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Abstract

We introduce a notion of shadowing property for actions of finitely generated groups

and study its basic properties. We formulate and prove a shadowing lemma for actions

of nilpotent groups. We construct an example of a faithful linear action of a solvable

Baumslag-Solitar group and show that the shadowing property depends on quantitative

characteristics of hyperbolicity. Finally we show that any linear action of a non-abelian

free group does not have the shadowing property.

Keywords: Shadowing, expansivity, group action, nilpotent group, solvable group, free
group.

1 Introduction.

Theory of shadowing is now a sufficiently well-developed branch of theory of dynamical
systems (see monographs [1, 2] and a review of modern results [3]). A dynamical system has
a shadowing property if any sufficiently precise approximate trajectory (pseudotrajectory)
is close to some exact trajectory. Shadowing theory plays an important role in theory of
structural stability. The shadowing lemma [4, 5] is one of key results in theory of shadowing.
It says that a dynamical system has the shadowing property in a small neighborhood of a
hyperbolic set.

In parallel with a classical theory of dynamical systems (which studies actions of Z and
R), global qualitative properties of actions of more complicated groups were studied (see the
book [6] and the review [7]). The paper [8] introduced the shadowing property for actions
of abelian groups Zn × R

m for nonnegative integer n and m.
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In the present paper we introduce and study the shadowing property for actions of finitely
generated, not necessarily abelian groups.

For the case of finitely generated nilpotent groups we prove that an action of the whole
group has the shadowing property (and expansivity) if the action of at least one element
has the shadowing property and expansivity (Theorem 1). This result can be viewed as a
shadowing lemma for actions of nilpotent groups, since it implies that if an action of one
element is hyperbolic, then the group action has the shadowing property. Note that in some
cases an action of a group is called hyperbolic if there exists an element which action is
hyperbolic (see [10, 6, 9]).

We show that our result cannot be directly generalized to the case of solvable groups.
We consider a particular linear action of a solvable Baumslag-Solitar group (Theorem 2) and
demonstrate that the shadowing property has a more complicated nature, in particular, it
depends on quantitative characteristics of hyperbolicity of the action.

We also consider actions of ”big groups” (free groups, groups with infinitely many ends).
In particular we show that there is no linear action of a non-abelian free group that has the
shadowing property. This statement leads us to a question: which groups admit an action
satisfying the shadowing property?

These three results illustrate that the shadowing property depends not only on hyperbolic
properties of actions of its elements but on the group structure as well.

The article is organized as follows. In Section 2 we give a definition of shadowing for
actions of finitely generated groups. In Section 3 we recall necessary notions from group
theory. In Section 4 we give precise statements of main results. Sections 5–7 are devoted
to detailed consideration of actions of nilpotent, solvable Baumslag-Solitar, and free groups
respectively. In the appendix for consistency we prove Proposition 1 about independence of
shadowing on a choice of a generating set.

2 Main definitions.

Let G be a finitely generated (not necessarily abelian) group. Let Ω be a metric space with
a metric dist. For x ∈ Ω, U ⊂ Ω, δ > 0 denote

B(δ, x) = {y ∈ Ω : dist(x, y) < δ}, B(δ, U) = ∪x∈UB(δ, x).

We say that a map Φ : G× Ω → Ω is a (left) action of a group G if the following holds:

(G1) the map fg = Φ(g, ·) is a homeomorphism of Ω for any g ∈ G;

(G2) Φ(e, x) ≡ x, where e ∈ G is the identity element of the group G;

(G3) Φ(g1g2, x) = Φ(g1,Φ(g2, x)), for any g1, g2 ∈ G, x ∈ Ω.

We say that an action Φ is uniformly continuous if for some symmetric generating set S
(a generating set is called symmetric if together with any element s ∈ S it contains s−1) of
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a group G the maps fs are uniformly continuous for all s ∈ S. Note that if Ω is compact,
then any action of a finitely generated group is uniformly continuous.

Let us fix some finite symmetric generating set S of a group G.

