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Abstract
Conditional restricted Boltzmann machines are undirected stochastic neural networks with a layer
of input and output units connected bipartitely to a layer of hidden units. These networks define
models of conditional probability distributions on the states of the output units given the states of
the input units, parametrized by interaction weights and biases. We address the representational
power of these models, proving results on the minimal size of universal approximators of condi-
tional probability distributions, the minimal size of universal approximators of deterministic func-
tions, the maximal model approximation errors, and on the dimension of the set of representable
conditional distributions. We contribute new tools for investigating conditional models and ob-
tain significant improvements over the results that can be derived directly from existing work on
restricted Boltzmann machine probability models.

Keywords: conditional restricted Boltzmann machine, universal approximation, Kullback-Leibler
approximation error, expected dimension

1 Introduction

Restricted Boltzmann Machines (RBMs) (Smolensky 1986; Freund and Haussler 1994) are gener-
ative probability models defined by recurrent neural networks with bipartite interactions between
visible and hidden units. These models are well-known in machine learning applications, where
they are used to infer distributed representations of data and to train the layers of deep neural net-
works (Bengio 2009). The restricted connectivity of these networks allows to train them efficiently
on the basis of cheap inference and finite Gibbs sampling (Hinton 2002; 2012), even when they are
defined with many units and parameters. For an introduction see (Fischer and Igel 2012). An RBM
defines Gibbs-Boltzmann probability distributions over the observable states of the network, de-
pending on the interaction weights and biases. The expressive power of these probability models has
attracted much attention in recent years and has been studied in numerous papers, treating, in partic-
ular, their universal approximation properties (Le Roux and Bengio 2008; Montúfar and Ay 2011),
approximation errors (Montúfar et al. 2011), efficiency of representation (Martens et al. 2013;
Montúfar and Morton 2012), and dimension (Cueto et al. 2010).

In certain applications, it is preferred to work with conditional probability distributions, instead
of joint probability distributions. For example, in a classification task, the conditional distribution
may be used to indicate a belief about the class of an input, without modeling the probability of
observing that input; in sensorimotor control, it can describe a stochastic policy for choosing ac-
tions based on world observations; and in the context of information communication, to describe a
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channel. RBMs naturally define models of conditional probability distributions, called conditional
restricted Boltzmann machines (CRBMs). These models inherit many of the nice properties of RBM
probability models, such as the cheap inference and efficient training. Specifically, a CRBM is de-
fined by clamping the states of an input subset of the visible units of an RBM. For each input state
one obtains a conditioned distribution over the states of the output visible units. See Figure 1 for
an illustration of this architecture. This kind of conditional models and slight variants thereof have
seen success in many applications; for example, in classification (Larochelle and Bengio 2008),
collaborative filtering (Salakhutdinov et al. 2007), motion modeling (Taylor et al. 2007; Zeiler et al.
2009; Mnih et al. 2012; Sutskever and Hinton 2007), and reinforcement learning (Sallans and Hin-
ton 2004).

So far, however, there is not much theoretical work addressing the expressive power of CRBMs.
We note that it is relatively straightforward to obtain results on the expressive power of CRBMs
from the existing theoretical work on RBM probability models. Nevertheless, an accurate analysis
requires to take into account the specificities of the conditional case. For example: given that there
exist RBM universal approximators of probability distributions, there also exist CRBM universal
approximators of conditional probability distributions. However, knowing the smallest number of
hidden units that make an RBM a universal approximator only provides relatively loose bounds
on the smallest number of hidden units that make a CRBM a universal approximator. Formally, a
CRBM is a collection of RBMs, with one RBM for each possible input value. These RBMs differ
in the biases of the hidden units, as these are influenced by the input values. However, these hidden
biases are not independent for all different inputs, and, moreover, the same interaction weights and
biases of the visible units are shared for all different inputs. This sharing of parameters draws a
substantial distinction of CRBM models from independent tuples of RBM models.

In this paper we address the representational power of CRBMs, contributing theoretical insights
to the optimal number of hidden units. Our focus lies on the classes of conditional distributions
that can possibly be represented by a CRBM with a fixed number of inputs and outputs, depending
on the number of hidden units. Having said this, we do not discuss the problem of finding the
optimal parameters that give rise to a desired conditional distribution (although our derivations
include an algorithm that does this), nor problems related to incomplete knowledge of the target
conditional distributions and generalization errors. A number of training methods for CRBMs have
been discussed in the references listed above, depending on the concrete applications. The problems
that we deal with here are the following: what is the smallest number of hidden units that suffices
for obtaining a model that can 1) approximate any target conditional distribution arbitrarily well
(a universal approximator); 2) approximate selected classes of conditional distributions arbitrarily
well; 3) approximate any target conditional distribution without exceeding a given error tolerance?
We provide non-trivial solutions to all of these problems. We focus on the case of binary units, but
the main ideas of our discussion extend to the case of discrete non-binary units. Furthermore, some
of the tools that we develop can be applied to study not only CRBMs but also any other conditional
models defined by layered stochastic networks.

Section 2 contains formal definitions and elementary properties of CRBMs. In Section 3 we
address the universal approximation problem, deriving an upper-bound on the minimal number
of hidden units required for this purpose (Theorem 4). In Section 4 we study the approximation
of conditional distributions with restricted supports, including bounds on the number of hidden
units needed in order to approximate every deterministic conditional arbitrarily well (Theorem 22).
In Section 5 we analyze the maximal approximation errors of CRBM models (assuming optimal
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parameters) and derive an upper-bound for the number of hidden units that suffices to approximate
every conditional distribution within a given error tolerance (Theorem 28). In Section 6 we study
the dimension of the sets of conditional probability distributions represented by CRBM models
and show that for most combinations of input, hidden, and output layer sizes, the model has the
dimension expected from counting the parameters of the model (Theorem 32). In Section 7 we
offer a discussion and an outlook.

2 Definitions

A Boltzmann machine is an undirected stochastic network with binary units, some of which may
be hidden. It defines probabilities for the joint states of its visible units, given by the relative
frequencies at which they are observed, asymptotically, depending on the network’s parameters. At
each time t ∈ N, this machine selects a unit at random, say unit i, and updates its state according
to a Bernoulli draw with success probability sigm(

∑
jWijxj + bi), where sigm(c) = 1

1+exp(−c) ,
xj ∈ {0, 1} is the current state of unit j, Wij ∈ R is an interaction weight attached to the unit pair
{i, j}, and bi ∈ R is a bias attached to unit i. In the limit of infinite time, each possible joint state
x = (xV ;xH) = (x1, . . . , x|V |;x|V |+1, . . . , x|V |+|H|) of the network’s visible and hidden units
occurs with a relative frequency described by the Gibbs-Boltzmann probability distribution

p(x) =
1

Z
exp(−H(x))

with energy function
H(x) = −

∑
i<j

Wijxixj −
∑
i

bixi

and normalizing function
Z =

∑
x′

exp(−H(x′)).

The probabilities of the visible states are given by marginalizing out the states of the hidden units;
that is, by p(xV ) =

∑
xH
p(xV , xH).

Definition 1. An RBM is a Boltzmann machine with the restriction that there are no interactions
between the visible units nor interactions between the hidden units, such that Wij 6= 0 only when
unit i is visible and unit j is hidden. See Figure 1 for an illustration of this architecture. The
probabilities of the visible states are given by

p(xV ) =
∑
xH

1

Z
exp

( ∑
i∈V,j∈H

Wijxixj +
∑
i∈V

bixi +
∑
j∈H

cjxj

)
.

We will denote the set of probability distributions on {0, 1}n by

∆n :=
{

(p(x))x∈{0,1}n ∈ R2n : p(x) ≥ 0,
∑
x

p(x) = 1
}
.

Each probability distribution p ∈ ∆n is a vector of 2n non-negative entries p(x), x ∈ {0, 1}n,
adding to one. Geometrically, the set ∆n is a (2n − 1)-dimensional simplex in R2n .

3



MONTÚFAR, AY, AND GHAZI-ZAHEDI

z1 z2 z3 z4 · · · zm

y1 y2 · · · yk x1 x2 · · · xn

V W

c

b

Input layer

Hidden layer

Output layer

Figure 1: Architecture of a CRBM. An RBM is the special case with k = 0.

