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Abstract. We propose that entropy is a universal co-homological class in a theory associated
to a family of observable quantities and a family of probability distributions. Three cases are
presented: 1) classical probabilities and random variables; 2) quantum probabilities and observable
operators; 3) dynamic probabilities and observation trees. This gives rise to a new kind of topology
for information processes. We discuss briefly its application to complex data, in particular to the
structures of information flows in biological systems. This short note summarizes results obtained
during the last years by the authors. The proofs are not included, but the definitions and theorems
are stated with precision.
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INTRODUCTION

"What is information ?" is a question that has received several answers according to
the different problems investigated. The best known definition was given by Shannon
[1], using random variables and a probability law, for the problem of optimal message
compression. But the first definition was given by Fisher, as a metric associated to
a smooth family of probability distributions, for optimal discrimination by statistical
tests; it is a limit of the Kullback-Leibler divergence, which was introduced to estimate
the accuracy of a statistical model of empirical data, and which can be also viewed as
a quantity of information. More generally Kolmogorov considered that the concept of
information must precede probability theory (cf. [2]). However, Evariste Galois saw the
application of group theory for discriminating solutions of an algebraic equation as a
first step toward a general theory of ambiguity, that was developed further by Riemann,
Picard, Vessiot, Lie, Poincare and Cartan, for systems of differential equations; it is
also a theory of information. In another direction Rene Thom claimed that information
must have a topological content (see [3]); he gave the example of the unfolding of the
coupling of two dynamical systems, but he had in mind the whole domain of algebraic
or differential topology.

All these approaches have in common the definition of secondary objects, either
functions, groups or homology cycles, for measuring in what sense a pair of ob-
jects departs from independency. For instance, in the case of Shannon, the mutual
information is I(X;Y) = H(X)+ H(Y) — H(X,Y), where H denotes the usual Gibbs
entropy (H(X) = —Y,,P(X = x)Inp P(X = x)), and for Galois it is the quotient set
IGal(Ly;L5|K) = (Gal(Li|K) x Gal(L,|K))/Gal(L|K), where L;,L, are two fields



containing a field K in an algebraic closure Q of K, where L is the field generated by
Ly and L; in Q, and where Gal(L;|K) (for i = 0, 1,2) denotes the group introduced by
Galois, made by the field automorphisms of L; fixing the elements of K.

We suggest that all information quantities are of co-homological nature, in a setting
which depends on a pair of categories (cf.[4] [5]); one for the data on a system, like
random variables or functions of solutions of an equation, and one for the parameters of
this system, like probability laws or coefficients of equations; the first category generates
an algebraic structure like a monoid, or more generally a monad (cf. [4]), and the second
category generates a representation of this structure, as do for instance conditioning,
or adding new numbers; then information quantities are co-cycles associated with this
module.

We will see that, given a set of random variables on a finite set Q and a simplicial
subset of probabilities on €2, the entropy appears as the only one universal co-homology
class of degree one. The higher mutual information functions that were defined by
Shannon are co-cycles (or twisted co-cycles for even orders), and they correspond to
higher homotopical constructions. In fact this description is equivalent to the theorem
of Hu Kuo Ting [6], that gave a set theoretical interpretation of the mutual information
decomposition of the total entropy of a system. Then we can use information co-cycles
to describe forms of the information distribution between a set of random data; figures
like ordinary links, or chains or Borromean links appear in this context, giving rise to a
new kind of topology.

INFORMATION HOMOLOGY

Here we call random variables (r.v) on a finite set Q congruent when they define the
same partition (remind that a partition of € is a family of disjoint non-empty subsets
covering Q and that the partition associated to a r.v X is the family of subsets Q, of Q
defined by the equations X (@) = x); the join r.v YZ, also denoted by (Y,Z), corresponds
to the less fine partition that is finer than Y and Z. This defines a monoid structure on the
set T1(Q) of partitions of Q, with 1 as a unit, and where each element is idempotent, i.e.
VX,XX = X. An information category is a set . of r.v such that, for any Y, Z € .7 less
fine than U € ., the join YZ belongs to .7, cf. [7]. An ordering on .% is given by ¥ < Z
when Z refines Y, which also defines the morphisms ¥ — Z in .. In what follows we
always assume that 1 belongs to .. The simplex A(Q) is defined as the set of families
of numbers {pgy;® € Q}, such that Vo,0 < py < 1 and ¥, pp» = 1; it parameterizes
all probability laws on Q. We choose a simplicial sub-complex & in A(Q), which is
stable by all the conditioning operations by elements of .. By definition, for N € N,
an information N-cochain is a family of measurable functions of P € &2, with values
in R or C, indexed by the sequences (Si;...;Sy) in . majored by an element of .7,
whose values depend only of the image law (Sj,...,Sy)«P. This condition is natural
from a topos point of view, cf. [4]; we interpret it as a "locality" condition. Note that we
write (Sp;...;Sy) for a sequence, because (Si,...,Sy) designates the joint variable. For
N = 0 this gives only the constants. We denote by ¢V the vector space of N-cochains
of information. The following formula corresponds to the averaged conditioning of



