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A PENROSE INEQUALITY FOR GRAPHS OVER KOTTLER SPACE

YUXIN GE, GUOFANG WANG, JIE WU, AND CHAO XIA

Abstract. In this work, we prove an optimal Penrose inequality for asymptotically locally
hyperbolic manifolds which can be realized as graphs over Kottler space. Such inequality relies
heavily on an optimal weighted Alexandrov-Fenchel inequality for the mean convex star-shaped
hypersurfaces in Kottler space.

1. Introduction

The famous Penrose inequality (conjecture) in general relativity, as a refinement of the positive
mass theorem ([40], [43]), states that the total mass of a spacetime is no less than the mass of
its black holes which are measured by the area of its event horizons. When the cosmological
constant Λ = 0, its Riemannian version reads that an asymptotically flat manifold (Mn, g) with
an outermost minimal boundary Σ (a horizon) has the ADM mass

(1.1) mADM ≥
1

2

(
|Σ|
ωn−1

)n−2
n−1

,

provided that the dominant condition Rg ≥ 0 holds. Here Rg is the scalar curvature of (Mn, g),
|Σ| is the area of Σ and ωn−1 is the area of the unit (n− 1)-sphere. Moreover, equality holds if
and only if (M, g) is isometric to the exterior Schwarzschild solution. For the case n = 3, (1.1)
was proved by Huisken-Ilmanen [28] using the inverse mean curvature flow and by Bray [3] using
a conformal flow. Later, Bray’s proof was generalized by Bray and Lee [7] to the case n ≤ 7.
For related results and further development, see the excellent surveys [4], [35]. Recently Lam
[30] gave an elegant proof of (1.1) for asymptotically flat graphs over Rn for all dimensions. His
proof was later extended in [14, 29, 36]. Very recently, a general Penrose inequality for a higher
order mass was conjectured in [21], which is true for the graph cases [21, 32] and conformally
flat cases [22].

In recent years, there has been great interest to extend the previous results to a spacetime with
a negative cosmological constant Λ < 0. In the time symmetric case, (Mn, g) is now an asymp-
totically hyperbolic manifold with an outermost minimal boundary Σ. For the asymptotically
hyperbolic manifolds, a mass-like invariant, which generalizes the ADM mass, was introduced
by Chruściel, Herzlich and Nagy [10, 11, 27]. See also an earlier contribution by Wang [41] for
the special case of conformally compact manifolds. For this mass mH the corresponding Penrose
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conjecture is

(1.2) mH ≥ 1

2

{(
|Σ|
ωn−1

)n−2
n−1

+

(
|Σ|
ωn−1

) n
n−1

}
,

provided that the dominant energy condition Rg ≥ −n(n−1) holds. This is a very difficult prob-
lem. Neves [38] showed that the powerful inverse mean curvature flow of Huisken-Ilmanen [28]
alone could not work for proving (1.2). For the special case that the asymptotically hyperbolic
manifold can be represented by a graph over the hyperbolic space Hn, Dl-Gicquaud-Sakovich
[13] and de Lima-Girão [16] proved this conjecture with a help of a sharp Alexandrov-Fenchel
inequality for a weighted mean curvature integral in Hn. More precisely, in [13], several sub-
optimal inequalities similar to the Alexandrov-Fenchel inequality in the hyperbolic space are
given, the sharp inequality (the one that implies the Penrose inequality for hyperbolic graphs) is
settled in [16]. Recently there have been many contributions in establishing Alexandrov-Fenchel
inequalities in Hn, see [9, 23, 24, 31, 42]. Penrose inequalities for the Gauss-Bonnet-Chern mass
have been studied in [21, 24].

In this paper we are interested in studying asymptotically locally hyperbolic (ALH) manifolds.
Let us first introduce the locally hyperbolic metrics. Fix κ = ±1, 0 and suppose (Nn−1, ĝ) is a
closed space form of sectional curvature κ. Consider the product manifold Pκ = Iκ ×N , where
I−1 = (1,+∞) and I0 = I1 = (0,∞) endowed with the warped product metric

(1.3) bκ =
dρ2

V 2
κ (ρ)

+ ρ2ĝ, ρ ∈ Iκ, and Vκ(ρ) =
√
ρ2 + κ.

One can easily check that the sectional curvature of (Pκ, bκ) equals to −1 and thus it is called
locally hyperbolic. Note that in the case κ = 1 and (N, ĝ) is a round sphere, (Pκ, bκ) is exactly
the hyperbolic space. Since there are a lot of work on the case that κ = 1 and (N, ĝ) is a
round sphere, see the work mentioned above, we will in principle focus on the remaining case,
the locally hyperbolic case. Namely, κ = −1, 0 or κ = 1 and N is a space form other than the
standard sphere. In this case, the mass defined by (1.6) below is a geometric invariant. (See
Section 3 in [10]). In order to define this mass, we recall from [10] the following definition of
ALH manifolds.

Definition 1.1. A Riemannian manifold (Mn, g) is called asymptotically locally hyperbolic
(ALH) if there exists a compact subset K and a diffeomorphism at infinity Φ : M \ K →
N × (ρ0,+∞), where ρ0 > 1 such that

(1.4) ‖(Φ−1)∗g − bκ‖bκ + ‖∇bκ
(
(Φ−1)∗g

)
‖bκ = O(ρ−τ ), τ >

n

2
,

and

(1.5)

∫
M
Vκ |Rg + n(n− 1)|dVg <∞.

Then a mass type invariant of (Mn, g) with respect to Φ, which we call ALH mass, can be
defined by

(1.6) m(M,g) = cn lim
ρ→∞

∫
Nρ

(
Vκ(divbκe− d trbκe) + (trbκe)dVκ − e(∇bκVκ, ·)

)
νdµ,
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where e := (Φ−1)∗g − bκ, Nρ = {ρ} × N , ν is the outer normal of Nρ induced by bκ and dµ is
the area element with respect to the induced metric on Nρ, ϑn−1 is the area of N

ϑn−1 = |N | and cn =
1

2(n− 1)ϑn−1
.

For this mass, there is a corresponding Penrose conjecture.

Conjecture 1. Let (M, g) be an ALH manifold with an outermost minimal horizon Σ. Then
the mass

m(M,g) ≥
1

2

((
|Σ|
ϑn−1

) n
n−1

+ κ

(
|Σ|
ϑn−1

)n−2
n−1

)
,

provided that M satisfies the dominant condition

(1.7) Rg + n(n− 1) ≥ 0.

Moreover, equality holds if and only if (M, g) is a Kottler space.

The Kottler space, or Kottler-Schwarzschild space, is an analogue of the Schwarzschild space
in the context of asymptotically locally hyperbolic manifolds which is introduced as follows. We
consider the metric

(1.8) gκ,m =
dρ2

V 2
κ,m(ρ)

+ ρ2ĝ, Vκ,m =

√
ρ2 + κ− 2m

ρn−2
.

Let ρκ,m be the largest positive root of Vκ,m. Then the triple

(Pκ,m = [ρκ,m,+∞)×N, gκ,m, Vκ,m)

is a complete vacuum static data set with the negative cosmological constant −n which satisfies

(1.9) ∆̄Vκ,mgκ,m − ∇̄2Vκ,m + Vκ,mRicgκ,m = 0 and Rgκ,m = −n(n− 1).

We remark here that throughout the all paper, ∆̄ and ∇̄ denote the Laplacian and covariant
derivative with respect to the metric gκ,m.

Remark that in (1.8) if κ ≥ 0, the parameter m is always positive; if κ = −1, the parameter
m can be negative. In fact, m belongs to the following interval

m ∈ [mc,+∞) and mc = −(n− 2)
n−2
2

n
n
2

.(1.10)

Comparing with the case of the asymptotically hyperbolic, this is a new and interesting situation.
The corresponding positive mass theorem looks now like

Conjecture 2. Let (M, g) be an ALH manifold (κ = −1 case without boundary). Then the
mass

m(M,g) ≥ mc = −(n− 2)
n−2
2

n
n
2

,

provided that M satisfies the dominant condition (1.7).
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These problems were first studied by Chruściel-Simon [12]. Recently, Lee and Neves [33], [34]
used the powerful inverse mean curvature flow to obtain a Penrose inequality for 3 dimensional
conformally compact ALH manifolds if the mass m ≤ 0. Roughly speaking, they managed
to show that the inverse mean curvature flow of Huisken and Ilmanen does work for ALH
with κ = 0,−1, though Neves [38] has previously showed that it alone does not work for the
asymptotically hyperbolic manifolds, i.e., κ = 1. Very recently, de Lima and Girão [17] proved
Conjecture 1 for a class of graphical ALH for all dimensions n ≥ 3, in the range m ∈ [0,∞).