We will denote by ∆k
n the 2k(2n − 1)-dimensional polytope of conditional distributions, given

by the row-stochastic matrices (p(x|y))x,y with rows p(·|y) ∈ ∆n for each y ∈ {0, 1}k. This is the
2k-fold Cartesian product of the (2n − 1)-dimensional probability simplex; namely

∆k
n = ×

y∈{0,1}k
∆n,

where there is one probability simplex ∆n for each possible input state y. For example, the polytope
∆k

1 is the Cartesian product of 2k lines (1-dimensional simplices), which is a 2k-dimensional cube.
As any multivariate model of probability distributions, an RBM defines models of conditional

distributions, according to the relation p(x, y) = p(y)p(x|y). The formal definition of these condi-
tional models is as follows:

Definition 2. The conditional restricted Boltzmann machine (CRBM) model with k input, n output,
and m hidden units, denoted RBMk

n,m, is the set of all conditional distributions in ∆k
n that can be

written as

p(x|y) =
1

Z(W, b, V y + c)

∑
z∈{0,1}m

exp(z>Wx+z>V y+b>x+c>z), ∀x ∈ {0, 1}n, y ∈ {0, 1}k,

with normalization function

Z(W, b, V y + c) =
∑

x∈{0,1}n

∑
z∈{0,1}m

exp(z>Wx+ z>V y + b>x+ c>z), ∀y ∈ {0, 1}k.

Here, y, x, and z are joint state (column) vectors of the k input visible units, n output visible units,
and m hidden units, respectively (x> denotes x transposed).

The model RBMk
n,m has (n + k)m + n + m parameters. A bias term a>y for the input units

does not appear in the definition, as it would cancel out with the normalization function Z. When
there are no input units (k = 0), the model RBMk

n,m reduces to the restricted Boltzmann machine
probability model with n visible and m hidden units, which we denote by RBMn,m.

We can interpret RBMk
n,m as a collection of 2k RBMs with shared parameters. For each input y,

p(·|y) is the distribution represented by RBMn,m for the parametersW, b, (V y+c). In particular, for
each choice of the parameters of RBMk

n,m, all p(·|y) are distributions from RBMn,m with the same
interaction weights W , the same biases b for the visible units, but with different biases (V y+ c) for
the hidden units. The joint behaviour of these distributions with shared parameters is not trivial.
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The direct interpretation of RBMk
n,m is that it represents block-wise normalized versions of the

joint probability distributions represented by RBMn+k,m. Namely, any p ∈ RBMn+k,m ⊆ ∆n+k

can be written as a matrix (p(x, y))y∈{0,1}k,x∈{0,1}n with 2k rows and 2n columns. Conditioning
p on y is equivalent to considering the normalized y-th row p(x|y) = p(x, y)/

∑
x′ p(x

′, y) for
all x ∈ {0, 1}n. The tuple of normalized rows of p is a conditional distribution represented by
RBMk

n,m.

3 Universal Approximation: Necessary and Sufficient Number of Hid-
den Units

In this section we ask for the minimal number of hidden units m for which the model RBMk
n,m can

approximate every conditional distribution from ∆k
n arbitrarily well.

Note that each conditional distribution p(x|y) can be identified with the set of joint distributions
of the form r(x, y) = q(y)p(x|y), with strictly positive marginals q(y). By fixing q(y) equal to the
uniform distribution over {0, 1}k, we obtain an identification of ∆k

n with 1
2k

∆k
n ⊆ ∆n+k. Figure 2A

illustrates this identification in the case n = k = 1.
In particular, we have that universal approximators of joint probability distributions define uni-

versal approximators of conditional distributions. For example, we know that RBMn+k,m is a
universal approximator whenever m ≥ 1

22k+n − 1 (Montúfar and Ay 2011), and therefore:

Proposition 3. The model RBMk
n,m can approximate every conditional distribution from ∆k

n arbi-
trarily well whenever m ≥ 1

22k+n − 1.

This improves a previous result by van der Maaten (2011). On the other hand, since con-
ditional models do not need to model the input-state distribution q(y), in principle it is possible
that RBMk

n,m is a universal approximator of conditional distributions even if RBMn+k,m is not
a universal approximator of probability distributions. Therefore, we consider an improvement of
Proposition 3 that does not follow from corresponding results for RBM probability models:

Theorem 4. The model RBMk
n,m can approximate every conditional distribution from ∆k

n arbi-
trarily well whenever

m ≥


1
22k(2n − 1), if k ≥ 1
3
82k(2n − 1) + 1, if k ≥ 3
1
42k(2n − 1 + 1/30), if k ≥ 21

.

In fact, the model RBMk
n,m can approximate every conditional distribution from ∆k

n arbitrarily
well whenever m ≥ 2kK(r)(2n − 1) + 2S(r)P (r), where r is any natural number satisfying k ≥
1 + · · ·+ r =: S(r), and K and P are functions (defined in Lemma 15 and Proposition 17) which
tend to approximately 0.2263 and 0.0269, respectively, as r tends to infinity.

The bound onm decreases with increasing k. We note the following weaker but practical version
of Theorem 4:

Corollary 5. Let k ≥ 1. The model RBMk
n,m can approximate every conditional distribution from

∆k
n arbitrarily well whenever m ≥ 1

22k(2n − 1) = 1
22k+n − 1

22k.
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Figure 2: The polytope of conditional distributions ∆1
1 embedded in the probability simplex ∆2.

Theorem 4 and also its Corollary 5 represent a substantial improvement of Proposition 3. In
particular, they specify universal approximation bounds that reflect the structure of the polytope ∆k

n

as a 2k-fold product of the (2n − 1)-simplex ∆n. In contrast, the bound from Proposition 3, which
is derived from a universal approximation bound for probability distributions, reflects the structure
of the (2n+k − 1)-dimensional joint probability simplex ∆k+n. We think that our new results are
reasonably tight, although some improvements may still be possible. The proof of Theorem 4 is
supported by several lemmas and propositions that we develop in Section 3.1.

As expected, the asymptotic behavior of the theorem’s bound is exponential in the number of
input and output units. This lies in the nature of the universal approximation property. A crude lower
bound on the number of hidden nodes that suffices for universal approximation can be obtained by
comparing the number of parameters of the CRBM model and the dimension of the conditional
polytope. This analysis shows that exponentially many hidden units are needed:

Proposition 6. If the model RBMk
n,m approximates every conditional distribution from ∆k

n arbi-
trarily well, then necessarily m ≥ 1

(n+k+1)(2k(2n − 1)− n).

The details of this statement are given in Section 3.2.

3.1 Details on the Sufficient Number of Hidden Units (Proof of Theorem 4)

This section contains the proof of Theorem 4 about the minimal size of CRBM universal approxi-
mators. The proof is constructive; given any target conditional distribution, it proceeds by adjusting
the weights of the hidden units successively until obtaining the desired approximation. The idea
of the proof is that each hidden unit can be used to model the probability of an output vector, for
several different input vectors. The probability of a given output vector can be adjusted at will by a
single hidden unit, jointly for several input vectors, when these input vectors are in general position.
This comes at the cost of generating dependent output probabilities for all other inputs in the same
affine space. The main difficulty of the proof lies in the construction of sequences of successively
conflict-free groups of affinely independent inputs, and in estimating the shortest possible length
of such sequences exhausting all possible inputs. The proof is composed of several lemmas and
propositions. We start with a few definitions:

6
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Definition 7. Given two probability distributions p and q on a finite set X , the Hadamard product
or renormalized entry-wise product p∗q is the probability distribution on X defined by (p∗q)(x) =
p(x)q(x)/

∑
x′ p(x

′)q(x′) for all x ∈ X . When building this product, we assume that the supports
of p and q are not disjoint, such that the normalization term does not vanish.