Shannon [1]:
So.F(Sl;...;SN, ZP Sl,.. ;SN;P|S():VJ'), (1)

where the sum is taken over all values of Sy, and the vertical bar is ordinary conditioning.
It satisfies the associativity condition (S;So).F = Sj,.(So.F).
The coboundary operator 6 is defined by

OF (So;... ‘SN;]P’) =S0.F(S1;...;8n:; P)

+Z D (s (S1,8i41)5 S P) + (= DV E(Sos .S 13 P), (2)

It corresponds to a standard non-homogeneous bar complex (cf. [S]). Another co-
boundary operator on €V is & (¢ for twisted or trivial action or topological complex),
that is defined by the above formula with the first term So.F(Sy;...;Sy;P) replaced by
F(S1;...;8n;P). The corresponding co-cycles are defined by the equations F = 0 or
O F = 0, respectively. We easily verify that 6 o 6 = 0 and & o 6; = 0; then co-homology
H*(; P) resp. H (¥, &) is defined by taking co-cycles modulo the elements of the
image of § resp. &, called co-boundaries. The fact that classical entropy H(X;P) =
—Y,; pilog, p; is a 1-co-cycle is the fundamental equation H(X,Y) = H(X)+X.H(Y).
Theorem 1 (cf. [7]): For the full simplex A(Q), and if . is the monoid generated by
a set of at least two variables, such that each pair takes at least four values, then the
information co-homology space of degree one is one-dimensional and generated by the
classical entropy.
Problem 1: Compute the homology of higher degrees.
We conjecture that for binary variables it is zero, but that in general non-trivial classes
appear, deduced from polylogarithms. This could require us to connect with the works
of Dupont, Bloch, Goncharov, Elbaz-Vincent, Gangl et al. on motives (cf. [8]), which
started from the discovery of Cathelineau (1988) that entropy appears in the computa-
tion of the degree one homology of the discrete group SL, over C with coefficients in
the adjoint action (cf. [9]).

Suppose .7 is the monoid generated by a finite family of partitions. The higher mutual
informations were defined by Hu Kuo Ting [6] as alternating sums:

k=N
In(S15..58w:P) = Y (—=1)F! Y  H(SEP), (3)
k=1 IC|NJscard(l)=k

where S; denotes the join of the S; such that i € I. We have I} = H and I, = I is the usual
mutual information: I(S;T) = H(S)+H(T)—H(S,T) .

Theorem 2 (cf. [7]): DLy = 806...06H, by, 1 = —0860600...00H, where there
are m— 1 0 and m & factors for I, and m & and m o factors for I, ;.

Thus odd information quantities are information co-cycles, because they are in the
image of 0, and even information quantities are twisted (or topological) co-cycles,
because they are in the image of .

In [7] we show that this description is equivalent to the theorem of Hu Kuo Ting (1962)



[6], giving a set theoretical interpretation of the mutual information decomposition
of the total entropy of a system: mutual information, join and averaged conditioning
correspond respectively to intersection, union and difference A\B = AN B¢ . In special
cases we can interpret Iy as homotopical algebraic invariants. For instance for N = 3,
suppose that I(X;Y) =1(Y;Z) = 1(Z;X) =0, then K(X;Y;Z) = —I((X,Y);Z) can be
defined as a Milnor invariant for links, generalized by Massey, as they are presented
in [10] (cf. page 284), through the 3-ary obstruction to associativity of products in a
subcomplex of a differential algebra, cf. [7]. The absolute minima of /3 correspond to
Borromean links, interpreted as synergy, cf. [11], [12].