Motivated by these work and our previous wok on the Gauss-Bonnet-Chern mass, in this
paper we want to to show Conjecture 1 for a class of graphical ALH for all dimensions n ≥ 3,
in the full range

m ∈ [mc,∞) = [−(n− 2)
n−2
2

n
n
2

,∞).

In order to state our results, let us introduce the corresponding Kottler-Schwarzschild space-
time in general relativity

−V 2
κ,mdt

2 + gκ,m.

We consider its Riemannian version, namely Qκ,m = R× Pκ,m with the metric

(1.11) g̃κ,m = V 2
κ,mdt

2 + gκ,m.

It is well-known that g̃κ,m is an Einstein metric, i.e.

Ricg̃κ,m + ng̃κ,m = 0,

which actually follows from (1.9). Now let m be any fixed number

m ∈ [mc,∞).

We identify Pκ,m with the slice {0} × Pκ,m ⊂ Qκ,m and consider a graph over Pκ,m or over a
subset Pκ,m\Ω in Qκ,m , where Ω is a compact smooth subset containing {0}× ∂Pκ,m. A graph
associated to a smooth function f : Pκ,m\Ω → R is a manifold Mn with the induced metric
from (Qκ,m, g̃κ,m), i.e.

(1.12) g = V 2
κ,m(ρ)∇̄f ⊗ ∇̄f + gκ,m.

Definition 1.2. We say Mn ⊂ Qκ,m is an ALH graph over Pκ,m\Ω (associated to a smooth
function f : Pκ,m\Ω → R) if there exists a compact subset K and a diffeomorphism at infinity
Φ :M\K → N × (ρ0,+∞) ⊂ Pκ,m\Ω, where ρ0 > 1 such that

(1.13) ‖(Φ−1)∗g − gκ,m‖gκ,m + ‖∇̄
(
(Φ−1)∗g

)
‖gκ,m = O(ρ−τ ), τ >

n

2
,

or equivalently,

|V ∇̄f |gκ,m + |V ∇̄2f + ∇̄V ∇̄f |gκ,m = O(ρ−
τ
2 ), τ >

n

2
,(1.14)

and

(1.15)

∫
M
Vκ,m |Rg + n(n− 1)|dVg <∞.
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An ALH graph over Pκ,m\Ω in Qκ,m must be an ALH manifold in the sense of Definition 1.1.
Conversely, if a graph over Pκ,m\Ω in Qκ,m is an ALH manifold, then it is also an ALH graph
in the sense of Definition 1.2. In other words, for a graph over Pκ,m\Ω in Qκ,m, Definition 1.1
and Definition 1.2 are equivalent. For the proof see Appendix B.

We now state the main results of this paper.

Theorem 1.3. Suppose M⊂ Qκ,m is an ALH graph over Pκ,m with inner boundary Σ, associ-
ated to a function f : Pκ,m\Ω → R. Assume that Σ is in a level set of f and |∇̄f(x)| → ∞ as
x→ Σ. Then we have

(1.16) m(M,g) = m+ cn

∫
M
〈 ∂
∂t
, ξ〉(Rg + n(n− 1))dVg + cn

∫
Σ
Vκ,mHdµ,

where H is the mean curvature of Σ in (Pκ,m, gκ,m) and ξ is the unit outer normal of (M, g) in
(Qκ,m, g̃κ,m). Moreover, if in addition the dominant energy condition

(1.17) Rg + n(n− 1) ≥ 0

holds, we have

m(M,g) ≥ m+ cn

∫
Σ
Vκ,mHdµ.(1.18)

Remark 1.4. For any ALH graph over the whole Pκ,m, we have

m(M,g) ≥ m ≥ mc,(1.19)

provided that the dominant energy condition Rg + n(n− 1) ≥ 0 holds, since in this case

m(M,g) = m+ cn

∫
M
〈 ∂
∂t
, ξ〉(Rg + n(n− 1))dVg ≥ m ≥ mc.

This can be viewed as a version of the positive mass theorem in this setting. See Conjecture 2.

Comparing with the work of [17], which considers graphs over the local hyperbolic space
Pκ, our setting enables us to consider the negative mass range. In order to obtain a Penrose
type inequality, we need to establish a Minkowski type inequality in the Kottler space. This
motivates us to study geometric inequalities in the Kottler space. The corresponding Minkowski
type inequality is proved in the following Theorem.

Theorem 1.5. Let Σ be a compact embedded hypersurface which is star-shaped with positive
mean curvature in Pκ,m, then we have∫

Σ
Vκ,mHdµ ≥ (n− 1)ϑn−1

((
|Σ|
ϑn−1

) n
n−1

−
(
|∂Pκ,m|
ϑn−1

) n
n−1

)

+(n− 1)κϑn−1

((
|Σ|
ϑn−1

)n−2
n−1

−
(
|∂Pκ,m|
ϑn−1

)n−2
n−1

)
,(1.20)

where ∂Pκ,m = {ρκ,m} ×N. Equality holds if and only if Σ is a slice.
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In this paper by star-shaped we mean that Σ can be represented as a graph over {ρκ,m}×Nn−1

in Pκ,m.
When m = 0, i.e, Pκ,m = Pκ, which is a locally hyperbolic space, Theorem 1.5 was proved

in [17]. When m 6= 0, Pκ,m has no constant curvature. A similar inequality was first proved
by Brendle-Hung-Wang in their work on anti-de Sitter Schwarzschild space [9]. Our proof of
Theorem 1.5 uses crucially their work.

One can check easily that for the Kottler space Pκ,m the area of its horizon ∂Pκ,m satisfies

m =
1

2

((
|∂Pκ,m|
ϑn−1

) n
n−1

+ κ

(
|∂Pκ,m|
ϑn−1

)n−2
n−1

)
.(1.21)

Combining (1.18), (1.20) and (1.21), we immediately obtain the Penrose inequality for ALH
graphs.

Theorem 1.6. If M ⊂ Qκ,m is an ALH graph as in Theorem 1.3, so that its horizon Σ ⊂
(Pκ,m, gκ,m) is star-shaped with positive mean curvature, then

(1.22) m(M,g) ≥
1

2

((
|Σ|
ϑn−1

) n
n−1

+ κ

(
|Σ|
ϑn−1

)n−2
n−1

)
.

Equality is achieved by the Kottler space.

When n = 3, as mentioned above, this inequality was proved by Lee-Neves in [33] and [34],
even without the graphical condition. When m = 0 it was proved by de Lima-Girão [17].
Howover, if one restricts himself only to the case m = 0, by (1.16) and the dominant energy
condition (1.17) one has m(M,g) ≥ 0, which means that (1.22) is interesting only if the volume
|Σ| of Σ is not so small, in the case κ = −1. This remark was also pointed out in [17]. Our
result, Theorem 1.6, remedies this problem.

It is easy to show that the Kottler-Schwarzschild space Pκ,m can be represented as an ALH
graph in (Qκ,m′ , g̃κ,m′) over Pκ,m′ , if m′ ≤ m. In general we believe that the class of ALH graphs
over Pκ,m with smaller m is larger than the class of ALH graphs over Pκ,m with bigger m. That
is, we believe the class of ALH graphs with m = 0 considered in the paper of de Lima-Girão
contains the class of ALH graphs with m > 0 and the class with mc < 0 is the biggest. In
Appendix A, we show that it is true at least for rotationally symmetric graphs. By the above
results and the results in [16], it is clear that the class of ALH graphs with negative mass we
consider here can not be represented as ALH graphs over Pκ,0 in Qκ,0, since, otherwise the ALH
mass is positive. Moreover, in Appendix A we give examples of ALH manifolds with positive
ALH mass, which can be represented as an ALH graph over P−1,m′ with m′ < 0, but can not be
represented as an ALH graph over P−1,0.

