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Super Riemann surfaces, metrics, and
gravitinos

Jürgen Jost1 Enno Keßler2 Jürgen Tolksdorf3

Max-Planck-Institut für Mathematik in den Naturwissenschaften

The underlying even manifold of a super Riemann surface is a Riemann
surface with a spinor valued differential form called gravitino. Consequently
infinitesimal deformations of super Riemann surfaces are certain infinitesimal
deformations of the Riemann surface and the gravitino. Furthermore the action
functional of non-linear super symmetric sigma models, the action functional
underlying string theory, can be obtained from a geometric action functional
on super Riemann surfaces. All invariances of the super symmetric action
functional are explained in super geometric terms and the action functional is
a functional on the moduli space of super Riemann surfaces.

Introduction

Let |M | be a compact closed two dimensional manifold. In super string theory and super
gravity one studies a super symmetric extension of the harmonic action functional where
both the field ϕ : |M | → R and the Riemannian metric g on |M | get a super partner. See
for example Deser and Zumino 1976; Brink, Vecchia, and Howe 1976. Let S be a spinor
bundle on |M | with respect to a chosen spin structure and S∨ its dual bundle. Let ψ be
a section of S∨ and χ a spinor valued differential form, i.e. a section of T∨|M | ⊗R S. The
super symmetric action functional is

A(ϕ,ψ, g, χ) =

∫
|M |

(
‖ dϕ‖2g + 〈ψ,D/ ψ〉

+2〈γaγbχa, ψ〉∂xbϕ+
1

2
〈χa, γbγaχb〉〈ψ,ψ〉

)
dvolg (∗)

This action is invariant under

1jjost@mis.mpg.de
2kessler@mis.mpg.de (corresponding author)
3tolksdor@mis.mpg.de
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• Diffeomorphisms of |M |: A(ϕ ◦ f, f∗ψ, f∗g, f∗χ) = A(ϕ,ψ, g, χ)

• Conformal transformations: A(ϕ,ψ, λ2g, χ) = A(ϕ,ψ, g, χ)

• Super Weyl transformations: A(ϕ,ψ, g, χk + γks) = A(ϕ,ψ, g, χ)

• Super symmetry:

δϕ = 〈q, ψ〉 δψ = (∂xkϕ− 〈ψ, χk〉) γkq
δfa = −2〈γbq, χ(fa)〉fb δχa = ∇Sfaq

Here fa is a g-orthonormal frame.

The aim of this paper is to clarify the relation of the action functional (∗) to super
Riemann surfaces. The invariances of the action functional arise from geometric properties
of super Riemann surfaces. Super Riemann surfaces are an analogue of Riemann surfaces
in super geometry. This mathematical theory was developed already in the seventies for
the treatment of super symmetric theories in high energy physics (see e.g. Leites 1980;
Kostant 1977; Manin 1988). The concept of a super Riemann surface appeared only a
little later and their moduli space was studied, see for example Giddings and Nelson 1988;
LeBrun and Rothstein 1988; Crane and Rabin 1988; Sachse 2009; Donagi and Witten 2013.
But the precise connection between the super Riemann surfaces and the metric field g
and the gravitino χ remained unclear even though many conjectured a super Teichmüller
theory that would study the moduli space of super Riemann surfaces (or a covering of it)
in terms of the metric and the gravitino field. The action functional (∗) was claimed to
arise from a particular Berezin integral on a super Riemann surface (e.g. D’Hoker and
Phong 1988). However, no explicit proof of this claim seems to exist.

In the first section of this article we introduce the concept of underlying even manifolds
for families of super manifolds. It will be shown that such an underlying even manifold
|M | exists for all super manifolds M . Any Berezin integral on M can then be reduced to
an integral on |M |.
In the second section we will study the geometric structures induced on manifolds

underlying super Riemann surfaces. We will show that the geometry is completely
determined by a metric g and a gravitino χ on an underlying even manifold |M |. This
opens the possibility for a super Teichmüller theory, i.e. a theory of the moduli space of
super Riemann surfaces in therms of metrics and gravitinos. As a first step we study
the tangent space to the moduli space of super Riemann surfaces, using metrics and
gravitinos.
The aim of the third section is to demonstrate how the action functional (∗) arises

from a Berezin integral on a super Riemann surface. The formulation in terms of the
Berezin integral leads to a very clear geometrical interpretation of the symmetries of (∗).
Consequently the action functional (∗) is a functional on the moduli space of super
Riemann surfaces. We give an interpretation of its energy momentum tensor and super
current in terms of cotangent vectors to the moduli space.

In this paper, we present the main results of the second author’s thesis (Keßler 2015).
Some of the results in the last two sections rely on long and complicated computations.
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In order not to overly burden the presentation we have omitted those and refer instead to
the forthcoming thesis Keßler 2015.

1 Super Geometry

We use the ringed space approach to super geometry (see, for example, Leites 1980).

Definition 1.1. A (smooth) super manifold is a locally ringed space (‖M‖,OM ) that
is locally isomorphic to Rm|n = (Rm, C∞(Rm,R)⊗R Λn). Here Λn is a real Grassmann
algebra generated by n elements. A map of super manifolds f : M → N is a map of locally
ringed spaces. That is, a pair (‖f‖, f#) consisting of a continuous map ‖f‖ : ‖M‖ → ‖N‖
and a sheaf homomorphisms f# : ON → OM . It follows that the sheaf of rings OM is a
super commutative Z2-graded sheaf of rings. The elements of OM will be called functions.

Let xa, a = 1, . . . ,m be the standard coordinate functions on Rm and ηα, α = 1, . . . , n
be generators for Λn. Their lift to ORm|n will be called coordinates for Rm|n. We write
XA = (xa, ηα), using the convention, that small Latin letters refer to even objects, small
Greek letters to odd ones and capital Latin indices refer to odd and even objects together.
Any function on Rm|n can be expanded as

f =
∑
α

ηαfα(x)

where α is a Z2-multiindex and the fα are smooth functions that can be expressed in the
coordinates xa. According to Leites 1980, Theorem 2.17 any morphism between super
domains U ⊆ Rm|n and V ⊆ Rp|q can be given in terms of coordinates.