EXTENSION TO QUANTUM INFORMATION

Positive hermitian n X n-matrices p, normalized by Tr(p) = 1, are called density of
states (or density operators) and are considered as quantum probabilities on E = C".
Real quantum observables are n x n-matrices hermitian matrices Z, and, by definition,
the amplitude, or expectation, of the observable Z in the state p is given by the formula
E(Z) = Tr(Zp) (see e.g. [13]). Two real observables Y,Z are said congruent if their
eigenspaces are the same, thus orthogonal decomposition of E are quantum analogs
of partitions. The join is well defined for commuting observables. An information
structure . is given by a subset of observables, such that if Y, Z have common refined
eigenspaces decomposition in .7y, their join (Y, Z) belongs to .#. We assume that {E}
belongs to .. We define information N-cochains as for the classical case.

The image of a density p by an observable Y is py =Y 4 E;pEa, where the E4’s are the
spectral projectors of the observable Y.

The action of a variable on the cochains space ‘55 is given by the quantum averaged
conditioning:

Y.F(Yo:...;Ym:p) = Y Tr(EspEA)F (Yo;....:Ym: EApEn) 4)
A

From here we define coboundary operators 6p and 8¢, by the formula (2), then notions
of co-cycles, co-boundaries and co-homology classes follow. We have 8y o §p = 0 and
5Qt o 5Qt = O; cf. [7]

The Von-Neumann entropy of p is S(p) = Ep(—logy(p)) = —Tr(plog,(p)),
the entropy of Y in state p is S(Y;p) = S(py), and the classical entropy is
H(Y;p) = —YATr(EipEs)log,(Tr(EipEy4)). It is well known that S((X,Y);p) =
H(X;p)+X.S(Y;p) when X,Y commute, cf. [13]. In particular, by taking ¥ = 1 we
see that classical entropy measures the default of equivariance of the quantum entropy,
ie. HX;p)=SX;p)— (X.5)(p).

Then, if we define the reduced quantum entropy by s(X;p) = S(X;p) —S(p), we get a
I-cocycle of quantum information. In fact H is also a 1-cocycle and it is co-homologous
to s by the following lemma: 8p(S) =s—H.

Theorem 3 (cf. [7]): when .7 is generated by at least two decompositions such each
pair has at least four subspaces, then s or H generates the co-homology of Jp.



CONCAVITY AND CONVEXITY PROPERTIES OF
INFORMATION QUANTITIES

The simplest classical information structure .% is the monoid generated by a family of
"elementary" binary variables Sy, ..., S,. It is remarkable that in this case, the information
functions Iy ; = Iy(S;,;...Sjy) over all the subsets J = {ji,...,jn} of [n] = {1,...,n},
different from [n] itself, give algebraically independent functions on the probability
simplex A(Q) of dimension 2" — 1. They form coordinates on the quotient of A(Q) by a
finite group.

Let %, denotes the Lie derivative with respect to d = (1,...,1) in the vector space R%",
and A\ the Euclidian Laplace operator on R, then A = A —27".%; 0 %, is the Laplace
operator on the simplex A(Q) defined by equating the sum of coordinates to 1.
Theorem 4 (cf. [14]): On the affine simplex A(Q) the functions Iy ; with N odd (resp.
even) satisfies the inequality Aly > 0 (resp. Aly < 0).

In other terms, for N odd the Iy ; are super-harmonic which is a kind of weak concavity
and for N even they are sub-harmonic which is a kind of weak convexity. In particular,
when N is even (resp. odd) Iy s has no local maximum (resp. minimum) in the interior
of A(Q).

Problem 2: What can be said of the other critical points of Iy ;? What can be said of the
restriction of one information function on the intersection of levels of other information
functions? Information topology depends on the shape of these intersections and on the
Morse theory for them.

MONADIC COHOMOLOGY OF INFORMATION

Now we consider the category .%; of ordered partitions of Q over .7, i.e. pairs (7, ®)
where 7 € . and @ is a bijection from {1,...,/(®)} with the quotient set Q/m, where
[(w) is the length of 7, i.e. the number of pieces of Q given by 7. The indices of these
pieces are the values of the r.v associated with (7, ®). A rooted tree decorated by .7, is
an oriented finite tree I', with a marked initial vertex sg, named the root of I', where each
vertex s is equipped with an element Fy of .7, such that edges issued from s correspond
to the values of F;.