The rigidity in Theorem 1.6 should follow from the argument of Huang-Wu [29]. We will
return to this problem later.

2. Kottler-Schwarzschild space

As stated in the introduction, the Kottler space, or Kottler-Schwarzschild space, is an analogue
of the Schwarzschild space in the setting of asymptotically locally hyperbolic manifolds. Let
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(Nn−1, ĝ) be a closed space form of constant sectional curvature κ. Then the n-dimensional
Kottler-Schwarzschild space Pκ,m = [ρκ,m,∞)×N is equipped with the metric

(2.1) gκ,m =
dρ2

V 2
κ,m(ρ)

+ ρ2ĝ, Vκ,m =

√
ρ2 + κ− 2m

ρn−2
.

Remark that in (2.1), in order to have a positive root ρκ,m of φ(ρ) := ρ2 + κ− 2m
ρn−2 , if κ ≥ 0,

the parameter m should be always positive; if κ = −1, the parameter m can be negative. In
fact, in this case, m belongs to the following interval

m ∈ [mc,+∞) and mc = −(n− 2)
n−2
2

n
n
2

.(2.2)

Here the certain critical value mc comes from the following. If m ≤ 0, one can solve the equation

φ′(ρ) = 2ρ+ (n− 2)
2m

ρn−1
= 0,

to get the root ρh = (−(n− 2)m)
1
n . Note the fact that φ(ρh) ≤ 0, which yields

m ≥ −(n− 2)
n−2
2

n
n
2

.

By a change of variable r = r(ρ) with

r′(ρ) =
1

Vκ,m(ρ)
, r(ρκ,m) = 0,

we can rewrite Pκ,m as Pκ,m = [0,∞)×N equipped with the metric

gκ,m := ḡ := dr2 + λκ(r)2ĝ,(2.3)

where λκ : [0,∞)→ [ρκ,m,∞) is the inverse of r(ρ), i.e., λκ(r(ρ)) = ρ. It is easy to check

λ′κ(r) = Vκ,m(ρ) =
√
κ+ λκ(r)2 − 2mλκ(r)2−n,(2.4)

λ′′κ(r) = λκ(r) + (n− 2)mλκ(r)1−n.(2.5)

By the definition of ρκ,m, we know that

λ′′κ(r) ≥ 0 for r ∈ [0,∞).

One can also verify

λκ(r) = O(er) as r →∞.(2.6)
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We take κ = −1 as example to verify (2.6).

r(ρ) =

∫ ρ

ρ−1,m

1√
−1 + s2 − 2ms2−n

ds

=

∫ ρ

1

1√
−1 + s2

ds+

∫ 1

ρ−1,m

1√
−1 + s2 − 2ms2−n

ds

+

∫ ρ

1

(
1√

−1 + s2 − 2ms2−n
− 1√
−1 + s2

)
ds

= ln(2
√
ρ2 − 1 + 2ρ)− c− m

n
ρ−n +O(ρ−n−2) as ρ→∞.

Here c = ln 2 +
∫ 1
ρ−1,m

1√
−1+s2−2ms2−n

ds. By Taylor expansion, we have

er(ρ)+c

4
+ e−(r(ρ)+c) = (1 + o(1))ρ+ o(1),

which implies λκ(r) = ρ = O(er) as r →∞.
Let Rαβγδ denote the Riemannian curvature tensor in Pκ,m. Let ∇̄ and ∆̄ denote the covariant

derivative and the Laplacian on Pκ,m respectively. The Riemannian and Ricci curvature of
(Pκ,m, ḡ) are given by

Rijkl = λκ(r)2(κ− λ′κ(r)2)(ĝikĝjl − ĝilĝjk) = (2mλ−nκ − 1)(ḡikḡjl − ḡilḡjk),
Rijkr = 0,

Rirjr = −λκ(r)λ′′κ(r)ĝij = −(1 + (n− 2)mλ−nκ )ḡij .

Ric(ḡ) = −
(
λ′′κ(r)

λκ(r)
− (n− 2)

κ− λ′κ(r)2

λκ(r)2

)
ḡ − (n− 2)

(
λ′′κ(r)

λκ(r)
+
κ− λ′κ(r)2

λκ(r)2

)
dr2

=
(
−(n− 1) + (n− 2)mλκ(r)−n

)
ḡ − n(n− 2)mλκ(r)−ndr2.

It follows from (2.6) that

|Rαβγδ + ḡαγ ḡβδ − ḡαδ ḡβγ |ḡ = O(e−nr), |∇̄µRαβγδ|ĝ = O(e−nr);(2.7)

|Ric(ḡ) + (n− 1)ḡ|ḡ = O(e−nr).(2.8)

3. The ALH mass of graphs in the kottler spaces

First, one can check directly

Lemma 3.1. The Kottler space (Pκ,m, gκ,m) is an ALH manifold with the ALH mass

m(Pκ,m,gκ,m) = m.

Second, instead of computing the ALH mass with Vκ in (1.5) one can compute it with Vκ,m
by using the following Lemma
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Lemma 3.2. We have

(3.1) m(M,g) = m+cn lim
ρ→∞

∫
Nρ

(
Vκ,m(divgκ,m ẽ−dtrgκ,m ẽ)+(trgκ,m ẽ)dVκ,m−ẽ(∇gκ,mVκ,m, ·)

)
ν̄dµ,

where ẽ := (Φ−1)∗g − gκ,m and ν̄ denotes the outer normal of Nρ induced by gκ,m.

Proof. First note that

e = (Φ−1)∗g − bκ = ẽ+ (gκ,m − bκ),

thus we have

m(M,g) = m(Pκ,m,gκ,m) + cn lim
ρ→∞

∫
Nρ

(
Vκ(divbκ ẽ− dtrbκ ẽ) + (trbκ ẽ)dVκ − ẽ(∇bκVκ, ·)

)
νdµ

= m+ cn lim
ρ→∞

∫
Nρ

(
Vκ(divbκ ẽ− dtrbκ ẽ) + (trbκ ẽ)dVκ − ẽ(∇bκVκ, ·)

)
νdµ.

Then using the fact that gκ,m is ALH, one can replace Vκ by Vκ,m, bκ by gκ,m and ν by ν̄ in
(1.6) without changing mass, that is,

lim
ρ→∞

∫
Nρ

(
Vκ(divbκ ẽ− dtrbκ ẽ) + (trbκ ẽ)dVκ − ẽ(∇bκVκ, ·)

)
νdµ

= lim
ρ→∞

∫
Nρ

(
Vκ,m(divgκ,m ẽ− dtrgκ,m ẽ) + (trgκ,m ẽ)dVκ,m − ẽ(∇gκ,mVκ,m, ·)

)
ν̄dµ.

This implies the desired result. �

According to [37], the second term in (3.1) is also an integral invariant when the reference
metric is taken as the Kottler-Schwarzschild metric gκ,m rather than bκ. In the spirit of [14, 15],
one can estimate the second term since (Pκ,m, gκ,m, Vκ,m) satisfies the static equation (1.9).
Therefore we can prove Theorem 1.3 for the graphs over a Kottler-Schwarzschild space which
extends the previous works of graphs over the Euclidean space, hyperbolic space as well as the
locally hyperbolic spaces.

Proof of Theorem 1.3. The proof of this theorem follows in the spirit of the one in [14, 15].
For the convenience of readers, we sketch it. Denote (M, g) ⊂ (Qκ,m, g̃κ,m) with the unit outer
normal ξ and the shape operator B = −∇g̃κ,mξ. Define the Newton tensor inductively by

Tr = SrI −BTr−1, T0 = I,

where Sr denotes the r-th mean curvature of (M, g) with respect to ξ. Let {εi}ni=1 be a local
orthonormal frame on M, then a direct computation gives (or see (3.3) in [1] for the proof)

divgTr :=

n∑
i=1

(∇εiTr)(εi) = −B(divgTr−1)−
n∑
i=1

(R̃(ξ, Tr−1(εi))εi)
T ,(3.2)

where R̃ denotes the curvature tensor of (Qκ,m, g̃κ,m) and (R̃(ξ, Tr−1(εi))εi)
T denotes the tan-

gential component of R̃(ξ, Tr−1(εi))εi.
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Using the fact that ∂
∂t is a Killing vector field, one can check directly (or refer to (8.4) in [1]

for the proof)

divg

(
Tr(

∂

∂t
)T
)

= 〈divgTr, (
∂

∂t
)T 〉+ (r + 1)Sr+1〈

∂

∂t
, ξ〉,(3.3)

where ( ∂∂t)
T is the tangential component of ∂

∂t along M.
Combining (3.2) and (3.3) together, we get the following flux-type formula (for r = 1)

divg

(
T1(

∂

∂t
)T
)

= 2S2〈
∂

∂t
, ξ〉+Ricg̃κ,m(ξ, (

∂

∂t
)T ).(3.4)

Denote by

e0 = (Vκ,m)−1 ∂

∂t
.

