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ISOPERIMETRIC TYPE PROBLEMS AND ALEXANDROV-FENCHEL

TYPE INEQUALITIES IN THE HYPERBOLIC SPACE

GUOFANG WANG AND CHAO XIA

Abstract. In this paper, we solve various isoperimetric problems for the quermassinte-
grals and the curvature integrals in the hyperbolic space Hn, by using quermassintegral
preserving curvature flows. As a byproduct, we obtain hyperbolic Alexandrov-Fenchel
inequalities.

1. Introduction

Isoperimetric type problems play an important role in mathematics. The classical
isoperimetric theorem in the Euclidean space says that among all bounded domains in
Rn with given volume, the minimum of the area of the boundary is achieved precisely by
the round balls. This can be formulated as an optimal inequality

Area(∂K) ≥ n
n−1
n ω

1
n
n−1Vol(K)

n−1
n ,(1.1)

for any bounded domain K ⊂ Rn, and equality holds if and only if K is a geodesic ball.
Here and throughout this paper, ωk denotes the k-th dimensional Hausdorff measure of
the k-dimensional unit sphere Sk, and by a bounded domain we mean a compact set with
non-empty interior. When n = 2, inequality (1.1) is

L2 ≥ 4πA,(1.2)

where L is the length of a closed curve γ in R2 and A is the area of the enclosed domain
by γ. Inequalities (1.1) and (1.2) are the classical isoperimetric inequalities. Their general
forms are the Alexandrov-Fenchel quermassintegral inequalities. A special, but interesting
class of the Alexandrov-Fenchel quermassintegral establishes the relationship between the
quermassintegrals or the curvature integrals:∫

∂K
Hkdµ ≥ ω

k−l
n−1−l

n−1

(∫
∂K

Hldµ

)n−1−k
n−1−l

, 0 ≤ l < k ≤ n− 1,(1.3)

for any convex bounded domain K ⊂ Rn with C2 boundary, where Hk is the (normal-
ized) k-th mean curvature of ∂K as an embedding in Rn. These inequalities have been
intensively studied by many mathematicians and have many applications in differential
geometry and integral geometry. See the excellent books of Burago-Zalgaller [7], Santalo
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2 GUOFANG WANG AND CHAO XIA

[37] and Schneider [39]. Recently, the Alexandrov-Fenchel quermassintegral inequalities
in Rn have been extended to certain classes of non-convex domains. See for example
[11, 25, 29].

All these above inequalities solve the problem if one geometric quantity attains its
minimum or maximum at geodesic balls among a class of (smooth) bounded domains
in Rn with another given geometric quantity. We call such problems isoperimetric type
problems.

It is a very natural question to ask if such isoperimetric type problems also hold in the
hyperbolic space Hn. We remark that in this paper Hn denotes the hyperbolic space with
the sectional curvature −1. One of the main motivations to study this problem comes
naturally from integral geometry in Hn. Another main motivation comes from the recent
study of ADM mass, Gauss-Bonnet-Chern mass and quasi-local mass in asymptotically
hyperbolic manifolds, see [21]. The isoperimetric problem between volume and area in
Hn was already solved by Schmidt [38] 70 years ago. Due to its complication, a simple
explicit inequality like (1.1) is in general not available. When n = 2, there is an explicit
form, namely the hyperbolic isoperimetric inequality in this case is

L2 ≥ 4πA+A2,(1.4)

where L is the length of a closed curve γ in H2 and A is the area of the enclosed domain
by γ. Moreover, equality holds if and only if γ is a circle. Comparing to (1.2), inequality
(1.4) has an extra term. This is a well-known phenomenon, which indicates that the
isoperimetric type problems in Hn are more complicated than the ones in Rn.

Till now, the Alexandrov-Fenchel type inequalities or the isoperimetric type problems in
the hyperbolic space are quite open except some special cases. See for example [5, 16, 17].
In [16], Gallego-Solanes proved the following interesting inequality for convex domain in
Hn ∫

Σ
Hkdµ > c|Σ|,

where c = 1 if k > 1 and c = (n − 2)/(n − 1) if k = 1 and |Σ| is the area of Σ.
Their method depends heavily on the integral interpretation of the quermassintegrals.
However, the results obtained there are far away from being optimal. Here we say that
a geometric inequality for bounded domains is optimal, if equality holds if and only if
the domain is a geodesic ball. In other words, only geodesic balls solve the corresponding
isoperimetric problem. More recently, several interesting works have appeared in this
research field, see [4, 14, 19, 20, 33]. In [19, 20, 33], the authors solve some special
cases of the isoperimetric type problems by establishing the following inequalities as the
Alexandrov-Fenchel inequalities (1.3) for the curvature integrals: for 1 ≤ k ≤ n−1

2 ,

(1.5)

∫
∂K

H2kdµ ≥ ωn−1

{(
|∂K|
ωn−1

) 1
k

+

(
|∂K|
ωn−1

) 1
k

n−1−2k
n−1

}k
,

for any horospherical convex domain K ⊂ Hn. Here |∂K| is the area of ∂K. This is
optimal, in the sense that equality holds if and only if K is a geodesic ball in Hn. When
k = 1, inequality (1.5) was proved in [33] under a weaker condition that ∂K is star-shaped
and 2-convex.
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In order to state our results we give more precise definitions about quermassintegrals
and curvature integrals.

Let us first recall two different kinds of convexity in Hn. A domain K ⊂ Hn is said
to be (geodesically) convex if for every point p ∈ ∂K, K lies on one side of some totally
geodesic sphere through p. A domain K ⊂ Hn is said to be horospherical convex, or h-
convex, or have h-convex boundary, if for every point p ∈ ∂K, K lies on the convex side
of some horosphere Sh(p) through p. Recall that a horosphere in Hn is a hypersurface
obtained as the limit of a geodesic sphere of Hn when its center goes to the infinity along
a fixed geodesic ray. It is well-known (see e.g. [15]) that a horosphere in Hn has all its
principal curvatures being equal to 1 and the h-convexity of K ⊂ Hn is equivalent to that
all the principal curvatures of its boundary ∂K are bounded below by 1. We say a domain
K ⊂ Hn is strictly h-convex if all the principal curvatures of its boundary ∂K are strictly
bigger than 1. The geodesic balls in Hn are all strictly h-convex. An h-convex domain
must be convex, but the converse is not true. In some sense, the horospherical convexity is
more natural geometric concept than the convexity in Hn, see e.g. [15]. The horospherical
convexity plays a crucial role in the proof of (1.5) in [19, 20] for k ≥ 2. It is also crucial
for this paper.