Example 1.2. Let XA = (xa, ηα) be coordinates on R2|2. Any map ϕ : R2|2 → R is
determined by the pullback of the coordinate r on R:

ϕ#r = f0(x) + η2η1f21(x)

Here f0(x) and f21(x) are smooth functions depending only on xa. Note that there is no
term proportional to ηα because the ring homomorphisms ϕ# preserve automatically the
Z2-parity of the super functions.

For the applications we have in mind one expects the full Taylor expansion. Therefore
we need to work with families of super manifolds.

Definition 1.3 (Leites 1980). A submersion pM : M → B of super manifolds is also
called a family of super manifolds over B. A morphism f of families of super manifolds
from pM : M → B to pN : N → B is a morphism f : M → N such that pN ◦f = pM . Any
super manifold is a family over R0|0. Any family is locally a projection Rm|n ×B → B.
We call m|n the dimension of the family.

Example 1.4. Consider the trivial families of super manifolds given by R2|2×B and R×B.
A map ϕ : R2|2 ×B → R×B of families over B is now again given by the pullback of the
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coordinate function r on R, the map on the B-factor is determined by the properties of
maps of families over B. But this time all coefficients in the coordinate expansion can
appear (using the Einstein summation convention):

ϕ#r = f0(x) + ηµfµ(x) + η2η1f21(x)

Here f0(x), fµ(x), and f21(x) are functions on R2|0 × B. For all open U the ring
homomorphisms ϕ#

∣∣
U
must be even. This implies that f0 and f12 are even functions,

whereas the functions fµ must be odd.

Lemma 1.5 (Deligne and Morgan 1999, Remark 2.6.(v)). Let b : B′ → B a morphism of
super manifolds and pM : M → B a family of super manifolds over B. Then there exists
a unique family of super manifolds pM ′ : M ′ → B′ and a morphism p : M ′ →M over b.

According to Lemma 1.5 it is not necessary to fix B. However B is always supposed
to be “big enough”, see Example 1.4. Henceforth, all super manifolds and maps of super
manifolds are implicitly to be understood as families of super manifolds and morphisms
of families of super manifolds. In particular, also Rm|n is to be understood as the trivial
family Rm|n ×B.

Many geometric concepts known from smooth manifolds carry over to families of super
manifolds and are functorial under base change. Examples such as tangent bundles, vector
bundles, differential forms and Lie groups can be found in Deligne and Morgan 1999. A
construction that has no analogue in differential geometry is that of the underlying even
manifold.

Definition 1.6. Let M = (‖M‖,OM ) be a family of super manifolds of dimension m|n
over B. A family of super manifolds |M | = (‖M‖,O|M |) of dimension m|0 together with
an embedding of families of super manifolds i : |M | → M that is the identity on the
underlying topological space is called an underlying even manifold.

Lemma 1.7 (see e.g. Deligne and Morgan 1999). Let M = (‖M‖,OM ) be a super
manifold over R0|0 of dimension m|n. There exists a unique underlying even manifold
i : |M | →M .

Proof. Let I ⊂ OM be the ideal sheaf of nilpotent elements. Then |M | = (‖M‖,OM/I)
is a manifold of dimension m. Furthermore the canonical projection i# : OM → OM/I
gives an embedding i : |M | →M which is the identity on the underlying topological space
‖M‖.

Though this concept was known for super manifolds it was to our knowledge never
studied for families of super manifolds. However in the case of families the uniqueness of
the underlying manifold is lost, as is already seen in the following example:

Example 1.8. Consider morphisms i : Rm|0 × B → Rm|n × B. Denote the standard
coordinates on Rm|0 by ya and the standard coordinates on Rm|n by (xb, ηβ). Then i can
be expressed in coordinates:

i#xb = yb i#ηβ = f(y)β
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The first equation is given by the fact that i should be the identity on ‖M‖, but the
functions f(y)β are arbitrary odd functions on Rm|0 ×B.
It is always possible to find coordinates (x̃b, η̃β) on Rm|n such that i#η̃β = 0. Indeed,

using the coordinate transformation

x̃b = xb η̃β = −f(x)β + ηβ

assures i#η̃β = 0.
There are automorphisms g of Rm|n×B such that i◦g = i. Those can best be expressed

in the coordinates x̃b, η̃β :

g#x̃b = x̃b + η̃µgbµ(x̃, η̃) g#η̃β = η̃µgβµ(x̃, η̃)

The functions gBµ are arbitrary functions on Rm|n ×B with appropriate parity.

Theorem 1.9. Let M = (‖M‖,OM ) be a family of super manifolds over B. Let further-
more ‖U‖ ⊆ ‖M‖ a subset (which could also be empty) such that there is an underlying
even manifold |U | with given embedding iU : |U | → U . There exists an underlying manifold
|M | and an embedding i : |M | →M such that |U | coincides with |M | and i with iU over
‖U‖.

Proof. From Example 1.8 we know that the claim is true for super domains. It remains to
be shown that those local solutions can be put together to a global one. To this end cover
the family pM : M → B of relative dimension by countably many adapted coordinate
charts Vi. That is we assume that each Vi can be written as a product Vi = Wi × pM (Vi)
with coordinates XA

i = (xai , η
α
i ) on Wi. We assume furthermore that the first l coordinate

charts cover U , i.e. it holds for j ≤ l that ‖Vj‖ ⊆ ‖U‖ and
⋃j=l
j=1 ‖Vj‖ = ‖U‖. We are

now going to construct a family p|M | : |M | → B of relative dimension m|0 and a map
i : |M | → M over B by their restrictions to the open sets of the cover Vi in ascending
order and glueing them together.