Definition 1. For d > 0 we say that a sequence {yg}g∈G is a d-pseudotrajectory of an action
Φ (with respect to the generating set S) if

dist(ysg, fs(yg)) < d, s ∈ S, g ∈ G. (1)

Definition 2. We say that an uniformly continuous action Φ has the shadowing property
on a set V ⊂ Ω if for any ε > 0 there exists d > 0 such that for any d-pseudotrajectory
{yg ∈ V }g∈G there exists a point xe ∈ Ω such that

dist(yg, fg(xe)) < ε, g ∈ G. (2)

In this case we say that {yg}g∈G is ε-shadowed by the exact trajectory {xg = fg(xe)}g∈G. If
V = Ω, we simply say that Φ has the shadowing property.

This notion is a natural generalization of the concept of the shadowing property intro-
duced in [8] for actions of Zn.

Let us also note that the definition of a pseudotrajectory depends on a choice of the
generating set S. However the following proposition shows that if an uniformly continuous
action has the shadowing property for one finite symmetric generating set, then it has the
shadowing property for any finite symmetric generating set.

Proposition 1. Let S and S ′ be two finite symmetric generating sets for a group G. An
uniformly continuous action Φ has the shadowing property on a set V ⊂ Ω with respect to
the generating set S, if and only if it has the shadowing property on a set V ⊂ Ω with respect
to the generating set S ′.

The proof of Proposition 1 is straightforward, see Appendix.
The following notion of expansivity is important for our results:

Definition 3. An action Φ is expansive (or has expansivity) on a set U ⊂ Ω if there exists
∆ > 0 such that if

Φ(g, x1),Φ(g, x2) ∈ U, dist(Φ(g, x1),Φ(g, x2)) < ∆, ∀g ∈ G

for some x1, x2 ∈ U , then x1 = x2.

Remark 1. Note that if G1 ≤ G is a subgroup of G and Φ|G1 is expansive, then Φ is
expansive too.

Any homeomorphism f : Ω → Ω induces an action Φf : Z × Ω → Ω of the group Z

defined as Φf (k, x) = fk(x) for k ∈ Z, x ∈ Ω. We say that

1. a homeomorphism f has the shadowing property on a set V ⊂ Ω;
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2. a homeomorphism f is expansive on a set U ⊂ Ω;

if the corresponding action Φf has this properties. Note that these definitions are equivalent
to classical definitions of these notions.

Definition 4. Consider two sets U, V ⊂ Ω. We say that an uniformly continuous action Φ is
topologically Anosov with respect to the pair (U, V ) if the following conditions are satisfied:

(TA1) there exists γ > 0 such that B(γ, V ) ⊂ U ;

(TA2) Φ has the shadowing property on V ;

(TA3) Φ is expansive on U .

3 Finitely generated groups.

In this section we will outline basic notions from theory of finitely generated groups, give rel-
evant definitions, and formulate statements that we use in the sequel. We refer the interested
reader to the following books on group theory: [11, 12, 13, 14].

A group G is called abelian if [g, h] := ghg−1h−1 = e for any g, h ∈ G.

Definition 5. Any abelian group is called a nilpotent group of class 1. A group G is called
nilpotent of class n if it has the lower central series of length n:

G = G1 ⊲ . . .⊲Gn+1 = e, where Gi+1 = [Gi, G], Gn 6= e

(as usual, Gi ⊲Gi+1 means that Gi+1 is a normal subgroup of Gi).

The simplest nontrivial example of a nilpotent group is a so-called Heisenberg group (see
[13], [14]): < a, b, c | c = [a, b], ac = ca, bc = cb >.

Definition 6. A group is called virtually nilpotent if it has a nilpotent normal subgroup of
a finite index (i.e. the corresponding factor group is finite).

Remark 2. Note that any subgroup of a finitely generated virtually nilpotent group is
finitely generated. In fact the similar statement holds for a more general class of polycyclic
groups (see [12, 15] for the details).

Virtually nilpotent groups are important due to the celebrated theorem of Gromov: Any
group of polynomial growth is virtually nilpotent. We refer the reader to [16] for the precise
statement.

