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LOCAL GRADIENT ESTIMATE FOR HARMONIC FUNCTIONS ON
FINSLER MANIFOLDS

CHAO XIA

Abstract. In this paper, we prove the local gradient estimate for harmonic functions
on complete, noncompact Finsler measure spaces under the condition that the weighted
Ricci curvature has a lower bound. As applications, we obtain Liouville type theorems
on noncompact Finsler manifolds with nonnegative Ricci curvature.

1. Introduction

The study of harmonic functions is one of the center topics in geometric analysis. In
a seminal paper [21], Yau proved that complete Riemannian manifolds with nonnegative
Ricci curvature must have Liouville property. He derived a gradient estimate which is
nowadays important and essential to the theory of harmonic functions. Later, Cheng-Yau
[5] proved the following local version of Yau’s gradient estimate.

Theorem A ([21, 5]). Let Mn be an n-dimensional complete noncompact Riemannian
manifold with Ricci ≥ −K (K ≥ 0). Then there exists a constant Cn depending only on n,
such that every positive harmonic function u on geodesic ball B2R(p) ⊂ M satisfies

|∇ log u| ≤ Cn
1 +
√

KR
R

in BR(p).

The main objective of this paper is to generalize the local gradient estimate to Finsler
manifolds.

A Finsler manifold M is a differential manifold whose tangent spaces are equipped with
Minkowski norms F, but not necessary inner products. A Finsler manifold equipped with
a measure m is called a Finsler measure space (M, F,m). The class of Finsler measure
spaces is one of the most important metric measure spaces. There is a canonical gradient
∇u and Finsler-Laplacian ∆mu of a function u, defined on a Finsler manifold. Also the
harmonic functions on Finsler manifolds are solutions of ∆mu = 0. It is easy to see
that the harmonic functions are the local minimizers of the energy functional E(u) =∫

M
F2(x,∇u)dm. Note that this energy functional coincides with Cheeger’s one [4, 13]

in terms of upper gradients for general metric measure spaces. Unlike the Laplacian on
Riemannian manifolds, the Finsler-Laplacian is a nonlinear operator. In fact, this is the
major difference between Finsler and other metric measure spaces (See [1, 13]).

The research leading to these results has received funding from the European Research Council under the
European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no. 267087.
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On the other hand, the flag and Ricci curvatures are well defined on Finsler manifolds.
As in Riemannian manifolds, they describe implicitly global properties of Finsler man-
ifolds. On Finsler measure spaces, the weighted Ricci curvature RicN for N ∈ [n,∞]
was introduced by Ohta [10]. He proved that the condition that RicN has a lower bound is
equivalent to the curvature-dimension condition, introduced by Lott-Villani [8] and Sturm
[19, 20], for a Finsler measure space as a metric measure space. We refer to Section 2, or
[10, 13] for details of definitions.

Under the assumption that RicN has a lower bound, we are able to generalize the local
gradient estimate for harmonic functions on Riemannian manifolds to that for harmonic
functions on Finsler measure spaces whose Finsler structures F are uniformly smooth and
uniformly convex. The uniform smoothness and the uniform convexity mean that there
exist two uniform constants 0 < λ ≤ Λ < ∞ such that for x ∈ M, V ∈ TxM \ {0} and
W ∈ TxM, we have

λF2(x,W) ≤ gV(W,W) ≤ ΛF2(x,W),(1)

where gV is the induced metric on the tangent bundle of corresponding Finsler manifolds,
see (2) in Section 2.

Our main result is the following theorem.

Theorem 1.1. Let (Mn, F,m) be an n-dimensional forward geodesically complete, non-
compact Finsler measure space, equipped with a uniformly smooth and uniformly convex
Finsler structure F and a smooth measure m. Assume that RicN ≥ −K for some real
numbers N ∈ [n,+∞) and K ≥ 0. Let u be a positive harmonic function, i.e.

∆mu = 0

in weak sense in a forward geodesic ball B+
2R(p) ⊂ M. Then there exists some constant

C = C(N, λ,Λ), depending on N, the uniform constants λ and Λ in (1), such that

max
{
F(x,∇ log u(x)), F(x,∇(− log u(x)))

}
≤ C

1 +
√

KR
R

in B+
R(p).

The precise definitions of the Finsler measure spaces, forward geodesical completeness,
weighted Ricci curvature RicN , gradient ∇, Finsler-Laplacian ∆m will be given in Section
2 below. We give several remarks on Theorem 1.1.

Remarks.
(i) Theorem 1.1 does not coincide with the local gradient estimate on weighted Rie-

mannian manifold (M, g∇u,m) since RicN and the weighted Ricci curvature Ric∇u
N

of (M, g∇u,m) are different, as observed in [14]. In fact, the weighted Ricci cur-
vature RicN introduced by Ohta depends only on the Finsler structure F and the
measure m, while the weighted Ricci curvature Ric∇u

N depends on u. A simple
example is (Rn, ‖ · ‖,mBH), where ‖ · ‖ is a Minkowski norm and mBH denotes the
Busemann-Hausdorff measure. In this case, Ricn vanishes but Ric∇u

n does not.
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(ii) For N = n, Ricn ≥ −K means that Shen’s S -curvature vanishes and Ric ≥ −K.
Finsler manifolds of Berwald type equipped with Busemann-Hausdorff measure
satisfies that Shen’s S -curvature vanishes. In general, there may not exist any
measure with vanishing S -curvature. See [18, 10, 12].

