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Abstract. We consider a quasilinear parabolic stochastic partial dif-
ferential equation driven by a multiplicative noise and study regularity
properties of its weak solution satisfying classical a priori estimates. In
particular, we determine conditions on coefficients and initial data un-
der which the weak solution is Hölder continuous in time and possesses
spatial regularity that is only limited by the regularity of the given data.
Our proof is based on an efficient method of increasing regularity: the
solution is rewritten as the sum of two processes, one solves a linear par-
abolic SPDE with the same noise term as the original model problem
whereas the other solves a linear parabolic PDE with random coeffi-
cients. This way, the required regularity can be achieved by repeatedly
making use of known techniques for stochastic convolutions and deter-
ministic PDEs.

1. Introduction

In this paper, we are interested in the regularity of weak solutions of
quasilinear parabolic stochastic partial differential equation driven by a mul-
tiplicative noise. Let D ⊂ RN be a bounded domain with smooth boundary,
let T > 0 and set DT = (0, T )×D, ST = (0, T ]×∂D. We study the following
problem
(1.1)

du = div(B(u)) dt+ div (A(u)∇u) dt+ F (u) dt+H(u) dW in DT ,

u = 0 in ST ,

u(0) = u0 in D.

where W a cylindrical Wiener process on some Hilbert space K and H a
mapping with values in the space of the γ-radonifying operators from K to
certain Sobolev spaces. The precise description of the problem setting will
be given in the next section.

It is a well known fact in the field of PDEs and SPDEs that many equa-
tions do not, in general, have classical or strong solutions and can be solved
only in some weaker sense. Unlike deterministic problems, in the case of
stochastic equations we can only ask whether the solution is smooth in the
space variable since the time regularity is limited by the regularity of the
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stochastic integral. Thus, the aim of the present work is to determine con-
ditions on coefficients and initial data under which there exists a spatially
smooth solution to (1.1).

Such a regularity result is fundamental and interesting by itself. Equa-
tions of the form (1.1) appear in many sciences. Regularity of solutions is an
important property when one wants to study qualitative behaviour. It is also
a preliminary step when studying numerical approximations. Our original
motivation is that such models arise as limit of random kinetic equations.
An example of such equations is treated in [8]. The problem is linear there
and the limit is a limit stochastic parabolic equation. But we wish to treat
more general kinetic equations and expect limit equations of the form (1.1).
The rigourous justification of this limit requires the results obtained in this
article.

The issue of existence of a classical solution to deterministic parabolic
problems is well understood, among the main references stands the extensive
book [12] which is mainly concerned with the solvability of initial-boundary
value problems and the Cauchy problem to the basic linear and quasilinear
second order PDEs of parabolic type. A special attention is paid to the con-
nection between the smoothness of solutions and the smoothness of known
data entering into the problem (initial condition and coefficients), neverthe-
less, due to technical complexity of the proofs a direct generalization to the
stochastic case is not obvious.

In the case of linear parabolic problems, let us mention the classical
Schauder theory (see e.g. [13]) that provides a priori estimates relating
the norms of solutions of initial- boundary value problems, namely the par-
abolic Hölder norms, to the norms of the known quantities in the problems.
These results are usually employed in order to deal with quasilinear equa-
tions: the application of the Schauder fixed point theorem leads easily to
the existence of a smooth solution under very weak hypotheses on the coef-
ficients. In our proof, we make use of the Schauder theory as well, yet in an
entirely different approach.

Regularity of parabolic problems in the stochastic setting was also studied
in several works. In the previous work of the third author [11], semilinear
parabolic SPDEs (i.e. the diffusion matrix A independent of the solution)
were studied and a regularity result established by using semigroup argu-
ments. In [9], a maximum principle is obtained for a SPDE similar to (1.1)
but with a more general diffusion H, it may depend on the gradient of u.
Hölder continuity of solutions to nonlinear parabolic systems under suitable
structure conditions was proved in [3] by energy methods. In comparison
to this work, the quasilinear case considered in the present paper is more
delicate and different techniques need to be applied.

The transposition of the deterministic method exposed in [12] seems to be
quite difficult. Fortunately, we have found a trick to avoid this. We introduce
a new method that is based on a very simple idea: a weak solution to (1.1)
that satisfies a priori estimates is decomposed into two parts u = y + z
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where z is a solution to a linear parabolic SPDE with the same noise term
as (1.1) and y solves a linear parabolic PDE with random coefficients. As a
consequence, the problem of regularity of u is reduced to showing regularity
of z and regularity of y which can be handled by known techniques for
stochastic convolutions and deterministic PDEs. It is rather surprising that
this classical idea used to treat semilinear equations can be applied also for
quasilinear problems.

Let us explain this method more precisely. As the main difficulties come
from the second order and the stochastic term, for simplicity of the intro-
duction we assume B = F = 0 and consider periodic boundary conditions,
i.e. D = TN is the N-dimensional torus. Let u be a weak solution to

(1.2)

{
du = div (A(u)∇u) dt+H(u) dW,

u(0) = u0,

and let z be a solution to{
dz = ∆z dt+H(u) dW,

z(0) = 0.

Then z is given by the stochastic convolution with the semigroup generated
by the Laplacian, denoted by (S(t))t≥0, i.e.

z(t) =

∫ t

0
S(t− s)H(u) dW (s)

and regularization properties are known. Setting y = u− z it follows imme-
diately that y solves

(1.3)

{
∂ty = div(A(u)∇y) + div((A(u)− I)∇z),
y(0) = u0,

which is a (pathwise) deterministic linear parabolic PDE. According to a
priori estimates for (1.2), it holds

u ∈ Lp(Ω;L∞(0, T ;Lp(TN ))) ∩ L2(Ω;L2(0, T ;W 1,2(TN ))), ∀p ∈ [2,∞),

and making use of the factorization method it is possible to show that z
possesses enough regularity so that ∇z is a function with good integra-
bility properties. Now, a classical result for deterministic linear parabolic
PDEs with discontinuous coefficients (see [12]) yields Hölder continuity of
y (in time and space) and consequently also Hölder continuity of u itself.
Having this in hand, the regularity of z can be increased to a level where
the Schauder theory for linear parabolic PDEs with Hölder continuous co-
efficients applies to (1.3) (see [13]) and higher regularity of y is obtained.
Repeating this approach then allows us to conclude that u is λ-Hölder con-
tinuous in time with λ < 1/2 and possesses as much regularity in space as
allowed by the regularity of the coefficients and the initial data.

