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Abstract

We present new separability criteria for both bipartite and multipar-

tite quantum states. These criteria include the criteria based on the

correlation matrix and its generalized form as special cases. We show

by detailed examples that our criteria are more powerful than the pos-

itive partial transposition criterion, the realignment criterion and the

criteria based on the correlation matrices.

PACS numbers: 03.67.-a, 02.20.Hj, 03.65.-w

I. INTRODUCTION

Quantum entanglement, as the remarkable nonlocal feature of quantum mechanics, is

recognized as a valuable resource in the rapidly expanding field of quantum information sci-

ence, with various applications such as quantum computation [1, 2], quantum teleportation

[3], dense coding [4], quantum cryptographic schemes [5], quantum radar [6], entanglement

swapping [7] and remote state preparation (RSP) [8–11]. Quantum states without entan-

glement are called separable states, which constitute a convex subset of all the quantum

states. Distinguishing quantum entangled states from the separable ones is a basic and

longer standing problem in the theory of quantum entanglement. It has attracted great

interest in the last twenty years.

For mixed states we still have no general criterion. A strong criterion, named PPT

(partial positive transposition), to recognize mixed entangled quantum state was proposed

by Peres in 1996 in [12]. It says that for any bipartite separable quantum states the density

matrix must be semi-positive under partial transposition. Afterwards, by using the method

of positive maps the family Horodecki [13] showed that the Peres’ criterion is also sufficient
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for 2 × 2 and 2 × 3 bipartite systems. For high-dimensional states, the PPT criterion

is only necessary. Horodecki [14] has constructed some classes of families of inseparable

states with positive partial transposes for 3 × 3 and 2 × 4 systems. States of this kind are

said to be bound entangled (BE). Another powerful operational criterion for separability

is the realignment criterion [15, 16]. It demonstrates a remarkable ability in detecting the

entanglement of many bound entangled states and even genuinely tripartite entanglement

[17]. Considerable efforts have been made in proposing stronger variants and multipartite

generalizations for this criterion [18, 19]. It was shown that PPT criterion and realignment

criterion are equivalent to the permutations of the density matrix’s indices [17].

Recently, some more elegant results for the separability problem have been derived. In

[20–22], a separability criteria based on the local uncertainty relations (LUR) was obtained.

The authors show that for any separable state ρ ∈ HA ⊗HB,

1−
∑

k

〈GA
k ⊗GB

k 〉 −
1

2
〈GA

k ⊗ I − I ⊗GB
k 〉2 ≥ 0,

where GA
k or GB

k are arbitary local orthogonal and normalized operators (LOOs) inHA⊗HB.

This criterion is strictly stronger than the realignment criterion. Thus more bound entangled

quantum states can be recognized by the LUR criterion. The criterion is optimized in

[23] by choosing the optimal LOOs. The covariance matrix of a quantum state is also

used to study separability in [24]. It has been pointed out in [25] that the LUR criterion,

including the optimized one, can be derived from the covariance matrix criterion. In [26]

the author has given a criterion based on the correlation matrix of a state. The correlation

matrix (CM) criterion is then shown to be independent of PPT and realignment criterion

in [27], i.e. there exist quantum states that can be recognized by the correlation criterion

while the PPT, realignment criterion and the covariance matrix criterion fail. In [28], by

defining matricizations of the correlation tensors, the authors introduced a general framework

for detecting genuine multipartite entanglement and non-fully separability in multipartite

quantum systems.