If U = ∅ choose an arbitrary embedding i|V1 : |V1| → V1 over pM (V1) as in Example 1.8.
Suppose now that we have a consistent structure of a m|0-dimensional manifold for⋃j
i=1 Vi together with the embedding i|⋃j

i=1 Vi
to the m|n-dimensional super manifold.

Notice that i|⋃j
i=1 Vi

is a family of maps over
⋃j
i=1 pM (Vi). We need to show that it is

possible to extend the manifold structure and the embedding to
⋃j+1
i=1 Vi. That is, we

need to choose a map i|Vj+1 : |Vj+1| → Vj+1 over pM (Vj+1) that coincides with the already
constructed i|⋃j

i=1 Vi
on Vj+1 ∩

⋃j
i=1 Vi. As we have seen in Example 1.8 such a map i|Vj+1

is given in the adapted coordinates by

i|#Vj+1
xaj+1 = xa i|#Vj+1

ηαj+1 = ξα

for some odd function ξα ∈ O|Vj+1|. By the condition that i|Vj+1 coincides with the already
constructed i|⋃j

i=1 Vi
on Vj+1 ∩

⋃j
i=1 Vi the function ξα is prescribed on Vj+1 ∩

⋃j
i=1 Vi.

Because we work with smooth functions into contractible spaces it is possible to construct
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functions ξα that extend the given one. The projections p|M |||Vj+1| and pM |Vj+1 are both
given by the projection to the second factor of Vj+1 = Wj+1 × pM (Vj+1). Consequently,
i|Vj+1 can be glued with i|⋃j

i=1 Vi
to give a well defined map i|⋃j+1

i=1 Vi
over

⋃j+1
i=1 pM (Vi).

Continuing inductively, we construct the family p|M | : |M | → B together with i : |M | →
M over B that coincides with the given i|U on ‖U‖.

Remark 1.10. In the construction presented above, also the underlying manifold depends
on the choices made. Different underlying manifolds might not only differ in the embedding
i : |M | →M , but also in the manifold structure of |M |. This can be seen by considering
the induced coordinate changes on |M |. Let XA = (xa, ηα) and Y B = (yb, θβ) two
different adapted coordinate systems on V ×B. The coordinate change is given by

yb =
∑
γ

ηγf(x)bγ θβ =
∑
γ

ηγf(x)βγ .

Let i : |V | → V be given by

i#xa = xa i#ηα = ξα.

In the second coordinates (yb, θβ) the embedding i is given as

i#yb = yb =
∑
γ

ξγf(x)bγ i#θβ =
∑
γ

ξγf(x)βγ .

As a consequence the coordinate change on |V | is

yb =
∑
γ

ξγf(x)bγ .

Therefore the coordinate changes explicitly depend on the chosen embedding i, resp. ξα.

The theory of integration for families of super manifolds is sketched in Deligne and
Morgan 1999, §3.10. For fiberwise compact, oriented families of super manifolds integration
is an OB-linear functional ∫

M
: BerT∨M → OB

from the Berezinian of the cotangent bundle to the functions on B. The Berezinian is the
generalization of the determinant bundle to super geometry. Integration is given in local
coordinates (xa, ηα) by∫

Rm|n
g(x, η)[dx1 . . . dxm dη1 . . . dηn] =

∫
Rm|0

gtop(x) dx1 . . . dxm (1.11)

where gtop is the coefficient of ηn · · · · · η1 of in the coordinate expansion of g.
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Proposition 1.12. Let i : |M | → M be the embedding of an underlying even manifold
for a family M of fiberwise compact, orientable super manifolds over B. For any section
b of BerT∨M there exists a top form |b| on |M | such that∫

M
b =

∫
|M |
|b|.

Proof. The formula (1.11) already gives the local definition of |b| in coordinates. We only
have to show that it transforms under coordinate change as expected. We can restrict our
attention to the case of coordinates XA = (xa, ηα) and Y B = (yb, θβ) such that i#ηα = 0
and i#θβ = 0. Then the change of coordinates is given to lowest order in θ by

xa = fa(y) + θ . . . ηα = θµfαµ (y) + θ2 . . .

It follows that

Ber
∂XA

∂Y B
= det

∂xa

∂yb

(
det

∂ηα

∂θβ

)−1

+ θ . . . .

As in Leites 1980 it is sufficient to consider b = ηn · · · · · η1g(x)[dX]. Hence

b = ηn · · · · · η1g(x)[dX]

= θn · · · · · θ1
(
det fαµ (y)

)
g(x(y))

(
det

∂xa

∂yb

)(
det

∂ηα

∂θβ

)−1

[dY ]

= θn · · · · · θ1

(
det

∂xa

∂yb

)
g(x(y))[dY ]

as expected.

2 Super Riemann surfaces

Definition 2.1 (see LeBrun and Rothstein 1988). A super Riemann surface is a 1|1-
dimensional complex super manifold M with a 0|1-dimensional distribution D ⊂ TM
such that the commutator of vector fields induces an isomorphism

1

2
[·, ·] : D ⊗C D → TM/D.

Example 2.2. Let (z, θ) be the standard coordinates on C1|1 and define D ⊂ TC1|1 by
D = 〈∂θ + θ∂z〉. The isomorphism D ⊗D ' TM/D is explicitly given by

[∂θ + θ∂z, ∂θ + θ∂z] = 2∂z

This example is generic since any super Riemann surface is locally of this form, see LeBrun
and Rothstein 1988, Lemma 1.2.
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Theorem 2.3 (Giddings and Nelson 1988). A super Riemann surface is a 2|2-dimensional
real super manifold with a reduction of the structure group to

G =

{(
A2 B
0 A

)∣∣∣∣A,B ∈ C
}
⊂ GLC(1|1) ⊂ GLR(2|2)

together with the following integrability conditions. Remember that C is to be understood
as the trivial family C×B. Denote the G-frames by Fz and F+. Their decomposition in
real and imaginary part yields frames Fa, Fα for a = 1, 2, α = 3, 4 as follows:

Fz =
1

2
(F1 − iF2) F+ =

1

2
(F3 − iF4)

Fz = Fz F− = F+.