The paper is organized as follows. In Section 2, we introduce the basic
setting and state our regularity results, Theorem 2.5, Theorem 2.6. Section
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3 gives a preliminary result concerning the stochastic convolution. The
remainder of the paper is devoted to the proof of Theorem 2.5 and Theorem
2.6 that is divided into several parts. In Section 4, we establish our first
regularity result, Theorem 2.5, that gives some Hölder continuity in time
and space of a weak solution to (1.1). The regularity is then inductively
improved in the final Section 5 and Theorem 2.6 is proved.

2. Notations, hypotheses and the main result

2.1. Notations. In this paper, we adopt the following conventions. For r ∈
[1,∞], the Lebesgue spaces Lr(D) are denoted by Lr and the corresponding
norm by ‖ · ‖r. In order to measure higher regularity of functions we make
use of the Bessel potential spaces Ha,r(D), a ∈ R and r ∈ (1,∞), we also
shorten the notation to Ha,r with the norm ‖ · ‖a,r. The choice of this
scale of function spaces is more natural for our method than the Sobolev-
Slobodeckij spaces W a,r, namely, the spaces Ha,r

0 coincide with the domains
of fractional powers of the Laplace operator with null Dirichlet boundary
conditions, which is an important ingredient for proving regularity of the
stochastic convolution. For the reader’s convenience we include a reminder
of the basic properties of these spaces in Section 3.

Another important scale of function spaces which is used throughout the
paper are the Hölder spaces. In particular, if X and Y are two Banach spaces
and α ∈ (0, 1), Cα(X;Y ) denotes the space of bounded Hölder continuous
functions with values in Y equipped with the norm

‖f‖Cα(X;Y ) = sup
x∈X
‖f(x)‖Y + sup

x,x′∈X,x 6=x′

‖f(x)− f(x′)‖Y
‖x− x′‖αX

.

In the sequel, we consider the spaces Cα(D) = Cα(D;R), Cα([0, T ];X)
where X = Ha,r or X = Cβ(D) and Cα([0, T ] × D) = Cα([0, T ] × D;R).
Besides, we employ Hölder spaces with different regularity in time and space,
i.e. Cα,β([0, T ]×D) equipped with the norm

‖f‖Cα,β = sup
(t,x)
|f(t, x)|+ sup

(t,x) 6=(s,y)

|f(t, x)− f(s, y)|
|t− s|α + |x− y|β

.

With usual modifications we can also consider α, β ≥ 1. Note that it holds
Cα([0, T ];Cβ(D)) $ Cα,β([0, T ] × D) and therefore we have to distinguish
these two spaces (see [14]).

2.2. Hypotheses. Let us now introduce the precise setting of (1.1). We
work on a finite-time interval [0, T ], T > 0, and on a bounded domain D
in RN with smooth boundary. We denote by DT the cylinder (0, T ) × D
and by ST the lateral surface of DT , that is ST = (0, T ]× ∂D. Concerning
the coefficients A, B, F, H, we only state here the basic assumptions that
guarantee the existence of a weak solution and are valid throughout the
paper. Further regularity hypotheses are necessary in order to obtain better
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regularity of the weak solution and will be specified later. We assume that
the flux function

B = (B1, . . . , BN ) : R −→ RN

is continuous with linear growth. The diffusion matrix

A = (Aij)
N
i,j=1 : R −→ RN×N

is supposed to be continuous, symmetric, positive definite and bounded. In
particular, there exist constants ν, µ > 0 such that for all u ∈ R and ξ ∈ RN ,

(2.1) ν|ξ|2 ≤ A(u)ξ · ξ ≤ µ|ξ|2.

The drift coefficient F : R→ R is continuous with linear growth.
Regarding the stochastic term, let (Ω,F , (Ft)t≥0,P) be a stochastic ba-

sis with a complete, right-continuous filtration. The driving process W is a
cylindrical Wiener process: W (t) =

∑
k≥1 βk(t)ek with (βk)k≥1 being mutu-

ally independent real-valued standard Wiener processes relative to (Ft)t≥0

and (ek)k≥1 a complete orthonormal system in a separable Hilbert space K.
For each u ∈ L2(D) we consider a mapping H(u) : K → L2(D) defined by
H(u) ek = Hk(·, u(·)). In particular, we suppose that Hk ∈ C(D × R) and
the following linear growth condition holds true

(2.2)
∑
k≥1

|Hk(x, ξ)|2 ≤ C
(
1 + |ξ|2

)
, ∀x ∈ D, ξ ∈ R.

This assumption implies in particular that H maps L2(D) to L2(K;L2(D))
where L2(K;L2(D)) denotes the collection of Hilbert-Schmidt operators
from K to L2(D). Thus, given a predictable process u that belongs to

L2(Ω;L2(0, T ;L2(D))), the stochastic integral t 7→
∫ t

0 H(u)dW is a well de-

fined process taking values in L2(D) (see [6] for a thorough exposition).
Later on we are going to estimate the weak solution of (1.1) in certain

Bessel potential spaces Ha,r with a ≥ 0 and r ∈ [2,∞) and therefore we
need to ensure the existence of the stochastic integral in (1.1) as an Ha,r-
valued process. We recall that the Bessel potential spaces Ha,r with a ≥ 0
and r ∈ [2,∞) belong to the class of 2-smooth Banach spaces since they
are isomorphic to Lr(0, 1) according to [16, Theorem 4.9.3] and hence they
are well suited for the stochastic Itô integration (see [4], [5] for the precise
construction of the stochastic integral). So, let us denote by γ(K,X) the
space of the γ-radonifying operators from K to a 2-smooth Banach space
X. We recall that Ψ ∈ γ(K,X) if the series∑

k≥0

γkΨ(ek)

converges in L2(Ω̃, X), for any sequence (γk)k≥0 of independent Gaussian

real-valued random variables on a probability space (Ω̃, F̃ , P̃) and any or-
thonormal basis (ek)k≥0 of K. Then, the space γ(K,X) is endowed with the
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norm

‖Ψ‖γ(K,X) :=

(
Ẽ

∣∣∣∣∣∑
k≥0

γkΨ(ek)

∣∣∣∣∣
2

X

)1/2

(which does not depend on (γk)k≥0, nor on (ek)k≥0) and is a Banach space.
Now, if a ≥ 0 and r ∈ [2,∞) we denote by (Ha,r) the following hypothesis

‖H(u)‖γ(K,Ha,r) ≤

{
C
(
1 + ‖u‖a,r

)
, a ∈ [0, 1],

C
(
1 + ‖u‖a,r + ‖u‖a1,ar

)
, a > 1,

(Ha,r)

i.e. H maps Ha,r to γ(K,Ha,r) provided a ∈ [0, 1] and it maps Ha,r ∩H1,ar

to γ(K,Ha,r) provided a > 1. The precise values of parameters a and r will
be given later in each of our regularity results.