If the model RBMn,m can represent a probability distribution p, then the model RBMn,m+1

can represent the probability distribution p′ = p ∗ q, where q = λ′r + (1 − λ′)s is any mixture,
with λ′ ∈ [0, 1], of two strictly positive product distributions r(x1, . . . , xn) =

∏n
i=1 ri(xi) and

s(x1, . . . , xn) =
∏n
i=1 si(xi) on {0, 1}n. Choosing r equal to the uniform distribution, we see that

p′ = p∗q can be made equal to λp+(1−λ)p∗s, where s is any strictly positive product distribution
and λ = λ′

λ′+2n(1−λ′)
∑

x p(x)s(x) is any weight in [0, 1].

Definition 8. A probability sharing step is a transformation taking a probability distribution p to
p′ = λp+ (1− λ)p ∗ s, for some strictly positive product distribution s and some λ ∈ [0, 1].

We will need two more standard definitions from coding theory:

Definition 9. A radius-1 Hamming ball in {0, 1}k is a set B consisting of a length-k binary vector
and all its immediate neighbours; that is, B = {y ∈ {0, 1}k : dH(y, z) ≤ 1} for some z ∈ {0, 1}k,
where dH(y, z) := |{i ∈ [k] : yi 6= zi}| denotes the Hamming distance between y and z.

Definition 10. An r-dimensional cylinder set in {0, 1}k is a set C of length-k binary vectors with
arbitrary values in r coordinates and fixed values in the other coordinates; that is, C = {y ∈
{0, 1}k : yi = zi for all i ∈ Λ} for some z ∈ {0, 1}k and some Λ ⊆ [k] with k − |Λ| = r.

The geometric intuition is simple: a cylinder set corresponds to the vertices of a face of a unit
cube, and the vectors in a radius-1 Hamming ball correspond to the vertices of a corner of a unit
cube. The vectors in a radius-1 Hamming ball are affinely independent. See Figure 3A for an illus-
tration.

In order to prove Theorem 4, for each k ∈ N and n ∈ N we want to find an mk,n ∈ N such
that: for any given strictly positive conditional distribution q(·|·), there exists p ∈ RBMn+k,0 and
mk,n probability sharing steps taking p to a strictly positive joint distribution p′ with p′(·|·) = q(·|·).
The idea is that the starting distribution is represented by an RBM with no hidden units, and each
sharing step is realized by adding a hidden unit to the RBM. In order to obtain these sharing step
sequences, we will use the following technical lemma:

Lemma 11. Let B be a radius-1 Hamming ball in {0, 1}k and let C be a cylinder subset of {0, 1}k
containing the center of B. Let λy ∈ (0, 1) for all y ∈ B ∩ C, let x̃ ∈ {0, 1}n and let δx̃ denote
the Dirac delta on {0, 1}n assigning probability one to x̃. Let p ∈ ∆n+k be a strictly positive
probability distribution with conditionals p(·|y) and let

p′(·|y) :=

{
λyp(·|y) + (1− λy)δx̃, for all y ∈ B ∩ C
p(·|y), for all y ∈ {0, 1}k \ C

.

Then, for any ε > 0, there is a single probability sharing step taking p to a joint distribution p′′ with
conditionals satisfying

∑
x |p′′(x|y)− p′(x|y)| ≤ ε for all y ∈ (B ∩ C) ∪ ({0, 1}k \ C).

7
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Proof. We define the sharing step p′ = λp + (1 − λ)p ∗ s with a product distribution s supported
on {x̃} × C ⊆ {0, 1}n+k. Note that given any distribution q on C and a radius-1 Hamming ball B
in C, there is a product distribution s on C such that (si)i∈C∩B ∝ (qi)i∈C∩B . In other words, the
restriction of a product distribution s to a radius-1 Hamming ballB can be made proportional to any
non-negative vector of length |B|. To see this, note that a product distribution is a vector with entries
s(y) =

∏
i∈[k] si(yi) for all y = (y1, . . . , yk), with factor distributions si. Hence the restriction of s

to B is given by
(∏

i si(0), s1(1)
s1(0)

∏
i si(0), . . . , sk(1)

sk(0)

∏
i si(0)

)
, where, without loss of generality,

we chose B centered at (0, . . . , 0). Now, by choosing the factor distributions si appropriately, the
vector

( s1(1)
s1(0) , . . . ,

sk(1)
sk(0)

)
can be made arbitrary in Rk+. �

We have the following two implications of Lemma 11:

Corollary 12. For any ε > 0 and any q(·|y) ∈ ∆n for all y ∈ B∩C, there is an ε′ > 0 such that, for
any strictly positive joint distribution p ∈ ∆n+k with conditionals satisfying

∑
x |p(x|y)−δ0(x)| ≤

ε′ for all y ∈ B∩C, there are 2n−1 sharing steps taking p to a joint distribution p′′ with conditionals
satisfying

∑
x |p′′(x|y) − p′(x|y)| ≤ ε for all y ∈ (B ∩ C) ∪ ({0, 1}k \ C), where δ0 is the Dirac

delta on {0, 1}n assigning probability one to the vector of zeros and

p′(·|y) :=

{
q(·|y), for all y ∈ B ∩ C
p(·|y), for all y ∈ {0, 1}k \ C

.

Note that this corollary does not make any statement about the rows p′′(·|y) with y ∈ C \ B.
When transforming the (B∩C)-rows of p according to Lemma 11, the (C\B)-rows get transformed
as well, in a non-trivial dependent way. Fortunately, there is a sharing step that allows us to “reset”
exactly certain rows to a desired point measure, without introducing new non-trivial dependencies:

Corollary 13. For any ε > 0, any cylinder set C ⊆ {0, 1}k, and any x̃ ∈ {0, 1}n, any strictly posi-
tive joint distribution p can be transformed by a single probability sharing step to a joint distribution
p′′ with conditionals satisfying

∑
x |p′′(x|y)− p′(x|y)| ≤ ε for all y ∈ {0, 1}k, where

p′(·|y) :=

{
δx̃, for all y ∈ C
p(·|y), for all y ∈ {0, 1}k \ C

.

The sharing step of this corollary can be defined as p′′ = λp+ (1− λ)p ∗ s with s close to the
uniform distribution on {x̃} × C and λ close to 0 (close enough depending on ε). We refer to such
a sharing step as a reset of the C-rows of p.

With all the observations made above, we can construct an algorithm that generates an arbitrarily
accurate approximation of any given conditional distribution by applying a sequence of sharing
steps to any given strictly positive joint distribution. We denote by star the intersection of a radius-1
Hamming ball and a cylinder set containing the center of the ball. For simplicity of notation, given
a cylinder set C ⊆ {0, 1}k, we denote by B the largest star in C centered at the smallest element of
C, whereby the set of strings {0, 1}k is ordered lexicographically. See Figure 3A. The details of the
algorithm are given in Algorithm 1.

In order to obtain a bound on the number m of hidden units for which RBMk
n,m can approx-

imate a given target conditional distribution arbitrarily well, we just need to evaluate the number

8
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Input: Strictly positive joint distribution p, target conditional distribution q(·|·), and ε > 0
Output: Transformation p′ of the input distribution with

∑
x |p′(x|y)− q(x|y)| ≤ ε for all y

Initialize B ← ∅;
while B 6⊇ {0, 1}k do

Choose (disjoint) cylinder sets C1, . . . , CK packing {0, 1}k \ B;
If needed, perform at most K sharing steps resetting the Ci rows of p for all i ∈ [K],
taking p(·|y) close to δ0 for all y ∈ Ci for all i ∈ [K] and leaving all other rows close to
their current values, according to Corollary 13;
for each i ∈ [K] do

Perform at most 2n − 1 sharing steps taking p(·|y) close to q(·|y) for all y ∈ Bi and
leaving the ({0, 1}k \ Ci)-rows close to their current values, according to
Corollary 12;

end
B ← B ∪ (∪i∈[K]B

i);
end

Algorithm 1: Algorithmic illustration of the proof of Theorem 4. The algorithm performs sequen-
tial sharing steps on a strictly positive joint distribution p ∈ ∆n+k until the resulting distribution
p′ has a conditional distribution p′(·|·) satisfying

∑
x |p′(x|y) − q(x|y)| ≤ ε for all y. Here

B ⊆ {0, 1}k denotes the set of inputs y that have been readily processed in the current iteration.
Given a cylinder set Ci, the set Bi is a star in Ci.

of sharing steps run by Algorithm 1. For this purpose, we investigate the combinatorics of shar-
ing step sequences and evaluate their worst case lengths. We can choose as starting distribution
some p ∈ RBMn+k,0 with conditional distribution satisfying

∑
x |p(x|y) − δ0(x)| ≤ ε′ for all

y ∈ {0, 1}k, for some ε′ > 0 small enough depending on the target conditional q(·|·) and the
targeted approximation accuracy ε.