Let us denote the structure coefficients by tCAB:

[FA, FB] = tCABFC

Then the integrability conditions in terms of the complex frames are given by the following
G-invariant equations:

tzz+ = t−z+ = tz++ = t−++ = tz+− = tz+z = 0 (2.4)
tz++ = 2

The vanishing of the first four structure coefficients guarantees an integrable holomor-
phic structure, and the vanishing of the last two that D is a holomorphic distribution.
Furthermore, tz++ = 2 gives the complete non-integrability of D.

Theorem 2.3 leads to two observations. First, since O(2|2) * G it is not possible to
describe the geometry of super Riemann surfaces in terms of super Riemannian metrics
on M . Second, a further reduction to U(1) is always possible via

U(1)→ G

U 7→
(
U2 0
0 U

)
.

Consider now such a U(1)-structure onM . It induces a non-degenerate, super symmetric
bilinear form m on TM , given in the U(1)-frames by

m(Fa, Fb) = δab m(Fa, Fβ) = 0 m(Fα, Fβ) = εαβ

The projector on D gives a splitting of the following short exact sequence:

0 D TM = D⊥ ⊕D TM/D 0

p (2.5)
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The pullback of the short exact sequence (2.5) along an embedding i : |M | →M

0 S i∗TM T |M | 0
p̃

T i

possesses a second splitting given by Ti.

Definition 2.6 (Metric g, spinor bundle S and gravitino χ). By the identification
T |M | = i∗D⊥, the tangent bundle of |M | gets equipped with a metric g.

The bundle S = i∗D is a spinor bundle of the metric g because i∗D⊗C i
∗D = i∗TM/D =

T |M |. The identification S = i∗D induces a non degenerate bilinear form gS on S that is
given in the frames sα = i∗Fα by

gS(sα, sβ) = εαβ

The difference of the splittings p̃ and Ti is a section of T∨|M | ⊗ S which we call
gravitino χ.

χ(v) = pS (p̃− Ti) v (2.7)

Here pS : i∗TM → S is the projector given by the splitting of the short exact sequence
by p̃.

Keep in mind that the vector bundle S is of real dimension 0|2 and the frames sα are
odd. Also notice that in general the embedding i : |M | → M is not holomorphic with
respect to the complex structure on |M | induced by g (cf. the construction in the proof
of the Theorem 1.9).
Different choices of U(1)-structure lead to metrics and gravitinos which differ from g

and χ only by a conformal and super Weyl transformation. Every matrix of G can be
decomposed as (

A2 B
0 A

)
=

(
U2 0
0 U

)(
R2 0
0 R

)(
1 T
0 1

)
(2.8)

where U ∈ U(1), R ∈ R+ and T ∈ C. The first matrix preserves the U(1)-structure on M .
Consequently the bilinear forms m, g and gS are preserved. The second matrix in the
decomposition (2.8) rescales the frames FA and changes the U(1) structure. As a result
the bilinear form g is rescaled by i#R2 and gS is rescaled by i#R. The third matrix in
the decomposition changes the splitting TM = D⊕D⊥. It is easy to see that the induced
change on χ is indeed a super Weyl transformation. However only the functions i#U ,
i#R and i#T do effect the metric g and the gravitino. The higher order terms of R and
T do leave g and χ invariant.

Having constructed a metric and gravitino on a 2-dimensional surface |M | from a super
Riemann surface M , we now consider the opposite question. Given a 2|0-dimensional
manifold |M | and a metric g and a gravitino χ is there a unique super Riemann surface
M with an embedding i : |M | → M such that the above construction gives the same
metric and gravitino back? In order to affirmatively answer the question, one has to take
into account all geometrical degrees of freedom on M that are not fixed by the metric g
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and the gravitino χ on |M |. An example for such geometrical degree of freedom is given
by the higher order terms in the decomposition (2.8).

Definition 2.9 (Wess–Zumino frames). A G-frame FA is called Wess–Zumino frame if
the following commutator relations hold in addition to the integrability conditions (2.4):

i#t++− = 0 i#F+t
+
+− = 0 t+++ = 0 (2.10)

Lemma 2.11. Let FA be a U(1)-frame. Then there is a unique Wess–Zumino frame F̃A
in the same G-class such that i∗FA = i∗F̃A.

Proof. Apply a transformation h ∈ G to FA such that i∗h = id. Then the conditions (2.10)
fix the higher order terms of U , R and T from (2.8).

Definition 2.12 (Wess–Zumino coordinates). The coordinates XA = (xa, ηα) are called
Wess–Zumino coordinates of the frame FA if i#ηα = 0 and the coordinate expression of
the frame Fα is given by

Fα =
(
ηµF b

µα (x) + η2η1 . . .
)
∂xb +

(
δβα + ηµF β

µα + η2η1 . . .
)
∂ηβ . (2.13)

Here the degree one coefficients are symmetric with respect to the lower indices, i.e.

εµαF C
µα = 0.

Lemma 2.14. Given a G-frame FA and coordinates X̃A = (x̃a, η̃α) there are unique
Wess–Zumino coordinates XA = (xa, ηα) for FA such that i#x̃a = i#xa.

The notions of “Wess–Zumino frames” and “Wess–Zumino coordinates” are derived from
the notion of “Wess–Zumino gauge” as used in D’Hoker and Phong 1988. They have at
least two purposes. The first one is that they reduce the freedom in the local description
of super Riemann surfaces. Instead of all super coordinate systems and all G-frames, we
now only need to consider the Wess–Zumino frames and Wess–Zumino coordinates. As
was shown in Lemma 2.11 and Lemma 2.14 they are unique up to a choice of i#xa and
i∗Fα. Second they relate the odd coordinates on M to spinors on |M |, as the frames
sα = i∗Fα = i∗∂ηα are frames for S.
Let now FA be a U(1)-frame on U ⊂ M . Consider the coordinate expansion in

Wess–Zumino coordinates XA = (xa, ηα) for FA.