Remark 2.1. We point out that, thanks to the linear growth hypothesis
(2.2) on the functions (Hk)k≥1, one can easily verify that, for all r ∈ [2,∞),
the bound (H0,r) holds true.

In order to clarify the assumption (Ha,r), let us present the main examples
we have in mind.

Example 2.2. Let W be a d-dimensional (Ft)-Wiener process, that is

W (t) =
∑d

k=1Wk(t) ek, where Wk, k = 1, . . . , d, are independent standard

(Ft)-Wiener processes and (ek)
d
k=1 is an orthonormal basis of K = Rd. Then

the hypothesis (Ha,r) is satisfied for a ≥ 0, r ∈ [2,∞) provided the functions
H1, . . . ,Hd are sufficiently smooth (for more details we refer the reader to
[15]). Note that in this example it is necessary to restrict ourselves to the
subspace Ha,r∩H1,ar of Ha,r so that the corresponding Nemytskij operators
u 7→ Hk(·, u(·)) take values in Ha,r. In fact, if 1+1/r ≤ a ≤ N/r, r ∈ (1,∞),
then only linear operators map Ha,r to itself (see [15]).

Example 2.3. In the case of linear operator H we are able to deal with
an infinite dimensional noise. Namely, let W be a (Ft)-cylindrical Wiener
process on K = L2(D), that is W (t) =

∑
k≥1Wk(t) ek, where Wk, k ≥ 1, are

independent standard (Ft)-Wiener processes and (ek)k≥1 an orthonormal
basis of K. We assume that H is linear of the form H(u)ek := uQek, k ≥ 1,
where Q denotes a linear operator from K to K. Then, one can verify that
the hypothesis (Ha,r) is satisfied for a ≥ 0, r ∈ [2,∞) provided we assume
the following regularity property:

∑
k≥1 ‖Qek‖2a,∞ <∞. We point out that,

in this example, H maps Ha,r to γ(K,Ha,r) for any a ≥ 0 and r ∈ [2,∞).

As we are interested in proving the regularity up to the boundary for
weak solutions of (1.1), it is necessary to impose certain compatibility con-
ditions upon the initial data and the null Dirichlet boundary condition. To
be more precise, since u0 can be random in general, let us assume that
u0 ∈ L0(Ω;C(D)) with u0 = 0 on ∂D. Further integrability and regularity
assumptions on u0 will be specified later.

Note that other boudary conditions could be studied with similar argu-
ments.
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2.3. Existence of weak solutions. Let us only give a short comment here
as the existence of weak solutions is not our main concern and we will only
make use of a priori estimates for parabolic equations of the form (1.1). In
the recent work [7], the authors gave a well-posedness result for degenerate
parabolic SPDEs (with periodic boundary conditions) of the form{

du = div(B(u)) dt+ div(A(u)∇u) dt+H(u) dW,

u(0) = u0,

where the diffusion matrix was supposed to be positive semidefinite. One
can easily verify that the Dirichlet boundary conditions and the drift term
F (u) in (1.1) do not cause any additional difficulties in the existence part
of the proofs and therefore the corresponding results in [7], namely Section
4 (with the exception of Subsection 4.3) and Proposition 5.1, are still valid
in the case of (1.1). In particular, we have the following.

Theorem 2.4. There exists
(
(Ω̃, F̃ , (F̃t), P̃), W̃ , ũ

)
which is a weak mar-

tingale solution to (1.1) and, for all p ∈ [2,∞),

ũ ∈ L2(Ω̃;C([0, T ];L2)) ∩ Lp(Ω̃;L∞(0, T ;Lp)) ∩ L2(Ω̃;L2(0, T ;W 1,2)).

In the sequel, we assume the existence of a weak solution on the original
probability space (Ω,F ,P) and show that it possesses as much regularity
as we want provided the coefficients and initial data are sufficiently regular.
We point out that this assumption is taken without loss of generality since
pathwise uniqueness can be proved once we have sufficient regularity in hand
and hence existence of a pathwise solution can be then obtained by usual
methods (cf. [7, Subsection 4.3]).

A similar result can be obtained in the case of null Dirichlet boundary
conditions as well.

2.4. The main result. To conclude this section let us state our main results
to be proved precisely.

Theorem 2.5. Let u be a weak solution to (1.1) such that, for all p ∈ [2,∞),

u ∈ L2(Ω;C([0, T ];L2)) ∩ Lp(Ω;L∞(0, T ;Lp)) ∩ L2(Ω;L2(0, T ;W 1,2)).

Assume that

(i) u0 ∈ Lm(Ω;Cι(D)) for some ι > 0 and all m ∈ [2,∞),
(ii) (H1,2) is fulfilled.

Then there exists η > 0 such that, for all m ∈ [2,∞), the weak solution u
belongs to Lm(Ω;Cη(DT )).

Theorem 2.6. Let k ∈ N. Let u be a weak solution to (1.1) such that, for
all p ∈ [2,∞),

u ∈ L2(Ω;C([0, T ];L2)) ∩ Lp(Ω;L∞(0, T ;Lp)) ∩ L2(Ω;L2(0, T ;W 1,2)).

Assume that

(i) u0 ∈ Lm(Ω;Ck+ι(D)) for some ι > 0 and all m ∈ [2,∞),
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(ii) A, B ∈ Ckb and F ∈ Ck−1
b ,

(iii) (Ha,r) is fulfilled for all a < k + 1 and r ∈ [2,∞).

Then for all λ ∈ (0, 1/2) there exists β > 0 such that, for all m ∈ [2,∞),
the weak solution u belongs to Lm(Ω;Cλ,k+β(DT )).

3. Regularity of the stochastic convolution

Our proof of Theorem 2.5 and Theorem 2.6 is based on a regularity result
that concerns mild solutions to linear SPDEs of the form

(3.1)

{
dZ = ∆DZ dt+ Ψ(t) dWt,

Z(0) = 0,

where ∆D is the Laplacian on D with null Dirichlet boundary conditions
acting on various Bessel potential spaces.