Definition 14. A sequence of stars B1, . . . , Bl packing {0, 1}k with the property that the smallest
cylinder set containing any given star in the sequence does not intersect any previous star in the
sequence is called a star packing sequence for {0, 1}k.

The number of sharing steps run by Algorithm 1 is bounded from above by (2n − 1) times
the length of a star packing sequence for the set of inputs {0, 1}k. Note that the choices of stars
and the lengths of the possible star packing sequences are not unique. Figure 3B gives an example
showing that starting a sequence with large stars is not necessarily the best strategy to produce a
short sequence. The next lemma states that there is a class of star packing sequences of a certain
length, depending on the size of the input space. Thereby, this lemma upper-bounds the worst case
complexity of Algorithm 1.

Lemma 15. Let r ∈ N, S(r) := 1 + 2 + · · ·+ r, k ≥ S(r), fi(z) := 2S(i−1) + (2i− (i+ 1))z, and
F (r) := fr(fr−1(· · · f2(f1))). There is a star packing sequence for {0, 1}k of length 2k−S(r)F (r).
Furthermore, for this sequence, Algorithm 1 requires at most R(r) :=

∏r
i=2(2i − (i+ 1)) resets.

Proof. The star packing sequence is constructed by the following procedure. In each step, we
define a set of cylinder sets packing all sites of {0, 1}k that have not been covered by stars so far,
and include a sub-star of each of these cylinder sets in the sequence.
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Figure 3: A) Examples of radius-1 Hamming balls in cylinder sets of dimension 3, 2, and 1. The
cylinder sets are shown as bold vertices connected by dashed edges, and the nested Hamming balls
(stars) as bold vertices connected by solid edges. B) Three examples of star packing sequences for
{0, 1}3. C) Illustration of the star packing sequence constructed in Lemma 15 for {0, 1}6.

As an initialization step, we split {0, 1}k into 2k−S(r) S(r)-dimensional cylinder sets, denoted
D(j1), j1 ∈ {1, . . . , 2k−S(r)}.

In the first step, for each j1, the S(r)-dimensional cylinder set D(j1) is packed by 2S(r−1) r-
dimensional cylinder sets C(j1),i, i ∈ {1, . . . , 2S(r−1)}. For each i, we define the star B(j1),i as the
radius-1 Hamming ball within C(j1),i centered at the smallest element of C(j1),i (with respect to the
lexicographic order of {0, 1}k), and include it in the sequence.

At this point, the sites in D(j1) that have not yet been covered by stars is D(j1) \ (∪iB(j1),i).
This set is split into 2r − (r + 1) S(r − 1)-dimensional cylinder sets, which we denote by D(j1,j2),
j2 ∈ {1, . . . , 2r − (r + 1)}.

Note that ∪j1D(j1,j2) is a cylinder set, and hence, for each j2, the (∪j1D(j1,j2))-rows of a con-
ditional distribution being processed by Algorithm 1 can be jointly reset by one single sharing step
to achieve p′(·|y) ≈ δ0 for all y ∈ ∪j1D(j1,j2).

In the second step, for each j2, the cylinder setD(j1,j2) is packed by 2S(r−2) (r−1)-dimensional
cylinder sets C(j1,j2),i, i ∈ {1, . . . , 2S(r−2)}, and the corresponding stars are included in the se-
quence.

The procedure is iterated until the r-th step. In this step, each D(j1,...,jr) is a 1-dimensional
cylinder set and is packed by a single 1-dimensional cylinder set C(j1,...,jr),1 = B(j1,...,jr),1. Hence,
at this point, all of {0, 1}k has been exhausted and the procedure terminates.

Summarizing, the procedure is initialized by creating the branches D(j1), j1 ∈ [2k−S(r)]. In
the first step, each branch D(j1) produces 2S(r−1) stars and splits into the branches D(j1,j2), j2 ∈
[2r − (r + 1)]. More generally, in the i-th step, each branch D(j1,...,ji) produces 2S(r−i) stars, and
splits into the branches D(j1,...,ji,ji+1), ji+1 ∈ [2r−(i−1) − (r + 1− (i− 1))].

10
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m
(r)
n,k =

r 2k 2−S(r) F (r) (2n − 1) + R(r)

1 2k 2−1 1 (2n − 1) + 0
2 2k 2−3 3 (2n − 1) + 1
3 2k 2−6 20 (2n − 1) + 4
4 2k 2−10 284 (2n − 1) + 44
5 2k 2−15 8408 (2n − 1) + 1144
...

...
...

...
...

...
> 17 2k 0.2263 (2n − 1) + 2S(r)0.0269

Table 1: Numerical evaluation of the bounds from Proposition 16. Each row evaluates the universal
approximation bound m(r)

n,k for a value of r.

The total number of stars D(j1,...,jr) is given precisely by 2k−S(r) times the value of the iterative
function F (r) = fr(fr−1(· · · f2(f1))), whereby f1 = 1. The total number of resets is given by the
number of branches created from the first step on, which is precisely R(r) =

∏
i∈[r](2

i − (i+ 1)).
Figure 3C offers an illustration of these star packing sequences. The figure shows the case

k = S(3) = 6. In this case, there is only one initial branch D(1) = {0, 1}6. The stars B(1),i,
i ∈ [2S(2)] = [8] are shown in solid blue, B(1,1),i, i ∈ [2S(1)] = [2] in dashed red, and B(1,1,1),1 in
dotted green. For clarity, only these stars are highlighted. The starsB(1,j2),i andB(1,j2,1),1 resulting
from split branches are similar, translated versions of the highlighted ones. �

With this, we obtain the general bound of the theorem:

Proposition 16 (Theorem 4, general bound). Let k ≥ S(r). The model RBMk
n,m can approxi-

mate every conditional distribution from ∆k
n arbitrarily well whenever m ≥ m

(r)
k,n, where m(r)

k,n :=

2k−S(r)F (r)(2n − 1) +R(r).

Proof. This is in view of the complexity of Algorithm 1 for the sequence given in Lemma 15. �

In order to make the universal approximation bound more comprehensible, in Table 1 we evalu-
ated the sequence m(r)

n,k for r = 1, 2, 3 . . . and k ≥ S(r). Furthermore, the next proposition gives an
explicit expression for the coefficients 2−S(r)F (r) andR(r) appearing in the bound. This yields the
second part of Theorem 4. In general, the bound m(r)

n,k decreases with increasing r, except possibly

for a few values of k when n is small. For a pair (k, n), any m(r)
n,k with k ≥ S(r) is a sufficient

number of hidden units for obtaining a universal approximator.

Proposition 17 (Theorem 4, explicit bounds). The function K(r) := 2−S(r)F (r) is bounded from
below and above as K(6)

∏r
i=7

(
1− i−3

2i

)
≤ K(r) ≤ K(6)

∏r
i=7

(
1− i−4

2i

)
for all r ≥ 6. Fur-

thermore, K(6) ≈ 0.2442 and K(∞) ≈ 0.2263. Moreover, R(r) :=
∏r
i=2(2i − (i + 1)) =

2S(r)P (r), where P (r) := 1
2

∏r
i=2(1− (i+1)

2i
), and P (∞) ≈ 0.0269.

Proof. From the definition of S(r) and F (r), we obtain that

K(r) = 2−r +K(r − 1)(1− 2−r(r + 1)). (1)

11
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Note that K(1) = 1
2 , and that K(r) decreases monotonically.

Now, note that if K(r − 1) ≤ 1
c , then the left hand side of Equation (1) is bounded from below

asK(r) ≥ K(r−1)(1−2−r(r+1−c)). For a given c, let rc be the first r for whichK(r−1) ≤ 1
c ,

assuming that such an r exists. Then

K(r) ≥ K(rc − 1)

r∏
i=rc

(
1− i+ 1− c

2i

)
, for all r ≥ rc. (2)

Similarly, if K(r) > 1
d for all r ≥ rb, then

K(r) ≤ K(rb − 1)
r∏

i=rb

(
1− i+ 1− b

2i

)
, for any r ≥ rb.