In this paper, we present a generalized form of the correlation matrix criterion for bipar-

tite quantum systems [26, 27] and for multipartite quantum systems [29]. Our new criterion

includes the criterion based on the correlation matrix as a special case and is more powerful

than the later for detecting entanglement, as shown by detailed examples. Thus our crite-

rion will be more efficient than the Positive partial transposition criterion, the realignment

criterion and the covariance matrix criterion for some quantum states.
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II. SEPARABILITY CRITERION FOR BIPARTITE QUANTUM STATES

Let Hd1
A and Hd2

B be two vector spaces with dimensions d1 and d2 respectively. By using

the generators of SU(d), λi, i = 1, 2, ..., d2 − 1, any quantum state ρ ∈ Hd1
A ⊗ Hd2

B can be

writing as:

ρ =
1

d1d2

I ⊗ I +

d2
1−1∑

k=1

rkλk ⊗ I +

d2
2−1∑

l=1

slI ⊗ λl +

d2
1−1∑

k=1

d2
2−1∑

l=1

tklλk ⊗ λl, (1)

where rk = 1
2d2

Tr(ρλk ⊗ I), sl = 1
2d1

Tr(ρI ⊗ λl) and tkl = 1
4
Tr(ρλk ⊗ λl). We denote T the

matrix with entries tkl and define

T̃ =




1
d1d2

s1 s2 · · · sd2
2−1

r1 t11 t12 · · · t1(d2
2−1)

r2 t21 t22 · · · t2(d2
2−1)

· · ·
rd2

1−1 t(d2
1−1)1 t(d2

1−1)2 · · · t(d2
1−1)(d2

2−1)




. (2)

Theorem 1: If ρ ∈ Hd1
A ⊗ Hd2

B is separable, then for any d2
1 ⊗ d2

2 matrix M and (d2
1 −

1)⊗ (d2
2 − 1) matrix N with real entries mij and nij respectively,

|
∑

kl

mklT̃kl| ≤
√

(d2
1 − d1 + 2)(d2

2 − d2 + 2)

2d1d2

σmax(M) (3)

|
∑

kl

nkltkl| ≤
√

(d1 − 1)(d2 − 1)

4d1d2

σmax(N), (4)

where σmax(M) and σmax(N) are the maximal singular values of M and N respectively.

Proof: A separable quantum state ρ can be expressed as:

ρ =
∑

i

pi|ψi〉〈ψi| ⊗ |φi〉〈φi|. (5)

By writing the pure states |ψi〉 and |φi〉 in their Bloch forms, we have that

ρ =
∑

i

pi|ψi〉〈ψi| ⊗ |φi〉〈φi|

=
∑

i

pi(
1

d1

I +
∑

k

xikλk)⊗ (
1

d2

I +
∑

l

yilλl)

=
1

d1d2

I ⊗ I +
1

d2

∑
i

pi

∑

k

xikλk ⊗ I +
1

d1

∑
i

pi

∑

l

yilI ⊗ λk

+
∑

i

pi

∑

kl

xikyilλk ⊗ λl. (6)
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Comparing (1) with (6), we have

rk =
1

d2

∑
i

pixik, sl =
1

d1

∑
i

piyil, tkl =
∑

i

pi

∑

kl

xikyil. (7)

Define ~̃xi = ( 1
d1

, xi1, · · · , xi(d2
1−1))

t and ~̃yi = ( 1
d2

, yi1, · · · , yi(d2
2−1))

t, where t stands for the

transposition. Since |ψi〉 ∈ Hd1
A and |φi〉 ∈ Hd2

B are all pure states, one has

Tr(|ψi〉〈ψi)
2 = Tr(

1

d1

I +
∑

k

xikλk)
2 =

1

d1

+ 2
∑

k

x2
ik = 1, (8)

i.e. ||~xi|| =
√∑

k x2
ik =

√
d1−1
2d1

. Hence ||~̃xi|| =
√

d2
1−d1+2

2d2
1

. Similarly we have ||~̃yi|| =√
d2
2−d2+2

2d2
2

. Therefore for any real matrices M and N , one obtains that

|
∑

kl

mklT̃kl| = |
∑

ikl

pimklx̃ikỹil| ≤
∑

i

pi|〈~̃xi,M~̃yi〉| ≤
√

(d2
1 − d1 + 2)(d2

2 − d2 + 2)

2d1d2

σmax(M);

|
∑

kl

nkltkl| = |
∑

ikl

pinklxikyil| ≤
∑

i

pi|〈~xi, N~yi〉| ≤
√

(d1 − 1)(d2 − 1)

4d1d2

σmax(N).