In order to motivate the use of these spaces let us recall their basic prop-
erties (for a thorough exposition we refer the reader to the books of Triebel
[16], [17]). In the case of RN (or TN ) the Bessel potential spaces are de-
fined in terms of Fourier transform of tempered distributions: let a ∈ R,
r ∈ (1,∞) then

Ha,r(RN ) =
{
f ∈ S ′(RN ); ‖f‖Ha,r :=

∥∥F−1(1 + |ξ|2)a/2Ff
∥∥
Lr
<∞

}
and they belong to the Triebel-Lizorkin scale F ar,s(RN ) in the sense that

Ha,r(RN ) = F ar,2(RN ). As a consequence, they are generally different from

the Sobolev-Slobodeckij spaces W a,r(RN ) which belong to the Besov scale
Ba
r,s(RN ) in the sense that W a,r(RN ) = Ba

r,r(RN ) if a > 0, a /∈ N. Nev-
ertheless, we have the following two relations which link the two scales of
function spaces together

W a,r(RN ) = Ha,r(RN ) if a ∈ N0, r ∈ (1,∞) or a ≥ 0, r = 2,

and

Ha+ε,r(RN ) ↪→W a,r(RN ) ↪→ Ha−ε,r(RN ) a ∈ R, r ∈ (1,∞), ε > 0.

The Bessel potential spaces Ha,r(RN ) behave well under the complex inter-
polation, i.e. for a0, a1 ∈ R and r0, r1 ∈ (1,∞) it holds that

(3.2) [Ha0,r0(RN ), Ha1,r1(RN )]θ = Ha,r(RN ),

where θ ∈ (0, 1) and a = (1 − θ)a0 + θa1,
1
r = 1−θ

r0
+ θ

r1
, which makes

them more suitable for studying regularity for linear elliptic and parabolic
problems. Indeed, under the assumption of bounded imaginary powers of a
positive operator A on a Banach space X, the domains of fractional powers
of A are given by the complex interpolation as well: let 0 ≤ α < β < ∞,
θ ∈ (0, 1) then

[D(Aα), D(Aβ)]θ = D(A(1−θ)α+θβ).
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Furthermore, the expression (3.2) suggests how the spaces Ha,r(D) may be
defined for a general domain D: if s ≥ 0 and m ∈ N such that s ≤ m < s+1
then we define

Ha,r(D) := [Wm,r(D), Lr(D)](m−a)/m.

If D is sufficiently regular then Ha,r(D) coincides with the space of restric-
tions to D of functions in Ha,r(RN ) and the Sobolev embedding theorem
holds true. The spaces Ha,r

0 (D), a ≥ 0, r ∈ (1,∞), are then defined as the
closure of C∞c (D) in Ha,r(D). Note, that Ha,r

0 (D) = Ha,r(D) if a ≤ 1/r and
Ha,r

0 (D) is strictly contained in Ha,r if a > 1/r. Besides, an interpolation
result similar to (3.2) holds for these spaces as well

[Ha0,r0
0 (D), Ha1,r1

0 (D)]θ = Ha,r
0 (D).

Let us now take a closer look at the Dirichlet Laplacian ∆D. Considered
as an operator on Lr, its domain is H2,r

0 and it is the infinitesimal generator
of an analytic semigroup denoted by S = (S(t))t≥0. Moreover, it follows
from the above considerations that the domains of its fractional powers
coincide with the Bessel potential spaces, that is D((−∆D)α) = H2α,r

0 , α ≥
0. Therefore, one can build a fractional power scale (or a Sobolev tower, see
[2], [10]) generated by (Lr,−∆D) to get

(3.3)
[(
H2α,r

0 ,−∆D,2α,r

)
; α ≥ 0

]
,

where −∆D,2α,r is the H2α,r
0 -realization of −∆D. Having this in hand, an

important result [2, Theorem V.2.1.3] describes the behavior of the semi-
group S in this scale. More precisely, the operator ∆D,2α,r generates an

analytic semigroup S2α,r on H2α,r
0 which is naturally obtained from S by

restriction, i.e. S2α,r(t) is the H2α,r
0 -realization of S(t), t ≥ 0, and we have

the following regularization property: for any δ > 0 and t > 0, S2α,r(t) maps

H2α,r
0 into H2α+δ,r

0 with

(3.4)
∥∥S2α,r(t)

∥∥
L(H2α,r

0 ,H2α+δ,r
0 )

≤ C

tδ/2
.

For notational simplicity of the sequel we do not directly specify the spaces
where the operators ∆D and S(t), t ≥ 0, are acting since this is always clear
from the context.

The solution to (3.1) is given by the stochastic convolution, that is

Z(t) =

∫ t

0
S(t− s)Ψ(s) dWs, t ∈ [0, T ].

In order to describe the connection between its regularity and the regularity
of Ψ, we recall the following proposition.

Proposition 3.1. Let a ≥ 0 and r ∈ [2,∞) and let Ψ be a progressively
measurable process in Lp(Ω;Lp(0, T ; γ(K,Ha,r))).
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(i) Let p ∈ (2,∞) and δ ∈ (0, 1 − 2/p). Then, for any γ ∈ [0, 1/2 −
1/p− δ/2), Z ∈ Lp(Ω;Cγ(0, T ;Ha+δ,r)) and

E‖Z‖p
Cγ(0,T ;Ha+δ,r)

≤ C E‖Ψ‖pLp(0,T ;γ(K,Ha,r)).

(ii) Let p ∈ [2,∞) and δ ∈ (0, 1). Then Z ∈ Lp(Ω;Lp(0, T ;Ha+δ,r))
and

E‖Z‖p
Lp(0,T ;Ha+δ,r)

≤ C E‖Ψ‖pLp(0,T ;γ(K,Ha,r)).

Proof. Having established the behavior of the Dirichlet Laplacian and the
corresponding semigroup along the fractional power scale (3.3), the proof
of (i) is an application of the factorization method and can be found in
[4, Corollary 3.5] whereas the point (ii) follows from the Burkholder-Davis-
Gundy inequality and regularization properties (3.4) of the semigroup. �

4. First step in the regularity problem

In this section, we show the first step towards regularity of the weak
solution u to (1.1). We consider the following auxiliary problem

(4.1)


dz = ∆z dt+H(u) dWt in DT ,

z = 0 in ST ,

z(0) = 0 in D.

It can be rewritten in the abstract form{
dz = ∆Dz dt+H(u) dWt,

z(0) = 0

and hence its solution is given by the stochastic convolution

(4.2) z(t) =

∫ t

0
S(t− s)H(us) dWs, t ∈ [0, T ].

Next, we define the process y := u− z. It follows immediately that y solves
the following linear parabolic PDE with random coefficients
(4.3)

∂ty = div (A(u)∇y) + div(B(u)) + F (u) + div ((A(u)− I)∇z) in DT ,

y = 0 in ST ,

y(0) = u0 in D.