Fa =
(
F b

0a + ηµF b
µa + η2η1F b

21a

)
∂xb +

(
F β

0a + ηµF β
µa + η2η1F β

21a

)
∂ηβ

Fα =
(
ηµF b

µα + η2η1F b
21α

)
∂xb +

(
δβα + ηµF β

µα + η2η1F β
21α

)
∂ηβ

(2.15)

The frames sα = i∗Fα are U(1)-frames for S. Furthermore the frame Fa can be expanded

i∗Fa = F b
0a i

∗∂xb + F β
0a sβ
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Then by formula (2.7) we know that fa = F b
0a ∂yb is a g-orthonormal frame and the

gravitino is given by
χ(fa) = F β

0a sβ

To complete the local description of super Riemann surfaces in terms of metrics and
gravitinos we still need the following lemma:

Lemma 2.16. Let FA be a Wess–Zumino frame and XA = (xa, ηα) Wess–Zumino
coordinates for FA. All higher order coefficients in (2.15) can be expressed in terms of
F b

0a and F β
0a and thus in terms of fa and χ.

Proof. The equations (2.4), (2.13) and (2.10) are solvable for the unknown coefficient
functions.

Theorem 2.17. Given a super manifold |M | over B together with a metric g, a spinor
bundle S and a gravitino field χ. Then there is a unique super Riemann surface M over
B together with an inclusion i : |M | → M such that the above procedure gives back the
gravitino and metric up to conformal transformation of g and super Weyl transformation
of the gravitino χ.

Proof. Cover |M | by open coordinate sets (V, ya). Choose local U(1)-frames sα of S
and fa of T |M | such that s+ ⊗C s+ 7→ fz. Construct over the topological space V
the super manifold (V,OV ) by setting OV = Λ(ΓV (S∨)) with coordinates xa = ya and
ηα = sα, where sα is the canonical dual basis to sα. Denote by FA the Wess–Zumino
frame constructed from the coefficients of the frame fa and the gravitino χ according to
Lemma 2.16. This gives an integrable G-reduction of the structure group of TV . The
map i is locally constructed via its action on the coordinates xa, ηα.
It remains to glue different local constructions in order to obtain a well defined super

Riemann surface over the same topological space ‖M‖. The Wess–Zumino frames over
different trivializing covers may differ by a U(1)-transformation. The Wess–Zumino
coordinates of Wess–Zumino frames that differ by a U(1)-transformation are completely
fixed by this U(1)-transformation. Once more, details may be found in Keßler 2015.

We have shown a one to one correspondence

{i : |M | →M,M super Riemann surface} ←→ {|M |, S, g, χ} /Weyl, SWeyl

An advantage of this description is that on the right-hand side there are no integrability
conditions to be fulfilled. On the left hand side the integrability conditions (2.4) have
to be fulfilled. The presence of the integrability conditions complicates the study of
deformations as one needs to assure the integrability of the deformations.

To obtain a super Teichmüller description of the moduli space of super Riemann surfaces
one may look for a one to one correspondence (see e.g. Jost 2009 and references therein)

{M,M super Riemann surface} / SDiff(M)

←→
{|M |, S, g, χ} /Weyl, SWeyl,Diff(|M |),SUSY

11



The super symmetry transformations SUSY on the right hand side can probably be
identified with the change of embedding i. A precise definition of SUSY and the study of
the full quotient must be left for further research. As a first step we treat the infinitesimal
case. As a preparation we first study the infinitesimal change of embedding.

Proposition 2.18. Let it : |M |t →M be a smooth family of embeddings. The infinitesimal
deformation

d

dt

∣∣∣∣
t=0

it ∈ Γ|M |0(i∗0TM)

is a section q ∈ Γ|M |0(i∗0D) and the derivatives of the families of local frames f(t)a and
χ(t)a are given by

d

dt

∣∣∣∣
t=0

f(t)a = −2〈γbq, χ(fa)〉fb

d

dt

∣∣∣∣
t=0

χ(t)a = ∇Sfaq = ∇LCfa q + 〈γbχb, χa〉γ1γ2q

(2.19)

Here ∇LC is the Levi-Civita connection lifted to S.

This proposition also justifies that the field χ defined above was called gravitino, because
the transformations (2.19) are the expected super symmetries. Compare D’Hoker and
Phong 1988; Jost 2009; Brink, Vecchia, and Howe 1976.

Lemma 2.20. The gravitino can be gauged to zero locally. More precisely for every point
m ∈ ‖M‖ there exists an open neighbourhood U ⊆M such that there is a U(1)-structure
and an embedding i : |M | → M such that χ|i−1(U) = 0. The gravitino can be gauged
away globally, if M is a trivial family of super Riemann surfaces.

Proof. Choose around m complex coordinates (z, θ) such that D = 〈∂θ + θ∂z〉 (see
example 2.2). Let the U(1)-structure be given by the frames Fz = ∂z and F+ = ∂θ + θ∂z
and the embedding by i#θ = 0. Then the gravitino vanishes on U .

Theorem 2.21. The infinitesimal deformations of a super Riemann surface M with
embedding i : |M | →M given by g and χ on |M | are given by

H0(T∨|M | ⊗C T
∨|M |)⊕H0(S∨ ⊗C S

∨ ⊗C S
∨)

Here H0 denotes holomorphic sections.