(iii) Ohta-Sturm [14] proved the Li-Yau type gradient estimate for heat flow ut =

∆mu on compact Finsler manifolds. They proposed the question for noncompact
Finsler manifolds. Theorem 1.1 can be viewed as a special case, i.e., ut = 0. How-
ever, the Li-Yau type gradient estimate for noncompact Finsler manifolds is still
unknown.

(iv) The uniform smoothness and the uniform convexity was first introduced in Banach
space theory by Ball, Carlen and Lieb in [2]. In [11], Ohta gave a geometric
interpretation of these two conditions for metric spaces (see (1.3) and (1.4) in
[11]) and he also proved that a large class of Finsler manifolds satisfies them (see
Theorem 4.2 and Theorem 5.1 in [11]).

In the Riemannian case, Cheng-Yau [5] combined the Bochner technique and maxi-
mum principle to prove the local gradient estimate. This method turned out to be very
useful to many related problem, such as eigenvalue estimate, heat kernel estimate and so
on. It is natural to use the same method to handle the Finsler case. For compact Finsler
manifolds, it is possible to use the maximum principle since the Bochner formula for
F2(x,∇u) is similar as in Riemannian case, see [14]. For noncompact Finsler manifolds,
one should compute the equation for ηF2(x,∇u) and use the maximum principle, where η
is some cut-off function. However, some unexpected term appears, mainly because of the
nonlinearity of the Finsler-Laplacian. Thus the classical method of maximum principle
does not work for noncompact Finsler manifolds any more.

Fortunately, we find that the method of Moser’s iteration is effective to avoid the diffi-
culty caused by the nonlinearity of the Finsler-Laplacian. This is inspired by recent work
by Wang-Zhang [17] on similar result for p-Lapalcian on Riemannian manifolds. We
will start from a Bochner formula established recently by Ohta-Sturm [14] and ultilize
carefully Moser’s iteration to prove Theorem 1.1.

Recently, the local gradient estimate has been extended to Alexandrov spaces by Zhang-
Zhu [22], see also [7].

Several standard applications of Theorem 1.1 are the Harnack inequality and the Liou-
ville properties.

Corollary 1.1. Let (Mn, F,m) be as in Theorem 1.1 and u be a positive harmonic function
in geodesic ball B+

2R(p) ⊂ M. Then there exists some constant C = C(N, λ,Λ), depending
on N, λ and Λ, such that

sup
B+

R(p)
u ≤ eC(1+

√
KR) inf

B+
R(p)

u

Corollary 1.2. Let (Mn, F,m) be as in Theorem 1.1 with K = 0. Then any positive
harmonic function on M must be a constant.
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Corollary 1.3. Let (Mn, F,m) be as in Theorem 1.1 with K = 0. Then any harmonic
function u satisfying

lim
d(p,x)→∞

|u(x)|
d(p, x)

= 0 for some p ∈ M

must be a constant.

In the remaining part of this paper, we will first recall the basis of Finsler manifolds.
Then we prepare the analytic tool, the Sobolev inequality, for Moser’s iteration. Finally
we prove Theorem 1.1 and the corollaries.

2. Preliminaries on Finsler geometry

In this section we briefly recall the fundamentals of Finsler geometry, as well as the
recent developments on the analysis of Finsler geometry by Ohta-Sturm [10, 13, 14]. For
Finsler geometry, we refer to [3, 18].

2.1. Finsler measure spaces. Let Mn be a smooth, connected n-dimensional manifold.
A function F : T M → [0,∞) is called a Finsler structure (or Minkowski norm) if it
satisfies the following properties:

(i) F is C∞ on T M \ {0};
(ii) F(x, tV) = tF(x,V) for all (x,V) ∈ T M and all t > 0;

(iii) for every (x,V) ∈ T M \ {0}, the matrix

gi j(x,V) :=
∂2

∂Vi∂V j
(
1
2

F2)(x,V)

is positive definite.