In the local coordinates x = (x1, · · · , xn) of (Pκ,m, gκ,m), the tangent space TMn is spanned by

Zi = (Vκ,m∇̄if)e0 +
∂

∂xi
,

and thus

ξ =
1√

1 + V 2
κ,m|∇̄f |2

(e0 − Vκ,m∇̄f),

which implies

(
∂

∂t
)T = Vκ,me0 −

Vκ,m√
1 + V 2

κ,m|∇̄f |2
ξ

=
V 3
κ,m|∇̄f |2

1 + V 2
κ,m|∇̄f |2

e0 +
V 2
κ,m

1 + V 2
κ,m|∇̄f |2

∇̄f.

On the other hand ( ∂∂t)
T := (( ∂∂t)

T )iZi which yields

((
∂

∂t
)T )i =

V 2
κ,m∇̄if

1 + V 2
κ,m|∇̄f |2

.(3.5)

Note that the shape operator of Mn is given by (cf. (4.5) in [24] for instance)

Bi
j =

Vκ,m√
1 + V 2

κ,m|∇̄f |2

(
∇̄i∇̄jf +

∇̄if∇̄jVκ,m
Vκ,m(1 + V 2

κ,m|∇̄f |2)
+
∇̄iVκ,m∇̄jf

Vκ,m
(3.6)

−V
2∇̄if∇̄sf∇̄s∇̄jf
1 + V 2

κ,m|∇̄f |2

)
.

By the decay property of metric (1.12) together with (3.5), one can check that

gij(T1(
∂

∂t
)T )iν̄j ≈ (gκ,m)ij(T1(

∂

∂t
)T )iν̄j

= (T1)ip
V 2
κ,m∇̄pf

1 + V 2
κ,m|∇̄f |2

ν̄i ≈ (T1)ip
V 2
κ,m∇̄pf√

1 + V 2
κ,m|∇̄f |2

ν̄i,(3.7)
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where ≈ means that the two terms differ only by the terms that vanish at infinity after integra-
tion.

With expression (3.6) and applying the similar argument in the proof of (4.11) in [24], one
can check that

Vκ,m(∇̄j ẽij − ∇̄iẽjj)− (ẽij∇̄jVκ,m − ẽjj∇̄iVκ,m) = (T1)ip
V 2
κ,m∇̄pf√

1 + V 2
κ,m|∇̄f |2

.

As in the proof of Theorem 1.4 in [24], integrating by parts gives an extra boundary term that

lim
ρ→∞

∫
Nρ

(
Vκ,m(divgκ,m ẽ−dtrgκ,m ẽ)+(trgκ,m ẽ)dVκ,m−ẽ(∇gκ,mVκ,m, ·)

)
ν̄dµ

+

∫
Σ
Vκ,mH

(
V 2
κ,m|∇̄f |2

1 + V 2
κ,m|∇̄f |2

)
dµ

= lim
ρ→∞

∫
Nρ

(T1)ip
V 2
κ,m∇̄pf√

1 + V 2
κ,m|∇̄f |2

ν̄idµ+

∫
Σ
Vκ,mH

(
V 2
κ,m|∇̄f |2

1 + V 2
κ,m|∇̄f |2

)
dµ.

Next using (3.7) and the assumption that |∇̄f(x)| → ∞ as x→ Σ, we have

lim
ρ→∞

∫
Nρ

(T1)ip
V 2
κ,m∇̄pf√

1 + V 2
κ,m|∇̄f |2

ν̄idµ+

∫
Σ
Vκ,mH

(
V 2
κ,m|∇̄f |2

1 + V 2
κ,m|∇̄f |2

)
dµ

= lim
ρ→∞

∫
Nρ

gij(T1(
∂

∂t
)T )iν̄jdµ+

∫
Σ
Vκ,mHdµ.

Finally integrating (3.4) and revoking Lemma 3.2, we finally obtain

(3.8) m(M,g) = m+ cn

∫
M

(
2S2〈

∂

∂t
, ξ〉+Ricg̃κ,m(ξ, (

∂

∂t
)T )

)
dVg + cn

∫
Σ
Vκ,mHdµ.

From the Gauss equation we obtain

Rg = Rg̃κ,m − 2Ricg̃κ,m(ξ, ξ) + 2S2.

Since g̃κ,m is an Einstein metric, we have

Rg = −n(n− 1) + 2S2 and Ricg̃κ,m(ξ, (
∂

∂t
)T ) = 0.

Combining all the things together, we complete the proof of the theorem. �

4. Inverse mean curvature flow

Let Σ0 be a star-shaped, strictly mean convex closed hypersurface in Pκ,m parametrized by
X0 : N → Pκ,m. Since the case κ = 1 has been considered in [9], we focus on the case κ = 0
or −1, Consider a family of hypersurfaces X(·, t) : N → Pκ,m evolving by the inverse mean
curvature flow:

∂X

∂t
(x, t) =

1

H(x, t)
ν(x, t), X(x, 0) = X0(x),(4.1)
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where ν(·, t) is the outward normal of Σt = X(N, t).
Let us first fix the notations. Let gij , hij and dµ denote the induced metric, the second

fundamental form and the volume element of Σt respectively. Let ∇ and ∆ denote the covari-
ant derivative and the Laplacian on Σt respectively. We always use the Einstein summation
convention. Let |A|2 = gijgklhikhjl.

We collect some evolution equations in the following lemma. For the proof see for instance
[20].

Lemma 4.1. Along flow (4.1), we have the following evoltion equations.

(1) The volume element of Σt evolves under

∂

∂t
dµ = dµ.

Consequently,
∂

∂t
|Σt| = |Σt|.

(2) hji evolves under

∂hji
∂t

=
∆hji
H2

+
|A|2

H2
hji −

2hki h
j
k

H
− 2∇iH∇jH

H3

+
1

H2
gkl
(

2gpjRqikph
q
l − g

pjRqkplh
q
i −Rqkilh

qj +Rνkνlh
j
i

)
+

1

H2
gklgqj

(
∇qRνkli +∇lRνikq

)
− 2

H
gkjRνiνk.

(3) The mean curvature evolves under

∂H

∂t
=

∆H

H2
− 2
|∇H|2

H3
− |A|

2

H
− Ric(ν, ν)

H
.

(4) The function Vκ,m evolves under

∂

∂t
Vκ,m =

p

H
,

where p := 〈∇Vκ,m, ν〉 is the support function of Σ.
(5) The function χ = 1

〈λκ∂r,ν〉 evolves under

∂χ

∂t
=

∆χ

H2
− 2|∇χ|2

χH2
− |A|

2

H2
χ+
−χRic(ν, ν) + χ2λκRic(ν, ∂r)

H2
.(4.2)

(6) The function p, defined above, evolves under

∂p

∂t
=
∇2
Vκ,m(ν, ν)

H
+

1

H2
〈∇Vκ,m,∇H〉,

and thus
d

dt

∫
Σt

pdµ = n

∫
Σt

Vκ,m
H

dµ.
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�

Since Σ0 is star-shaped, we can write Σ0 as a graph of a function over N :

Σ0 = {(u0(x), x) : x ∈ N}.
It is well known that there exists a maximal time interval [0, T ∗), 0 < T ∗ ≤ ∞, such that the
flow exists and any X(·, t), t ∈ [0, T ∗) are also graphs of functions u over N :

Σt = {(u(x, t), x) : x ∈ N}.
Define a function ϕ(·, t) : N → R by

ϕ(x, t) =

∫ u(x,t)

0

1

λκ(r)
dr,

where λκ(r) is defined in (2.3).
Let

v =
√

1 + |∇ĝϕ|2ĝ.