Definition 7. A group is called solvable or soluble if there exists a subnormal series (of not
necessarily finitely generated groups) e = Gn ⊳ . . .⊳G1 ⊳G0 = G such that Gi/Gi+1 is an
abelian group.
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We study Baumslag-Solitar groups (see [13]):

BS(m,n) =< a, b | bam = anb >, m, n ∈ Z,

which are solvable for m = 1. These groups are well known in group theory as a source of
numerous counterexamples.

We study actions of Fn =< a1, . . . , an | · >, the free group with n generators, which is
obviously not solvable.

4 Main results.

The following theorem is the main result of our manuscript:

Theorem 1. Let Φ be an uniformly continuous action of a finitely generated virtually nilpo-
tent group G on a metric space Ω. Assume that there exists an element g ∈ G such that
fg is topologically Anosov with respect to a pair (U, V ). Then the action Φ is topologically
Anosov with respect to the pair (U, V ).

Remark 3. This result generalizes [8], where a similar statement was proved for abelian G.

The main step of the proof is the following lemma, which is interesting by itself:

Lemma 1. Let G be a finitely generated group and H be a finitely generated normal subgroup
of G. Let Φ be an uniformly continuous action on Ω. If Φ|H is topologically Anosov with
respect to a pair (U, V ), then Φ is topologically Anosov with respect to the pair (U, V ) too.

It turns out that Theorem 1 cannot be generalized to the case of solvable groups. Consider
a solvable group G = BS(1, n) = < a, b|ba = anb >, where n > 1. For λ > 0 consider the
action Φ : G×R

2 → R
2 generated by the maps

fa(x) = Ax, fb(x) = Bx,

where

A =

(

1 0
1 1

)

, B =

(

λ 0
0 nλ

)

.

Note that BA = AnB, and hence the action Φ is well defined.
For any λ > 1 the map fb is hyperbolic, however the following holds:

Theorem 2. (i) For λ ∈ (1, n] the action Φ does not have the shadowing property.

(ii) For λ > n the action Φ has the shadowing property.

For actions of free groups we prove the following theorem:

Theorem 3. Any linear action of a finitely generated free group with at least two generators
on an Euclidean space does not have the shadowing property.
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This theorem leads us to the following conjecture and question:

Conjecture 1. Any uniformly continuous action of a finitely generated free group with at
least two generators on a manifold does not have the shadowing property.

Question 1. Which groups admit an action on a manifold satisfying the shadowing prop-
erty?

We derive Theorem 3 from the following more general, but more technical statement:

Theorem 4. Let G be a finitely generated free group with at least two generators. Let Φ be
an uniformly continuous action of G on a non-discrete metric space Ω.

1. If for some g ∈ G the map fg is expansive, then Φ does not have shadowing.

2. If for some g ∈ G, g 6= e, the map fg does not have shadowing, then Φ does not have
shadowing too.

Remark 4. Item 1 of Theorem 4 holds for a more general class of groups with infinitely
many ends (we refer the reader to [12] for the precise definition).

Proof of Theorem 3. Since for linear actions of Z both shadowing and expansivity are equiv-
alent to hyperbolicity, Theorem 3 follows from Theorem 4.

5 Actions of nilpotent groups.

We start from the proof of Lemma 1.

Proof of Lemma 1. Fix a finite symmetric generating set SH in H and continue it to a finite
symmetric generating set S in G. By Proposition 1, we can assume that our initial generating
set S was chosen in this way.

Let ∆, γ > 0 be the constants from the definitions of a topologically Anosov action
and expansivity for Φ|H . Since the maps {fs}s∈S are uniformly continuous, there exists
δ < min(∆/3, γ) such that

dist(fs(ω1), fs(ω2)) < ∆/3 (3)

for any s ∈ S and any two points ω1, ω2 ∈ Ω satisfying dist(ω1, ω2) < δ.
Fix ε ∈ (0, δ) and choose d < ε from the definition of shadowing for Φ|H for the generating

set SH . Fix a d-pseudotrajectory {yg ∈ V }g∈G of Φ.
For any element q ∈ G consider the sequence {zh = yhq}h∈H . Note that this sequence is

a d-pseudotrajectory of Φ|H . Since Φ|H is topologically Anosov with respect to (U, V ), there
exists a unique point xq ∈ U such that

dist(zh,Φ(h, xq)) = dist(yhq, fh(xq)) < ε, h ∈ H. (4)