Such a pair (Mn, F) is called a Finsler manifold. By a Finsler measure space we mean
a triple (Mn, F,m) constituted with a smooth, connected n-dimensional manifold M, a
Finsler structure F on M and a measure m on M. For every non-vanishing vector field V ,
gi j(x,V) induces a Riemannian structure gV on M via

gV(X,Y) =

n∑
i, j=1

gi j(x,V)XiY j, for X,Y ∈ TxM.(2)

In particular, gV(V,V) = F2(x,V).
A Finsler structure is said to be reversible if, in addition, F is even. Otherwise F is

non-reversible. One can define the reversed norm F̄(x,V) := F(x,−V) and the modulus
of reversibility

ρ := sup
V,0

F(x,V)
F̄(x,V)

.(3)
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It is easy to see that ρ ≡ 1 for reversible F. In general, under the assumption of uniform
smoothness and convexity, ρ can be estimated by λ or Λ by using (1):

F2(x,V) ≤
1
λ

gi j(x,−V)V iV j =
1
λ

F2(x,−V),(4)

F2(x,−V) ≥
1
Λ

gi j(x,V)(−V i)(−V j) =
1
Λ

F2(x,V).(5)

For p, q ∈ M, the distance function from p to q is defined by

dp(q) := d(p, q) := inf
γ

∫ 1

0
F(γ(t), γ̇(t))dt,

where the infimum is taken over all C1-curves γ : [0, 1] → M such that γ(0) = p and
γ(1) = q. Note that the distance function may not be symmetric unless F is reversible.
A C∞-curve γ : [0, 1] → M is called a geodesic (of constant speed) if F(γ, γ̇) is constant
and it is locally minimizing. The forward geodesic balls are defined by

B+
R(p) := {q ∈ M : d(p, q) < R}.

The exponential map expp : TpM → M is defined by expp(v) = γ(1) for v ∈ TpM if
there is a geodesic γ : [0, 1] → M with γ̇(0) = v. A Finsler manifold (M, F) is said
to be forward geodesically complete if the exponential map is defined on the entire T M.
By Hopf-Rinow theorem (see [3]), any two points in M can be connected by a minimal
forward geodesic and the forward closed balls B+

R(p) are compact. For a point p ∈ M and
a unit vector v ∈ TpM, let t0 = sup{t > 0| the geodesic expp(tv) is minimal}. If t0 < ∞,
we call expp(t0v) a cut point of x. All the cut points of x is said to be the cut locus of p.
The cut locus of p always has null measure and dp is C1 outside the cut locus of p (see
[3]).

There exists a unique linear connection, which is called the Chern connection, on
Finsler manifolds. The Chern connection is determined by the following structure equa-
tions, which characterize “torsion freeness”:

DV
XY − DV

Y X = [X,Y]

and “almost g-compatibility”

Z(gV(X,Y)) = gV(DV
Z X,Y) + gV(X,DV

Z Y) + CV(DV
Z V, X,Y)

for V ∈ T M \ {0}, X,Y,Z ∈ T M. Here

CV(X,Y,Z) := Ci jk(V)XiY jZk =
1
4

∂3F2

∂V iV jVk (·,V)XiY jZk

denotes the Cartan tensor.
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2.2. Gradient, Hessian and Finsler-Laplacian. We shall introduce the Finsler-Laplacian
on Finsler measure spaces.

Given a Finsler structure F on M, there is a natural dual norm F∗ on the cotangent
bundle T ∗M, which is defined by

F∗(x, ξ) := sup
F(x,V)≤1

ξ(V) for any ξ ∈ T ∗x M.

One can show that F∗ is also a Minkowski norm on T ∗M and

g∗i j(x, ξ) :=
∂2

∂ξi∂ξ j
(
1
2

F∗2)(x, ξ)

is positive definite for every (x, ξ) ∈ T ∗M \ {0}.
The Legendre transform is defined by the map l : TxM → T ∗x M :

l(V) :=
{

gV(V, ·) for V ∈ TxM \ {0},
0 for V = 0.

Denote by gi j(x,V) the inverse matrix of gi j(x,V). One can verify that

F(V) = F∗(l(V)), for all V ∈ T M and g∗i j(x, l(V)) = gi j(x,V).

From the uniform smoothness and convexity (1) one easily see that gi j is uniform elliptic
in the sense that there exists two constants 0 < λ̃ ≤ Λ̃ < ∞, depending on λ and Λ, such
that for x ∈ M, V ∈ TxM \ {0} and ξ ∈ T ∗x M, we have

λ̃F∗2(x, ξ) ≤
n∑

i, j=1

gi j(x,V)ξiξ j ≤ Λ̃F∗2(x, ξ).(6)

Let u : M → R be a smooth function on M and Du be its differential 1-form. The
gradient of u is defined as ∇u(x) := l−1(Du(x)) ∈ TxM. Denote Mu := {Du , 0}. Locally
we can write in coordinates

∇u =

n∑
i, j=1

gi j(x,∇u)
∂u
∂xi

∂

∂x j
in Mu.

Notice that gi j(x,∇u) = g∗i j(x,Du) and F2(x,∇u) = F∗2(x,Du).
The Hessian of u is defined by using Chern connection as

∇2u(X,Y) = g∇u(D∇u
X ∇u,Y),

One can show that ∇2u(X,Y) is symmetric, see [14, 16].
Let V ∈ T M be a smooth vector field on M. The divergence of V with respect to m is

defined by

divmVdm = d(Vydm),

where Vydm is the (n − 1) form given by

Vydm(W1, · · · ,Wn−1) = dm(V,W1, · · · ,Wn−1), Wi ∈ T M, i = 1, · · · , n − 1.
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In local coordinates (xi), expressing dm = eΦdx1dx2 · · · dxn, we can write divmV as

divmV =

n∑
i=1

(
∂V i

∂xi + V i∂Φ

∂xi

)
.