Direct computations show thatK(6) ≈ 0.2445 ≤ 1
4 . On the other hand, using the computational en-

gine Wolfram|Alpha(access June 01, 2014)we obtain that
∏∞
i=0

(
1− i−3

2i

)
≈ 7.7413.

Plugging both terms into Equation (2) yields that K(r) is always bounded from below by 0.2259.
SinceK(r) is never smaller than or equal to 1

5 , we obtain thatK(r) ≤ K(r′−1)
∏r
i=r′

(
1− i−4

2i

)
,

for any r′ and r ≥ r′. Using r′ = 7, the right hand side evaluates in the limit of large r to approxi-
mately 0.2293.

Numerical evaluation of K(r) from Equation (1) for r up to one million (using Matlab
R2013b) indicates that, indeed, K(r) tends to approximately 0.2263 for large r. �

This concludes the proof of Theorem 4. We close this subsection with the remark that the proof
strategy can be used not only to study universal approximation, but also approximability of selected
classes of conditional distributions, a circumstance that we will use in Sections 4 and 5:

Remark 18. We note that if we only want to model a restricted class of conditional distributions,
then often it is possible to adapt Algorithm 1 to these restrictions and obtain tighter bounds for the
number of hidden units needed to represent these restricted conditionals. For example:

If we only want to model the target conditionals q(·|y) for the inputs y from a subset S ⊆ {0, 1}k
and do not care about q(·|y) for y 6∈ S, then in the algorithm we just need to replace {0, 1}k by S.
In this case, a cylinder set packing of S \ B is understood as a collection of disjoint cylinder sets
C1, . . . , CK ⊆ {0, 1}k with ∪i∈[K]C

i ⊇ S \ B and (∪i∈[K]C
i) ∩ B = ∅.

Furthermore, if for some Ci the conditionals q(·|y) with y ∈ Bi have a common support set
T ⊆ {0, 1}n, then the Ci-rows of p can be reset to a distribution δx with x ∈ T , and only |T | − 1
sharing steps are needed to transform p in order to approximate q(·|y) for all y ∈ Bi to any desired
accuracy. In particular, for the class of target conditional distributions with supp q(·|y) = T for all
y, the term 2n − 1 in the complexity bound of Algorithm 1 is replaced by |T | − 1.

3.2 Details on the Necessary Number of Hidden Units (Proof of Proposition 6)

Proposition 6 follows from simple parameter counting arguments. In order to make this rigorous,
first we make the observation that universal approximation of (conditional) probability distributions
by Boltzmann machines or any other models based on exponential families, with or without hidden
variables, requires the number of model parameters to be as large as the dimension of the set being
approximated. We denote by ∆YX the set of conditionals with inputs form a finite set Y and outputs
from a finite set X . Accordingly, we denote by ∆X the set of probability distributions on X .

12
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Lemma 19. Let Y , X , and Z be some finite sets. Let M ⊆ ∆YX be defined as the set of condi-
tionals of the marginalM′ ⊆ ∆Y×X of an exponential family E ⊆ ∆Y×X×Z . IfM is a universal
approximator of conditionals from ∆YX , then dim(E) ≥ dim(∆YX ) = |Y|(|X | − 1).

The intuition of this lemma is that, for models defined by marginals of exponential families,
the set of conditionals that can be approximated arbitrarily well is essentially equal to the set of
conditionals that can be represented exactly, implying that there are no low-dimensional universal
approximators of this type.
Proof. We consider first the case of probability distributions; that is, the case with |Y| = 1 and
Y×X ∼= X . LetM be the image of the exponential family E by a differentiable map f (for example,
the marginal map). The closure E , which consists of all distributions that can be approximated
arbitrarily well by E , is a compact set. Since f is continuous, the image of E is also compact, and
M = f(E) = f(E). The modelM is a universal approximator if and only ifM = ∆X . The set
E is a finite union of exponential families; one exponential family EF for each possible support set
F of distributions from E . When dim(E) < dim(∆X ), each point of each EF is a critical point of
f (the Jacobian is not surjective at that point). By Sard’s theorem, each EF is mapped by f to a set
of measure zero in ∆X . Hence the finite union ∪F f(EF ) = f(∪FEF ) = f(E) = M has measure
zero in ∆X .

For the general case, with |Y| ≥ 1, note thatM⊆ ∆YX is a universal approximator iff the joint
model ∆YM = {p(y)q(x|y) : p ∈ ∆Y , q ∈ M} ⊆ ∆Y×X is a universal approximator. The latter
is the marginal of the exponential family ∆Y ∗ E = {p ∗ q : p ∈ ∆Y , q ∈ E} ⊆ ∆Y×X×Z . Hence
the claim follows from the first part. �

Proof of Proposition 6. If RBMk
n,m is a universal approximator of conditionals from ∆k

n, then the
model consisting of all probability distributions of the form p(x, y) = 1

Z

∑
z exp(z>Wx+z>V y+

b>x + c>z + f(y)) is a universal approximator of probability distributions from ∆n+k. The latter
is the marginal of an exponential family of dimension mn + mk + n + m + 2k − 1. Thus, by
Lemma 19, m ≥ 2n+k−2k−n

(n+k+1) . �

4 Approximation of Special Classes of Conditional Distributions

Sometimes in applications one is interested in conditional distributions which assign positive prob-
ability only to a limited number of outputs, depending on the input. Consider a collection of subsets
Xy ⊆ {0, 1}n for all y ∈ {0, 1}k. The subset of ∆k

n of conditionals with supp(p(·|y)) = Xy for all
y ∈ {0, 1}k is the Cartesian product ×y∈{0,1}k∆Xy , where ∆Xy is the subset of ∆n of distributions
with support in Xy. This restricted set of conditionals corresponds to a

∑
y(|Xy| − 1)-dimensional

face of the polytope ∆k
n.

By definition, CRBMs represent only strictly positive conditional distributions. However, they
can approximate certain conditional distributions with bounded support arbitrarily well. The closure
RBMk

n,m of RBMk
n,m with respect to the Euclidean topology (standard closure of sets in RN )

consists of all elements of ∆k
n that can be approximated arbitrarily well by RBMk

n,m. Which faces
of the polytope ∆k

n are intersected by this set? How many hidden units are required to obtain a
CRBM that can approximate all points in a given face arbitrarily well? Clearly, if there is a joint

13
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distribution in RBMn+k,m with support ∪y({y} × Xy), then there is also a conditional distribution
p ∈ RBMk

n,m with supp(p(·|y)) = Xy for all y.

Proposition 20. Let p be a conditional distribution from ∆k
n with N non-zero entries, 2k ≤ N ≤

2k+n. Then p can be approximated arbitrarily well by RBMk
n,m whenever m ≥ N − 1.

Proof. This is because the joint probability model RBMn+k,m can approximate any probability
distribution with support of cardinality m+ 1 arbitrarily well (Montúfar and Ay 2011). �

There are cases where the bound from Proposition 20 can be reduced. In particular, if there are
no restrictions on the supports, Theorem 4 gives a better bound. Taking advantage of Remark 18,
we obtain the following generalization of Theorem 4, addressing restricted support conditionals:

Proposition 21. Let r be an integer with k ≥ S(r), and let Z be a subset of {0, 1}n of cardinality
|Z| = L. The model RBMk

n,m can approximate any conditional p ∈ ∆k
n with supp(p(·|y)) ⊆ Z

for all y ∈ {0, 1}k arbitrarily well, whenever m ≥ 2k−S(r)F (r)(L− 1) +R(r).

Proof. This is analogous to the proof of Proposition 16. The complexity of Algorithm 1 as evaluated
there does not depend on the specific structure of the support sets, but only on their cardinality, as
long as they are the same for all y. �

The extreme points of ∆k
n are called deterministic policies. These are the conditional distri-

butions that assign positive probability to exactly one output given each input. Each deterministic
policy p in ∆k

n corresponds to a function f : {0, 1}k → {0, 1}n with p(x|y) = δf(y)(x) for all
y ∈ {0, 1}k and x ∈ {0, 1}n. The name “policy” comes from the context of reinforcement learn-
ing (Sutton and Barto 1998), where conditional distributions describe action selection mechanisms.