Proof. Let the super Riemann surface M be given in by a metric g and a gravitino χ
on |M | with embedding i : |M | → M . Any infinitesimal deformation is given by an
infinitesimal deformation of metric h and gravitino ρ. However not every infinitesimal
deformation of metric and gravitino give rise to an infinitesimal deformation of the super
Riemann surface. The infinitesimal deformations of the metric and gravitino induced by
Weyl and super Weyl, diffeomorphisms, and super symmetry do lead to equivalent super

12



Riemann surfaces. We will thus need to decompose the infinitesimal deformation h of the
metric as

h = λg + LXg + susy(q) +D (2.22)

for some infinitesimal Weyl transformation with parameter λ, a Lie derivative along
the vector field X and infinitesimal super symmetry transformation susy(q) given by
the spinor q as in (2.19). The parameters λ, X, and q need to be determined. The
remaining part D is a true even infinitesimal deformations of the super Riemann surface.
Analogously, the infinitesimal deformation ρ of the gravitino needs to be decomposed in

ρ = γt+ LXχ+∇Sq + D (2.23)

for some spinor t, that rests to be determined. The remaining part D is a true odd
infinitesimal deformation of the super Riemann surface.
We will work in local holomorphic coordinates z = x1 + ix2 defined in some open

neighbourhood U . First we consider the special case gij = δij and χ = 0. Let X = Xk∂xk .
The equation (2.22) simplifies to

hij = λδij +
(
∂xiX

k
)
δkj +

(
∂xjX

k
)
δki +Dij

Letting

λ =
1

2
hijδ

ij −
(
∂xkX

k
)

it is possible to assume Dij is symmetric and trace free. As a consequence, the bilinear
form D can be identified with a section of T∨|M | ⊗C T

∨|M |.(
a b
b −a

)
7→ (a− ib) dz ⊗ dz

It is possible to choose the vector field X such that D is a holomorphic quadratic
differential. The holomorphicity condition for D is equivalent to the following Laplace
equations for Xk:

0 = ∂x1a+ ∂x2b =
1

2
∂x1 (h11 − h22) + ∂x2h12 − ∂2

x1X
1 − ∂2

x2X
1

0 = −∂x1b+ ∂x2a =
1

2
∂x2 (h11 − h22)− ∂x1h12 + ∂2

x1X
2 + ∂2

x2X
2

We have decomposed every infinitesimal deformation h of the metric g into an infinitesimal
Weyl transformation, a Lie derivative and a holomorphic quadratic differential. The
holomorphic quadratic differentials represent the true even deformations of M .

In an analogous manner we are going to proceed with the deformation ρ of the gravitino.
It will be convenient to consider ρ as a section of T∨|M |⊗S∨. We choose a complex basis
s+ for S such that s+⊗ s+ = ∂z, and let s+ = s3− is4. The corresponding dual basis will
be denoted s+ and sα respectively. The vector bundle T∨|M | ⊗ S∨ can be decomposed

13



in S∨ ⊕ S∨ ⊗C S
∨ ⊗C S

∨. In the basis we use here the spinor part of an arbitrary section
ρ is given by sαγaβαρaβ . The equation (2.23) is given in our local coordinates by

ρaβ = δabγ
aµ
βεµνt

ν − εβµ (∂xaq
µ) + Daβ

It is possible to fix the spinor t such that D is in S∨ ⊗C S
∨ ⊗C S

∨, i.e.

0 = γaβα (ρaβ + εβµ∂xaq
µ)− 2εανt

ν

Consequently the coefficients of D fulfil

D13 + D24 = 0 D23 −D14 = 0

The cospinor valued differential form D can be identified with

(D13 + iD14) dz ⊗ s+

The condition, for D to be a holomorphic section of S∨ ⊗C S
∨ ⊗C S

∨ is given again by
the Cauchy–Riemann equations

0 = ∂x1D13 − ∂x2D14 =
1

2
(∂x1 (ρ13 − ρ24) + ∂x2 (ρ14 + ρ23)) + ∂2

x1q
4 + ∂2

x2q
4

0 = ∂x2D13 + ∂x1D14 =
1

2
(∂x2 (ρ13 − ρ24)− ∂x1 (ρ14 + ρ23))− ∂2

x1q
3 − ∂2

x2q
3

We can thus decompose the infinitesimal deformations of the gravitino in an infinitesimal
super Weyl transformation, an infinitesimal super symmetry, and a holomorphic section
of S∨ ⊗C S

∨ ⊗C S
∨.

In the general case χ 6= 0 the Cauchy–Riemann equations for D and D are given by a
system of coupled partial differential equations for X and q of generic form:

∆X = f(X,X ′, q, q′) ∆q = g(X,X ′, X ′′, q, q′)

The system of Cauchy–Riemann equations can thus be solved by the theory of elliptic
partial differential equations, since the Cauchy–Riemann equations for D do not contain
second derivatives of q. The reason is that susy(q) does not contain derivatives of q.

Similar statements for trivial families can be found in LeBrun and Rothstein 1988
or Sachse 2009. However the version given here is more general, as it allows for non-trivial
families. Furthermore the proof given here shows directly which deformations of metric
and gravitino correspond to infinitesimal deformations of the given super Riemann surface.
The complex dimension of the infinitesimal deformation space can be calculated by

the theorem of Riemann-Roch in the case of B = R0|0. The dimension is found to be
3p− 3|2p− 2 for genus p ≥ 2.
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3 The action functional

We now turn again to the action functional (∗). In this section we assume that M is
a fiberwise compact family of super Riemann surfaces with a compatible super metric
m. Let N be an arbitrary (super) manifold with Riemannian metric n and Levi-Civita
covariant derivative ∇TN . For details on Levi-Civita covariant derivatives on super
manifolds see Goertsches 2008. Consider a morphism Φ: M → N . The action

A(M,Φ) =
1

2

∫
M
‖ TΦ|D ‖

2
m∨|D∨⊗Φ∗n[dvolm] (3.1)

might be seen as a generalization of the harmonic action functional to super Riemann
surfaces. Remark that in contrast to the harmonic action functional the tangent map TΦ
is restricted to the subbundle D in TM . Given U(1)-frames FA the action can be written
as

A(M,Φ) =
1

2

∫
M
εαβ〈FαΦ, FβΦ〉Φ∗n[F 1F 2F 3F 4]. (3.2)

The action (3.1) can be found in different forms in the literature, see in particular Giddings
and Nelson 1988; D’Hoker and Phong 1988. In Giddings and Nelson 1988 one can find an
explicit proof for the G-invariance of (3.2). Thus the action functional does not depend on
the metric m, but rather only on the super Riemann surface structure, i.e. the G-structure.