The Finsler-Laplacian, can now be defined by

∆mu := divm(∇u).

Recall that the classes L2
loc(M) and W1,2

loc (M) are defined only in terms of the manifold
structure of M (independent of F and m). Let

W1,2(M) =

{
u ∈ W1,2

loc (M)
⋂

L2(M) :
∫

M
F2(x,∇u)dm < ∞

}
and W1,2

0 (M) be the closure of C∞0 (M) under the norm

‖u‖W1,2(M) = ‖u‖L2(M) +

(∫
M

F2(x,∇u)dm
) 1

2

.

We remark that the Finsler-Laplacian is better to be viewed in a weak sense due to the
lack of regularity, that is, for u ∈ W1,2(M),∫

M
φ∆mudm = −

∫
M

Dφ(∇u)dm for φ ∈ C∞0 (M).

One can also define a weighted Laplacian on M. Given a weakly differentiable function
u and a vector field V which does not vanish on Mu, the weighted Laplacian is defined on
the weighted Riemannian manifold (M, gV ,m) by

∆V
mu := divm(∇Vu),

where

∇Vu :=
{ ∑n

i, j=1 gi j(x,V) ∂u
∂xi

∂
∂x j

for V ∈ TxM \ {0},
0 for V = 0.

Similarly, the weighted Laplacian can be viewed in a weak sense. We note that ∆∇u
m u =

∆mu.

2.3. Weighted Ricci curvature and Bochner-Weitzenböck formula. The Ricci curva-
ture of Finsler manifolds is defined as the trace of the flag curvature. Explicitly, given two
linearly independent vectors V,W ∈ TxM \ {0}, the flag curvature is defined by

KV(V,W) =
gV(RV(V,W)W,V)

gV(V,V)gV(W,W) − gV(V,W)2 ,

where RV is the Chern curvature (or Riemannian curvature):

RV(X,Y)Z = DV
XDV

Y Z − DV
Y DV

XZ − DV
[X,Y]Z.
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Then the Ricci curvature is

Ric(V) := F(V)2
n−1∑
i=1

KV(V, ei),

where e1, · · · , en−1,
V

F(V) form an orthonormal basis of TxM with respect to gV .
We recall the definition of the weighted Ricci curvature on Finsler measure spaces,

which was introduced by Ohta in [10], motivated by the work of Lott-Villani [8] and
Sturm [19, 20] on general metric measure spaces.

Definition 2.1 ([10]). Given a unit vector V ∈ TxM, let η : [−ε, ε] → M be the geodesic
such that η̇(0) = V. Decompose m as m = e−Ψdvolη̇ along η, where volη̇ is the volume
form of gη̇ as a Riemannian metric. Then

Ricn(V) :=
{

Ric(V) + (Ψ ◦ η)′′(0) if (Ψ ◦ η)′(0) = 0,
−∞ otherwise ;

RicN(V) := Ric(V) + (Ψ ◦ η)′′(0) − (Ψ◦η)′(0)2

N−n , for N ∈ (n,∞);
Ric∞(V) := Ric(V) + (Ψ ◦ η)′′(0).

For c ≥ 0 and N ∈ [n,∞], define

RicN(cV) := c2RicN(V).

Ohta proved in [10] that, for K ∈ R, the condition RicN(V) ≥ KF2(V) is equivalent to
Lott-Villani and Sturm’s weak curvature-dimension condition CD(K,N). We remark that
Ricn(V) = Ric(V) for Berwald manifolds equipped with Busemann-Hausdorff measure
(see [18] and [10]). In particular, Ricn ≡ 0 for (Rn, ‖ · ‖,mBH) (mBH is just a scalar multiply
the Lesbegue measure).

The following Bochner-Weitzenböck type formula, established by Ohta-Sturm [14],
will play a role as the starting point in this paper.

Theorem 2.1 ([14], Theorem 3.6). Given u ∈ W2,2
loc (M)

⋂
C1(M) with ∆mu ∈ W1,2

loc (M), we
have

−

∫
M

Dη
(
∇∇u

(
F2(x,∇u)

2

))
dm =

∫
M
η
{
D(∆mu)(∇u) + Ric∞(∇u) + ‖∇2u‖2HS (∇u)

}
dm

as well as

−

∫
M

Dη
(
∇∇u

(
F2(x,∇u)

2

))
dm ≥

∫
M
η
{
D(∆mu)(∇u) + RicN(∇u) +

(∆mu)2

N

}
dm

for any N ∈ [n,∞] and all nonnegative functions η ∈ W1,2
0 (M)

⋂
L∞(M). Here ‖∇2u‖2HS (∇u)

denotes the Hilbert-Schmidt norm with respect to g∇u.
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3. Local Poincaré inequality and Sobolev inequality

The Sobolev inequality is necessary to run Moser’s iteration. In view of the standard
theory for general metric measure spaces, one need a volume doubling condition and a
local uniform Poincaré inequality to prove the local Sobolev inequality. From now on, we
denote BR = B+

R(p) for some p ∈ M for simplicity. For K ≥ 0 and n ≤ N < ∞, we define

sK,N(t) =


√

N−1
K sinh(

√
K

N−1 t), if K > 0,
t, if K = 0.