Ay et al. (2013) show that there are two-dimensional manifolds which contain all deterministic
policies of ∆k

n for any n, k. In the case of CRBMs we cannot expect that two parameters will suffice
for this purpose. Proposition 20 implies that RBMk

n,m can approximate every deterministic policy
from ∆k

n arbitrarily well whenever m ≥ 2k − 1. The following result complements this sufficient
condition by a necessary condition:

Theorem 22. The model RBMk
n,m can approximate every deterministic policy from ∆k

n arbitrarily

well if m ≥ 2k − 1 and only if m ≥ 2k/2 − (n+k)2

2n .

Note that the approximation of all deterministic policies requires a CRBM with exponentially
many hidden units, with respect to the number of input units.

Remark 23. Theorem 22 has the following direct implication for RBMs. There are subsets of
{0, 1}n+k of cardinality 2k which are not the support sets of any probability distributions in RBMn+k,m

unless m ≥ 2k/2 − (n+k)2

2n .

In order to prove Theorem 22, we use the following combinatorial property of the determin-
istic policies that can be approximated arbitrarily well by CRBMs. Recall that the Heaviside step
function hs maps a real number a to 0 if a < 0, to 1/2 if a = 0, and to 1 if a > 0. We have:

14
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Lemma 24. Consider a function f : {0, 1}k → {0, 1}n. The model RBMk
n,m can approximate

the deterministic policy p(x|y) = δf(y)(x) arbitrarily well only if there is a choice of the model
parameters W,V, b, c for which

f(y) = hs(W> hs([W,V ]
[
f(y)
y

]
+ c) + b), for all y ∈ {0, 1}k,

where the Heaviside function hs is applied entry-wise to its argument.

The equation in Lemma 24 means that for each input state y ∈ {0, 1}k, each of the most likely
hidden states of RBMk

n,m given y and x = f(y) has f(y) as its most likely output state.
Proof. Consider a choice of W,V, b, c. For each input state y, the conditional represented by
RBMk

n,m is equal to the mixture distribution p(x|y) =
∑

z p(z|y)p(x|y, z), with mixture compo-
nents p(x|y, z) = p(x|z) ∝ exp((z>W + b)x) and mixture weights p(z|y) ∝ ∑x′ exp((z>W +
b>)x′+z>(V y+c)) for all z ∈ {0, 1}m. The support of a mixture distribution is equal to the union
of the supports of the mixture components with non-zero mixture weights. In the present case, if∑

x |p(x|y) − δf(y)(x)| ≤ α, then
∑

x |p(x|y, z) − δf(y)(x)| ≤ α/ε for all z with p(z|y) > ε, for
any ε > 0. Choosing α small enough, α/ε can be made arbitrarily small for any fixed ε > 0. In this
case, for every z with p(z|y) > ε, necessarily

(z>W + b>)f(y)� (z>W + b>)x, for all x 6= f(y), (3)

and hence
sgn(z>W + b>) = sgn(f(y)− 1

2).

Furthermore, the probability assigned by p(z|y) to all z that do not satisfy Equation (3) has to
be very close to zero (upper bounded by a function that decreases with α). The probability of z
given y is given by

p(z|y) =
1

Zz|y
exp(z>(V y + c))

∑
x′

exp((z>W + b>)x′).

In view of Equation (3), for all z with p(z|y) > ε, if α is small enough, p(z|y) is arbitrarily close to

1

Zz|y
exp(z>(V y + c)) exp((z>W + b>)f(y)). (4)

If ε is chosen small enough from the beginning, Equation (4) holds especially for each z that maxi-
mizes p(z|y), and so

argmaxz p(z|y) = argmaxz z
>(Wf(y) + V y + c)

=
{
z : sgn([W,V ]

[
f(y)
y

]
+ c)

.
= sgn(z − 1

2)
}
.

Each of these z satisfies Equation (3). Here .
= signifies that the condition holds in the entries where

the left hand side is non-zero. This completes the proof. �

Proof of Theorem 22. Recall that a linear threshold function with N input bits and M output bits
is a function of the form {0, 1}N → {0, 1}M ; x 7→ hs(Wx + b) with W ∈ RM×N and b ∈ RM .
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Lemma 24 shows that each deterministic policy that can be approximated by RBMk
n,m arbitrarily

well corresponds to the x-coordinate fixed points of a map defined as the composition of two linear
threshold functions {0, 1}n+k → {0, 1}m; (x, y) 7→ hs([W,V ] [ xy ] + c) and {0, 1}m → {0, 1}n;
z 7→ hs(W>z + b). In particular, we can upper bound the number of deterministic policies that
can be approximated arbitrarily well by RBMk

n,m, by the total number of compositions of two linear
threshold functions; one with n+k inputs andm outputs and the other withm inputs and n outputs.

Let LTF(N,M) be the number of linear threshold functions with N inputs and M outputs. It
is known that (Ojha 2000; Wenzel et al. 2000)

LTF(N,M) ≤ 2N
2M .

The number of deterministic policies that can be approximated arbitrarily well by RBMk
n,m is thus

bounded above by LTF(n+k,m) ·LTF(m,n) ≤ 2m(n+k)2+nm2
. The actual number may be much

smaller, in view of the fixed-point and shared parameter constraints. On the other hand, the number
of deterministic policies in ∆k

n is as large as (2n)2k = 2n2k . The claim follows from comparing
these two numbers. �

5 Approximation Errors

In the following, we define the Kullback-Leibler divergence of conditional distributions and investi-
gate the divergence from target conditional distributions to their best approximations within CRBM
models.

The Kullback-Leibler divergence or relative entropy from some p to some q in the joint proba-
bility simplex ∆n+k is given by

D(p‖q) :=
∑
y

∑
x

p(y)p(x|y) log
p(y)p(x|y)

q(y)q(x|y)
= D(pY ‖qY ) +

∑
y

p(y)D(p(·|y)‖q(·‖y)),

where pY =
∑

x∈{0,1}n p(x, y) denotes the marginal distribution over {0, 1}k. We measure the
divergence from a conditional distribution p(·|·) to another conditional distribution q(·|·) in ∆k

n by

D(p(·|·)‖q(·|·)) :=
∑
y

uY (y)D(p(·|y)‖q(·|y)),

where uY denotes the uniform distribution over y. In other words, we measure the divergence of
conditionals as the average of the divergences of their rows. We can write this as

D(p(·|·)‖q(·|·)) = D(uY p(·|·)‖qY q(·|·))−D(uY ‖qY ), for all qY ∈ ∆+
k ,

where ∆+
k denotes the set of all strictly positive distributions on {0, 1}k. Note that the left hand side

is independent of the marginal qY , and that the divergence of conditionals may vanish even if the
divergence of their joints does not.

The divergence from a conditional p(·|·) to the set of conditionals Mk
n represented by a joint

modelMn+k is given by

D(p(·|·)‖Mk
n) = inf

q∈Mn+k

D(uY p(·|·)‖q)−D(uY ‖qY ).
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This shows that we can estimate the approximation errors of conditional distributions by estimating
the approximation errors of joint distributions with uniform marginal pY = uY . By the joint con-
vexity of the divergence, we have that maxp∈∆n+k : pY =uY D(p‖u) = n. The maximizers are the
distributions p(x, y) = u(y)p(x|y) with deterministic conditionals p(·|·).

The maximum over all possible target conditionals satisfies

DMk
n

:= max
p(·|·)∈∆k

n

D(p(·|·)‖Mk
n) ≤ max

p∈∆n+k

D(p‖Mn+k) =: DMn+k
.

Proposition 25. Let m ≤ 2(n+k)−1 − 1. The divergence from any conditional distribution p(·|·) ∈
∆k
n to the model RBMk

n,m is bounded by

DRBMk
n,m
≤ min

{
n, (n+ k)− blog2(m+ 1)c − m+ 1

2blog2(m+1)c

}
.