For a (geodesically) convex domain K ⊂ Hn, the quermassintegrals are defined by

Wk(K) :=
(n− k)ωk−1 · · ·ω0

nωn−2 · · ·ωn−k−1

∫
Lk
χ(Lk ∩K)dLk, k = 1, · · · , n− 1;

where Lk is the space of k-dimensional totally geodesic subspaces Lk in Hn and dLk is the
natural (invariant) measure on Lk, see Section 2 for more details. The function χ is given
by χ(K) = 1 if K 6= ∅ and χ(∅) = 0. For simplicity, we also use the convention

W0(K) = Vol(K), Wn(K) =
ωn−1

n
.

We remark that the Cauchy-Crofon formula (See [37] or [42] Proposition 2.2.1) tells that

W1(K) =
1

n
|∂K|.

When the boundary ∂K is C2-differentiable, one can define the curvature integrals by

Vn−1−k(K) =

∫
∂K

Hkdµ, k = 0, · · · , n− 1,

where Hk are the (normalized) k-th mean curvature of ∂K as an embedding in Hn and
dµ is the area element on ∂K induced from Hn.

From the viewpoint of integral geometry, the quermassintegrals seem to be more impor-
tant and play a central role. Nevertheless, the curvature integrals are also very important
geometric quantities not only in integral geometry, but also in the theory of submanifolds.
In Rn, the quermassintegrals coincide with the curvature integrals, up to a constant mul-
tiple. However, the quermassintgrals and the curvature integrals in Hn do not coincide.
Nevertheless they are closely related (see e.g. [41], Proposition 7):

Vn−1−k(K) = n

(
Wk+1(K) +

k

n− k + 1
Wk−1(K)

)
, k = 1, · · · , n− 1,

Vn−1(K) = nW1(K) = |∂K|.
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In this paper, we will solve a large class of isoperimetric type problems in Hn involving
the quermassintegrals and the curvature integrals for h-convex bounded domains with
smooth boundary.

The first main result of this paper is the following Alexandrov-Fenchel type inequalities
for the quermassintegrals.

Theorem 1.1. Let K be the space of h-convex bounded domains in Hn with smooth bound-
ary and K ∈ K. For 0 ≤ l < k ≤ n− 1, we have

Wk(K) ≥ fk ◦ f−1
l (Wl(K)).

Equality holds if and only if K is a geodesic ball. Here fk : [0,∞) → R+ is a monotone
function defined by fk(r) = Wk(Br), the k-th quermassintegral for the geodesic ball of
radius r, and f−1

l is the inverse function of fl. In other words, the minimum of Wk

among the domains in K with given Wl is achieved precisely by geodesic balls.

Moreover, from Theorem 1.1 we solve the following isoperimetric type problems.

Theorem 1.2. Let K be the space of h-convex bounded domains in Hn with smooth bound-
ary. Then the following holds:

(i) For 0 ≤ l < k ≤ n − 1, Vn−1−k attains its minimum at a geodesic ball among the
domains in K with given Wl;

(ii) For 0 ≤ k ≤ n − 1, Vn−1−k attains its minimum at a geodesic ball among the
domains in K with given volume W0 = V ol;

(iii) For 1 ≤ k ≤ n − 1, Vn−1−k attains its minimum at a geodesic ball among the
domains in K with given area |∂K| = nW1 = Vn−1 of the boundary ∂K;

(iv) For 0 ≤ l < k ≤ n− 1 and k − l = 2m for some m ∈ N, Vn−1−k attains its
minimum at a geodesic ball among the domains in K with given Vn−1−l.

Theorem 1.1 and 1.2 give an affirmative answer to the question posed by Gao-Hug-
Schneider in [17] for Hn (in the case of h-convex bounded domains with smooth boundary).

Unlike in Rn, most of above results for quermassintegrals and the curvature integrals in
Hn have no explicit (inequality) form. As mentioned above, even the classical isoperimetric
problem between volume and area in Hn solved in [38] has in general no explicit from.
Here we are able to formulate Statement (iii) in Theorem 1.2 in an optimal inequality.

Theorem 1.3. Let 1 ≤ k ≤ n− 1. Any h-convex bounded domain K in Hn with smooth
boundary satisfies

(1.6)

∫
∂K

Hkdµ ≥ ωn−1

{(
|∂K|
ωn−1

) 2
k

+

(
|∂K|
ωn−1

) 2
k

(n−k−1)
n−1

} k
2

.

Equality holds if and only if K is a geodesic ball.

Inequality (1.6) was called as a hyperbolic Alexandrov-Fenchel inequality in [19]. As
mentioned above, (1.6) was proved in [33] for k = 2 under a weaker condition, in [19]
for k = 4 and in [20] for general even k. For general odd integer k inequality (1.6) was
conjectured in [20] after the authors showed (1.6) for k = 1 with a help of a result of
Cheng and Xu [12]. For the related works about the result of Cheng and Xu [12], see also
[13], [18] and [22].
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Recently Theorem 1.3 (for k odd) was used in [21] to prove a Penrose type inequality
for a higher order mass on asymptotically hyperbolic manifolds.

The approaches used in [19, 20, 33], and also in [4, 14], are finding a suitable geometric
quantity, which is monotone under a suitable inverse curvature flow studied by Gerhardt
[23], and managing to compute the limit of the geometric quantity. However in this paper
we will not use an inverse curvature flow. Instead we will use a (normalized) generalized
mean curvature flow to prove Theorem 1.1. The crucial points of this paper are: (i)
the choice of the quermassintegrals Wk as this suitable geometric quantity, (ii) the use
of the quermassintegral preserving curvature flows, along which one quermassintegral is
preserved and the other is monotone. The flow we consider is

(1.7)
∂X

∂t
(x, t) =

{
c(t)−

(
Hk

Hl

) 1
k−l

(x, t)

}
ν(x, t),

where ν(·, t) is the outer normal of the evolved hypersurface and c(t) is defined by

c(t) := ck,l(t) :=

∫
Σt
H

1
k−l

k H
1− 1

k−l

l dµt∫
Σt
Hldµt

.

We will show that this flow converges exponentially to a geodesic sphere, provided that
the initial hypersurface is h-convex. The study of this flow is motivated by the work of
[8, 26, 34, 35], especially the work of Makowski [34], who considered the mixed volume (in
our words, the curvature integrals) preserving curvature flows in Rn and Hn respectively.
In [34] the isoperimeteric result of Schmidt mentioned above was reproved by a flow
method. The method of using geometric flows to prove geometric inequalities seems to
be powerful. Various flows have been employed to prove geometric inequalities, see for
instance [2, 4, 14, 19, 20, 22, 25, 26, 28, 33, 34, 35, 40].

The rest of this paper is organized as follows. In Section 2, we present basic concepts
and facts about integral geometry in the hyperbolic space. In Section 3, we study the
quermassintegral preserving curvature flows and prove a rigidity result. In Section 4, we
choose a special flow to prove our main theorems.