The volume doubling condition follows from the infinitesimal Bishop-Gromov’s vol-
ume comparison theorem, which was proved by Ohta [10].

Theorem 3.1 ([10], Theorem 7.3). Let (M, F,m) be a complete Finsler manifold satisfying
RicN ≥ −K, K ≥ 0. For p ∈ M, v ∈ TpM with F(v) = 1, let η : [0,T ]→ M be the minimal
geodesic η(t) = expp(tv) for some T > 0, which does not cross the cut locus of p. Suppose
dm(η(t)) = e−V(η̇(t))dvolη̇(t). Then the function

e−V(η̇(t))tn−1detg0,t(D expp |tv)

sK,N(t)N−1 is nonincreasing,

where detg0,t denotes the determinant with respect to gη̇(0) and gη̇(t) and D expp |tv denotes
the differential of the exponential map. Futhermore, for R1 ≥ R2, we have

m(BR1)
m(BR2)

≤

∫ R1

0
sN−1

K,N (t)dt∫ R2

0
sN−1

K,N (t)dt
≤ e2

√
KR1

(
R1

R2

)N

.

We now prove the local uniform Poincaré inequality. The method may be familiar to
experts. However, since we have not found this inequality for the Finsler case in any
references, for the readers’ convenience, we outline the proof here.

Theorem 3.2. Let (M, F,m) be a forward geodesically complete Finsler manifold satis-
fying RicN ≥ −K, K > 0. Then there exist c = c(N, λ,Λ) and C = C(N, λ,Λ), depending
only on N, λ and Λ, such that∫

BR

|u − ū|2dm ≤ ceC
√

KRR2
∫

BR

F2(x,∇u)dm(7)

for BR ⊂ M and u ∈ W1,2
loc (M). Here ū = 1

m(BR)

∫
BR

udm.

To prove Theorem 3.2, we prove first a slightly weak local Poincaré inequality.

Lemma 3.1. Let (M, F,m) be a forward geodesically complete Finsler manifold satisfying
RicN ≥ −K, K ≥ 0. Then there exist c = c(N, λ,Λ) and C = C(N, λ,Λ), depending only
on N, λ and Λ, such that∫

BR

|u − ū|2dm ≤ ceC
√

KRR2
∫

B(ρ+1)2R

F2(x,∇u)dm(8)

for B(ρ+1)2R ⊂ M and u ∈ W1,2
loc (M), where ρ is the modulus of reversibility (3).
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Proof. For x, y ∈ BR, Let γxy : [0, d(x, y)] → M be a minimal geodesic from x to y with
respect to F with γ̇(0) = v. Notice that

−

∫ d(y,x)

0
F(∇u(γyx(t)))dt ≤ u(y) − u(x) ≤

∫ d(x,y)

0
F(∇u(γxy(t)))dt.

Hence we have∫
BR

|u − ū|2dm ≤
1

m(BR)

∫
BR

∫
BR

|u(x) − u(y)|2dm(x)dm(y)

≤
1

m(BR)

∫
BR

∫
BR

(∫ d(x,y)

0
F(∇u(γxy(t)))dt +

∫ d(y,x)

0
F(∇u(γyx(t)))dt

)2

dm(x)dm(y)

=
4

m(BR)

∫
BR

∫
BR

(∫ d(x,y)

0
F(∇u(γxy(t)))dt

)2

dm(x)dm(y)

≤
4(ρ + 1)R

m(BR)

∫
BR

∫
BR

∫ d(x,y)

0
F2(∇u(γxy(t)))dtdm(x)dm(y).(9)

For simplicity of notation, we denote by d = d(x, y). Recall the modulus of reversibility
ρ = supv,0

F(v)
F̄(v) . We have

d ≤ d(x, p) + d(p, y) ≤ ρd(p, x) + d(p, y) ≤ (ρ + 1)R.(10)

Note that γ̄yx(t) := γxy(d − t) is the geodesic from y to x with respect to the reversed
norm F̄. It is easy to see from definition of F∗ that F∗(Du) = F̄∗(−Du), which implies

F(∇u) = F̄(∇̄(−u)),(11)

where ∇̄(−u) is the gradient vector of −u with respect to F̄. Thus∫ d/2

0
F2(∇u(γxy(t)))dt =

∫ d

d/2
F2(∇u(γxy(d − t)))dt =

∫ d

d/2
F̄2(∇̄(−u)(γ̄yx(t)))dt.(12)

Replacing (12) into (9), we have∫
BR

|u − ū|2dm ≤
1

m(BR)

∫
BR

∫
BR

|u(x) − u(y)|2dm(x)dm(y)

≤
4(ρ + 1)R

m(BR)