In term of the local coordinates xi on N , the induced metric and the second fundamental
form of Σt are given respectively by

gij = λ2
κ(ĝij + ϕiϕj), hij =

λκ
v

(λ′κ(ĝij + ϕiϕj)− ϕij).(4.3)

Here ϕi = ∇ĝiϕ and ϕij = ∇ĝi∇
ĝ
jϕ. Thus the mean curvature is given by

H = gijhij = (n− 1)
λ′κ
λκv
− g̃ijϕij

λκv
,(4.4)

where g̃ij = ĝij − ϕiϕj

v2
.

Along flow (4.1), the graph function u evolves under

∂u

∂t
=

v

H
.(4.5)

Hence

∂ϕ

∂t
=

v

λH
=

v2

(n− 1)λ′κ − g̃ijϕij
:=

1

F (u,∇ĝϕ,∇ĝ2ϕ)
.(4.6)

By the parabolic maximum principle, we can derive the C0 and C1 estimates.

Proposition 4.2. Let u(t) = infN u(·, t) and ū(t) = supN u(·, t). Then

λκ(u(t)) ≥ e
1

n−1
tλκ(u(0)), λκ(ū(t)) ≤ e

1
n−1

tλκ(ū(0)).(4.7)

Proof. At the point where u(·, t) attains its minimum, we have v = 1 and ϕij ≥ 0, and hence

H ≤ (n− 1)λ′κ(u)

λκ(u)
.

Thus from (4.5) we infer that

d

dt
inf
N
λκ(u(t)) ≥ (n− 1)λκ(u(t)),(4.8)
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from which the first assertion follows. The second one is proved in a similar way by considering
the maximum point of u(·, t). �

To derive the C1 estimate, we need to estimate the upper and lower bounds for H.

Proposition 4.3. We have H ≤ n−1+O(e−
1

n−1
t) and H ≥ Ce−

1
n−1

t for some positive constant
C depending only on n,m and Σ0.

Proof. By Lemma 4.1 and (2.8), we have

∂

∂t
H2 =

∆H2

H2
− 3

2

|∇H2|2

H4
− 2|A|2 + 2(n− 1) +O(e−nr).(4.9)

In view of the inequality |A|2 ≥ 1
n−1H

2, by using Proposition 4.2 and the maximum principle,
we deduce

d

dt
sup
N
H(·, t)2 ≤ − 2

n− 1
sup
N
H(·, t)2 + 2(n− 1) +O(e−

n
n−1

t).

The first assertion follows.
For the second assertion, we take derivative s of (4.6) with respect to t and get

∂

∂t

(
∂ϕ

∂t

)
= − 1

F 2

∂F

∂ϕi

(
∂ϕ

∂t

)
i

− 1

F 2

∂F

∂ϕij

(
∂ϕ

∂t

)
ij

− 2(n− 1)λκλ
′′
κ

v2F 2

∂ϕ

∂t
.

Since λ′′κ(r) ≥ 0, by using the maximum principle, we have

d

dt
sup
N

∂ϕ

∂t
(·, t) ≤ 0.(4.10)

Taking into account of (4.6) and Proposition 4.2, we conclude that

H ≥ C v

λκ
≥ Ce−

1
n−1

t.

�

Proposition 4.4. We have |∇ĝϕ|ĝ = O(e
− 1

(n−1)2
t
) and v = 1 +O(e

− 1
(n−1)2

t
).

Proof. Let ω = 1
2 |∇ĝϕ|

2
ĝ. Since

∂ϕ

∂t
=

v

λκH
:=

1

F (u,∇ĝϕ,∇ĝ2ϕ)
,(4.11)

one can verify that the evolution equation of ω is

∂ω

∂t
=

g̃ij

v2F 2
ωij −

1

F 2

∂F

∂ϕi
ωi −

2(n− 2)κ

v2F 2
ω − g̃ij

v2F 2
ĝklϕikϕjl −

2(n− 1)λκλ
′′
κ

v2F 2
ω.(4.12)
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Notice that vF = λH and −κ ≤ λ2
κ − 2mλ2−n

κ . Using (2.4), Proposition 4.2 and 4.3, we have

−2(n− 2)κ

v2F 2
− 2(n− 1)λκλ

′′
κ

v2F 2
≤ 2(n− 2)(λ2

κ − 2mλ2−n
κ )

λ2
κH

2
− 2(n− 1)(1 + (n− 2)mλ−nκ )

H2

= − 2

H2
− 2(n− 2)(n+ 1)m

λnκH
2

≤ − 2

(n− 1)2
+ Ce−

2
n−1

t + Ce−
n−2
n−1

t.(4.13)

Thus by using the maximum principle on (4.12) we have

∂

∂t
sup
N
ω(·, t) ≤

(
− 2

(n− 1)2
+ Ce−

2
n−1

t

)
sup
N
ω(·, t),(4.14)

which implies ω = O(e
− 2

(n−1)2
t
). The assertion follows. �

Remark 4.5. Proposition 4.4 implies that the star-shapedness of Σt is preserved. Thus as long
as the flow exists, we have 〈∂r, ν〉 > 0 and a graph representation of Σt.

Proposition 4.6. There exists a positive constant C depending only on n, m and Σ0, such that
H ≥ C.

Proof. Recall the function χ = 1
〈λ(r)∂r,ν〉 . Proposition 4.2 and 4.4 ensure that χ is well defined

and there exists C > 0 such that C−1e−
1

n−1
t ≤ χ ≤ Ce−

1
n−1

t.
By Lemma 4.1 and (2.8), we have

∂

∂t
logH =

∆ logH

H2
− |∇ logH|2

H2
− |A|

2

H2
+
n− 1

H2
+

1

H2
O(e−nr)(4.15)

and

∂

∂t
logχ =

∆ logχ

H2
− |∇ logχ|2

H2
− |A|

2

H2
+

1

H2
O(e−nr).(4.16)

Combining (4.9) and (4.15) and using Proposition 4.2, we obtain

∂

∂t
(logχ− logH) =

∆(logχ− logH)

H2

+
〈∇(logH + logχ),∇(logH − logχ)〉

H2

−n− 1

H2
+
Ce−

n
n−1

t

H2
.

Using Proposition 4.3 and the maximum principle, we have

d

dt
sup
N

(logχ− logH)(·, t) ≤ − 1

n− 1
+ Ce−

2
n−1

t + Ce−
n−2
n−1

t.(4.17)

Hence elogχ−logH ≤ Ce−
1

n−1
t. Note that χ = v

λ . Consequently, H ≥ C. �

With the help of Proposition 4.6, we are able to improve Proposition 4.4.

Proposition 4.7. We have |∇ĝϕ|ĝ = O(e−
1

n−1
t) and v = 1 +O(e−

1
n−1

t).
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Proof. We need the following refinement of (4.13), by taking Proposition 4.6 into account:

−2(n− 2)κ

v2F 2
= −2(n− 2)κ

λ2
κH

2
≤ Ce−

2
n−1

t;

−2(n− 1)λκλ
′′
κ

v2F 2
= −

2(n− 1)(1 + n−2
2 mλ−nκ )

H2

≤ − 2

(n− 1)
+ Ce−

2
n−1

t + Ce−
n−2
n−1

t.

Then the proof follows the same way as Proposition 4.4. �

We now derive the C2 estimates.

Proposition 4.8. The second fundamental form hij is uniformly bounded. Consequently, |∇2
ĝϕ|ĝ ≤

C.

Proof. Let M j
i = Hhji . By Lemma 4.1, we have that M j

i evolves under

∂M j
i

∂t
=

∆M j
i

H2
− 2
∇kH∇kM j

i

H3
− 2
∇iH∇jH

H2

−2
Mk
i M

j
k

H2
+

2(n− 1)M j
i

H2
+

(
|M |
H2

+ 1

)
O(e−

n
n−1

t).