2. Curvature integrals and Quermassintegrals

In this section, we recall some basic concepts in integral geometry in the hyperbolic
space, we refer to Santaló’s book [37], Part IV, and Solanes’ thesis [42] for more details.

For a (geodesically) convex domain K ⊂ Hn, the quermassintegrals are defined by

Wk(K) :=
(n− k)ωk−1 · · ·ω0

nωn−2 · · ·ωn−k−1

∫
Lk
χ(Lk ∩K)dLk, k = 1, · · · , n− 1;(2.1)

where Lk is the space of k-dimensional totally geodesic subspaces Lk in Hn and dLk is the
natural (invariant) measure on Lk. Since dLk is unique up to a constant factor, we use an
easy interpretation given in [16] to illustrate the normalization or the choice of dLk. Each
totally geodesic subspace Lk is determined by its orthogonal subspace Ln−k(0), which is
through the origin, and the intersection point x = Lk ∩ Ln−k(0). Hence one can consider
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Lk as a bundle over the Grassmannian manifolds G(n−k, n) which consists of all subspaces
Ln−k(0). Then dLk is given by

dLk = cosh (dHn(x, 0))k dxdVn−k,

where dHn(x, 0) is the distance function between x and the origin, dx is the volume element
on Ln−k(0) and dVn−k is the volume element on G(n− k, n).

The function χ is given by χ(K) = 1 if K 6= ∅ and χ(∅) = 0. For simplicity, we also use
the notation

W0(K) = Vol(K), Wn(K) =
ωn−1

n
.

It is clear from definition (2.1) that the quermassintegrals Wk, k = 0, 1, · · · , n − 1, are
strictly increasing under set inclusion, i.e.,

if K1 $ K2, then Wk(K1) < Wk(K2).(2.2)

This simple fact plays a role in the proof of the convergence of curvature flows considered
below.

Let σk be the k-th elementary symmetric function σk : Rn−1 → R defined by

σk(Λ) =
∑

i1<···<ik

λi1 · · ·λik for Λ = (λ1, · · · , λn−1) ∈ Rn−1.

As convention, we take σ0 = 1. The definition of σk can be easily extended to the set of
all symmetric matrices. The Garding cone Γ+

k is defined as

Γ+
k = {Λ ∈ Rn−1|σj(Λ) > 0, ∀j ≤ k}.

We denote by Γ+
k the closure of Γ+

k .
Let

Hk = Hk(Λ) =
σk(Λ)(

n
k

)
be the normalized symmetric functions. We have the following Newton-MacLaurin in-
equalities. For the proof we refer to a survey of Guan [24].

Proposition 2.1. For 1 ≤ l < k ≤ n− 1 and Λ ∈ Γ+
k , the following inequalities hold:

Hk−1Hl ≥ HkHl−1.(2.3)

Hl ≥ H
l
k
k .(2.4)

Equalities hold in (2.3) or (2.4) if and only if λi = λj for all 1 ≤ i, j ≤ n− 1.

For a domain K ⊂ Hn, if the boundary ∂K is C2-differentiable, the (normalized) k-th
mean curvatures are

Hk(x) = Hk(κ(x)) for x ∈ ∂K, k = 0, · · · , n− 1,

where κ = (κ1, · · · , κn−1) is the set of the principal curvatures of ∂K as an embedding in
Hn. The curvature integrals are defined by

Vn−1−k(K) =

∫
∂K

Hkdµ, k = 0, · · · , n− 1,
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where dµ is the area element on ∂K induced from Hn.
The curvature integrals have a similar meaning of the mixed volume in the Euclidean

space, in view of the Steiner formula (see [37], IV.18.4) which says that for a smooth convex
domain K and some positive number ρ ∈ R, its parallel set K[ρ] := {x ∈ Hn|dHn(x,K) ≤
ρ} has the volume

Vol(K[ρ]) = Vol(K) +
n−1∑
k=0

(
n

k

)
Vk(K)

∫ ρ

0
coshk(s) sinhn−1−k(s)ds.

Recall that the quermassintegrals and the curvature integrals are related (see e.g. [41],
Proposition 7) by

Vn−1−k(K) = n

(
Wk+1(K) +

k

n− k + 1
Wk−1(K)

)
, k = 1, · · · , n− 1,(2.5)

Vn−1(K) = nW1(K) = |∂K|.
From (2.5) it is easy to express Wk as a linear combination of several curvature integrals
(see e.g. [37], IV.17.4 or [41], Corollary 8):

• for 1 ≤ k ≤ n− 1 and k is even,

Wk(K) =
1

n

k
2
−1∑
i=0

(−1)i
(k − 1)!!(n− k)!!

(k − 1− 2i)!!(n− k + 2i)!!

∫
∂K

Hk−1−2idµ

+(−1)
k
2

(k − 1)!!(n− k)!!

n!!
Vol(K);(2.6)

• for 1 ≤ k ≤ n− 1 and k is odd,

Wk(K) =
1

n

k−1
2∑
i=0

(−1)i
(k − 1)!!(n− k)!!

(k − 1− 2i)!!(n− k + 2i)!!

∫
∂K

Hk−1−2idµ.(2.7)

Here the notation k!! means the product of all odd (even) integers up to odd (even) k. For
k = n, the formulas (2.6) and (2.7) can be viewed as the Gauss-Bonnet-Chern theorem
for domains in the hyperbolic space.

From (2.6) and (2.7), one can see the difference between quermassintegrals W2k and
W2k+1. In fact, W2k is extrinsic and W2k+1 is intrinsic, namely it depends only on the
induced metric g on ∂K. The latter follows from the fact that H2k can be expressed in
terms of intrinsic geometric quantities, the Gauss-Bonnet curvatures. For the proof see
[20].

3. Quermassintegral preserving curvature flows

Let K0 ∈ K be an h-convex bounded domain in Hn with smooth boundary Σ0 = ∂K0.
We consider the following curvature evolution equation

∂X

∂t
(x, t) = (c(t)− F (W(x, t)))ν(x, t),(3.1)

where X(·, t) : Mn−1 → Hn are parametrizations of a family of hypersurfaces Σt ⊂ Hn

which encloses Kt, ν(·, t) is the unit outward normal to Σt, F is a smooth curvature
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function evaluated at the matrix of the Weingarten map W of Σt. The time dependent
term c(t) will be explained later.

The function F should have the following properties (P):

• F (A) = f(λ(A)), where λ(A) = (λ1, · · · , λn−1) are the eigenvalues of the matrix
A and f is a smooth, symmetric function defined on the positive cone

Γ+ = {λ ∈ Rn−1|λi > 0,∀i = 1, · · · , n− 1};
• f is positively homogeneous of degree 1: f(tλ) = tf(λ) for any t > 0;

• f is strictly increasing in each argument: ∂f
∂λi

> 0;

• f is normalized by setting f(1, · · · , 1) = 1;
• f is concave and inverse concave, i.e., f∗(λ) := −f(λ−1

1 , · · · , λ−1
n−1) is concave.