This way, we have split u into two parts, i.e. y and z, that are much more
convenient in order to study regularity. Our first regularity result reads as
follows.

Proposition 4.1. Let u0 ∈ Lm(Ω;Cι(D)) for some ι > 0 and all m ∈
[2,∞). We assume that (H1,2) is fulfilled. Then, there exists η > 0 such that,

for all m ∈ [2,∞), the weak solution u to (1.1) belongs to Lm(Ω;Cη(DT )).
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Proof. Step 1: Regularity of z. According to Theorem 2.4, the weak solution
u to (1.1) belongs to L2(Ω;L2(0, T ;H1,2)) so that, thanks to the hypothesis
(H1,2), we have that H(u) belongs to L2(Ω;L2(0, T ; γ(K,H1,2))). As a re-
sult, with Proposition 3.1 - (ii) and the bound (H1,2), we have that for any
a ∈ (0, 2), z ∈ L2(Ω;L2(0, T ;Ha,2)) with

E‖z‖2L2(0,T ;Ha,2) ≤ C
(

1 + E‖u‖2L2(0,T ;H1,2)

)
.

Besides, since for all p ∈ [2,∞), the weak solution u to (1.1) belongs
to Lp(Ω;Lp(0, T ;Lp)), we obtain, with the hypothesis (H0,p) (see Remark
2.1), that H(u) belongs to Lp(Ω;Lp(0, T ; γ(K,Lp))). As a consequence,
with Proposition 3.1 - (ii) and (H0,p), we have that for any b ∈ (0, 1),

z ∈ Lp(Ω;Lp(0, T ;Hb,p)) with

E‖z‖p
Lp(0,T ;Hb,p)

≤ C
(

1 + E‖u‖pLp(0,T ;Lp)

)
.

Since for any a ∈ (0, 2) and b ∈ (0, 1), we have z ∈ L2(Ω;L2(0, T ;Ha,2)) and
z ∈ Lp(Ω;Lp(0, T ;Hb,p)), we can interpolate to obtain that (see [1])

z ∈ Lr(Ω;Lr(0, T ;Hc,r)),

where, for θ ∈ (0, 1), 
1

r
=
θ

2
+

1− θ
p

,

c = aθ + b(1− θ),
with the bound
(4.4)

E‖z‖rLr(0,T ;Hc,r) ≤
(
E‖z‖2L2(0,T ;Ha,2)

)rθ/2 (
E‖z‖p

Lp(0,T ;Hb,p)

)r(1−θ)/p
<∞.

Note that by choosing θ ∈ (0, 1) and p ∈ [2,∞) appropriately, r can be
arbitrary in [2,∞). Furthermore, when θ ∈ (0, 1) is fixed, it is always
possible to take (a, b) ∈ (0, 2) × (0, 1) such that c > 1. As a result, for all
r ∈ [2,∞), there exists cr > 1 such that

z ∈ Lr(Ω;Lr(0, T ;Hcr,r)).

This gives, for all r ∈ [2,∞),

∇z ∈ Lr(Ω;Lr(0, T ;Lr)),

and, due to the boundedness of the mapping A,

(A(u)− I)∇z ∈ Lr(Ω;Lr(0, T ;Lr)),

with, thanks to (4.4),

(4.5) E‖(A(u)− I)∇z‖rLr(0,T ;Lr) ≤ CE‖z‖
r
Lr(0,T ;Hc,r) <∞,

where C > 0 depends on ‖A‖∞. Note that, thanks to the linear growth
property of the coefficients B and F , we obviously have, for all r ∈ [2,∞),

(4.6) E‖B(u)‖rLr(0,T ;Lr) + E‖F (u)‖rLr(0,T ;Lr) ≤ C(1 +E‖u‖rLr(0,T ;Lr)) <∞.
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Step 2: Regularity of y. From now on, we consider that r ≥ r0 where r0

is fixed such that for all r ≥ r0,

(4.7)
2 +N

r
<

1

2
.

Concerning the regularity of y, we intend to apply the regularization result
given in the second part of [12, Theorem 10.1, Ch. III] to deduce that y has
in fact α-Hölder continuous paths in DT for some α > 0. Precisely, we set
Γ′ = ST and

ai = bi = a = 0, fi = Bi(u) + ((A(u)− I)∇z)i, f = F (u),

and observe that the conditions (1.2), (7.1) and (7.2) in [12, Ch. III] are
satisfied thanks to (2.1) and the bounds (4.5)−(4.6) coupled with (4.7). Note
also that [12, Theorem 7.1, Ch. III] applies and gives y ∈ L∞(DT ) a.s. Thus
we can now employ the second part of [12, Theorem 10.1, Ch. III] which

yields y ∈ Cα/2,α(DT ) where α ∈ (0, ι] is determined by N , ν, µ and r0. In
particular, we point out that α is deterministic. Furthermore, studying the
proofs of [12, Theorem 7.1, Theorem 10.1, Ch. III] in detail, we have the
following bound

‖y‖Cα/2,α(DT ) ≤ C(1 + ‖u0‖Cι(D))

× (1 + ‖B(u) + (A(u)− I)∇z‖2N+1
Lr(0,T ;Lr) + ‖F (u)‖2N+1

Lr(0,T ;Lr))
(4.8)

for some deterministic constant C > 0 depending on the constants of the
problem and on r0. Therefore, if 2(2N + 1)m < r, we obtain due to
(4.5)−(4.6), the hypothesis made on u0 and the Cauchy-Schwarz inequality

E‖y‖m
Cα/2,α

≤ C (1 + E‖u0‖2mCι(D)
) ×

(1 + E‖B(u) + (A(u)− I)∇z‖rLr(0,T ;Lr) + E‖F (u)‖rLr(0,T ;Lr)) <∞.
(4.9)

Since r is arbitrary in [r0,∞), the result holds for all m ∈ [2,∞).
Step 3: Hölder regularity of z. In order to complete the proof it is nec-

essary to improve the regularity of z. Recall that for all m ∈ [2,∞), the
solution u to (1.1) belongs to Lm(Ω;Lm(0, T ;Lm)) and that H(u) belongs to
Lm(Ω;Lm(0, T ; γ(K,Lm))). We now apply Proposition 3.1 - (i) and (H0,m)
to obtain that for m ∈ (2,∞), δ ∈ (0, 1−2/m) and γ ∈ [0, 1/2−1/m−δ/2),
z ∈ Lm(Ω;Cγ([0, T ];Hδ,m)) with

E‖z‖mCγ([0,T ];Hδ,m) ≤ C
(

1 + E‖u‖mLm(0,T ;Lm)

)
.