Hence the maximal eigenvalue µ of M j
i satisfies

∂µ

∂t
= −2

µ2

H2
+

2(n− 1)µ

H2
+
( µ
H

+ 1
)
O(e−

n
n−1

t).(4.18)

In view of Proposition 4.3 and 4.6, by using the maximum principle we know that µ is uniformly

bounded from above. Combining the fact C1 ≤ H ≤ C2, we conclude that hji is uniformly
bounded both from above and below. �

Proposition 4.2–4.6 ensure the uniform parabolicity of equation (4.6). With the C2 estimates,
we can derive the higher order estimates via standard parabolic Krylov and Schauder theory,
which allows us to obtain the long time existence for the flow.

Proposition 4.9. The flow (4.1) exists for t ∈ [0,∞).

�
With Proposition 4.2–4.7 at hand, we can follow the same argument of Proposition 15 and

16 in [9] to obtain improved estimates for H and hji .

Proposition 4.10. H = n− 1 +O(te−
2

n−1
t) and |hji − δ

j
i | ≤ O(t2e−

2
n−1

t).

�
Consequently, we have

Proposition 4.11. |∇2
ĝϕ|ĝ ≤ O(t2e−

1
n−1

t).
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Proof. Using Proposition 4.2 and 4.7, we get

λ′κ = λk +O(e−
t

n−1 ),
1

v
= O(e−

2t
n−1 ).(4.19)

It follows from Proposition 4.11 that

|hij −
λ′κ
λκv

gij |g ≤ |hij − gij |g + (n− 1)| λ
′
κ

λκv
− 1| ≤ O(t2e−

2
n−1

t).(4.20)

On the other hand,

gij = λ2
κĝij + ϕiϕj = O(e

2
n−1

t)ĝij .

Thus from (4.3) we see

|ϕij |ĝ =
λκ
v
|hij −

λ′κ
λκv

gij |ĝ ≤ O(t2e−
1

n−1
t).(4.21)

�

If we do more delicate analysis, we may improve the estimates given in Proposition 4.11 to

o(e−
1

n−1
t) as in the work of Gerhardt for the inverse mean curvature flow in Hn. Here we avoid

to do so, as in the work of Brendle-Hung-Wang [9]. We remark that on a general asymptotically
hyperbolic manifolds such estimates may be difficult to obtain, cf. the work of Neves [38].

5. Minkowski type inequalities

We start this section with

Theorem 5.1 ([9]). Let Σ be a compact embedded hypersurface which is star-shaped with positive
mean curvature in (ρκ,m,∞)×Nn−1. Let Ω be the region bounded by Σ and the horizon ∂M =
{ρκ,m} ×N . Then∫

Σ
Vκ,mHdµ ≥ n(n− 1)

∫
Ω
Vκ,mdvol + (n− 1)κϑn−1

((
|Σ|
ϑn−1

)n−2
n−1

−
(
|∂M |
ϑn−1

)n−2
n−1

)
.(5.1)

Equality holds if and only if Σ = {ρ} ×N for some ρ ∈ [ρκ,m,∞).

When κ = 1, Theorem 5.1 was proved in [9]; when κ = 0,−1, the proof follows from a similar
argument, which is even simpler. For the convenience of the reader, we include it here. To prove
this theorem, we need the following two lemmas.

Lemma 5.2. The functional

Q1(t) :=

∫
Σt
Vκ,mHdµ− n(n− 1)

∫
Ωt
Vκ,mdvol + (n− 1)κρn−2

κ,mϑn−1

|Σt|
n−2
n−1

(5.2)

is monotone non-increasing along flow (4.1).



18 YUXIN GE, GUOFANG WANG, JIE WU, AND CHAO XIA

Proof. The proof of this lemma can be found in [9]. For completeness, we include the calculations
here. To simplify the notation, we denote ρ0 = ρκ,m. In view of Lemma 4.1 and integrating by
parts, we calculate

d

dt

∫
Σt

Vκ,mHdµ

= −
∫

Σt

1

H
∆Vκ,mdµ−

∫
Σt

Vκ,m
H

(|A|2 +Ric(ν, ν))dµ+

∫
Σt

(p+ Vκ,mH)dµ

= −
∫

Σt

Vκ,m
H
|A|2 +

∫
Σt

(2p+ Vκ,mH)dµ

≤
∫

Σt

(
2p+

n− 2

n− 1
Vκ,mH

)
dµ,(5.3)

where in the third line we used the simple fact ∆Vκ,m = ∆Vκ,m −∇
2
Vκ,m(ν, ν)−Hp and (1.9).

Then we use the divergence theorem to deal with the first term that∫
Σt

pdµ =

∫
Σt

〈∇Vκ,m, ν〉dµ

=

∫
Ωt

∆̄Vκ,mdvol + ((n− 2)m+ ρn0 )ϑn−1

= n

∫
Ωt

Vκ,mdvol +

(
n

2
ρn0 +

n− 2

2
κρn−2

0

)
ϑn−1,(5.4)

where in the last equality we used the relation 2m = ρn0 + κρn−2
0 and the fact ∆̄Vκ,m = nVκ,m

which follows from (1.9).
Similarly, by Lemma 4.1 and (5.4), we have

d

dt

∫
Ωt

nVκ,mdvol = n

∫
Σt

Vκ,m
H

dµ.(5.5)

Also a Heintze-Karcher type inequality proved by Brendle [8] is needed to estimate the third
term, that is,

(n− 1)

∫
Σt

Vκ,m
H

dµ ≥ n
∫

Ωt

Vκ,mdvol + ρn0ϑn−1.(5.6)

Hence substituting (5.4), (5.6) into (5.3) together with (5.5), we infer

d

dt

(∫
Σt

Vκ,mHdµ− n(n− 1)

∫
Ωt

Vκ,mdvol

)
≤

∫
Ωt

2nVκ,mdvol + (nρn0 + (n− 2)κρn−2
0 )ϑn−1

+

∫
Σt

n− 2

n− 1
Vκ,mHdµ−

(
n2

∫
Ωt

Vκ,mdvol + nρn0ϑn−1

)
=

n− 2

n− 1

(∫
Σt

Vκ,mHdµ− n(n− 1)

∫
Ωt

Vκ,mdvol + (n− 1)κρn−2
0 ϑn−1

)
.
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Taking into account of Lemma 4.1 (1), we get the assertion. �

Lemma 5.3.

lim inft→∞Q1(t) ≥ (n− 1)κϑ
1

n−1

n−1 .

Proof. In view of (5.4), it suffices to prove

lim inft→∞

∫
Σt
Vκ,mHdµ− (n− 1)

∫
Σt
pdµ

|Σt|
n−2
n−1

≥ (n− 1)κϑ
1

n−1

n−1 .(5.7)

From (4.4), Proposition 4.7 and 4.11, we have

H =
1

v

(
(n− 1)

λ′κ
λκ
− 1

λκ
∆ĝϕ

)
+O(t2e−

3t
n−1 ).(5.8)

Using Proposition 4.7 and the expressions of λκ, λ
′
κ, and v, we get

Vκ,m = λ′κ = λk

(
1 +

κ

2
(λκ)−2

)
+O(e−

4t
n−1 ),

1

v
= 1− 1

2
|∇ĝϕ|2ĝ +O(e−

4t
n−1 )(5.9)

and √
det g =

(
λn−1
κ +

1

2
|∇ĝϕ|2ĝλn−1

κ +O(e
n−5
n−1

t)

)√
det ĝ.(5.10)

Hence we have∫
Σt

Vκ,mHdµ = (n− 1)

∫
N

(λnκ + κλn−2
κ )dµĝ −

∫
N
λn−1
κ ∆ĝϕdµĝ +O(e

n−3
n−1

t)

= (n− 1)

∫
N

(λnκ + κλn−2
κ )dµĝ +

∫
N

(n− 1)λn−4
k |∇ĝλκ|2dµĝ +O(e

n−3
n−1

t),(5.11)

where in the second line, we have integrated by parts and used the fact

|∇ĝλκ − λ2
κ∇ĝϕ|ĝ = |λk − λ′k||∇ĝu|ĝ = O(e−

t
n−1 ).(5.12)