We use the notation ḟ i = ∂f
∂λi

, f̈ ij = ∂f
∂λi∂λj

, F ij = ∂F
∂Aij

and F ij,rs = ∂2F
∂Aij∂Ars

. Also

we use “∇” or “;” to denote the covariant derivative on hypersurfaces. Unless stated
otherwise, the summation convention is used throughout this paper. For our purpose, F

is viewed as a function on hji = gjkhik, i.e., F = F (hji ) = F (gjkhik) = f(κ), where gij and
hij the first and second fundamental form respectively and κ = (κ1, · · · , κn−1) is the set
of the principal curvatures.

We have the evolution equations for the quermassintegrals and the curvature integrals
associated with Kt under flow (3.1).

Proposition 3.1. Along flow (3.1), we have

d

dt
Vol(Kt) =

∫
Σt

(c(t)− F ) dµt;(3.2)

d

dt
|Σt| =

∫
Σt

(n− 1)H1 (c(t)− F ) dµt;(3.3)

d

dt

∫
Σt

Hkdµt =

∫
Σt

{(n− 1− k)Hk+1 + kHk−1} (c(t)− F ) dµt, k = 1, · · · , n− 1;(3.4)

d

dt
Wk(Kt) =

n− k
n

∫
Σt

Hk (c(t)− F ) dµt, k = 0, · · · , n− 1.(3.5)

Proof. (3.2)–(3.4) are now well-known and were proved in [36]. We now prove (3.5) by
induction. In view of (3.2) and (3.3), it is true for k = 0, 1. Assume it is true for k − 1,
we can compute by using (2.5), (3.4) and the inductive assumption that

d

dt
Wk+1(Kt) =

1

n

d

dt

∫
Σt

Hkdµt −
k

n− k + 1

d

dt
Wk−1(Kt)

=
1

n

∫
Σt

((n− 1− k)Hk+1 + kHk−1) (c(t)− F ) dµt

− k

n− k + 1

n− k + 1

n

∫
Σt

Hk−1 (c(t)− F ) dµt

=
n− k − 1

n

∫
Σt

Hk+1 (c(t)− F ) dµt.
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�

The choice of c(t) depends on which geometric quantity we want to preserve. In this
paper, we will take

c(t) = cl(t) :=

∫
Σt
HlFdµt∫

Σt
Hldµt

(3.6)

so that the flow preserves Wl.

Lemma 3.1. With the choice of c(t) by (3.6) flow (3.1) preserves the quermassintegral
Wl.

Proof. By (3.5) we have

d

dt
Wl(Kt) =

n− l
n

∫
Σt

Hl(cl(t)− F )dµt = 0.

�

Under the assumptions (P) on F and the assumption that the initial domain is h-convex,
the long time existence and convergence of the flow (3.1) can be proved.

Theorem 3.1. Let K0 ∈ K be an h-convex domain in Hn with smooth boundary Σ0.
Let F be a function satisfying the properties (P) and c(t) be defined in (3.6) for some
l ∈ {0, · · · , n − 1}. Then flow (3.1) has a smooth solution X(t) for t ∈ [0,∞). More-
over, X(t) converges exponentially to a geodesic sphere of radius r0, which has the same
quermassintegral Wl as K0, i.e., there exists some δ > 0 such that X(t) can be written as
graphs over Sn−1 and the graph function u(t) satisfies

|u(t)− r0| ≤ e−δt.(3.7)

Before the proof, let us spend a few words to compare Theorem 3.1 with the main one
in [34]. On one hand, flow (3.1) is slightly different from that in [34] in the sense that
the curvature integral preserving property is replaced by quermassintegral preserving one.
Hence we need to check that the same strategy works for our flow. On the other hand, we
impose a weaker condition that we start with an h-convex domain, rather than a strictly
h-convex domain. In fact, our first step illustrates that the domain becomes immediately
strictly h-convex during the flow.

Proof of Theorem 3.1. The proof will be divided into two steps.

Step I. The flow (3.1) exists at least in a short time interval [0, T ∗) for some T ∗ > 0 and
the evolving hypersurface Σt is strictly h-convex for all t ∈ (0, T ∗).

The short time existence is now well-known, since the third condition in (P) ensures that
the flow is strictly parabolic. To prove the strict h-convexity, we shall use the following
constant rank theorem.

Theorem 3.2. Let Σt be a smooth solution to the flow (3.1) in [0, T ] for some T > 0
which is h-convex, i.e., the matrix (Sij) = (hij − gij) ≥ 0 for t ∈ [0, T ]. Then (Sij) is of
constant rank l(t) for each t ∈ (0, T ] and l(s) ≤ l(t) for all 0 < s ≤ t ≤ T .
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Proof of Theorem 3.2. The proof follows similar arguments as that of the proof of Propo-
sition 5.1 in [3]. For the convenience of the readers, we sketch the proof.

The h-convexity of Σ0 means that (Sij) ≥ 0 at t = 0. For ε > 0, define a symmetric
matrix W = (Sij+εgij). Let l(t) be the minimal rank of (Sij(x, t)). For a fixed t0 ∈ (0, T ],
let x0 ∈ Σt0 such that (Sij(x, t0)) attains its minimal rank at x0. Set l := l(t0) and

φ(x, t) = σl+1(W (x, t)) +
σl+2

σl+1
(W (x, t)).

It is proved in Section 2 in [3] that φ is in C1,1. We will show that there are constants
C1, C2 and δ, depending on ‖X‖C3,1(M×[0,T ∗)) but independent of ε and φ, such that in
some neighborhood O of x0 and for t ∈ (t0 − δ, t0],

F ijφ;ij −
∂

∂t
φ ≤ C1φ+ C2|∇φ|.(3.8)

First, one verifies the evolution equation for Sij (see e.g. (4.23) in [23] or (3.21) in [34]):

∂

∂t
Sij = F klhij;kl + F kl,rshkl;ihrs;j + F klhlrh

r
khij − c(t)hki hjk

−(2F − c(t))gij + F klgklhij − 2(F − c(t))hki Sjk
= F klSij;kl + F kl,rsSkl;iSrs;j

+F klhlrh
r
kSij − c(t)Ski Sjk − 2c(t)Sij + F klgklSij − 2(F − c(t))hki Sjk

+F klhlrh
r
kgij + (F klgkl − 2F )gij .(3.9)

The last line of (3.9) can be further computed as

F klhlrh
r
kgij + (F klgkl − 2F )gij

=
(
F klSlrS

r
k + 2F klSkl + F klgkl + F klgkl − 2F klhkl

)
gij

= F klSlrS
r
kgij ≥ 0,(3.10)

since F kl is positive definite and F klhkl = F due to the 1-homogeneity of F .
As in [3], in O× (t0− δ, t0], the index set {1, · · · , n− 1} can be divided into two subsets