Existence of such xq follows from (TA2), uniqueness follows from (TA1), (TA3), and the
inequality ε < γ.
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Let us prove that {xq}q∈G is an exact trajectory.
Fix s ∈ S and q ∈ G. Consider an arbitrary element h ∈ H . Since H is a normal

subgroup of G, there exists an element h′ ∈ H such that

sh′ = hs. (5)

It follows from (3)–(5) that

dist(ysh′q, fh(xsq)) < ǫ, (6)

dist(fs(yh′q), fs(fh′(xq))) < ∆/3. (7)

Since {yg}g∈G is a d-pseudotrajectory for Φ, it follows from (5)–(7) that

dist(fh(xsq), fh(fs(xq))) ≤

dist(fh(xsq), ysh′q) + dist(ysh′q, fs(yh′q)) + dist(fs(yh′q), fhs(xq))) ≤

ǫ+ d+∆/3 < ∆.

Due to expansivity of Φ|H on U , we conclude that

xsq = fs(xq), s ∈ S, q ∈ G.

Since S is a generating set for G, these equalities imply that xq = fq(xe), for all q ∈ G, and
hence by (4) xe satisfies inequalities (2).

Expansivity of Φ is trivial, because of Remark 1.

Next we prove Theorem 1 for the case of nilpotent groups.

Lemma 2. Let G be a finitely generated nilpotent group of class n and Φ be an uniformly
continuous action of G on a metric space Ω. Assume that there exists an element g ∈ G
such that fg is topologically Anosov with respect to (U, V ). Then the action Φ is topologically
Anosov with respect to (U, V ).

Proof. Let us prove this lemma by induction on n.
For n = 1 the group G is abelian and hence the group P = 〈g〉 generated by g is a normal

subgroup of G. Since fg is topologically Anosov, applying Lemma 1 we conclude that Φ is
topologically Anosov.

Let n > 1 and assume that we have proved the lemma for all nilpotent groups of class
less or equal n− 1. Denote Q = [G,G] and P = 〈Q, g〉 (i.e. P is the minimal subgroup of G
that contains Q and g).

Proposition 2. (N1) The group P is a normal subgroup of G.

(N2) The group P is nilpotent of class at most n− 1.
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Proof of Proposition 2. Let us start from Item (N1). Fix arbitrary p ∈ P , h ∈ G. Note that
hph−1 ∈ [G,G]p = Qp ⊂ P , which proves the claim.

Let us prove Item (N2). It is clear that any subgroup of a nilpotent group of class n is a
nilpotent group of class at most n. However we need a stronger result for the subgroup P .
As the analysis of simple examples shows (e.g. the direct product of the Heisenberg group
and Z), a nilpotent group of class n may have proper subgroups of class n. So item (N2) is
not trivial.

Denote
R = [Q,G] = [[G,G], G].

Clearly, in order to prove (N2) it is sufficient to prove that

[P, P ] ⊂ [[G,G], G] = R

(since it implies [[P, P ], P ] ⊂ [[[G,G], G], G] and etc.).
Since Qg = gQ, any element p ∈ P has a representation as qgk for some q ∈ Q, k ∈ Z.

Fix p1, p2 ∈ P and put p1 = q1g
k1, p2 = q2g

k2. Note that

p1p2 = q1g
k1q2g

k2 = q1r1q2g
k1+k2 = r2q1q2g

k1+k2,

p2p1 = q2g
k2q1g

k1 = q2r3q1g
k1+k2 = r4q2q1g

k1+k2 = r5q1q2g
k1+k2

for some r1, . . . , r5 ∈ R, and hence [p1, p2] = r2r
−1
5 ∈ R.

Let us note that these properties strongly use nilpotency of Q, and their analogs do not
hold, for example, for solvable groups.

Let us continue the proof of Lemma 2. Since P is a finitely generated (due to Remark 2)
nilpotent group of class at most n−1, g ∈ P , and fg is topologically Anosov, by the induction
assumptions we conclude that Φ|P is topologically Anosov. Combining this property, (N1)
and Lemma 1 we conclude that Φ has the shadowing property.