Proof. We have that DRBMk
n,m
≤ maxp∈∆n+k : pY =uY D(p‖RBMn+k,m). The right hand side is

bounded by n, since the RBM model contains the uniform distribution. It is also bounded by the
maximal divergenceDRBMn+k,m

≤ (n+k)−blog2(m+1)c− m+1
2blog2(m+1)c (Montúfar et al. 2013). �

Proposition 25 implies the universal approximation bound given in Proposition 3, as the latter
corresponds to the cases where the approximation error vanishes. However, Proposition 25 does not
imply Theorem 4 in the same way. Therefore, we want to consider an improvement. We will upper
bound the approximation errors of CRBMs by the approximation errors of submodels of CRBMs.
First, we note the following:

Lemma 26. The maximal divergence of a conditional model that is a Cartesian product of a
probability model is bounded from above by the maximal divergence of that probability model:
ifM = ×y∈{0,1}kN ⊆ ∆k

n for some N ⊆ ∆n, then DM ≤ DN .

Proof. For any p ∈ ∆k
n, we have

D(p‖M)

= inf
q∈M

1

2k

∑
y

D(p(·|y)‖q(·|y)) =
1

2k

∑
y

inf
q(·|y)∈N

D(p(·|y)‖q(·|y)) ≤ 1

2k

∑
y

DN = DN .

�

Given a partition Z = {X1, . . . ,XL} of {0, 1}n, the partition model PZ ⊆ ∆n is the set of
all probability distributions on {0, 1}n with constant value on each partition block. The set {0, 1}l,
l ≤ n naturally defines a partition of {0, 1}n into cylinder sets {x ∈ {0, 1}n : x[l] = z} for all
z ∈ {0, 1}l. The divergence from PZ is bounded from above by DPZ ≤ l − n.

Now, the model RBMk
n,m can approximate certain products of partition models arbitrarily well:

Proposition 27. Let Z = {0, 1}l with l ≤ n. Let r be any integer with k ≥ S(r). The model
RBMk

n,m can approximate any conditional distribution from the product of partition models PkZ :=

PZ × · · · × PZ arbitrarily well whenever m ≥ 2k−S(r)F (r)(L− 1) +R(r).
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Proof. This is analogous to the proof of Proposition 21, with a few differences. Each element z
of Z corresponds to a cylinder set {x ∈ {0, 1}n : x[l] = z} and the collection of cylinder sets for
all z ∈ Z is a partition of {0, 1}n. Now we can run Algorithm 1 in a slightly different way, with
sharing steps defined by p′ = λp+ (1− λ)uz , where uz is the uniform distribution on the cylinder
set corresponding to z. �

In turn, we obtain the following approximation error bound:

Theorem 28. Let l ∈ [n]. The divergence from any conditional distribution in ∆k
n to the model

RBMk
n,m is bounded from above by

DRBMk
n,m
≤ n− l, whenever m ≥


1
22k(2l − 1), if k ≥ 1
3
82k(2l − 1) + 1, if k ≥ 3
1
42k(2l − 1 + 1/30), if k ≥ 21

.

In fact, the divergence from any conditional distribution in ∆k
n to RBMk

n,m is bounded from above
by DRBMk

n,m
≤ n− l, where l is the largest integer with m ≥ 2k−S(r)F (r)(2l − 1) +R(r).

Theorem 28 implies the universal approximation result given in Theorem 4 as the special case
with vanishing approximation error. We note the following weaker but practical version of Theo-
rem 28, which is the analogue of Corollary 5:

Corollary 29. Let k ≥ 1 and l ∈ [n]. The divergence from any conditional distribution in ∆k
n to

the model RBMk
n,m is bounded from above by DRBMk

n,m
≤ n− l, whenever m ≥ 1

22k(2l − 1).

For the theorem we used the approximability of the partition model with blocks {x : xλ = z},
z ∈ {0, 1}l, where λ = [l]. In fact, RBMk

n,m can approximate all powers of partition models with λ
equal to any subset of [n] of cardinality l. This larger class of conditionals does not yield improve-
ments of the universal approximation bound, but it can be used to improve the approximation error
bound. An analysis in this direction was provided by Montúfar et al. (2011) for RBM probability
models.

6 Dimension

Now we study the dimension of the set of conditional distributions RBMk
n,m (as a manifold, possibly

with singularities). Since this model is defined by marginalizing out the hidden units, several choices
of parameters may represent the same conditional distributions. Hence, in principle, the dimension
of a CRBM model may be smaller than the number of model parameters. When the dimension is
equal to the number of parameters, (n + k)m + n + m, or to the maximal possible dimension,
dim(∆k

n) = 2k(2n − 1), then RBMk
n,m is said to have the expected dimension. We will show that

RBMk
n,m has the expected dimension for most triplets (n, k,m).

A direct way of evaluating the dimension of a parametric model is to compute the rank of the
Jacobian of its parametrization. This approach leads to combinatorial problems that can be largely
captured by a piece-wise linearized version of the model, called the tropical model. Cueto et al.
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(2010) used this perspective to study the dimension of RBM probability models. Here we follow
the same idea in order to study the dimension of the conditional model.

We start by recalling the following two functions from coding theory, which are useful to express
some of the combinatorics involved in the analysis:

Definition 30. Let A2(n, d) denote the cardinality of the largest subset of {0, 1}n whose elements
are at least Hamming distance d apart. Let K2(n, d) denote the smallest cardinality of a subset of
{0, 1}n such that no element of {0, 1}n is farther than Hamming distance d apart from an element
of that set.

For the probability model RBMn,m, Cueto et al. (2010) obtained the following result:

• dim(RBMn,m) = nm+ n+m for m+ 1 ≤ A2(n, 3).

• dim(RBMn,m) = 2n − 1 for m ≥ K2(n, 1).

This shows that RBMn,m has the expected dimension for most pairs (n,m). From the dimension
of the probability model RBMn+k,m, we can lower-bound the dimension of the conditional model
RBMk

n,m in the following way:

Proposition 31. dim(RBMk
n,m) ≥ dim(RBMn+k,m)− (2k − 1), and

• dim(RBMk
n,m) ≥ (n+ k)m+ n+m+ k − (2k − 1) for m+ 1 ≤ A2(n+ k, 3).

• dim(RBMk
n,m) ≥ 2k(2n − 1) for m ≥ K2(n+ k, 1).

Proof. Each joint distribution of x and y has the form p(x, y) = p(y)p(x|y) and the set ∆k of all
marginals p(y) has dimension 2k−1. This shows the first statement. The items follow directly from
the corresponding items for the probability model. �

Proposition 31 shows that if the probability model RBMn+k,m is full dimensional, with dimen-
sion equal to the dimension of the joint probability simplex dim(∆n+k) = 2n+k − 1, then the
conditional model is full dimensional, with dimension equal to the dimension of the conditional
polytope dim(∆k

n) = 2k(2n − 1). Otherwise, however, the lower bounds from the proposition are
too loose and do not allow us to attest whether the conditional model has the expected dimension
or not, even if the probability model has the expected dimension. Hence we need to study the
conditional model in more detail. We prove the following result:

Theorem 32. The conditional model RBMk
n,m has the expected dimension in the following cases:

• When {0, 1}n+k admits m disjoint radius-1 Hamming balls whose union does not contain
any cylinder set [y] ⊆ {0, 1}n+k, y ∈ {0, 1}k and has a full rank complement, then

dim(RBMk
n,m) = (n+ k + 1)m+ n.

The condition is satisfied, for example, if m+ 1 ≤ A2(n+ k, 4).