B and G, where for i ∈ B, the eigenvalues λ̃i of W is small and for j ∈ G, λ̃j is uniformly
positive away from 0. By choosing suitable coordinates, we may assume at each point of
computation, Wij(x, t) is diagonal. Let O(φ) denote a quantity which can be controlled
by Cφ for a universal constant C depending on ‖X‖C3,1(M×[0,T ∗)) but independent of ε
and φ. Notice that ε = O(φ) near (x0, t0) (see (3.8) in [3]). With help of this, we can
compute by using (3.9) and (3.10) that

F klφ;kl −
∂

∂t
φ = φii(F klWii;kl −

∂

∂t
Wii) + F klφij,rsWij;rWkl;s

≤ φii
(
− F kl,rsWkl;iWrs;i − F klhlrhrkWii

+c(t)W k
i Wik + 2c(t)Wii − F klgklWii + 2(F − c(t))hkiWik

)
+F klφij,rsWij;kWkl;s +O(φ).(3.11)

Here we use the notation φij = ∂φ
∂Wij

and φij,kl = ∂2φ
∂Wij∂Wkl

.

As in [3], in O× (t0− δ, t0], the index set {1, · · · , n− 1} can be divided into two subsets

B and G, where for i ∈ B, the eigenvalues λ̃i of W is small and for j ∈ G, λ̃j is uniformly
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positive away from 0. By choosing suitable coordinates, we may assume at each point of
computation, Wij is diagonal. Since φjj = O(φ) for j ∈ G ((3.14) in [3]) and Wii = O(φ)
for i ∈ B, inequality (3.11) can be reduced to the following one:

F klφ;kl −
∂

∂t
φ ≤ −φiiF kl,rsWkl;iWrs;i + F klφij,rsWij;kWkl;s +O(φ)(3.12)

One can find that the right hand side of (3.12) are exactly the same as that of (3.13)
in [3] (Notice here Wij satisfies Codazzi property and the situation is somehow simpler
since F only depends on second order term Wij , but no lower order term). By a routine
computation of φii and φij,rs as Theorem 3.2 in [3], one can obtain

−φiiF kl,rsWkl;iWrs;i + F klφij,rsWij;kWkl;s

= O(φ+
∑
i,j∈B

|∇Wij |)−
1

σ1(B)

∑
k,l

∑
i,j∈B,i 6=j

F klWij;kWij;l

− 1

σ3
1(B)

∑
k,l

∑
i∈B

F kl

Wii;kσ1(B)−Wii

∑
j∈B

Wjj;k

Wii;lσ1(B)−Wii

∑
j∈B

Wjj;l


−
∑
i∈B

[
σl(G) +

σ2
1(B|i)− σ2(B|i)

σ2
1(B)

]
·

·

 ∑
k,l,r,s∈G

F kl,rsWkl;iWrs;i + 2
∑
k,l∈G

F kl
∑
j∈G

1

λ̃j
Wij;kWij;l

 .(3.13)

Here σk(B) denotes the elementary symmetric functions σk on the eigenvalues λ̃i for i ∈ B
and σk(B|i) denotes σk on λ̃j for j ∈ B, j 6= i.

The analysis in Theorem 3.2 in [3] shows that the right hand side of above equation can
be controlled by φ + |∇φ| − C

∑
i,j∈B |∇Wij |. This analysis is quite subtle and depends

heavily on the concavity and the inverse concavity of F with respect to Wij . We refer to
[3] to the details.

Hence by combining (3.12) and (3.13), we arrive at (3.8). Now letting ε → 0 and by
the standard strong maximum principle for parabolic equations, we conclude that

σl(t0)+1(Sij(x, t)) +
σl(t0)+2(Sij(x, t))

σl(t0)+1(Sij(x, t))
≡ 0 for (x, t) ∈ O × (t0 − δ, t0].(3.14)

Since l(t0) is the minimum rank of Sij(x, t0) among Σt0 and Σt0 is connected, we conclude
from (3.14) that the matrices (Sij(x, t0)) is of constant rank l(t0) in Σt0 and l(t) ≤ l(t0)
for t ∈ (t0 − δ, t0]. Since t0 ∈ (0, T ] is arbitrary, we complete the proof. �

Remark 3.1. The constant rank theorem was initiated by Caffarelli-Friedman [10] and
Korevaar-Lewis [32] for semilinear elliptic equations and developed by Guan-Ma [27],
Caffarelli-Guan-Ma [9] and Bian-Guan [3] for fully nonlinear elliptic equations. The choice
of a suitable auxiliary function φ is the key point to prove different kinds of constant rank
theorems.

We return to the proof of Theorem 3.1, Step I. We follow closely the argument in [3].
We may approximate Σ0 by a family of strictly h-convex hypersurfaces Σε

0. By continu-
ity, there is δ > 0 (independent of ε), such that there is a solution Σε

t to (3.1) for t ∈ [0, δ].
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Then Σε
t must be strictly h-convex for t ∈ [0, δ] by Theorem 3.2. Taking ε → 0, we have

that Σt is h-convex for t ∈ [0, δ]. This implies that the set {t ∈ [0, T ]|Σt is h-convex} is
open. It is obviously closed and non-empty. Therefore, Σt is h-convex for t ∈ [0, T ]. On
the other hand, a standard argument shows that for every closed hypersurface in Hn, there
exists at least one point which is strictly h-convex. Therefore by Theorem 3.2 again, Σt

is strictly h-convex for all t ∈ (0, T ]. We finish the proof of Step I.

Step II: Let Σt0 , t0 ∈ (0, T ∗) be a strictly h-convex hypersurface evolving by (3.1), then
the long time existence and convergence can be proved.

Starting with a strictly h-convex hypersurface, the flow (3.1) is quite similar to that
considered by Makowski [34]. The difference is that the flows he considered preserve
the curvature integrals and ours preserve the quermassintegrals. However, this difference
makes a very big difference in applications to the Alexandrov-Fenchel type inequalities,
though the analytic part of both flows is quite similar. For the convenience of the readers,
we sketch the proof and refer to [34] for the formal proof.

Let Hn = R× Sn−1 with the hyperbolic metric

ḡ = dr2 + sinh2 rgSn−1

where gSn−1 is the standard round metric on the (n− 1)-dimensional unit sphere. Denote
by 〈·, ·〉 the metric ḡ, and by ∇̄ the covariant derivative on Hn.

1. We see from Step 1 that as long as the flow exists, the strict h-convexity is preserved.
Moreover by using Andrews’ pinching estimates [1], one can prove the pinching of the
principal curvatures is also preserved (Lemma 4.4 in [34]), i.e.,

• if hij − gij ≥ ε(H1 − 1)gij at t = t0 for some ε ∈ (0, 1
n−1), then it holds as well as

hij − gij ≥ ε(F − 1)gij holds as long as the flow exists.