The correlation matrix criterion in [26] illustrates that if quantum state ρ is separable,

then the Key-Fan norm ||T ||KF ≤
√

(d1−1)(d2−1)
4d1d2

. In the following we show the power of

Theorem 1 in detecting entanglement by two corollaries.

Corollary 1: The criterion based on the correlation matrix is included in Theorem 1.

Proof: Let T = UΣV † be the singular value decomposition of T . Since T is a real matrix,

one can always choose U and V to be orthogonal matrices. Without loss of generality, we

assume that d1 ≤ d2. Set N = (V ∆U †)t, where ∆ is a block matrix of the form
(

I 0
)t

, I

is the (d2
1 − 1) × (d2

1 − 1) identity matrix, 0 stands for a (d2
2 − d2

1) × (d2
2 − d2

1) zero matrix.

The singular values of N must be either 1 or 0. One obtains

||T ||KF = |Tr(UΣV †V ∆U †)| = |Tr(TN t)| = |
∑

kl

nkltkl|

≤
√

(d1 − 1)(d2 − 1)

4d1d2

σmax(N) =

√
(d1 − 1)(d2 − 1)

4d1d2

.

This means that one can get the correlation matrix criterion from Theorem 1.

Corollary 2: If a bipartite quantum state ρ ∈ Hd1
A ⊗Hd2

B is separable, then the following

inequality must hold:

||T̃ ||KF ≤
√

(d2
1 − d1 + 2)(d2

2 − d2 + 2)

2d1d2

, (9)

where ||Ω||KF = Tr
√

ΩΩ† stands for the trace norm of Ω.
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Proof: Assume d1 ≤ d2. Let T̃ = XΣY † be the singular value decomposition of T̃ , with

X and Y the corresponding orthogonal matrices. Set M = (Y ΓX†)t, where Γ =
(

I 0
)t

, I

and 0 are the d2
1× d2

1 identity matrix and the (d2
2− d2

1)× (d2
2− d2

1) zero matrix, respectively.

The singular values of M are either 1 or 0. Then we obtain that

||T̃ ||KF = |Tr(XΣY †Y ΓX†)| = |Tr(T̃M t)| = |
∑

kl

mklT̃kl|

≤
√

(d2
1 − d1 + 2)(d2

2 − d2 + 2)

2d1d2

σmax(M) =

√
(d2

1 − d1 + 2)(d2
2 − d2 + 2)

2d1d2

,

which ends the proof of the corollary.

Corollary 1 shows that Theorem 1 is not weaker than the correlation matrix criterion in

detecting entanglement for quantum states in Hd1
A ⊗Hd2

B . In fact, by the following example

we can show that Theorem 1 is strictly stronger than the correlation matrix criterion, the

realignment criterion and the PPT criterion.

Example: A 3× 3 PPT entangled state is given in [30]:

ρ =
1

4
(I9 −

4∑
i=0

|ψi〉〈ψi|), (10)

where |ψ0〉 = |0〉(|0〉 − |1〉)/√2, |ψ1〉 = (|0〉 − |1〉)|2〉/√2, |ψ2〉 = |2〉(|1〉 − |2〉)/√2, |ψ3〉 =

(|1〉− |2〉)|0〉/√2 and |ψ4〉 = (|0〉+ |1〉+ |2〉)(|0〉+ |1〉+ |2〉)/3. The state is shown to violate

the correlation matrix criterion. Let us mix ρ with white noise:

σ(x) = xρ +
1− x

9
I9. (11)

The correlation matrix criterion detects the entanglement for 0.9493 < x ≤ 1. If we choose

the matrix M in theorem 1 to be


0.8134 0.1905 −0.11 0.18 −0.4067 0.1798 0 0 0

0.1905 0.3849 −0.243 −0.806 0.2608 −0.0989 0 0 0

−0.11 −0.243 0.1043 −0.3511 −0.1506 0.8736 0 0 0

0.1798 −0.0989 0.8736 −0.3258 −0.1634 −0.2898 0 0 0

−0.4067 0.2608 −0.1506 −0.1634 −0.867 −0.1634 0 0 0

0.1798 −0.806 −0.3511 −0.2898 −0.1634 −0.3258 0 0 0

0 0 0 0 0 0 0.964 0 0

0 0 0 0 0 0 0 0.964 0

0 0 0 0 0 0 0 0 0.964




,

which has the maximal singular value 1.036. From (3) the state σ(x) is entangled for 0.94 <

x ≤ 1. Furthermore, by corollary 2 one can show that σ(x) is entangled for 0.89254 < x ≤ 1.

Here one finds that our criterion is much better than the correlation matrix criterion.
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III. SEPARABILITY CRITERION FOR MULTIPARTITE QUANTUM STATES

In this section we consider the separability problem for N-partite quantum systems H1⊗
H2 ⊗ · · · ⊗HN with dimHi = di, i = 1, 2, · · · , N .

Let λ
{µk}
αk = Id1 ⊗ Id2 ⊗ · · · ⊗ λαk

⊗ Idµk+1 ⊗ · · · ⊗ IdN
with λαk

, the generators of SU(di),

appearing at the µkth position and

T {µ1µ2···µM}
α1α2···αM

=

∏M
i=1 dµi

2MΠN
i=1di

Tr[ρλ{µ1}
α1

λ{µ2}
α2

· · ·λ{µM}
αM

],

which can be viewed as the entries of the tensors T {µ1µ2···µM}.

For αM = · · · = αN = 0 with 1 ≤ M ≤ N , we define thatT̃α1α2···αN
= T µ1···µM

α1···αM
, and for

α1 = · · · = αN = 0, define that T̃α1···αN
= 1

ΠN
k=1dk

. Hence we have a tensor T̃ with elements

{T̃α1···αN
, αk = 0, 1, · · · , d2

k − 1}.
If we set λ

{k}
0 = Idk

for any 1 ≤ k ≤ N , then any multipartite state ρ ∈ H1⊗H2⊗· · ·⊗HN

can be generally expressed by the tensor T̃ as [29],

ρ =
∑

α1α2···αN

T̃α1α2···αN
λ{1}α1

λ{2}α2
· · ·λ{N}αN

, (12)

where the summation is taken for all αk = 0, 1, · · · , d2
k − 1.

To obtain the criterion for N-partite quantum systems, we adopt the definition of the nth

matrix unfolding T n of a tensor T , which is a matrix with in to be the row index and the

rest subscripts of T to be column indices(detailed description can be found in Refs. [29, 31]).

The Ky Fan norm of the tensor T over N matrix unfoldings is defined as

||T ||KF = max{||Tn||KF}, n = 1, 2, · · · , N. (13)

Theorem 2: If a quantum state ρ ∈ H1 ⊗ H2 ⊗ · · · ⊗ HN is fully separable, then

for any tensors M and W with real entries mi1i2···iN , ik = 1, 2, · · · , d2
k − 1, and wj1j2···jN

,

jl = 1, 2, · · · , d2
k, we have:

|
∑

i1i2···iN
mi1i2···iNTi1i2···iN | ≤ ΠN

k=1

√
dk − 1

2dk

σmax(M), (14)

|
∑

j1j2···jN

wj1j2···jN
T̃i1i2···iN | ≤ ΠN

k=1

√
d2

k − dk + 2

2d2
k

σmax(W ), (15)

where σmax(M) and σmax(W ) stand for the maximal eigenvalue of the matrix unfolding Mn

and Wn. The maximum is taken over all kinds of mode n matricization.
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Proof: Assume that ρ ∈ H1 ⊗H2 ⊗ · · · ⊗HN is fully separable, one can always find the

following decomposition:

ρ =
∑

i

pi|ψ1
i 〉〈ψ1

i | ⊗ |ψ2
i 〉〈ψ2

i | ⊗ · · · ⊗ |ψN
i 〉〈ψN

i |, (16)

where |ψm
i 〉〈ψm

i | are density matrices of pure states in Hm. Using the Bloch representation

of density matrix, we have that

|ψm
i 〉〈ψm

i | =
1

dm

I +
∑
αm

xm
iαm

λαm , (17)

where xm
iαm

= Tr(|ψm
i 〉〈ψm

i |λαm)/2. By (8) one has that ||~xm
i || =

√
dm−1
2dm

. Denote ~̃xm
i =

( 1
dm

, xm
i1, · · · , xm

i(d2
1−1)

)t. We obtain that ||~̃xm
i || =

√
d2

m−dm+2
2d2

m
. Substituting (17) into (16) one

has that:

ρ =
1

ΠN
k=1dk

⊗N
k=1 Ik +

∑
µ1α1

dµ1

ΠN
k=1

∑
i

pix
µ1

iα1
λµ1

α1
+

∑
µ1µ2α1α2

dµ1dµ2

ΠN
k=1

∑
i

pix
µ1

iα1
xµ2

iα2
λµ1

α1
λµ2

α2

+ · · ·+
∑

µ1···µM ,α1···αM

ΠM
k=1dµk

ΠN
k=1

∑
i

pix
µ1

iα1
· · ·xµM

iαM
λµ1

α1
· · ·λµM

αM

+
∑

α1···αN

∑
i

pix
1
iα1
· · ·xN

iαN
λ1

α1
· · ·λN

αN
. (18)

Comparing (12) and (18), one gets

T {µ1µ2···µM}
α1α2···αM

=
ΠM

k=1dµk

ΠN
k=1

∑
i

pix
µ1

iα1
· · ·xµM

iαM
. (19)

According to the definitions of ~xm
i , ~̃xm

i and Tα1α2···αN
, T̃α1α2···αN

, we have that

Tα1α2···αN
=

∑
i

pix
1
iα1
· · ·xN

iαN
=

∑
i

pi~x
1
i ◦ ~x2

i ◦ · · · ◦ ~xN
i (20)

T̃α1α2···αN
=

∑
i

pix̃
1
iα1
· · · x̃N

iαN
=

∑
i

pi
~̃x1

i ◦ ~̃x2
i ◦ · · · ◦ ~̃xN

i , (21)

where ◦ stands for the out product.

Let Mn be mode n matricization of M . Then for any tensor M we have that

∑
i1i2···iN

mi1i2···iNTi1i2···iN =
∑

i

pi〈~xn
i ,Mn(~x1

i ◦ · · · ◦ ~xn̂
i ◦ · · · ◦ ~xN

i )t〉 ≤ ΠN
k=1

√
dk − 1

2dk

σmax(M).

Inequality (15) can be derived similarly.

In [29], the authors have derived a generalized form of the correlation matrix criterion

which says that if a quantum state ρ ∈ H1 ⊗H2 ⊗ · · · ⊗HN is fully separable, then

||T ||KF = ||Tn||KF ≤ ΠN
k=1

√
dk − 1

2dk

. (22)
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Here we show that one can obtain the generalized correlation matrix criterion from The-

orem 2.

Corollary 3: Inequality (22) is included in theorem 2. Moreover, if quantum state

ρ ∈ H1 ⊗H2 ⊗ · · · ⊗HN is fully separable, then the following inequality holds:

||T̃ ||KF = ||T̃n||KF ≤ ΠN
k=1

√
d2

k − dk + 2

2d2
k

. (23)

Proof: Assume that the nth unfold Tn is just the one to attain the ||T ||KF . One

immediately derives a singular value decomposition of Tn, Tn = VnΣnU
†
n for some orthogonal

matrices Vn and Un. Let M be the tensor with the nth matrix unfolding Mn = VnΠnU
†
n,

where Πn =
(

I 0
)
, I is the (d2

n−1)×(d2
n−1) identity matrix and 0 is the zero matrix with

order such that Πn is a (d2
n − 1)×

QN
k=1(d2

k−1)