Proof of Theorem 1. Since G is virtually nilpotent, there exists a nilpotent normal subgroup
H of G of finite index. Due to Remark 2 the group H is finitely generated. Consider g ∈ G
from the assumptions of the theorem. Since H is a subgroup of finite index, there exists k > 0
such that gk ∈ H . Since fg is topologically Anosov, the map fk

g = fgk is also topologically
Anosov. Hence, by Lemma 2, the action Φ|H is topologically Anosov. Applying Lemma 1
we conclude that Φ is topologically Anosov too.

6 An action of a Baumslag-Solitar group.

Proof of Theorem 2. Without loss of generality, by Proposition 1, we consider the group
BS(1, n) =< a, b | ba = anb > with the standard generating set S = {a, b, a−1, b−1}. Denote
by P1 and P2 the natural projections on the coordinate axes in R

2. As before denote

A =

(

1 0
1 1

)

, B =

(

λ 0
0 nλ

)

.
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Note that

Ar =

(

1 0
r 1

)

, Br =

(

λr 0
0 (nλ)r

)

, r ∈ Z. (8)

Proof of Item (i). To derive a contradiction assume that Φ has the shadowing property
and choose d > 0 from the definition of the shadowing property applied to ǫ = 1.

Consider an auxiliary action Ψ : G× (R× Z) → (R× Z) generated by the maps

ga(x, k) = (x+ n−k, k), gb(x, k) = (x, k + 1).

It is easy to check that gb ◦ ga = gna ◦ gb, and hence the action Ψ is well defined.
Consider the map F : (R×Z) → R defined as follows

F (x, k) =
(

(1 + β)λk|x|β; (nλ)k|x|1+β
)

,

where β = lnλ
lnn

∈ (0, 1].
Finally, consider the sequence

yg =
d

3
· F (Ψ(g, (0, 0))), g ∈ G.

We claim that {yg}g∈G is a d-pseudotrajectory for the action Φ, i.e. inequalities (1) hold for
s ∈ {a, b, a−1, b−1}.

Indeed, fix g ∈ G. Denote (x, k) = Ψ(g, (0, 0)).
If s = b±1, then it is easy to see that ysg = fs(yg).
If s = a, then

P1ysg =
d

3
(1 + β)λk

∣

∣x+ n−k
∣

∣

β
, P2ysg =

d

3
(nλ)k

∣

∣x+ n−k
∣

∣

1+β
.

Denote ∆ = n−k. Then λk = ∆−β . In such notation

P1 (yag − fa(yg)) =
d

3
(1 + β)∆−β

(

|x+∆|β − |x|β
)

,

P2 (yag − fa(yg)) =
d

3

(

∆−(1+β) |x+∆|1+β −
(

∆−(1+β)|x|1+β + (1 + β)∆−β|x|β
)

)

.

We use the following inequalities, which hold for β ∈ (0, 1] and x,∆ ∈ R,:

|x+∆|β ≤ |x|β + |∆|β,

|x+∆|1+β ≤ |x|1+β + (1 + β)|∆||x|β + |∆|1+β.

From these inequalities it is easy to conclude that

|P1(yag − fa(yg))| ≤ (β + 1)d/3, |P2(yag − fa(yg))| ≤ d/3

which implies
|yag − fa(yg)| < d.
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Similarly
|ya−1g − fa−1(yg)| < d.

And hence {yg}g∈G is a d pseudotrajectory.
Since by our assumptions the action Φ has the shadowing property, there exists xe ∈ R

such that (2) holds.
Note that ybk = 0 for k ≥ 0. Substituting g = bk into (2), we conclude that |Bkxe| ≤ 1

and hence, by expansivity of fb, xe = (0, 0).
Now substituting g = bka into (2) and looking on the first coordinate we conclude that:

|λkd/2− 0| < 1, k ≥ 0,

which is impossible for sufficiently large k. The derived contradiction finishes the proof of
Item (i).

Proof of Item (ii). Fix ε > 0. Note that the map fb has the shadowing property
and is expansive. Let us choose d ∈ (0, ε) such that any d-pseudotrajectory of fb can be
ε-shadowed by an exact trajectory of fb. Consider an arbitrary d-pseudotrajectory {yg}g∈G
of the action Φ.