Proposition 3.3. The Euler–Lagrange equation of (3.1) for Φ is

0 = ∆DΦ = εαβ∇FαFβΦ + εαβ (divFα)FβΦ (3.4)

We will call the differential operator ∆D, defined here, the D-Laplace operator.

Proof. Let Φt : M ×R→ N be a perturbation of Φ0 = Φ. One can expand Φt in t around
0 and obtains

Φt = Φ0 + t∂αΦt|t=0 +O(t2)

Let us denote ∂tΦt|t=0 = Ξ ∈ Γ(Φ∗TN) and expand A in t around 0:

d

dt

∣∣∣∣
t=0

A(Φt, FA) =
1

2

d

dt

∣∣∣∣
t=0

∫
M
εαβ〈FαΦt, FβΦt〉[F 1F 2F 3F 4]

=
1

2

∫
M
∂tε

αβ〈FαΦt, FβΦt〉[F 1F 2F 3F 4]

∣∣∣∣
t=0

=

∫
M
εαβ〈∇Φ∗tTN

∂t
FαΦt, FβΦt〉[F 1F 2F 3F 4]

∣∣∣∣
t=0

=

∫
M
εαβ〈∇Φ∗tTN

Fα
∂tΦt, FβΦt〉[F 1F 2F 3F 4]

∣∣∣∣
t=0

=

∫
M
εαβ〈∇Φ∗TN

Fα Ξ, FβΦ〉[F 1F 2F 3F 4]

= −
∫
M
εαβ

(
〈Ξ,∇Φ∗TN

Fα FβΦ〉[F 1F 2F 3F 4]− 〈Ξ, FβΦ〉LFα [F 1F 2F 3F 4]
)
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With the definition of divergence

LFα [F 1F 2F 3F 4] = (divFα) [F 1F 2F 3F 4]

the result follows. Of course the Euler–Lagrange equation (3.4) is G-invariant like the
action (3.1). The D-Laplace, however, is only U(1)-invariant.

We now turn to the question how the action (3.1) can be represented on an underlying
even manifold i : |M | →M .

Definition 3.5. Let Φ: M → N be a morphism and i : |M | →M be an underlying even
manifold. We call the fields

ϕ : |M | → N ψ : |M | → S∨ ⊗ ϕ∗TN F : |M | → ϕ∗TN

ϕ = Φ ◦ i ψ = sα ⊗ i∗FαΦ F =
1

2
i∗∆DΦ

component fields of Φ. Recall that sα is the dual basis to the basis sα = i∗Fα of the
spinor bundle S = i∗D on |M |.

Remark 3.6. Suppose that XA = (xa, ηα) are Wess–Zumino coordinates for the Wess–
Zumino frame FA. Let furthermore Y B be local coordinates on N . The map Φ: M → N
is then given by the functions

Φ#Y B = fB0 + ηµfBµ + η2η1fB21

It holds that fB0 = ϕ#Y B because i#ηµ = 0. By the properties of Wess–Zumino
coordinates we have that i∗Fα = i∗∂ηα and thus fBµ = ψµY

B. Here ψµ is the coefficient
of ψ in the basis sµ and consequently a derivation on ON with values in OM . If the target
manifold N = Rp is Euclidean space one can show that i∗∆D = 2i∗∂η1∂η2 . Consequently
the map Φ can be written schematically as

Φ = ϕ+ ηµψµ + η2η1F.

Theorem 3.7. Let M be a fiberwise compact family of super Riemann surfaces and
i : |M | → M an underlying even manifold. We denote by g, χ, and gS respectively the
metric, gravitino, and spinor metric on |M | constructed in Section 2 for a given U(1)-
structure on M . Let Φ: M → N be a morphism to a Riemannian super manifold (N,n)
and ϕ, ψ, and F its component fields, as introduced in Definition 3.5. It holds

A(M,Φ) = A(ϕ, g, ψ, χ, F ) =

∫
|M |

(
‖ dϕ‖2g∨⊗ϕ∗n + 〈ψ,D/ ψ〉g∨S⊗ϕ∗n − 〈F, F 〉ϕ∗n

+ 2〈χaγbγa∂xbϕ,ψ〉g∨S⊗ϕ∗n +
1

2
〈χa, γbγaχb〉gS 〈ψ,ψ〉g∨S⊗ϕ∗n

+
1

6
εαβεγδ〈Rϕ∗TN (ψα, ψγ)ψδ, ψβ〉ϕ∗n

)
dvolg (3.8)
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The idea for the proof of Theorem 3.7 is Lemma 1.12. One uses crucially that integration
in the odd directions is locally a derivation. In Wess–Zumino coordinates (xa, ηα) for FA
a local expression for the action is given by

A(M,Φ) =
1

2

∫
M
εαβ〈FαΦ, FβΦ〉Φ∗n(BerF )−1[dx1 dx2 dη1 dη2]

=
1

2

∫
|M |

i∗∂η1∂η2
(
εαβ〈FαΦ, FβΦ〉Φ∗n(BerF )−1

)
dx1 dx2

=
1

4

∫
|M |

i∗εµνFµFν

(
εαβ〈FαΦ, FβΦ〉Φ∗n(BerF )−1

)
dx1 dx2

The expansion of the last expression is given in terms of component fields of Φ (compare
Definition 3.5), and commutators of Fα and derivatives of BerF . By Lemma 2.16 the
coordinate expansion of Fα, its commutators and the Berezinian are determined by g and
χ. The full calculation can be found in Keßler 2015.