The notation p(m;ny,...,n,) denotes the operation which associates to an ordered par-
tition (7, ®) of length m and m ordered partitions (7;, ;) of respective lengths n;, the
ordered partition that is obtained by cutting the pieces of 7 using the m; and respect-
ing the order. An evident unit element for this operation is 7. The symbol u,, denotes
the collection of those operations for m fixed. Be aware that in general the result of
w(m;ny,...,ny) is not a partition of length n; + ... 4+ ny,, thus the p,, do not define what
is named an operad; cf. [10], [15]. However they allow the definition of a filtered version
of operad, with unity, associativity and covariance for permutations, cf. [16]. See [15]
and [10] for the definition of ordinary graded operads.

But the most important algebraic object which is associated to an operad is a monad
(cf. [4],[15]), i.e. a functor ¥ from a category &7 to itself, equipped with two natural



transformations (1 : ¥ o ¥ — ¥ and € : R — 7, which satisfy to the following axioms:
po(ldou)=uo(uold), uo(ldoe)=Id==¢co(nold) 5)

In our situation, we can apply the Schur construction (cf. [15]) to the u,, to get a
monad: take for V the real vector space freely generated by .7;; it is graded by the
partition length as direct sum of spaces V (m). As for ordinary operads we introduce ¥ =
B,>0V (m) ®g, VE™; Schur composition is defined by ¥ o ¥ =,,~oV (m) ®g,, ¥ ™.
It is easy to verify that the collection (u,,;m € N) defines a linearmap y: ¥ o ¥ — ¥,
and the trivial partition 7y defines a linear map € : R — 7/, that satisfied to the axioms
of a monad.

Let .# be the vector space of real measurable functions on the set & of probability
laws, considered as a .7, module of pure degree 1, in such a manner that .% o ¥ °™"
coincides with .7 ® 7™ For ar.v S of length m and m decorated trees (S{ 38553 S,S(); 1<
s < m of level k, we pose

F5(S1582;...,S:P) = Z]P’(S: S)F(81:8%;..,SLP|(S =19)); (6)
N

this is a function of the decorated tree (S;S;;S52;...;5¢) of level k+ 1 that roots in §
and S7 is placed at the end of the edge S = v. This formula extending (1) defines
amap 0 : .7 oV — Z, that is an action to the right in the sense of monads, i.e.
Oo(Idopu)=00(00ld); Oo(ldoe)=1d.

We say that F(S;S1;52;...,8¢_1;P) is local if its value depends only of the images of
P by the join of the decorating variables of the corresponding tree. Then we copy the
formalism of Beck (see [15]) with this locality condition, to get monadic information
co-homology: a cochain of degree k is an element of .% o #°K whose components are
local; the operator 6 comes from the simplicial structure associated to 6 and u:

OF(S;S1;...:8k:P) = Fg(S15...: 81 P) + (—l)k“F(S; Sk P)
i=k

+ Y (1) F(S; 51 (Sim1 08:):Sis 153 S P) (7)
i=1

This gives co-homology groups H; (.7, %), 7 for tree. The fact that entropy H (S.[P) =
H(S;P) defines a 1-cocycle is a result of an equation of Fadeev, generalized by Baez,
Fritz and Leinster [17], who gave another interpretation, based on true operad structure
over the set of all finite probability laws.

Theorem 5 (cf. [16]): If Q has more than four points, H}(I1(Q),A(Q)) is the one
dimensional vector space generated by the entropy.

Another right action of ¥ on .% is given by (6) where on the right side P|(S = s) is
replaced by P itself. From here and the simplicial structure associated to 6 and u,
we define an operator &, which gives a twisted version of information co-homology
as we have done in the first paragraph. This allows us to define higher information
quantities for strategies: for N =2M + 1 odd I; y = —(88)MH and for N = 2M +2
even Iy = &(88)MH.

This gives for N = 2 a notion of mutual information between a variable S of length m



and a collection T of m variables 71, ..., T,;:

I:(S;T;P) =i P(S=i)(H(T;P)— H(T;;P|S =1)). (8)
1

Il
3

~.

When all the 7; are equals we recover the ordinary mutual information of Shannon.