∫
BR

∫
BR

∫ d

d
2

(
F2(∇u(γxy(t))) + F̄2(∇̄(−u)(γ̄yx(t)))

)
dtdm(x)dm(y).(13)

For any z = γxy(t), one can decompose

dm(z) = e−V(γ̇xy(t))dvolgγ̇xy(t)) = e−V(γ̇xy(t))detg0,t(D expx |tv)t
n−1dtdξx,(14)

where dξx denotes the area form of unit sphere {V ∈ TxM : F(x,V) = 1} in TxM. Now let
φx,t : M → M be the map φx,t(y) = γxy(t) = expx(tv). From Theorem 3.1, we know that
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for t ∈ [d/2, d],

e−V(γ̇xy(t)tn−1 detg0,t(Dφx,t)
e−V(γ̇xy(d)dn−1 detg0,d (Dφx,d)

≥
sK,N(t)N−1

sK,N(d)N−1 ≥

( t
d

)N−1
e−
√

(N−1)Kt ≥
1

2N−1 e−(ρ+1)
√

(N−1)KR.(15)

The last inequality follows from (10). It follows from (14) and (15) that

(16)∫
BR

∫
BR

∫ d

d
2

F2(∇u(γxy(t)))dtdm(x)dm(y)

=

∫
BR

∫
BR

∫ d

1
2 d

F2(φx,t(y),∇u(φx,t(y)))dtdm(y)dm(x)

≤ cNeCN,ρ
√

KR
∫

BR

∫
BR

∫ d

1
2 d

F2(φx,t(y),∇u(φx,t(y)))
e−V(γ̇xy(t))tn−1 detg0,t(Dφx,t)

e−V(γ̇xy(d))dn−1 detg0,d (Dφx,d)
dtdm(y)dm(x)

≤ cNeCN,ρ
√

KR
∫ (ρ+1)R

0

∫
BR

∫
BR

F2(φx,t(y),∇u(φx,t(y)))
e−V(γ̇xy(t))tn−1 detg0,t(Dφx,t)

e−V(γ̇xy(d))dn−1 detg0,d (Dφx,d)
dm(y)dm(x)dt

= cNeCN,ρ
√

KR
∫ (ρ+1)R

0

∫
BR

∫
φx,t(BR)

F2(z,∇u(z))dm(z)dm(x)dt

≤ (ρ + 1)cNReCN,ρ
√

KRm(BR)
∫

B(ρ+2)R

F2(z,∇u(z))dm(z).

Since the Ricci lower bound is common for F and F̄, the above computation still holds
for F̄ and γ̄yx, i.e., we have∫

BR

∫
BR

∫ d

d
2

F̄2(∇̄(−u)(γ̄yx(t)))dtdm(x)dm(y)(17)

≤ (ρ + 1)cNReCN,ρ
√

KRm(BR)
∫

B(ρ+1)2R

F̄2(z, ∇̄(−u)(z))dm(z).

Here B(ρ+2)R is replace by B(ρ+1)2R since d(p, z) ≤ d(p, x) + d(x, z) ≤ R + ρd̄(x, z) ≤ R +

ρ(ρ + 1)R ≤ (ρ + 1)2R.
Substituting (16) and (17) into (13), and use the fact (11), we conclude that∫

BR

|u − ū|2dm ≤ 8cN(ρ + 1)2R2eCN,ρ
√

KR
∫

B(ρ+1)2R

F2(z,∇u(z))dm(z).

We finish the proof of Lemma 3.1 by virtue of (4). �

Proof of Theorem 3.2: By theWhitney-type covering argument (Corollary 5.3.5 in [15]),
the uniform weak Poincaré inequality (8) can be improved in a standard way to the uni-
form Poincaré inequality (7). �
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As long as the uniform local Poincaré inequality, Theorem 3.2 and the Bishop-Gromov
volume comparison theorem, Theorem 3.1, are available, one can follow the same ar-
gument of Lemma 3.5 by setting A(R) =

√
KR in Munteanu-Wang [9] (see also [6]) to

prove the following local uniform Sobolev inequality. In fact, their argument only used
the structure of metric spaces. Here one only needs to be careful of the non-revesiblity of
F as in the proof of Lemma 3.1.

Theorem 3.3. Let (M, F,m) be a forward geodesically complete Finsler manifold satisfy-
ing RicN ≥ −K, K > 0. Then there exist constants ν > 2 and C = C(N, λ,Λ) depending
only on N, λ and Λ, such that(∫

BR

|u − ū|
2ν
ν−2 dm

) ν−2
ν

≤ eC(1+
√

KR)R2m(BR)−
2
ν

∫
BR

F∗2(x,Du)dm(18)

for BR ⊂ M and u ∈ W1,2
loc (M). Consequently,(∫

BR

|u|
2ν
ν−2 dm

) ν−2
ν

≤ eC(1+
√

KR)R2m(BR)−
2
ν

∫
BR

F∗2(x,Du) + R−2u2dm.(19)