It is now clear how the different symmetries of the action functional (∗) arise. Different
U(1)-reductions of the given G-structure on M induce metrics and gravitinos on |M |
that differ only by Weyl and super Weyl transformations. The action functional (3.1)
is G-invariant, and thus in turn the action functional (3.8) is conformally and super
Weyl invariant. The action functional (3.1) is formulated without any reference to an
embedding of an underlying even manifold, but Theorem 3.7 is. The independence of (3.1)
of the embedding i translates into super symmetry of (3.8).

Proposition 3.9. The Euler–Lagrange equations of the action functional (3.8) are given
by the components of the Euler–Lagrange equation of (3.1):

0 = i∗∆DΦ 0 = sα ⊗ i∗∇Fα∆DΦ 0 = i∗∆D∆DΦ (3.10)

Sketch of proof. Schematically the infinitesimal variation Ξ of Φ can be decomposed

Ξ = δϕ+ ηµδψµ + η2η1δF.

The infinitesimal variation of the action is then given by

δA = −
∫
M
〈Ξ,∆DΦ〉[dvolm].

Integration over the odd variables selects the coefficients of highest degree in η, so that

δA = −
∫
|M |

1

2
〈δϕ, i∗∆D∆DΦ〉+ 〈δψ, sα ⊗ i∗∇FαΦ〉+ 〈δF, i∗∆DΦ〉 dvolg

By Theorem 2.3 different super Riemann surfaces are given by different G-structures.
The functional (3.1) is G-invariant and different G-structures lead to different values of
the functional. Consequently the action functional (3.1) is a functional on the moduli
space of super Riemann surfaces for fixed Φ: M → N . Unfortunately, the component
action functional (3.8) can not be interpreted as a functional on the moduli space of super
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Riemann surfaces directly. This is due to the fact that super symmetry is studied up to
now only infinitesimally. We conjectured that super symmetry corresponds to a family
of embeddings it : |M |t → M . When expressing (3.1) as an integral over |M |t also the
domain of integration varies. In Section 2 we have explained that in order to study the
moduli space of super Riemann surfaces, it is necessary to quotient the space of all metrics
and gravitinos also by super symmetry. It is not clear how to take the full quotient by
super symmetry, nor how to relate this to the integrals over the different domains of
integration |M |t. However infinitesimal properties of the moduli space of super Riemann
surfaces can be studied from (3.8).

Proposition 3.11. Let M be a super Riemann surface and i : |M | →M an underlying
even manifold. By the construction in Section 2, the geometry of M is determined
by a metric g and a gravitino χ on |M |. Define the energy-momentum tensor T of
A(ϕ, g, ψ, χ, F ) by

δgA(ϕ, g, ψ, χ, F ) =

∫
|M |

δg · T dvolg (3.12)

and the super current J by

δχA(ϕ, g, ψ, χ, F ) =

∫
|M |

δχ · J dvolg (3.13)

If the fields ϕ, ψ, and F fulfil the Euler–Lagrange equations (3.10) the energy-momentum
tensor T is the Noether current associated to the diffeomorphism invariance, whereas
the super current J is the Noether current to super symmetry. The tensors T and J
are related from the viewpoint of super geometry because super symmetry is induced by a
particular super diffeomorphism.
Furthermore, as the Noether currents are conserved quantities, they are divergence free.

Consequently, the energy-momentum tensor T is a holomorphic quadratic differential and
the super current J is a holomorphic section of S∨ ⊗ S∨ ⊗ S∨.
Geometrically, the integrals (3.12) and (3.13) can be viewed as cotangent vectors of the

moduli space of super Riemann surfaces at M .

Similar to the case of Riemann surfaces and the harmonic action functional we hope
that the action functional (3.1) may be helpful to derive further results about the moduli
space of super Riemann surfaces.

Summary

We have established the relation between the super symmetric action functional (∗) and
super Riemann surfaces. That is, we have shown that for a particular underlying even
manifold |M | of the super Riemann surface M the integral A(M,Φ) reduces to the action
functional A(ϕ, g, ψ, χ, F ) on |M |.
The first step was to define the underlying family of even manifolds |M | → B of a

family of super manifolds M → B. The underlying even manifolds is in between the super
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manifold M and the completely reduced space of M , as it still involves odd functions
from the base B.
With the help of the underlying even manifold |M | we were able to show that the

structure of a super Riemann surface M is completely determined by an underlying
even manifold |M | together with a metric g, a spinor bundle S and a spinor valued
differential form χ, called gravitino. The redundancy in the choice of g, S, and χ could be
shown to coincide with the conformal, super Weyl and super symmetry invariance of the
action A(ϕ, g, ψ, χ, F ). Infinitesimal deformations of the super Riemann surface can be
expressed via infinitesimal deformations of g and χ, reproducing the classical result that
even infinitesimal deformations of M are given by holomorphic sections of T∨M ⊗ T∨M ,
whereas odd infinitesimal deformations are given by holomorphic sections of (S∨)⊗3.

As an outlook, the striking similarities of A(M,Φ) with the functional of harmonic
maps on Riemann surfaces, together with the results presented in this paper, give rise
to the hope that the action functional A(M,Φ) and its critical points may be useful to
study the moduli space of super Riemann surfaces. On one hand, the geometry of super
Riemann surfaces and their moduli involve the integrability conditions (2.4). On the other
hand, however, the characterization of super Riemann surfaces in terms of metrics and
gravitinos is not obstructed. Due to Theorem 3.7, the action functional A(ϕ, g, ψ, χ, F )
in terms of metric and gravitino is well defined on the moduli space of super Riemann
surfaces.
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