|fi(u)− fi(v)|2 =
∣∣|f(u)− ψti−1,ti(f(u))|+ |f(v)− ψ−ti,−ti−1(f(v))|

∣∣2
≤
∣∣|f(u)− ψti−1,ti(f(u))|+ | − f(v)− ψti−1,ti(−f(v))|

∣∣2
≤ (|f(u)− ti−1|+ | − f(v)− ti−1|)2 ≤ |f(u)− f(v)|2.

Case 2: u ∈ supp(fi), v ∈ supp(fj), where i 6= j. We can assume j > i. Then,

2k∑
i=1

|fi(u)− fi(v)|2 = |fi(u)|2 + |fj(v)|2.

If f(u) and f(v) have the same sign, say f(u) ≥ 0, f(v) ≥ 0, then

|fi(u)|2 + |fj(v)|2 = |f(u)− ψti−1,ti(f(u))|2 + |f(v)− ψtj−1,tj (f(v))|2

≤ |f(u)− ti|2 + |f(v)− ti|2 ≤ |f(u)− f(v)|2.

If f(u) and f(v) have different signs, say f(u) ≥ 0, f(v) ≤ 0, then

|fi(u)|2 + |fj(v)|2 = |f(u)− ψti−1,ti(f(u))|2 + |f(v)− ψ−tj ,−tj−1(f(v))|2

= |f(u)− ψti−1,ti(f(u))|2 + | − f(v)− ψtj−1,tj (−f(v))|2

≤ |f(u)− ti−1|2 + |f(v)− tj−1|2 ≤ |f(u)− f(v)|2.
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Hence, the claim is proved. Now using Claim 1, we calculate

2k∑
i=1

Rσ(fi) =
1

C

2k∑
i=1

∑
u∼v

wuv(fi(u)− σ(uv)fi(v))2

≤ 1

C

∑
u∼v

wuv|f(u)− σ(uv)f(v)|2

= 256k3dwµ
Rσ(f)2

βσ(Vf (t′), Vf (−t′))2
.

Then, we can find k functions of {f1, f2, . . . , f2k}, relabeling them as f1, f2, . . . , fk, such
that (6.16) holds for 1 ≤ i ≤ k. �

Proof of Theorem 13. Combining Lemma 2 and Lemma 13 yields Theorem 13. �

Proof of Theorem 4. Combining Lemma 10 and Lemma 13, we find an absolute constant
C such that for 1 ≤ k ≤ l ≤ N , at least one the following inequalities holds:

(i) hσk(µd) ≤ Clk6λk(∆
σ); (ii) hσk(µd) ≤ Clk6λk(∆

σ)/
√
λl(∆σ). (6.21)

Theorem 4 then follows. �

When µ = µ1, we have the following results for Lσ.

Theorem 14. Given a signed graph Γ = (G, σ) and k ∈ {1, 2, . . . , N}, at least one of the
following holds:

(i). hσ1 (µ1) ≤ 8kλ1(Lσ); (ii). hσ1 < 16
√

2dmaxk
λ1(Lσ)√
λk(Lσ)

. (6.22)

Recalling that λk(L
σ) ≤ 2dmax, we further obtain the following corollaries.

Corollary 3. For a signed graph Γ and 1 ≤ k ≤ N ,

hσ1 (µ1) < 16
√

2dmaxk
λ1(Lσ)√
λk(Lσ)

. (6.23)

Corollary 4. There exists an absolute constant C such that for any signed graph Γ and
1 ≤ k ≤ l ≤ N , we have

hσk(µ1) < C
√
dmaxlk

6 λk(L
σ)√

λl(Lσ)
. (6.24)

7. Signed triangles and the spectral gaps λ1 and 2− λN
In this section, we prove Theorem 6 and Theorem 7. We will present a proof of the

weighted version of Theorem 7.

Proof of Theorem 6. We consider an iterated matrix

∆σ[2] = I − (D−1Aσ)2. (7.1)

Then, for any function f : V → R and any u ∈ V ,

∆σ[2]f(u) = f(u)− 1

du

∑
v

∑
u′,u′∼u,u′∼v

wu′uwu′v
du′

σ(u′u)σ(u′v)f(v).
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Let fN be the corresponding eigenfunction of λN (∆σ). Then,

(fN ,∆
σ[2]fN )µ

(fN ,∆σfN )µ
=

(fN , [1− (1− λN (∆σ))2]fN )µ
(fN , λN (∆σ)fN )µ

= 2− λN (∆σ). (7.2)

Note λN (∆σ)(fN , fN )µ 6= 0, hence the above expression is proper. Furthermore,

(fN ,∆
σfN )µ =

∑
u∼v

(fN (u)− σ(uv)fN (v))2, (7.3)

and

(fN ,∆
σ[2]fN )µ

=
∑
u

fN (u)
∑
v

∑
u′,u′∼u,u′∼v

wu′uwu′v
du′

(fN (u)− σ(u′u)σ(u′v)fN (v))

=
∑
(u,v)

∑
u′,u′∼u,u′∼v

wu′uwu′v
du′

(fN (u)− σ(u′u)σ(u′v)fN (v))2

≥
∑
u∼v

∑
u′,u′∼u,u′∼v

σu′uσ(u′v)=σ(uv)

wu′uwu′v
du′

(fN (u)− σ(u′u)σ(u′v)fN (v))2.