Note that we can choose δ and γ to be independent of m. For instance, let
us suppose in the sequel that m ≥ 3; then δ = 1/6 and γ = 1/12 satisfies
the conditions above for any m ≥ 3. Furthermore, from now on, we also
suppose that m ≥ 7N := m0. This implies that m ≥ 3 and δm > N , so
that the following Sobolev embedding holds true

Hδ,m ↪→ Cλ, λ := δ −N/m0.
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We conclude that, for all m ≥ m0,

(4.10) E‖z‖mCγ([0,T ];Cλ) ≤ C
(

1 + E‖u‖mLm(0,T ;Lm)

)
<∞.

Note that for m ∈ [2,m0), we can write with the Hölder inequality

(4.11) E‖z‖mCγ([0,T ];Cλ) ≤
(
E‖z‖m0

Cγ([0,T ];Cλ)

)m/m0

<∞.

Step 4: Conclusion. Finally, we set η := min(α/2, γ, λ) > 0 and we recall
that u = y + z so that the conclusion follows from (4.9), (4.10), (4.11) due
to the fact that Cη([0, T ];Cη(D)) ⊂ Cη([0, T ]×D). �

5. Increasing the regularity

In this final section, we complete the proof of Theorem 2.6. Having Propo-
sition 4.1 in hand, it is quite straightforward to significantly increase the
regularity of u using the same auxiliary problems (4.1) and (4.3) together
with the Schauder theory for deterministic parabolic PDEs with Hölder con-
tinuous coefficients.

Proposition 5.1. Let u0 ∈ Lm(Ω;C1+ι(D)) for some ι > 0 and all m ∈
[2,∞). Suppose that A, B ∈ C1

b . If (Ha,r) is fulfilled for all a < 2 and
r ∈ [2,∞), then for all λ ∈ (0, 1/2) there exists β > 0 such that for all
m ∈ [2,∞) the weak solution u to (1.1) belongs to Lm(Ω;Cλ,1+β(DT )).

Proof. The proof is divided in two parts: we first increase the regularity in
space and then in time.

Spatial regularity. Step 1: Regularity of z. First, we improve the regular-
ity of z that was defined in (4.2). According to Proposition 4.1, there exists
η > 0 such that for all m ∈ [2,∞), u ∈ Lm(Ω;Cη(DT )). In particular, this
implies that u ∈ Lm(Ω;Lm(0, T ;Hκ,m)) provided κ < η. With (Hκ,m), we
deduce that H(u) ∈ Lm(Ω;Lm(0, T ; γ(K,Hκ,m))). Application of Propo-
sition 3.1 yields that z ∈ Lm(Ω;Cγ([0, T ];Hκ+δ,m)) for every m ∈ (2,∞)
with

E‖z‖mCγ([0,T ];Hκ+δ,m) ≤ C
(

1 + E‖u‖mLm(0,T ;Hκ,m)

)
,

where δ ∈ (0, 1 − 2/m) and γ ∈ [0, 1/2 − 1/m − δ/2). In the sequel, we
assume that m ≥ (N + 4)/κ := m0. Then δ = 1 − 3/m0 and γ = 1/(4m0)
satisfies the conditions above uniformly in m ≥ m0. Furthermore, observe
that (κ + δ)m > κm ≥ κm0 ≥ N so that the following Sobolev embedding
holds true

Hκ+δ,m ↪→ Cσ, σ = κ+ δ −N/m0.

Besides, by definition of m0, σ = κ+1−(N+3)/m0 > 1. Finally, we deduce
that for all m ≥ m0, z ∈ Lm(Ω;Cγ([0, T ];Cσ(D))) with

(5.1) E‖z‖mCγ([0,T ];Cσ) ≤ C
(

1 + E‖u‖mLm(0,T ;Hκ,m)

)
.

Step 2: Regularity of y. Next, we improve the regularity of y that is
given by (4.3). Namely, we intend to make use of the classical Schauder
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theory for deterministic parabolic PDEs, see e.g. [13, Theorem 6.48]. As a
consequence of Proposition 4.1 and (5.1), we obtain due to the assumptions
upon A, B and F that, for all m ∈ [2,∞)

A(u) ∈ Lm(Ω;Cα/2,α(DT ),

B(u) + (A(u)− I)∇z ∈ Lm(Ω;Cα/2,α(DT ),

F (u) ∈ Lm(Ω;Lm(0, T ;Lm)),

u0 ∈ Lm(Ω;C1+α(D)),

where α := min(ι, η, σ−1, γ) > 0. Thus the hypotheses of [13, Theorem 4.8,
Theorem 6.48] are fulfilled and we obtain the following (pathwise) estimate

‖y‖C(1+α)/2,1+α ≤ C
(
‖u0‖C1+α + ‖B(u) + (A(u)− I)∇z‖Cα/2,α

+ ‖F (u)‖Lr(0,T ;Lr)

)
,

where r ∈ [2,∞) is large enough. We conclude that, for all m ∈ [2,∞),

(5.2) y ∈ Lm(Ω;C(1+α)/2,1+α(DT ))

which together with (5.1) yields u ∈ Lm(Ω;Cγ,1+α(DT )).
Time regularity. Having in hand the improved regularity of u, we consider

again the stochastic convolution z, repeat the approach from the first step
of this proof and obtain due to Proposition 4.1 (with δ = 0) and (H1+κ,m)

E‖z‖mCλ([0,T ];H1+κ,m)

≤ C
(

1 + E‖u‖mLm(0,T ;H1+κ,m) + E‖u‖(1+κ)m

L(1+κ)m(0,T ;H1,(1+κ)m)

)
<∞,

(5.3)

where κ < α and λ ∈ (0, 1/2 − 1/m). Therefore for any λ ∈ (0, 1/2) there
exists m0 large enough so that (5.3) holds true for any m ≥ m0 and the
Sobolev embedding then implies that z ∈ Lm(Ω;Cλ([0, T ];C1+β(D))) for
β < κ. Since we already have (5.2) the proof is complete. �

Due to the properties of the stochastic convolution it is not possible to
increase the time regularity of u. Nevertheless, it is possible to continue in
the same manner as before and increase its space regularity.