For any element q ∈ G consider the sequence {zk}k∈Z, defined by zk = ybkq. Note that
this sequence is a d-pseudotrajectory for fb. Since fb has the shadowing property and is
expansive, there exists a unique point xq ∈ R such that

|zk − fk
b (xq)| = |ybkq − fk

b (xq)| < ε, k ∈ Z. (9)

We claim that xq = Φ(q, xe). To prove this, it is enough to show that

xbq = Bq, xaq = Axq, q ∈ G. (10)

The first equality follows directly from expansivity of fb. Let us prove the second one.
Note that the relation ba = anb implies that

bka = a(n
k)bk, k > 0. (11)

Fix an arbitrary q ∈ G. Note that since {yt}t∈G is a d-pseudotrajectory,

|P1yank
bkq

− P1ybkq| < dnk. (12)

By a straightforward induction it is easy to show that for j ∈ [1, nk] the inequality

|P2yank
bkq

− P2y(ank
−j)bkq − jP1y(ank

−j)bkq| <
j(j + 1)

2
d

holds. In particular

|P2yank
bkq

− P2ybkq − nkP1ybkq| <
nk(nk + 1)

2
d. (13)
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Relations (9), (11), and the definition of a pseudotrajectory imply that for any k > 0 the
following relations hold:

∣

∣Bkxaq − ybkaq
∣

∣ < ε,

ybkaq = y
a(n

k)bkq
,

∣

∣ybkq −Bkxq

∣

∣ < ε,

and hence by (8), (12) and (13)

|λk(P1xaq − P1xq)| < 2ε+ dnk, k > 0,

|(nλ)kP2xaq − (nλ)kP2xq − (nλ)kP1xq| < 2ε+
nk(nk + 1)

2
d, k > 0.

Since λ > n,
P1xaq = P1xq, P2xaq = P2xq + P1xq,

which implies (10) and finishes the proof of Item (ii).

7 Actions of free groups.

Without loss of generality, by Proposition 1, we consider a free group G ==< a1, . . . , an|· >
with the standard generating set S = {a±1

1 , . . . , a±1
n }. It means that any element g ∈ G has

a normal form g = sr . . . s1 (where sj ∈ S), i.e. the unique shortest representation in terms
of elements of S.

Proof of Theorem 4. Proof of Item 1. To derive a contradiction, suppose that Φ has the
shadowing property. Let d be the number that corresponds to ǫ = ∆ (the constant of
expansivity of fg) in the definition of shadowing for Φ.

Consider the normal form of g: g = sr . . . s1. Fix any q ∈ S\{s1, s
−1
1 }. Since f−1

q is
uniformly continuous, there exists a number d1 < d such that

dist(f−1
q (w1), f

−1
q (w2)) < d, (14)

for any w1, w2 ∈ Ω satisfying dist(w1, w2) < d1.
Since Ω is non-discrete, we can fix two distinct points ω0, ω ∈ Ω such that dist(ω0, ω) < d1.

We construct a pseudotrajectory {yt}t∈G in the following way:

yt =

{

Φ(t, f−1
q (ω)), if the normal form of t ∈ G starts with q,

Φ(t, f−1
q (ω0)), otherwise.

Note that, by (14),
dist(yq, fq(ye)) = dist(ω, ω0) < d1 < d,

dist(ye, f
−1
q (yq)) = dist(f−1

q (ω0), f
−1
q (ω)) < d,
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and the equality yst = fs(yt) holds for all other s ∈ S, t ∈ G. Hence {yt}t∈G is a d-
pseudotrajectory.

Our assumptions imply the existence of a point xe such that inequalities (2) hold. Con-
sequently,

dist(ygk ,Φ(g
k, xe)) = dist(fk

g (f
−1
q (ω0)), f

k
g (xe)) < ∆, ∀k ∈ Z,

which, by expansivity, implies that

xe = f−1
q (ω0). (15)

Since the normal form of {gkq}k∈Z starts from q,

dist(ygkq,Φ(g
kq, xe)) = dist(fk

g (ω), f
k
g (fq(xe))) < ∆, ∀k ∈ Z.