Meanwhile, we infer from (2.4), (5.9), (5.10) and (5.12) that

−
∫

Σt

pdµ =

∫
Σt

(Vκ,m − 〈∇̄Vκ,m, ν〉)dµ−
∫

Σt

Vκ,mdµ

≥
∫

Σt

(Vκ,m − |∇̄Vκ,m|)dµ−
∫

Σt

Vκ,mdµ

=
κ

2

∫
N
λn−2
κ dµĝ −

∫
N
λnκ(1 +

1

2
κλ−2

κ +
1

2
λ−4
κ |∇λκ|2)dµĝ +O(e

n−3
n−1

t)

= −
∫
N
λnκ(1 +

1

2
λ−4
κ |∇λκ|2)dµĝ +O(e

n−3
n−1

t)(5.13)

(5.11) and (5.13) imply that (5.7) is reduced to prove

(n− 1)κ

∫
N
λn−2
κ +

n− 1

2

∫
N
λn−4
κ |∇λκ|2 ≥ (n− 1)κϑn−1

1
n−1

(∫
N
λn−1
κ

)n−2
n−1

.(5.14)
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When κ = 1, it was already observed in [9] that (5.14) is a non-sharp version of Beckner’s
Sobolev type inequality, Lemma 5.4. When κ = −1, by the Hölder inequality, we have∫

N
λn−2
κ ≤ ϑn−1

1
n−1

(∫
N
λn−1
κ

)n−2
n−1

,

which implies (5.14). When κ = 0, (5.14) is trivial. Hence we show (5.7) and complete the
proof.

�

Lemma 5.4 ([2]). For every positive function f on Sn−1, we have

(n− 1)

∫
Sn−1

fn−2dvolSn−1 +
n− 2

2

∫
Sn−1

fn−4|∇f |2gSn−1
dvolSn−1

≥ (n− 1)ω
1

n−1

n−1

(∫
Sn−1

fn−1dvolSn−1

)n−2
n−1

.

Proof. Theorem 4 in [2] gives that

(n− 1)

∫
Sn−1

w2dvolSn−1 +
2

n− 2

∫
Sn−1

|∇w|2gSn−1
dvolSn−1

≥ (n− 1)ω
1

n−1

n−1

(∫
Sn−1

w
2(n−1)
n−2 dvolSn−1

)n−2
n−1

.

for every positive smooth function w. Set w = f
n−2
2 , one gets the desired result. �

Remark 5.5. It is easy to see that the above inequality holds also on the quotients of spherical
space form.

Proof of Theorem 5.1. Note that |∂M | = ρn−1
0 ϑn−1. The inequality (5.1) follows directly from

Lemma 5.2 and Lemma 5.3. When the equality holds, we have the equality in (5.3), which forces
|A|2 = 1

n−1H
2 and hence Σ is umbilic. When m 6= 0, an umbilic hypersurface must be a slice

{ρ} × N . When m = 0, it follows from the equality case in (5.14) that λκ is constant, which
implies again Σ is a slice {ρ} ×N . �

We now prove another version of Alexandrov-Fenchel inequalities, which is applicable to prove
Penrose inequalities.

Theorem 5.6. Let Σ be a compact embedded hypersurface which is star-shaped with positive
mean curvature in (ρ0 = ρκ,m,∞) × Nn−1. Let Ω be the region bounded by Σ and the horizon
∂M = {ρ0} ×N . Then∫

Vκ,mHdµ ≥ (n− 1)κϑn−1

((
|Σ|
ϑn−1

)n−2
n−1

−
(
|∂M |
ϑn−1

)n−2
n−1

)

+(n− 1)ϑn−1

((
|Σ|
ϑn−1

) n
n−1

−
(
|∂M |
ϑn−1

) n
n−1

)
.

Equality holds if and only if Σ = {ρ} ×N for some ρ ∈ [ρκ,m,∞).
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Proof. To simplify the notation, we define

J(Σt) := n

∫
Ωt

Vκ,mdvol and K(Σt) := ϑn−1

((
|Σt|
ϑn−1

) n
n−1

−
(
|∂M |
ϑn−1

) n
n−1

)
.

By (5.5) and (5.6), we have

d

dt

∫
Ωt

nVκ,mdvol =

∫
Σt

n
Vκ,m
H

dµ

≥ n2

n− 1

∫
Ωt

Vκ,mdvol +
n

n− 1
ρn0ϑn−1.

Hence

d

dt

(
n

∫
Ωt

Vκ,mdvol + ρn0ϑn−1

)
≥ n

n− 1

(
n

∫
Ωt

Vκ,mdvol + ρn0ϑn−1

)
.

Taking into account of Lemma 4.1 (1), we find that

d

dt

J(Σt)−K(Σt)(
|Σt|
ϑn−1

) n
n−1

≥ 0.(5.15)

It suffices to show when the initial surface Σ satisfies

J(Σ) ≤ K(Σ),(5.16)

otherwise the assertion follows directly from Theorem 5.1. By the monotonicity (5.15), we divide
the proof into two cases.

Case 1: there exists some t1 ∈ (0,∞) such that

J(Σt1)−K(Σt1) = n

∫
Ωt

Vκ,mdvol + ρn0ϑn−1 − ϑn−1

(
|Σt1 |
ϑn−1

) n
n−1

= 0.

and

J(Σt)−K(Σt) = n

∫
Ωt

Vκ,mdvol + ρn0ϑn−1 − ϑn−1

(
|Σt|
ϑn−1

) n
n−1

≤ 0 for t ∈ [0, t1].

From (5.4), we know that∫
Σt

pdµ− (n− 2)mϑn−1 − ωn−1

(
|Σt|
ϑn−1

) n
n−1

≤ 0 for t ∈ [0, t1].

For t ∈ [0, t1], by (5.3), we check that
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d

dt

(∫
Σt

Vκ,mHdµ+ 2(n− 1)mϑn−1 − (n− 1)ϑn−1

(
|Σt|
ϑn−1

) n
n−1

)

≤ n− 2

n− 1

∫
Σt

Vκ,mHdµ+ 2

∫
Σt

pdµ− nϑn−1

(
|Σt|
ϑn−1

) n
n−1

=
n− 2

n− 1

(∫
Σt

Vκ,mHdµ− (n− 1)ϑn−1

(
|Σt|
ϑn−1

) n
n−1

)

+2

∫
Σt

pdµ− 2ϑn−1

(
|Σt|
ϑn−1

) n
n−1

≤ n− 2

n− 1

(∫
Σt

Vκ,mHdµ− (n− 1)ϑn−1

(
|Σt|
ϑn−1

) n
n−1

+ 2(n− 1)mϑn−1

)
.

Hence the quantity

Q2(t) :=

∫
Σt
Vκ,mHdµ+ 2(n− 1)mϑn−1 − (n− 1)ϑn−1

(
|Σt|
ϑn−1

) n
n−1

(
|Σt|
ϑn−1

)n−2
n−1

is nonincreasing for t ∈ [0, t1]. Using (1.21) and Theorem 5.1, we obtain

Q2(0) ≥ Q2(t1) = Q1(t1) ≥ (n− 1)κϑn−1.

Case 2: For all t ∈ [0,∞), we have

J(Σt)−K(Σt) ≤ 0.

From above, we know that Q2(t) is monotone non-increasing in t ∈ [0,∞). Thus it suffices to
show that

lim inft→∞Q2(t) ≥ (n− 1)κϑ
1

n−1

n−1 .(5.17)

By the Hölder inequality and (5.10) we have
(5.18)

ϑn−1

(
|Σ(t)|
ϑn−1

)n/(n−1)

≤
∫
N

(
√

det(g))n/(n−1) =

∫
N
λnκ(1 +

n

2(n− 1)
λ−4
κ |∇λκ|2 +O(e−

4t
n−1 )).

Combining (5.9) and (5.18), we note that (5.17) is reduced to prove

(n− 1)κ

∫
N
λn−2
κ +

n− 2

2

∫
N
λn−4
κ |∇λκ|2 ≥ (n− 1)κϑn−1

1
n−1

(∫
N
λn−1
κ

)n−2
n−1

.(5.19)
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When κ = 1, (5.19) follows from the sharp version of Beckner’s Sobolev type inequality on Sn−1.
See also Remark 5.5. When κ = −1, by the Hölder inequality, we have∫

N
λn−2
κ ≤ ϑn−1

1
n−1

(∫
N
λn−1
κ

)n−2
n−1

,

which implies (5.19). When κ = 0, (5.19) is trivial. Hence we show (5.17). It is easy to show
that equality implies that Σ is geodesic. We complete the proof.