Proposition 5.2. Let u0 ∈ Lm(Ω;C2+ι(D)) for some ι > 0 and all m ∈
[2,∞). Suppose that A, B ∈ C2

b and that F ∈ C1
b . If (Ha,r) is fulfilled for all

a < 3 and r ∈ [2,∞), then for all λ ∈ (0, 1/2) there exists β > 0 such that for
all m ∈ [2,∞) the weak solution u to (1.1) belongs to Lm(Ω;Cλ,2+β(DT )).

First, we give the proof of Proposition 5.2 in the periodic case where
D = TN . We point out that in this simpler setting the proof can exactly be
reproduced in order to establish Proposition 5.3 below which achieves higher
regularity of u. Then, we give the proof of Proposition 5.2 in the general case
of a bounded domain D of RN with smooth boundary. Unlike the periodic
setting, this proof does not directly extend to the proof of Proposition 5.3.
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Thus, the technique requires some improvements which are detailed in the
proof of Proposition 5.3.

Proof. The periodic case. From now on, let D = TN . The proof follows
similar ideas as in Proposition 5.1 only with some modifications in the second
step.

Spatial regularity. Step 1: Regularity of z. As in Proposition 5.1, we first
increase the regularity of z. With Proposition 5.1, for any λ ∈ (0, 1/2), there
exists β > 0 such that for all m ∈ [2,∞), u ∈ Lm(Ω;Cλ,1+β(DT )). Then we
deduce

E‖z‖mCγ([0,T ];H1+κ+δ,m)

≤ C
(

1 + E‖u‖mLm(0,T ;H1+κ,m) + E‖u‖(1+κ)m

L(1+κ)m(0,T ;H1,(1+κ)m)

)
<∞,

where κ < β, δ ∈ (0, 1 − 2/m) and γ ∈ [0, 1/2 − 1/m − δ/2). By a
similar reasoning as above we obtain due to the Sobolev embedding that
z ∈ Lm(Ω;Cγ([0, T ];Cσ(D))) where m ∈ [2,∞) and σ > 2.

Step 2: Regularity of y. In order to improve the space regularity of y we
derive the equation that is satisfied by ∂y where the operator ∂ can stand for
any partial derivative with respect to space variable x: ∂ = ∂xi , i = 1, . . . , N .
We obtain

∂t(∂y) = div(A(u)∇(∂y)) + div(∂A(u)∇u) + div(∂B(u))

+ ∂F (u) + div((A(u)− I)∇(∂z)) in DT ,

∂y(0) = ∂u0.

The above is again a (pathwise) linear parabolic PDE hence we need to
show that its coefficients satisfy the hypotheses of [13, Theorem 6.48]. In
particular, according to what was already proved, we have

A(u) ∈ Lm(Ω;Cα/2,α(DT )),

∂A(u)∇u+ ∂B(u) + (A(u)− I)∇(∂z) ∈ Lm(Ω;Cα/2,α(DT )),

∂F (u) ∈ Lm(Ω;Lm(0, T ;Lm)),

∂u0 ∈ Lm(Ω;C1+α(D)),

for some α ∈ (0, σ − 2] and all m ∈ [2,∞) provided A, B ∈ C1
b , F ∈ C1

b .
Therefore [13, Theorem 6.48] applies and we deduce

∂y ∈ Lm(Ω;C(1+α)/2,1+α(DT )).

As a consequence, we see that

y ∈ Lm(Ω;C(1+α)/2,2+α(DT ))

hence

u ∈ Lm(Ω;Cγ,2+α(DT )).

Time regularity. Finally, we improve the time regularity of u by consid-
ering the stochastic convolution again as in Proposition 5.1. We obtain that
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for any λ ∈ (0, 1/2) there exists m0 large enough so that

E‖z‖mCλ([0,T ];H2+κ,m)

≤ C
(

1 + E‖u‖mLm(0,T ;H2+κ,m) + E‖u‖(2+κ)m

L(2+κ)m(0,T ;H1,(2+κ)m)

)
,

holds true for any m ≥ m0 and the Sobolev embedding then implies that
z ∈ Lm(Ω;Cλ([0, T ];C2+β(D))) for β < κ which completes the proof. �

Let us now prove Proposition 5.2 in the general case. In the sequel D is
again a bounded domain in RN with smooth boundary.

Proof. The general case. The proof follows the same scheme as in the peri-
odic case except for the Step 2: Regularity of y. Let us now detail the proof
of this step.

Step 2: Regularity of y. In order to improve the space regularity of y we
make use of [12, Theorem 5.2, Ch. IV]. In particular, we set

aij = Aij(u), aj = ∇u·A′·j(u), a = 0, f = div
(
B(u)+(A(u)−I)∇z

)
+F (u).

According to what was already proved, we have

aij , aj , a, f ∈ Lm(Ω;Cα/2,α(DT )),

u0 ∈ Lm(Ω;C2+α(D)),
(5.4)

for some α ∈ (0, σ − 2] and all m ∈ [2,∞) provided A, B ∈ C2
b , F ∈ C1

b .
Therefore [12, Theorem 5.2, Ch. IV] applies and we deduce

y ∈ Lm(Ω;C1+α/2,2+α(DT )),

hence
u ∈ Lm(Ω;Cγ,2+α(DT )).

This completes the proof. �

Finally, we achieve even higher regularity of u provided the coefficients
are smooth enough. We obtain the following result.

Proposition 5.3. Let k ∈ {3, 4, . . .}. Let u0 ∈ Lm(Ω;Ck+ι(D)) for some

ι > 0 and all m ∈ [2,∞). Suppose that A, B ∈ Ckb and F ∈ Ck−1
b . If (Ha,r)

is fulfilled for all a < k + 1 and r ∈ [2,∞), then for all λ ∈ (0, 1/2) there
exists β > 0 such that for all m ∈ [2,∞) the weak solution u to (1.1) belongs
to Lm(Ω;Cλ,k+β(DT )).

As previously mentioned, the proof of Proposition 5.2 in the periodic case
can exactly be reproduced here so that the result of Proposition 5.3 is proved
in the setting of periodic boundary conditions.

Nevertheless, the proof of Proposition 5.2 made in the general case does
not apply here any more. Indeed, the problem arises from the fact that the
regularization result given by [12, Theorem 5.2, Ch. IV] is stated under
the condition that the regularity of the coefficients and the source term is
in the parabolic scaling, that is, the space regularity is exactly twice the

time regularity. In our case, since the time regularity is limited to 1
2

−
, we
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are limited to 1− for the space regularity of the coefficients and the source
term if we want to fit in the setting of [12, Theorem 5.2, Ch. IV]. As a
consequence, we wouldn’t obtain a better space regularity of our solution u
than 3−. To handle this issue, we prove an alternative version of the result
[12, Theorem 5.2, Ch. IV] where we avoid the hypothesis of the parabolic
regularity of the coefficients and initial data. The result is the following.