Hence, by expansivity, ω = fq(xe), which together with (15) contradicts to the choice of ω
and ω0. Thus Φ does not have shadowing, which proves Item 1.

Proof of Item 2. Let ǫ be any number such that for any d < ǫ the map fg has a
d-pseudotrajectory that cannot be ǫ-shadowed by any exact trajectory of fg. Consider the
normal form of g = sr . . . s1. Fix any d < ǫ. There exists a number d1 < d such that for any
φ that has a form φ = fsj . . . fs1 or φ = fs−1

j
. . . fs−1

r
for some 1 ≤ j ≤ r we have

dist(φ(w1), φ(w2)) ≤ d, (16)

for all w1, w2 ∈ Ω such that dist(w1, w2) ≤ d1.
Consider a d1-pseudotrajectory {xk}k∈Z for fg that cannot be ǫ-shadowed and the se-

quences {zk}k∈Z, {yt}t∈G defined as follows
{

zrk = xk, k ∈ Z,

zrk+j+1 = fsj+1
(zrk+j), 0 ≤ j < r − 1, k ∈ Z;

and

yt =

{

Φ(v, zrk+j), for w = tv−1 = sj . . . s1(sr . . . s1)
k, k ≥ 0, 1 ≤ j ≤ r;

Φ(v, z−rk−j), for w = tv−1 = s−1
r−j+1 . . . s

−1
r (sr . . . s1)

−k, k ≥ 0, 1 ≤ j ≤ r;

where v is the element of minimal length such that t = vw for some w = tv−1 of the form
defined above.

By (16) the sequence {yt}t∈G is a d-pseudotrajectory. If it is ε-shadowed by the trajectory
of a point ue, then {xk}k∈Z is ε-shadowed by {fk

g (ue)}k∈Z, which leads to a contradiction.

8 Appendix.

Proof of Proposition 1. The generating set S induces on G a so-called word norm defined as
length of the shortest representation of an element in terms of elements from S. We define
by |g|S (or simply by |g|) the word norm of an element g with respect to S.
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It is well known that two word norms corresponding to two finite generating sets S and
S ′ are bilipschitz equivalent, i.e. there exists a constant C ≥ 1 such that

|g|S′/C ≤ |g|S ≤ C|g|S′, ∀g ∈ G. (17)

Fix an ǫ > 0. Let d be the number from the definition of shadowing of Φ with respect
to S corresponding to ǫ. By uniform continuity of Φ, there exists a constant d1 < d/C such
that

dist(fg(ω1), fg(ω2)) < d/C, (18)

for any g ∈ G, ω1, ω2 ∈ Ω provided |g|S′ ≤ C and dist(ω1, ω2) < d1.
Let {yg ∈ V }g∈G be a d1-pseudotrajectory of Φ with respect to the generating set S ′, i.e.

by (1)
dist(ys′g, fs′(yg)) < d1, s′ ∈ S ′, g ∈ G

Consequently, by (18),

dist(ys′
C
...s′1g

, fs′
C
...s′1

(yg)) ≤ dist(ys′
C
...s′1g

, fs′
C
(ys′

C−1...s
′

1g
))+

+ dist(fs′
C
(ys′

C−1...s
′

1g
), fs′

C
(fs′

C−1
(ys′

C−2...s
′

1g
))) + . . .+

+ dist(fs′
C
...s′2

(ys′1g), fs′C ...s′2
(fs′1(yg))) < d1 + d/C + . . .+ d/C < d

for any s′1, . . . , s
′
C ∈ S ′, g ∈ G. To summarize,

dist(yhg, fh(yg)) < d, (19)

for all g ∈ G and h ∈ G such that |h|S′ ≤ C . It follows from (17) that any element
s ∈ S satisfies |s|S′ ≤ C. Thus it follows from (19) that the sequence {yg}g∈G is a d-
pseudotrajectory of Φ with respect to the generating set S.

It follows from our assumptions that {yg}g∈G is ǫ-shadowed by some point xe. However
inequalities (2) do not depend on the choice of the generating set. Thus Φ has the shadowing
property with respect to S ′. Clearly Φ is an uniformly continuous action with respect to S ′

too.
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