• When m ≥ K2(n+ k, 1), then dim(RBMk
n,m) = 2k(2n − 1).
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Proof. The rank of the Jacobian of RBMk
n,m, with the parametrization from Definition 2, depends

on the parameter θ = (W,V, b, c) ∈ RN , N = n + m + (n + k)m. The maximum over all
possible choices of θ is the dimension of the model. Let hθ(v) := argmaxz∈{0,1}m p(z|v) denote
the most likely hidden state of the RBM given the visible state v = (x, y). After a few direct
algebraic manipulations, we find that the maximum rank of the Jacobian is bounded from below by
the maximum over θ of the dimension of the column-span of the matrix

Aθ =
[
(1, x, y)|(1, x, y)⊗ hθ(x, y)

]
(x,y)∈{0,1}n+k , (5)

modulo vectors whose (x, y)-th entries are independent of x given y. Here⊗ is the Kronecker prod-
uct defined by (aij)i,j ⊗ (bkl)k,l = (aijbkl)ik,jl. The modulo has the effect of disregarding p(y) in
the joint distributions p(x, y) = p(y)p(x|y). For example, from the first block ofAθ we can remove
the columns that correspond to y, without affecting the mentioned column-span. Summarizing, the
maximal column-rank of Aθ modulo the vectors whose (x, y)-th entries are independent of x given
y is a lower bound for the dimension of RBMk

n,m.
Note that Aθ depends on θ in a discrete way; the parameter space RN is partitioned in finitely

many regions where Aθ is constant. The piece-wise linear map thus emerging, with linear pieces
represented by the Aθ, is called the tropical CRBM morphism, and its image is called the tropical
CRBM model.

Each linear region of the tropical morphism corresponds to an inference function hθ : {0, 1}n+k →
{0, 1}m taking visible state vectors to the most likely hidden state vectors. Geometrically, any in-
ference function corresponds to m slicings of the (n + k)-dimensional unit hypercube. Namely,
every hidden unit divides the visible space {0, 1}n+k ⊂ Rn+k in two halfspaces, according to its
preferred state.

Each of these m slicings defines a column block of the matrix Aθ. More precisely,

Aθ = (A|AC1 | · · · |ACm) ,

whereA is the matrix with rows (1, v1, . . . , vn+k) for all v ∈ {0, 1}n+k, andAC is the same matrix,
with rows multiplied by the indicator function of the set C of points v classified as positive by a
linear classifier (slicing).

If we consider only linear classifiers that select rows of A corresponding to disjoint Hamming
balls of radius one (that is, such that the Ci are disjoint radius-one Hamming balls), then the rank
of Aθ is equal to the number of such classifiers times (n+ k + 1) (which is the rank of each block
ACi), plus the rank of A{0,1}n+k\∪i∈[m]Ci

(which is the remainder rank of the first block A). The
column-rank modulo functions of y is equal to the rank minus k + 1 (which is the dimension of
the functions of y spanned by columns of A), minus at most the number of cylinder sets [y] =
{(x, y) : x ∈ {0, 1}n} for some y ∈ {0, 1}k that are contained in ∪i∈[m]Ci. This completes the
proof of the general statement in the first item.

The example given in the first item is a consequence of the following observations. Each cylin-
der set [y] contains 2n points. If a given cylinder set [y] intersects a radius-1 Hamming ball B but
is not contained in it, then it also intersects the radius-2 Hamming sphere around B. Choosing the
radius-1 Hamming ball slicings C1, . . . , Cm to have centers at least Hamming distance 4 apart, we
can ensure that their union does not contain any cylinder set [y].

The second item is by the second item of Proposition 31; when the probability model RBMn+k,m

is full dimensional, then RBMk
n,m is full dimensional. �
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m
∖
n+ k 2 3 4 5 6 7 8 9 10

1 3 3 3 3 3 3 3 3 3

2 X X 3 3 3 3

3 X X 3 3 3 3

4 X X X 3 3 3

5 X X X 3 3 3

6 X X X 3 3 3

7 X X X 3 3 3

8 X X X X 3

9 X X X X 3

10 X X X X 3

Table 2: Illustration of Corollary 33.

In order to make the conditions on m and (n + k) more explicit, in the following corollary we
insert bounds on the functions A2(n+ k, 4) and K2(n+ k, 1) appearing in the theorem:

Corollary 33. The conditional model RBMk
n,m has the expected dimension in the following cases:

• If m ≤ 2(n+k)−blog2((n+k)2−(n+k)+2)c, then dim(RBMk
n,m) = (n+ k + 1)m+ n.

• If m ≥ 2(n+k)−blog2(n+k+1)c, then dim(RBMk
n,m) = 2k(2n − 1).

Proof. For the maximal cardinality of distance-4 binary codes of length l it is known thatA2(l, 4) ≥ 2r,
where r is the largest integer with 2r < 2l+1

l2−l+2
(Gilbert 1952; Varshamov 1957), and so A2(l, 4) ≥

2l−blog2(l2−l+2)c. On the other hand, for the minimal size of radius one covering codes of length l it
is known that K2(l, 1) ≤ 2l−blog2(l+1)c (Cueto et al. 2010). �

In particular, when m is large enough, the model may be full dimensional without being a
universal approximator. The same observation holds for RBM probability models. In fact, RBM3,2

is an example of a full dimensional RBM model which is not a universal approximator (see Montúfar
and Morton 2012). See Table 2 for an illustration of Corollary 33.

7 Conclusion

This paper gives a theoretical contribution towards understanding the representational capabilities
of CRBMs. CRBMs are based on the well studied RBM probability models. However, their analysis
differs substantially from one another, because the RBM tuples defined by CRBMs share parameters
and cannot be treated independently. We proved an extensive series of results that generalize recent
theoretical work on RBMs in a non-trivial way.

We addressed the classical problem of universal approximation, for which we showed that a
CRBM with k input, n output, and m hidden units can approximate every conditional distribution
of an n-bit random variable given a k-bit random variable without surpassing a Kullback-Leibler
approximation error bound of the form n + k − 1 − log2(2k−1 + m) (assuming optimal model
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parameters). Thus this model is a universal approximator whenever m ≥ 1
22k(2n − 1). In fact, for

large k, larger than about 50, our approximation error upper-bound has the form n+ k − 2.1437−
log2(2k−2.3263 + m), implying universal approximation whenever m ≥ 1

42k(2n − 29/30). We
think that this result is reasonably tight and that it closely describes the actual maximal model-
approximation-error of CRBMs. Our proof is based on an upper bound for the complexity of an
algorithm that packs Boolean cubes with sequences of non-overlapping stars, for which certain
improvements may still be possible.

It is worth mentioning that the set of target conditionals for which the approximation error is
maximal may be very small. We note that, besides upper-bounding the worst-case approximation
error, our results can be plugged into certain analytic integrals (Montúfar and Rauh 2014) to produce
upper-bounds for the expectation value of the approximation error when approximating conditionals
drawn from product Dirichlet densities on the conditional polytope.

For future work it would be interesting to extend our (optimal-parameter) model approximation
error analysis by an analysis of the CRBM training complexity or the errors resulting from non-
optimal parameter choices, and to test our theoretical bounds empirically.

In addition to the error bounds, we showed that a CRBM can approximate all binary functions
with k input bits and n output bits if the number of hidden units satisfies m ≥ 2k − 1 and only if
m ≥ 2k/2−(n+k)2/2n. This implies, in particular, that there are exponentially many deterministic
conditional distributions which can only be approximated arbitrarily well by a CRBM if the number
of hidden units is exponential in the number of input units. This aligns with well known examples
of functions that cannot be compactly represented by shallow feedforward networks, and reveals
some of the intrinsic constraints of CRBM models that may prevent them from grossly over-fitting.

We also studied a slightly more abstract problem, about the dimension of the set of condi-
tional distributions that can be represented by CRBMs. We showed that for all CRBMs with up
to exponentially many hidden units (in the number of inputs and outputs), the dimension of the
set of representable conditional distributions is equal to the number of CRBM model parameters,
(n + k)m + m + n. Thus, in all practical cases, CRBMs do not waste parameters, and, generi-
cally, there are only finitely many choices of the interaction and bias weights for which the model
produces the same conditional distribution.

The results presented in this work represent considerable advances relating the model complex-
ity and model accuracy of CRBMs. We think that the developed techniques can be used for studying
other conditional probability models as well. In particular, for future work it would be interesting
to compare the representational power of CRBMs and of combinations of CRBMs and feedforward
nets (combined models of this kind include CRBMs with retroactive connections and recurrent tem-
poral RBMs). Also, it would be interesting to apply our techniques to study stacks of CRBMs and
other multilayer conditional models. As a final remark, we note that although we focussed on the
case of binary units, the main ideas of our discussion extend to the case of discrete non-binary units.
However the combinatorics of the non-binary case is more challenging, with moderate efforts it is
possible to derive non-binary versions of our theorems.
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