(d2
n−1)

matrix. Since both Vn and Un are orthogonal

matrices, the maximal singular value must be 1. From Theorem 2 we have

|
∑

i1i2···iN
mi1i2···iNTi1i2···iN | = Tr(MnT

†
n) = Tr(VnΠnU

†
nUnΣnV

†
n )

= Tr(Σn) = ||T ||KF ≤ ΠN
k=1

√
dk − 1

2dk

,

which leads to the inequality (22). Inequality (23) can be proved similarly.

Corollary 3 can detect some PPT entangled quantum states in multipartite quantum

systems, such as the three-qutrit bound entangled states ρc⊗|ψ〉〈ψ| condidered by L. Clarisse

and P. Wocjan [32], where

ρc =
1

12




1 0 1 0 0 0 1 0 0

0 1 0 0 0 −1 0 −1 0

1 0 2 0 −1 0 0 0 0

0 0 0 1 0 −1 0 1 0

0 0 −1 0 1 0 1 0 0

0 −1 0 −1 0 2 0 0 0

1 0 0 0 1 0 2 0 0

0 −1 0 1 0 0 0 2 0

0 0 0 0 0 0 0 0 0




is the chess-board state and |ψ〉 is an uncorrelated ancilla. If we mix ρc⊗ |ψ〉〈ψ| with white

noise and define σ = pρc ⊗ |ψ〉〈ψ|+ 1−p
27

I, the entanglement is detected for 0.83265 < p ≤ 1

by corollary 3.
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IV. CONCLUSIONS AND REMARKS

It is a basic and fundamental question to distinguish separable quantum states from

entangled ones. Although the quantum separability problem has been shown to be NP-hard,

it is possible to derive some necessary criteria of separability. We have derived separability

criteria of quantum states for both bipartite and multipartite quantum ones. The criteria

are shown to be more efficient in detecting quantum entanglement of some quantum states

than the (generalized) criterion based on the correlation matrix, the PPT criterion, the

realignment criterion, and the covariance matrix criterion. Similar to the case of previous

separability criteria, our criteria can also be used to derive lower bounds for concurrence.
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[21] O. Gühne, M. Mechler, G. Töth and P. Adam, Phys. Rev. A 74, 010301(R)(2006).

[22] O. Gühne, Phys. Rev. Lett. 92, 117903 (2004).

[23] C. J. Zhang, Y. S. Zhang, S. Zhang and G. C. Guo. Phys. Rev. A 76, 012334 (2007).

[24] O. Gühne, P. Hyllus, O. Gittsovich, and J. Eisert, Phys. Rev. Lett. 99, 130504 (2007).

[25] O. Gittsovich, O. Gühne, P. Hyllus, and J. Eisert, Phys. Rev. A 78, 052319(2008).

[26] J. D. Vicente, Quantum Inf. Comput. 7, 624(2007).

[27] J. D. Vicente, J. Phys. A: Math. and Theor., 41, 065309(2008).

[28] J. D. Vicente and M. Huber, Phys. Rev. A 84, 062306(2011).

[29] A.S. M. Hassan, P. S. Joag, Quantum Inf. Comput. 8, 0773(2008).

10



[30] C.H. Bennett, D.P. DiVincenzo, T. Mor, P.W. Shor, J.A. Smolin and B.M. Terha, Phys. Rev.

Lett., 82, 5385(1999).

[31] L. D. Lathauwer, B.D. Moor, and J. Vandewalle, SIAM J. Matrix Anal. Appl.21, 1253(2000);

Tamara G. Kolda and Brett W. Bader, SIAM Rev.51, 455(2009).

[32] L. Clarisse and P. Wocjan, Quantum Inf. Comput. 6, 277(2006).

11