More precisely, one verifies the evolution equation for S̃ij := hij − gij − ε(H1 − 1)gij :

d

dt
S̃ij = F klS̃ij;kl + F kl,rshkl;phrs;q

(
δpi δ

q
j −

ε

n
gpqgij

)
+(F klhlrh

r
k + F klgkl)(S̃ij + (1− ε)gij) + c(t)

( ε
n
hlkh

k
l gij − hki hkj

)
−(2F − c(t))(1− ε)gij − 2(F − c(t))hki S̃kj

=: F klS̃ij;kl + F kl,rshkl;phrs;q

(
δpi δ

q
j −

ε

n
gpqgij

)
+Nij .

For a vector v = (v1, · · · , vn−1) such that S̃ijv
j = 0, using (3.10) and the fact that

hlkh
k
l ≥ nH2

1 , we check

Nijv
ivj = (F klhlrh

r
k + F klgkl − 2F )gijv

ivj

+c(t)
( ε
n
hlkh

k
l gij − hki hkj + (1− ε)gij

)
vivj

≥ c(t)
( ε
n
hlkh

k
l − (1− ε+ εH1)2 + (1− ε)

)
gijv

ivj

≥ c(t)
(
ε(1− ε)H2

1 − 2ε(1− ε)H1 − (1− ε)2 + (1 + ε)
)
gijv

ivj

= ε(1− ε)(H1 − 1)2gijv
ivj ≥ 0.
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Therefore Andrews’ pinching theorem (Theorem 4.1 and Theorem 3.2 in [1]) applies to

show S̃ij ≥ 0 is preserved along the flow. Now the preservation of pinching follows from
H1 ≥ F for concave function F .

2. In this substep, we will show that as long as the flow exists, the speed function F is
bounded by a constant depending only on the initial hypersurface Σt0 . Consequently, the
time-dependent term c(t) is bounded, and |∂X∂t | is bounded. By the pinching estimate in
Step II.1, one can easily deduce the upper boundedness of the principal curvatures. In
fact, it follows from

λmax ≤
1

ε
(λmin − 1) + 1 ≤ 1

ε
(F − 1) + 1.

Here λmax and λmin denotes the maximum and minimum among all the principal curva-
tures respectively.

The proof of the boundedness of F is more technique. Hence we give more details for
this step.

2.1. As long as the flow exists, the inner radius and the outer radius of Kt can be uniformly
bounded by some positive constants r0 and R0, dependent only on the initial hypersurface
Σt0 , respectively.

In fact, this is the only place where the property of preserving the quermassintegrals is
used. We verify this here. Let r(t) and R(t) be the inner radius and outer radius of Σt

respectively. Let rt0 be the number so that Wl(Kt0) = Wl(Brt0 ). By virtue of (2.2), we
have that

Wl(BR(t)) ≥Wl(Kt) = Wl(Kt0) = Wl(Brt0 ).

Thus R(t) ≥ rt0 . According to Step I, the h-convexity is preserved. A remarkable feature
of the h-convexity is that the inner radius and the outer radius are comparable (see [34],
Theorem 5.2 or [6], Theorem 3.1). Namely, there is a constant C > 1 such that

r(t) ≤ R(t) ≤ Cr(t).
Hence

r(t) ≥ C−1R(t) ≥ C−1rt0 := r0.

Similarly, from the monotonicity of the quermassintegral (2.2), we have

Wl(Br(t)) ≤Wl(Kt) = Wl(Kt0) = Wl(Brt0 ),

which implies r(t) ≤ rt0 . Hence, we have

R(t) ≤ Cr(t) ≤ Crt0 := R0.

2.2. Fix a time t1 ∈ [t0, T
∗). Since the inner radius of Kt is uniformly bounded, we can

assume Brt1 (pt1) ⊂ Kt1 is an enclosed ball with the center pt1 and the radius rt1 ≥ r0,
then we can show that B 1

2
rt1

(pt1) ⊂ Kt in some short time interval t ∈ [t1, t2) for t2 chosen

later.
In fact, let r(x, t) be the distance function of Σt from pt1 . Set ρ(x, t) := cosh r(x, t).

Let u := 〈∇̄ρ, ν〉 be the “support function”. Define

ϕ := e(n−1)c0(t−t1)ρ(x, t),
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where c0 is the constant in (3.17). Using the fact that ρ;ij = ρgij − uhij and F = F ijhij ,
one can easily check that

d

dt
ϕ− F ijϕ;ij = ϕ

(
(n− 1)c0 − F ijgij

)
+ c(t)e(n−1)c0(t−t1)u ≥ 0.

By parabolic maximum principle,

inf
x∈Σt

ρ(x, t) ≥ e−(n−1)c0(t−t1) inf
x∈Σt1

ρ(x, t1) ≥ e−(n−1)c0(t−t1) cosh rt1 .

Therefore, in the time interval [t1, t2), where t2 = min{t1 + 1
(n−1)c0

ln
cosh rt1

cosh 1
2
rt1
, T ∗}, we have

r(x, t) ≥ 1
2rt1 , namely, B 1

2
rt1

(pt1) ⊂ Kt.

Moreover, in view of a crucial property of h-convexity, which says 〈∂r, ν〉 ≥ tanh r (see
e.g. [8], Theorem 4), we infer that the “support function” u = sinh r〈∂r, ν〉 is bounded
below by a positive constant

u ≥ u0 := sinh
1

2
rt1 tanh

1

2
rt1

in the time interval [t1, t2). On the other hand, h-convexity ensures that r(x, t) ≤ r(t) +
ln 2 ≤ R0 + ln 2 (see e.g. [8], Theorem 4), which implies that u is also bounded above.

2.3. In the time interval [t1, t2), we consider an auxiliary function

Φ :=
F

u− 1
2u0

.

One verifies the evolution equation for F and u:

d

dt
F = F ijF;ij + (F − c(t))F ijhki hkj − (F − c(t))F ijgij ;

d

dt
u = F iju;ij + uF ijhki hkj − (2F − c(t)) cosh r.

Here r = r(x, t) still denotes the distance function of Σt from pt1 . Therefore the evolution
equation for Φ is

d

dt
Φ = F ijΦ;ij +

2F iju;iΦ;j

u− 1
2u0

− c(t)

u− 1
2u0

(F ijhki hkj − F ijgij)

−
1
2u0

(u− 1
2u0)2

F ijhki hkjF +
2F − c(t)
u− 1

2u0
cosh rΦ− F

u− 1
2u0

F ijgij .(3.15)

By the h-convexity of Σt, we know F ijhki hkj − F ijgij ≥ 0. Also, by pinching estimate
and 1-homogeneity of F , we have

F ijhki hkj ≥ F (ε(F − 1) + 1) ≥ εF 2.