THE FORMS OF INFORMATION STRATEGIES

A rooted tree I' decorated by .7, can be seen as a strategy to discriminate between
points in Q. For each vertex s there is a minimal set of chained edges ¢, ..., con-
necting so to s; the cardinal k is named the level of s; this chain defines a sequence
(Fo,vo; F1,v1;...;Fp_1,vk_1) of observables and values of them; then we can associate to
s the subset Qg of Q where each Fj takes the value v;. At a given level k the sets €; form
a partition 7, of Q; the first one 7 is the unit partition of length 1, and 7; is finer than
m;—1 for any /. By recurrence over k it is easy to deduce from the orderings of the values
of Fy an embedding in the Euclidian plane of the subtrees I'(k) at level k such that the
values of the variables issued from each vertex are oriented in the direct trigonometric
sense, thus 7 has a canonical ordering w;. Remark that many branches of the tree gives
the empty set for € after some level; we name them dead branches. It is easy to prove
that the set I1(.¥). of ordered partitions that can be obtained as a (7, @) for some
tree I' and some level k is closed by the natural ordered join operation, and, as I1(.¥).
contains 7, it forms a monoid, which contains the monoid M(.%,) generated by ..
Complete discrimination of Q by .7 exists when the final partition of Q by singletons
is attainable as a m;; optimal discrimination correspond to minimal level k. When the
set Q is a subset of the set of words x,...,xy with letters x; belonging to given sets
M; of respective cardinalities m;, the problem of optimal discrimination by observation
strategies I decorated by .7 is equivalent to a problem of minimal rewriting by words
of type (Fo,vo), (F1,v1), ..., (Fk,vi); it is a variant of optimal coding, where the alphabet
is given. The topology of the poset of discriminating strategies can be computed in
terms of the free Lie algebra on Q, cf. [15].

Probabilities P in & correspond to a priori knowledge on Q. In many problems &
is reduced to one element, that is the uniform law. Let s be a vertex in a strategic tree
I, and let & be the set of probability laws that are obtained by conditioning through
the equations F; = v;;i = 0,...,k — 1 for a minimal chain leading from sg to s. We
can consider that the sets &7, for different s along a branch measure the evolution of
knowledge when applying the strategy. The entropy H(F;P;) for F in ., and P; in
P gives a measure of information we hope when applying F at s in the state P;. The
maximum entropy algorithm consists in choosing at each vertex s a variable that has the
maximal conditioned entropy H (F;Py).

Theorem 6 (cf. [16]): To find one false piece of different weight among N pieces for
N > 3, when knowing the false piece is unique, by the minimal numbers of weighing,
one can use the maximal entropy algorithm.

However we have another measure of information of the resting ambiguity at s, by



taking for the Galois group G; the set of permutations of €, which respect globally
the set &7 and the set of restrictions of elements of .7, to €, and which preserve one
by one the equations F; = v;. Along branches of I this gives a decreasing sequence of
groups, whose successive quotients measure the evolution of acquired information in an
algebraic sense.

Problem 3: Generalize Theorem 6. Can we use algorithms based on the Galoisian
measure of information? Can we use higher information quantities associated to trees
for optimal discrimination?

CONCLUSION AND PERSPECTIVE

Concepts of Algebraic topology were recently applied to Information theory by several
researchers. In particular notions coming from category theory, homological algebra and
differential geometry were used for revisiting the nature and scope of entropy, cf. for
instance Baez et al. [17], Marcolli and Thorngren [18] and Gromov [19]. In the present
note we interpreted entropy and Shannon information functions as co-cycles in a natural
co-homology theory of information, based on categories of observable and complexes
of probability. This allowed us to associate topological figures, like Borromean links,
with particular configuration of mutual dependency of several observable quantities.
Moreover we extended these results to a dynamical setting of system observation, and
we connected probability evolutions with the measures of ambiguity given by Galois
groups. All those results provide only the first steps toward a developed Information
Topology. However, even at this preliminary stage, this theory can be applied to the
study of distribution and evolution of Information in concrete physical and biological
systems. This approach already proved its efficiency for detecting collective synergic
dynamic in neural coding [12], in genetic expression [20], in cancer signature [21], or in
signaling pathways [22]. In particular, information topology could provide the principles
accounting for the structure of information flows in biological systems and notably in
the central nervous system of animals.
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