4. Proof of Theorem 1.1

Let u be a positive harmonic function on B2R, ∆mu = 0. It was proved that u ∈
W2,2

loc (B2R)
⋂

C1,α(B2R) (see [13]). Denote v = log u. One can easily verify that

∆mv = −F2(x,∇v).(20)

Let f (x) = F2(x,∇v). Then f ∈ W1,2
loc (B2R)

⋂
Cα(B2R). It follows from the Bochner

formula in Theorem 2.1 and (20) that for 0 ≤ η ∈ W1,2
0 (B2R)

⋂
L∞(B2R),∫

M
Dη

(
∇∇v f

)
dm ≤

∫
M
η

(
2D f (∇v) − 2RicN(∇v) −

2 f 2

N

)
dm.(21)

Note that, it follows from Lemma 3.5 in [10] that ∇∇v f = 0 a.e. on f −1(0) = M \ Mv.
Therefore the LHS of (21) is actually integrated over Mv

⋂
B2R.

Let η = φ2 f β, with φ ∈ C∞0 (B2R), 0 ≤ φ ≤ 1, and β > 1. Then η is an admissible test
function for (21). Hence we have from (21) and RicN ≥ −K that∫

Mv
⋂

B2R

βφ2 f β−1gi j(x,∇v) fi f j + 2φ f βgi j(x,∇v) fiφ jdm

≤

∫
B2R

φ2 f β
(
2D f (∇v) + 2K f −

2 f 2

N

)
dm.(22)

On Mv, we know from (6) and Cauchy-Schwarz inequality that

gi j(x,∇v) fi f j ≥ λ̃F(x,∇ f )2,

|gi j(x,∇v) fiφ j| ≤ Λ̃F(x,∇ f )F∗(x,Dφ).
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Hence ∫
Mv

⋂
B2R

βφ2 f β−1gi j(x,∇v) fi f jdm ≥ λ̃

∫
Mv

βφ2 f β−1F(x,∇ f )2dm

= λ̃

∫
B2R

βφ2 f β−1F(x,∇ f )2dm,(23)

∫
Mv

⋂
B2R

−2φ f βgi j(x,∇v) fiφ jdm ≤ Λ̃

∫
Mv

⋂
B2R

2φ f βF(x,∇ f )F∗(x,Dφ)dm

= Λ̃

∫
B2R

2φ f βF(x,∇ f )F∗(x,Dφ)dm.(24)

Combining (22) – (24), and taking into account that

D f (∇v) ≤ F(x,∇v)F(x,∇ f ) = f
1
2 F(x,∇ f ),

we have

λ̃
4β

(β + 1)2

∫
B2R

φ2F2(x,∇ f
β+1

2 ) ≤ Λ̃
4

β + 1

∫
B2R

φ f
β+1

2 F∗(x,Dφ)F(x,∇ f
β+1

2 )

+
4

β + 1

∫
B2R

φ2 f
β+2

2 F(x,∇ f
β+1

2 )

−

∫
B2R

2
N
φ2 f β+2 +

∫
B2R

2Kφ2 f β+1.

Using Hölder inequality, we obtain∫
B2R

φ2F2(x,∇ f
β+1

2 ) ≤ C1

∫
B2R

F∗2(x,Dφ) f β+1 + C2

∫
B2R

φ2 f β+2

−C3β

∫
B2R

φ2 f β+2 + C4βK
∫

B2R

φ2 f β+1.

We remark that from now on, the constant C1,C2, · · · , depend only on N, λ,Λ.
Notice that F∗(x,D f ) = F(x,∇ f ). For β ≥ 2C2

C3
, we have∫

B2R

F∗2(x,D(φ f
β+1

2 )) +
1
2

C3β

∫
B2R

φ2 f β+2

≤ 2C1

∫
B2R

F∗2(x,Dφ) f β+1 + C4βK
∫

B2R

φ2 f β+1.(25)

Using Sobolev inequality (19), we obtain(∫
B2R

φ2χ f (β+1)χ
) 1
χ

≤ eC5(1+
√

KR)R2m(B2R)−
2
ν

(
C6

∫
B2R

F∗2(x,Dφ) f β+1

+C7(βK + R−2)
∫

B2R

φ2 f β+1 − β

∫
B2R

φ2 f β+2
)
,(26)

where χ = ν
ν−2 .
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We first use (26) to prove the following lemma.

Lemma 4.1. There exists some large positive constant C = C(N, λ,Λ) depending on N, λ
and Λ, such that for β0 = C(1 +

√
KR) and β1 = (β0 + 1)χ, we have f ∈ Lβ1(B 3

2 R) and

‖ f ‖
Lβ1

(
B 3

2 R

) ≤ C8
(1 +

√
KR)2

R2 m(B2R)
1
β1 .(27)

Proof. Let C9 ≥
2C2
C3

such that β0 = C9(1 +
√

KR) satisfies (25) and (26). we rewrite (26)
as (∫

B2R

φ2χ f (β0+1)χ
) 1
χ

≤ eC10β0m(B2R)−
2
ν

(
C6R2

∫
B2R

F∗2(x,Dφ) f β0+1

+C11β
3
0

∫
B2R

φ2 f β0+1 − β0R2
∫

B2R

φ2 f β0+2
)
.(28)