Hence at the maximum point of Φ in M × [t1, t2), we deduce from (3.15) that

0 ≤ d

dt
Φ ≤ −1

2
u0(u− 1

2
u0)εΦ3 + 2 cosh rΦ2.(3.16)

Since u − 1
2u0 ≥ 1

2u0 and r ≤ R0 + ln 2, it follows from (3.16) that for t ∈ [t1, t2), Φ is
bounded above by a constant C depending only on Σt1 . Consequently, as u has also upper
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bound, we get that the speed F is bounded above by C for t ∈ [t1, t2). Since t1 can be
chosen arbitrary in [t0, T

∗), we conclude that F has a uniform bound for t ∈ [t0, T
∗).

3. The flow exists for t ∈ [0,∞) and the flow converges exponentially to a geodesic sphere.
Since F ij is homogeneous of degree zero and the principal curvatures of the evolving

hypersurfaces Σt satisfy λ ≥ 1, we see that flow (3.1) is always uniformly parabolic, i.e.,
there exists some constant c0, depending only on Σt0 , such that

c−1
0 gij ≤ F ij

(
(hij)(x, t)

)
≤ c0g

ij , t0 ≤ t < T ∗.(3.17)

On the other hand, in Step II.2, we have shown that the principal curvatures of Σt, t ∈
[t0, T

∗) have a uniform upper bound independent of T ∗. Also the principal curvatures have
a uniform lower bound 1. Therefore the principal curvatures for the evolving hypersurfaces
lie in a compact set of Γ+.

Exactly as in [35], Section 8, using the above facts, we can derive the higher order
estimates for the graph function of the evolving hypersurfaces Σt, t ∈ [t0, T

∗), still inde-
pendent of T ∗. These estimates enable us to extend the flow beyond T ∗, which gives the
long time existence.

To show the exponential convergence to a geodesic sphere, one first applies again An-
drews’ pinching theorem as in Step II.1 to the evolution equation of

Ŝij = hij − gij − (1− e−δt)(H1 − 1))gij

in order to prove that the pinching of the principal curvatures λ is improving at an expo-
nential rate, i.e.,

λi − 1 ≥ (1− e−δt)(H1 − 1)(3.18)

for some δ > 0. Combing with the uniform upper bound for λ, (3.18) implies

|h|2 − nH2
1 ≤ Ce−δ0t

for some δ0 > 0. Then the exponential convergence follows in a standard way. For details
see Theorem 3.5 in [40]. �

A direct consequence of Theorem 3.1 is the following Alexandrov type theorem for
hypersurfaces in Hn.

Corollary 3.1. Let 0 ≤ l < k ≤ n− 1. Let K ∈ K be an h-convex bounded domain in Hn

with smooth boundary satisfying that Hk = cHl for some constant c ∈ R. Then K must
be a geodesic ball.

This result was proved under a weaker condition that ∂K is k-convex, by Korevaar [31]
and later Koh [30] by using respectively the method of Alexandrov’s reflection based on
the maximum principle and the integral method based on Minkowski type formulae. In
this paper, the form in Corollary 3.1 is enough for our application.

Proof of Corollary 3.1. We just let K evolve by (3.1) with F =
(
Hk
Hl

) 1
k−l

. Then the flow

is actually stationary. The convergence of Theorem 3.1 implies that K must be a geodesic
ball. �
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4. Proof of Theorem 1.1-1.3

Before proving the main theorems, we define some auxiliary functions which will be
used below.

First recall that, for 0 ≤ k ≤ n− 1,

fk : [0,∞)→ R+, fk(r) = Wk(Br).

It is easy to see that f is smooth and it follows from (2.2) that fk is strictly monotone
increasing. Hence its inverse function f−1

k exists and is also strictly monotone increasing.
For 2 ≤ k ≤ n− 1, define

gk : [0,∞)→ R+, gk(s) = nfk ◦ f−1
k−2(s) +

n(k − 1)

n− k + 2
s.

Thanks to the monotonicity of fk, gk is also strictly monotone increasing and its inverse
function g−1

k exists and is strictly monotone increasing. One can easily check from the
strict monotonicity of fk and gk that

1

n
s− k − 1

n− k + 2
g−1
k (s) ≥ 0.(4.1)

For 3 ≤ k ≤ n− 1, define

hk : [0,∞)→ R+, hk(s) = gk+1

(
1

n
s− k − 2

n− k + 3
g−1
k−1(s)

)
.

We claim that hk is also strictly monotone increasing. Indeed, it is direct to compute that

h′k(s) = g′k+1

(
1

n
s− k − 2

n− k + 3
g−1
k−1(s)

)
·

(
1

n
− k − 2

n− k + 3

1

g′k−1(g−1
k−1(s))

)
Since g′k+1 > 0 and

g′k−1 = n(fk−1 ◦ fk−3)′ + n
k − 2

n− k + 3
> n

k − 2

n− k + 3
,

we have that h′k > 0, namely hk is strictly monotone increasing.
From the definition of gk and hk, one can easily see that

gk(Wk−2(Br)) = Vn−k(Br), hk(Vn−k+1(Br)) = Vn−k−1(Br).

Now we start to prove the main theorems. We first prove Theorem 1.1 by using special
forms of flow (3.1).

Proof of Theorem 1.1. Let K = K0 ∈ K.

To prove Theorem 1.1, we consider flow (3.1) starting from Σ0 = ∂K0 with

F =

(
Hk

Hl

) 1
k−l

, c(t) = cl(t) =

∫
Σt
H

1
k−l

k H
1− 1

k−l

l dµt∫
Σt
Hldµt

.
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Let Σt, t ∈ [0,∞) be the solution obtained in Theorem 3.1, which encloses Kt. One verifies
from (3.5) that
(4.2)

d

dt
Wk(Kt) =

n− k
n

∫
Σt

Hk (c(t)− F )

=
n− k
n

1∫
Σt
Hl

(∫
Σt

Hk

∫
Σt

H
1

k−l

k H
1− 1

k−l

l −
∫

Σt

Hl

∫
Σt

H
1+ 1

k−l

k H
− 1

k−l

l

)
It follows from the Hölder inequality that∫

Σt

Hk ≤
(∫

Σt

H
1+ 1

k−l

k H
− 1

k−l

l

) k−l
k−l+1

(∫
Σt

Hl

) 1
k−l+1

,(4.3)

∫
Σt

H
1

k−l

k H
1− 1

k−l

l ≤
(∫

Σt

H
1+ 1

k−l

k H
− 1

k−l

l

) 1
k−l+1

(∫
Σt

Hl

) k−l
k−l+1

.(4.4)

Inserting (4.3) and (4.4) into (4.2), we have

d

dt
Wk(Kt) ≤ 0.(4.5)