In the above,
∑

(u,v) stands for the summation over unordered pair of vertices u, v. Inserting

the above estimate and (7.3) into (7.2), we obtain

2− λN (∆σ) ≥

∑
u∼v

∑
u′,u′∼u,u′∼v

σu′uσ(u′v)=σ(uv)

wu′uwu′v
du′

(fN (u)− σ(u′u)σ(u′v)fN (v))2

∑
u∼v wuv(fN (u)− σ(uv)fN (v))2

≥ w2

W
min
u∼v

∑
u′,u′∼u,u′∼v

σ(u′u)σ(u′v)=σ(uv)

1

du′
≥ w2

W

minu∼v ]
+(u, v)

maxu du
.

Using Lemma 1, the lower bound estimate for λ1(∆σ) follows from duality. �

Next, we prove Theorem 7, that is, the analogous result for the matrix Lσ. The techniques
we used above do not work for Lσ. We will employ different ideas, which are adapted from
Das [18] and Rojo [42]. In fact, we shall prove the following result.

Theorem 15. Given a signed graph Γ = (G, σ), we have

λN (Lσ) ≤ 1

2
max
u∼v
{du + dv +

∑
u′,u′∼u,u′ 6∼v

wu′u +
∑

u′,u′∼u,u′∼v
σ(u′u)σ(u′v)=−σ(uv)

wu′u

+
∑

u′,u′∼v,u′ 6∼u
wu′v +

∑
u′,u′∼u,u′∼v

σ(u′u)σ(u′v)=−σ(uv)

wu′v (7.4)

+
∑

u′,u′∼u,u′∼v
σ(u′u)σ(u′v)=σ(uv)

|wu′u − wu′v|}.

Remark 3. Theorem 7 is a direct corollary of this theorem.
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Proof of Theorem 15. Let fN be the eigenfunction corresponding to λN (Lσ). W.l.o.g., we
suppose fN (u) = maxu′∈V |fN (u′)|, and

σ(uv)fN (v) = min
u′,u′∼u

σ(uu′)fN (u′).

First, observe fN (u)− σ(uv)fN (v) 6= 0. (Because otherwise σ(uu′)fN (u′) = fN (u) for any
u′ such that u′ ∼ u, which implies λN (Lσ)fN (u) = LσfN (u) = 0, a contradiction.) Then
calculate

λN (Lσ)(fN (u)− σ(uv)fN (v)) = LσfN (u)− σ(uv)LσfN (v)

= dufN (u)−
∑

u′,u′∼u
wu′uσ(uu′)fN (u′)− dvσ(uv)fN (v)

+
∑

u′,u′∼v
wu′vσ(uv)σ(u′v)fN (u′).

For ease of notation, we will adopt the simplified notations

u∑
u′

:=
∑

u′,u′∼u,u′ 6∼v
,

u,v∑
u′,±

:=
∑

u′,u′∼u,u′∼v, σ(u′u)σ(u′v)=±σ(uv)

.

We continue to estimate:

λN (Lσ)(fN (u)− σ(uv)fN (v))

≤ dufN (u)− σ(uv)fN (v)(
u∑
u′

+

u,v∑
u′,−

)wu′u − dvσ(uv)fN (v)

+ fN (u)(

v∑
u′

wu′v +

u,v∑
u′,−

)wu′v +

u,v∑
u′,+

(wu′v − wu′u)σ(u′u)fN (u′)

=
1

2
(fN (u)− σ(uv)fN (v))(du + dv + (

u∑
u′

+

u,v∑
u′,−

)wu′u + (

v∑
u′

wu′v +

u,v∑
u′,−

)wu′v)

+
1

2
(fN (u) + σ(uv)fN (v))(du − (

u∑
u′

+

u,v∑
u′,−

)wu′u)

− 1

2
(fN (u) + σ(uv)fN (v))(dv − (

v∑
u′

+

u,v∑
u′,−

)wu′v)

+

u,v∑
u′,+

(wu′v − wu′u)σ(u′u)fN (u′)
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Observing that du − (
∑u

u′ +
∑u,v

u′,−)wu′u =
∑u,v

u′,+wu′u, we have

λN (Lσ)(fN (u)− σ(uv)fN (v))

≤ 1

2
(fN (u)− σ(uv)fN (v))(du + dv + (

u∑
u′

+

u,v∑
u′,−

)wu′u + (
v∑
u′

wu′v +

u,v∑
u′,−

)wu′v)

+
1

2

u,v∑
u′,+

(wu′v − wu′u)
(
fN (u) + σ(uv)fN (v)− 2σ(u′u)fN (u′)

)
. (7.5)

For the latter term above, we further estimate

u,v∑
u′,+

(wu′v − wu′u)
(
fN (u) + σ(uv)fN (v)− 2σ(u′u)fN (u′)

)
≤

u,v∑
u′,+

|wu′v − wu′u|(fN (u)− σ(u′u)fN (u′))

+

u,v∑
u′,+

|wu′v − wu′u|(σ(u′u)fN (u′)− σ(uv)fN (v))

= (fN (u)− σ(uv)f(v))

u,v∑
u′,+

|wu′v − wu′u|.

Inserting the above estimation into (7.5), we arrive at

λN (Lσ)(fN (u)− σ(uv)fN (v))

≤ 1

2
(fN (u)− σ(uv)f(v))(du + dv + (

u∑
u′

+

u,v∑
u′,−

)wu′u + (

v∑
u′

wu′v +

u,v∑
u′,−

)wu′v)

+
1

2
(fN (u)− σ(uv)f(v))

u,v∑
u′,+

|wu′v − wu′u|.

This completes the proof. �
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