We estimate the second term in RHS of (28) as follows,

C11β
3
0

∫
B2R

φ2 f β0+1 = C11β
3
0

∫
{ f≥2C11β

2
0R−2}

φ2 f β0+1 +

∫
{ f<2C11β

2
0R−2}

φ2 f β0+1


≤

1
2
β0R2

∫
B2R

φ2 f β0+2 + C12β
3
0(
β0

R
)2(β0+1)m(B2R).(29)

For the first term in RHS of (28), we let φ = ψβ0+2 with ψ(x) = ψ̃(dp(x)) ∈ C∞0 (B2R)
satisfying

0 ≤ ψ̃ ≤ 1, ψ̃ ≡ 1 in [0,
3
2

R), |ψ̃′| ≤
C13

R
.

Since F∗(x,Ddp) = 1 a.e., ψ satisfies

0 ≤ ψ ≤ 1, ψ ≡ 1 in B 3
2 R, F∗(x,Dψ) ≤

C
R
.

Hence R2F∗2(x,Dφ) ≤ C14β
2
0φ

2(β0+1)
β0+2 . Then by Hölder and Young inequalities,

C6R2
∫

B2R

F∗2(x,Dφ) f β0+1 ≤ C15β
2
0

∫
B2R

φ
2(β0+1)
β0+2 f β0+1

≤ C15β
2
0

(∫
B2R

φ2 f β0+2
) β0+1
β0+2

m(B2R)
1

β0+2

≤
1
2
β0R2

∫
B2R

φ2 f β0+2 + C16β
β0+3
0 R−2(β0+1)m(B2R).(30)

Replacing the estimates (29) and (30) into (28), we obtain(∫
B2R

φ2χ f (β0+1)χ
) 1
χ

≤ eC10β0(C12 + C16)β3
0(
β0

R
)2(β0+1)m(B2R)1− 2

ν .
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Taking the (β0 + 1)-th roots on both sides, we get

‖ f ‖Lβ1 (B 3
2 R) ≤ C17(

β0

R
)2m(B2R)

1
β1 .

�

Now we start from (26) and use the standard Moser iteration to prove Theorem 1.1. Let
Rk = R + R

2k , φk ∈ C∞0 (BRk) satisfy

0 ≤ φk ≤ 1, φk ≡ 1 in BRk+1 , F∗(x,Dφk) ≤ C
2k

R
.

Let β0, β1 be the number in Lemma 4.1 and βk+1 = βkχ for k ≥ 1, one can deduce from
(26) with β + 1 = βk and φ = φk that (we have dropped the third term in the RHS of (26)
since it is negative)

‖ f ‖Lβk+1 (BRk+1 ) ≤ eC18
β0
βk m(B2R)−

2
ν

1
βk (4k + β2

0βk)
1
βk ‖ f ‖Lβk (BRk ).

Hence by iteration we get

‖ f ‖L∞(BR) ≤ eC18β0
∑

k
1
βk m(B2R)−

2
ν

∑
k

1
βk

∏
k

(4k + β3
0χ

k)
1
βk ‖ f ‖Lβ1 (B 3

2 R).

Since
∑

k
1
βk

= ν
2

1
β1

and
∑

k
k
βk

converges, we have

‖ f ‖L∞(BR) ≤ C19eC20
β0
β1 β

3ν
2

1
β1

0 m(B2R)−
1
β1 ‖ f ‖Lβ1 (B 3

2 R)

≤ C21m(B2R)−
1
β1 ‖ f ‖Lβ1 (B 3

2 R).

Using Lemma 4.1, we conclude

‖ f ‖L∞(BR) ≤ C
(1 +

√
KR)2

R2 ,

which implies

‖F(x,∇ log u)‖L∞(BR) ≤ C
1 +
√

KR
R

.

For F(x,∇(− log u)), the same argument works. Thus we finish the proof of Theorem
1.1. �

We now prove Corollary 1.1-1.3.
Proof of Corollary 1.1. Let y, z ∈ BR and γ : [0, 1] → M be a minimizing geodesic from
y to z. Then

log u(y) − log u(z) =

∫ 1

0

d
dt

log u(γ(t))dt

≤ (ρ + 1)R max
x∈BR

F(x,∇ log u(x)) ≤ C(1 +
√

KR).

The same holds for log u(z) − log u(y). We finish the proof. �
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Proof of Corollary 1.2. Letting R → ∞ in Theorem 1.1, we get that F(x,∇ log u) =

F(x,∇(− log u)) = 0. Hence u is a constant. �

Proof of Corollary 1.3. Let v(x) = 2 maxB2R |u| + u(x). v is a positive harmonic function
on (M, F,m). Thus

max
BR

F(x,∇u) = max
BR

F(x,∇v) ≤ C
2 maxB2R |u| + u(x)

R
≤ C

3 maxB2R |u|
R

.

By letting R → ∞, we see from the growth assumption that the RHS tends to 0. Hence u
is a constant. �
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