Note that the flow preserves Wl. Theorem 3.1 says that the flow converges to some geodesic
ball Br with Wl(Br) = Wl(K0) = Wl(Kt). Thus we have

Wk(K) ≥Wk(Br), with Wl(K) = Wl(Br) for some r > 0,(4.6)

which is equivalent to

Wk(K) ≥ fk ◦ f−1
l (Wl(K)).(4.7)

Equality in (4.7) holds iff equalities in (4.3) and (4.4) hold, iff Hk = cHl for some c ∈ R,
which means by Corollary 3.1 that K is a geodesic ball in Hn. �

Proof of Theorem 1.2. Once we have Theorem 1.1 and especially have (4.7), it is easy to
see from (2.5) that

Vn−1−k(K) = n

(
Wk+1(K) +

k

n− k + 1
Wk−1(K)

)
≥

(
nfk+1 ◦ f−1

k−1 +
nk

n− k + 1
Id

)
(Wk−1(K))

≥
(
nfk+1 ◦ f−1

l +
nk

n− k + 1
fk−1 ◦ f−1

l

)
(Wl(K)) ,(4.8)

where Id : R→ R is the identity function. This leads to Statement (i) in Theorem 1.2.

Statements (ii) and (iii) in Theorem 1.2 are almost included in Statement (i) except that
(a) the area Vn−1 attains its minimum at a geodesic ball among the domains with given
volume W0, and (b)

∫
∂K H1dµ attains its minimum at a geodesic ball among the domains

with given area of the boundary |∂K|. However, (a) is just the classical isoperimetric
inequality in Hn and (b) was proved in [20] by using results of Cheng-Zhou [12] and
Li-Wei-Xiong [33], which was mentioned in the introduction.
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We now prove Statement (iv) of Theorem 1.2. First we consider the simple case k−l = 2.
For l = 0, k = 2, the statement is included in Statement (iii). Hence we assume k ≥ 3.

First of all, we see from (2.5) and (4.7) that∫
∂K

Hk−2dµ = nWk−1(K) +
n(k − 2)

n− k + 3
Wk−3(K)

≥
(
nfk−1 ◦ f−1

k−3 +
n(k − 2)

n− k + 3
Id

)
(Wk−3(K))

= gk−1(Wk−3(K)).(4.9)

It follows from (4.9) that

Wk−3(K) ≤ g−1
k−1

(∫
∂K

Hk−2dµ

)
.(4.10)

Next, we use (2.5) and (4.7) again on
∫
∂K Hkdµ to obtain that∫

∂K
Hkdµ ≥ gk+1(Wk−1(K))

= gk+1

(
1

n

∫
∂K

Hk−2dµ−
k − 2

n− k + 3
Wk−3(K)

)
.(4.11)

We deduce from (4.10) that

1

n

∫
∂K

Hk−2dµ−
k − 2

n− k + 3
Wk−3(K)

≥ 1

n

∫
∂K

Hk−2dµ−
k − 2

n− k + 3
g−1
k−1

(∫
∂K

Hk−2dµ

)
(4.12)

In view of (4.1), both sides of (4.12) are nonnegative. Back to (4.11), using the mono-
tonicity of gk+1, we obtain that∫

∂K
Hkdµ ≥ gk+1

[
1

n

∫
∂K

Hk−2dµ−
k − 2

n− k + 3
g−1
k−1

(∫
∂K

Hk−2dµ

)]
= hk

(∫
∂K

Hk−2dµ

)
.(4.13)

For k − l = 2m for m ∈ N, due to the monotonicity of hk, we can inductively utilize
(4.13) to deduce that∫

∂K
Hkdµ ≥ hk ◦ hk−2 ◦ · · · ◦ hl+2

(∫
∂K

Hldµ

)
.(4.14)

Notice that the inequalities we have used previously are all optimal in the sense that
equalities hold iff K is a geodesic ball. Hence we conclude Statement (iv) in Theorem 1.2.

We complete the proof of Theorem 1.2. �

Proof of Theorem 1.3: it is sufficient to explicitly write out formula (4.8) for l = 1 and
1 ≤ k ≤ n− 1. A direct calculation yields that

f1(r) =
1

n
|∂Br| =

1

n
ωn−1 sinhn−1(r).
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Thus

f−1
1 (s) = sinh−1

[(
ns

ωn−1

) 1
n−1

]
.

Since Hk(Br) = cothk(r), it follows from (2.6) and (2.7) that if k is odd,

fk(r) =
1

n

k−1
2∑
i=0

(−1)i
(k − 1)!!(n− k)!!

(k − 1− 2i)!!(n− k + 2i)!!
ωn−1 cothk−1−2i(r) sinhn−1(r),

while if k is even,

fk(r) =
1

n

k
2
−1∑
i=0

(−1)i
(k − 1)!!(n− k)!!

(k − 1− 2i)!!(n− k + 2i)!!
ωn−1 cothk−1−2i(r) sinhn−1(r)

+(−1)
k
2

(k − 1)!!(n− k)!!

n!!

∫ r

0
ωn−1 sinhn−1(t)dt.

Hence, for k odd,

fk ◦ f−1
1 (s) =

1

n

k−1
2∑
i=0

(−1)i
(k − 1)!!(n− k)!!

(k − 1− 2i)!!(n− k + 2i)!!
ωn−1

ns

ωn−1

[
1 +

(
ns

ωn−1

) −2
n−1

] k−1
2
−i

,

and for k even,

fk ◦ f−1
1 (s) =

1

n

k
2
−1∑
i=0

(−1)i
(k − 1)!!(n− k)!!

(k − 1− 2i)!!(n− k + 2i)!!
ωn−1

ns

ωn−1

[
1 +

(
ns

ωn−1

) −2
n−1

] k−1−2i
2

+(−1)
k
2

(k − 1)!!(n− k)!!

n!!

∫ sinh−1

[(
ns

ωn−1

) 1
n−1

]
0

ωn−1 sinhn−1(t)dt.

Recall that the case k = 1 was already proved in [20]. From the previous two formulas
we can easily compute that for k ≥ 2,

nfk+1 ◦ f−1
1 (s) +

nk

n− k + 1
fk−1 ◦ f−1

1 (s) = ωn−1
ns

ωn−1

[
1 +

(
ns

ωn−1

) −2
n−1

] k
2

= ωn−1

( ns

ωn−1

) 2
k

+

(
ns

ωn−1

) 2
k

(n−k−1)
n−1

 k
2

.(4.15)

Letting s = W1(K) = 1
n |∂K| in (4.15), we obtain from (4.8) inequality (1.6). �

From the proof, one can see again the difference between the even case and the odd
case. However, an interesting cancellation gives the uniform inequality (1.6).

Acknowledgment. We learned from Pengfei Guan that he and Junfang Li obtained the same
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flow, under weaker conditions that K is a k-convex star-shaped domain and satisfies a
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