Theorem 5.4. Let L denote the linear parabolic differential operator given
by [12, (5.1), Ch. IV]

L u = ∂tu−
N∑

i,j=1

aij∂
2
xi,xju+

N∑
i=1

ai∂xiu+ au,

and u the solution to the null Dirichlet problem [12, (5.3), Ch. IV]
L u = f in DT ,

u = 0 in ST ,

u(0) = u0 in D.

Let α, β ≥ 0 such that 2α ≤ β. Assume that the coefficients of L and the
source f belong to Cα,β(DT ) and that u0 belongs to Cβ(D). Then, for all
ε > 0, u is Cα+1−ε,β+2−ε(DT ) with

‖u‖Cα+1−ε,β+2−ε ≤ C(‖f‖Cα,β + ‖u0‖Cβ ).

Proof of Proposition 5.3. For the time being, let us suppose that this result
holds true. The proof of Proposition 5.3 is then exactly the same as in
Proposition 5.2 in the general case except that (5.4) is replaced by

aij , aj , a, f ∈ Lm(Ω;Cγ,(k−2)+α(DT )),

u0 ∈ Lm(Ω;Ck+α(D)),
(5.5)

for any γ < 1/2 and some α ∈ (0, σ − k] where σ > k and that we then
apply Theorem 5.4 instead of [12, Theorem 5.2, Ch. IV]. �

Thus it only remains to prove Theorem 5.4.

Proof of Theorem 5.4. The proof of [12, Theorem 5.2, Ch. IV] is divided
into two steps. The first one is to prove the desired result on the whole
space and on the half-space in the case where aij are constant coefficients
and ai = a = 0; the results are the bounds (6.4) and (6.5) in [12, Theorem
6.1, Ch. IV] (the bound (6.6) deals with the case of Neumann boundary
conditions). The second one is to freeze the coefficients, to use a localization
technique and to handle the lower order terms of L by some compactness
argument and finally to prove [12, Theorem 5.2, Ch. IV] using (6.4) and
(6.5) of [12, Theorem 6.1, Ch. IV]; this second step is achieved in [12, Section
7, Ch. IV]. As a result, we only need to prove that the bounds (6.4) and
(6.5) of [12, Theorem 6.1, Ch. IV] hold true whenever the regularity of the
source term is not in the parabolic scaling. Furthermore, as explained in
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the proof of [12, Theorem 6.1, Ch. IV], it is sufficient to deal with the case
aij = δij .

To sum up, let f ∈ Cα,β([0, T ] × RN ), g ∈ Cα,β([0, T ] × RN+ ), and w, v
the solutions of{
∂tw −∆w = f in (0, T )× RN ,
w(0) = 0,

and


∂tv −∆v = g in (0, T )× RN+ ,
v|xN=0 = 0,

v(0) = 0,

where RN+ denotes the half-space {(x1, ..., xN ) ∈ RN , xN > 0}, it remains to
prove that, for all ε > 0,

(5.6) ‖w‖Cα+1−ε,β+2−ε([0,T ]×RN ) ≤ C‖f‖Cα,β([0,T ]×RN ),

(5.7) ‖v‖
Cα+1−ε,β+2−ε([0,T ]×RN+ )

≤ C‖g‖
Cα,β([0,T ]×RN+ )

.

The bound (5.6) can be justified exactly as in the case of the parabolic
scaling, see the proof of [12, (2.1), Ch. IV]. It gives the bound (5.6) where
we can take ε = 0, that is

‖w‖Cα+1,β+2([0,T ]×RN ) ≤ C‖f‖Cα,β([0,T ]×RN ).

Unfortunately, the proof made in [12] in the case of the half-space does not
work any more when we are not in the parabolic scaling. So, let us define
(S(t))t≥0 the semigroup of the Dirichlet Laplacian on the half-space RN+ .
Precisely, ψ = S(t)h satisfies

(P+
h )


∂tψ −∆ψ = 0 in (0,∞)× RN+ ,
ψ|xN=0 = 0,

ψ(0) = h.

It is classical that S(1) maps Cγ(RN+ ) to C∞(RN+ ) so that we can deduce

the following bound, for any h ∈ Cγ(RN+ ) and δ > 0,

(5.8) ‖S(1)h‖
Cγ+δ(RN+ )

≤ C‖h‖
Cγ(RN+ )

.

Now, let t > 0 and h ∈ Cγ(RN+ ). We define h̃(x) := h(xt
1
2 ) and consider the

solution ψ to the problem (P+

h̃
). Finally, we set ϕ(s, x) := ψ(st−1, xt−

1
2 )

which is well defined in the half-space and satisfies (P+
h ). As a result,

ϕ(s, x) = S(s)h. Thus observe that we have S(t)h = ϕ(t, x) = ψ(1, xt−
1
2 ) =

S(1)h̃(xt−
1
2 ) so that we deduce, with (5.8),

‖S(t)h‖
Cγ+δ(RN+ )

= ‖S(1)h̃(· t−
1
2 )‖

Cγ+δ(RN+ )
≤ Ct−(γ+δ)/2‖h̃‖

Cγ(RN+ )
.

As a result, since ‖h̃‖
Cγ(RN+ )

≤ tγ/2‖h‖
Cγ(RN+ )

, we are led to

(5.9) ‖S(t)h‖
Cγ+δ(RN+ )

≤ Ct−δ/2‖h‖
Cγ(RN+ )

.
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Finally, let us conclude the proof of the bound (5.7). The solution v is given
by

v(t) =

∫ t

0
S(t− s)g(s) ds,

so that with (5.9) we deduce

(5.10) ‖v‖
C0,γ+δ([0,T ]×RN+ )

≤ C‖g‖
C0,γ([0,T ]×RN+ )

,

provided δ < 2. Besides, thanks to the result [12, (6.5), Ch. IV] in the
parabolic scaling, we have the bound

(5.11) ‖v‖
Cσ/2+1,σ+2([0,T ]×RN+ )

≤ C‖g‖
Cσ/2,σ([0,T ]×RN+ )

.

Since the bounds (5.10) and (5.11) holds true for any γ, σ ≥ 0 and δ < 2,
we deduce, by interpolation, that for any ε > 0,

‖v‖
Cα+1−ε,β+2−ε([0,T ]×RN+ )

≤ C‖g‖
Cα,β([0,T ]×RN+ )

,

which concludes the proof. �
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