�

Appendix A. Examples of ALH graphs

We begin this appendix by showing that any Kottler space Pκ,m(m > mc) with metric (2.1),
i.e.

(A.1) gκ,m =
dρ2

V 2
κ,m(ρ)

+ ρ2ĝ, Vκ,m =

√
ρ2 + κ− 2m

ρn−2
.

and can be represented as an ALH graph over another Kottler space Pκ,m′ (mc ≤ m′ < m) in
the ambient space Qκ,m′ = R× Pκ,m′ , which is equipped with the Riemannian metric

Vκ,m′(ρ)2dt2 + gκ,m′ .

Obviously one only needs to find a rotational symmetric function f = f(ρ) satisfying

(ρ2 + κ− 2m′

ρn−2
)

(
∂f

∂ρ

)2

=
1

ρ2 + κ− 2m
ρn−2

− 1

ρ2 + κ− 2m′

ρn−2

.

m′ < m implies that the right hand side is positive for ρ > 0. Let ρ0 := ρκ,m be the largest
positive root of

φ(ρ) := ρ2 + κ− 2m

ρn−2
= 0.

When ρ approaches ρ0, we have ∂f
∂ρ = O((ρ− ρ0)−

1
2 ), so that one can solve that

f(ρ) =

∫ ρ

ρ0

1√
s2 + κ− 2m′

sn−2

√
1

s2 + κ− 2m
sn−2

− 1

s2 + κ− 2m′

sn−2

ds.

Its horizon is {{ρ0} ×N : ρn0 + κρn−2
0 = 2m} which implies (1.21). Also one can check directly

that the ALH mass (1.6) of the Kottler space (A.1) is exactly m.
With the same method, one can represent all rotationally symmetric graphs (with horizon)

over Pκ,m in Qκ,m as rotationally symmetric graphs over Pκ,m′ in Qκ,m′ for m′ < m. We believe
that this statement is also true for non-rotationally symmetric graphs, i.e., all graphs over Pκ,m
in Qκ,m can be represented as graphs over Pκ,m′ in Qκ,m′ for m′ < m.

In the next example, we show that for any m > mc there are ALH graphs over Pκ,m′ in Qκ,m′
(mc ≤ m′ < m) with a horizon and the dominant condition R+ n(n− 1) ≥ 0, which can not be
represented as ALH graphs in Qκ,m, and can also not be represented as ALH graphs in Qκ,m′′
for m′′ > m.
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We consider a class of metrics which are perturbation of the Kottler-Schwarzschild spaces.
For this purpose, let (Nn−1, ĝ) be a closed space form of constant sectional curvature κ = −1.
Fixing t ∈ (−∞, 1). From now we consider a family of metrics

gm,a =
dρ2

V 2
m,a(ρ)

+ ρ2ĝ, Vm,a =

√
ρ2 − 1− 2m

ρn−2
− a

ρn−t
.

Here the parameter m belongs to the following interval

m ∈ [mc,+∞) and mc = −(n− 2)
n−2
2

n
n
2

.(A.2)

and the parameter a ≤ 0. When a = 0, they are just the Kottler-Schwarzschild spaces.
Let ρm,a be the largest positive root of

ρ2 − 1− 2m

ρn−2
− a

ρn−t
= 0.

It is clear that ρm,a is increasing in m and in a, provided it is well defined.
As in Section 2, by a change of variable r = r(ρ) with

r′(ρ) =
1

Vm,a(ρ)
, r(ρm,a) = 0

we write the above metric in the warped product form on [0,∞)×N as follows

gm,a := ḡ := dr2 + λm,a(r)
2ĝ,(A.3)

where λm,a : [0,∞) → [ρm,a,∞) is the inverse of r(ρ), i.e., λm,a(r(ρ)) = ρ. For simplicity, we
omit sometimes the subscripts m, a if there is no confusion. It is easy to check that

Ric(ḡ) = −
(

(n− 1)− (n− 2)mλ−n +
−n− t+ 4

2
aλt−2−n

)
ḡ

−(n− 2)

(
nmλ−n +

n− t+ 2

2
aλt−2−n

)
dr2

R(ḡ) = −n(n− 1) + (n− 1)(t− 2)aλt−2−n.

As a consequence, we get

Fact 1. For all m > mc and a < 0, we have

R(ḡ) + n(n− 1) > 0

When a = 0, then
R(ḡ) + n(n− 1) ≡ 0.

Moreover, for all m > mc and a ≤ 0 close to 0 in order to well define ρm,a, we have Vm,a|R(ḡ)+
n(n− 1)| is integrable.

By the definition of ρm,a, we know that

λ′′m,a(r) ≥ 0 for r ∈ [0,∞)

and
λm,a(r) = O(er) as r → +∞.
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An immediate result is the following.

Fact 2. For all m > mc, a ≤ 0 and |a| is sufficiently small, gm,a is an ALH metric and has a
horizon {ρm,a} ×N . Moreover, its ALH mass is exactly m.

Now we consider the metric gm,a as a graph over some Kottler-Schwarzschild space gm1,0 with
m1 < m. More precisely, we have

Fact 3. For all m > mc, there exist b < 0 and m1 ∈ (mc,m) such that for any a ∈ [b, 0) and for
any ρ > ρm,a there holds

Vm1,0(ρ) > Vm,a(ρ).

To show this fact, we first observe that for all ρ > 1,

Vm+a/2,0(ρ) > Vm,a(ρ).

We fix ε1 ∈ (0, (m −mc)/2) and set m1 = m − ε1. It is clear for all a ∈ (−2ε1, 0) and for all
ρ > 1

Vm−ε1,0(ρ) > Vm,a(ρ).

On the other hand, for all a ∈ (−2ε1, 0), there holds ρm,a > ρm,−2ε1 > 0 provided they are well
defined. If ρm,−2ε1 > 1 we are done with b = −ε1. If ρm,−2ε1 ≤ 1, we could choose b ∈ (−2ε1, 0)
with the small absolute value such that for all ρ ∈ (ρm,−2ε1 , 1] we have

Vm−ε1,0(ρ) > Vm,b(ρ).

Now we take m1 = m− ε1 and Fact 3 follows.

By Fact 3, as the beginning of this appendix, we see that the metric gm,a could be written
as a rotationally symmetric ALH graph over P−1,m1 in Q−1,m1 (recall P−1,m1 and Q−1,m1 are
defined in Section 1).

Fact 4. For all m > mc, a < 0 and |a| is sufficiently small, the metric gm,a on [ρm,a,∞)×N can
not be realized as a graph over P−1,m in Q−1,m with a horizon.

Suppose that the fact were not true, ie. gm,a would be represented as an ALH graph over
P−1,m in Q−1,m. It follows that the horizon ({ρm,a} ×N, gm,a|{ρm,a}×N ) has volume large than

or equal to the the volume
∣∣{ρm,0} ×N ∣∣. This contradicts the fact ρm,a < ρm,0. It is clear that

it can also not be realized as a graph in Q−1,m′′ with m′′ > m.

Fact 5. For all m > mc, there exist m2 > m, m1 < m and a < 0 such that the metric gm2,a on
(ρm2,a,∞) ×N can not be realized as a graph over P−1,m in Q−1,m with a horizon, but it can
be realized as a graph over P−1,m1 in Q−1,m1 with a horizon. Recall that the metric gm2,a has
ALH mass m2.
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In view of Facts 3 and 4, there exists a < 0 and m1 < m, such that ρm1,0 < ρm,a < ρm,0
and for ρ > ρm,a, Vm1,0(ρ) > Vm,a(ρ) holds. Fixing such a, we can choose m2 > m such that
ρm1,0 < ρm2,a < ρm,0 and for ρ > ρm2,a, Vm1,0(ρ) > Vm2,a(ρ) holds. Hence Fact 5 yields. In
particular, when m = 0, we can find some metric with positive ALH mass, which can not be
realized as a graph over P−1,0 in Q−1,0 with a horizon, but it can be realized as a graph over
P−1,m1 in Q−1,m1 with a horizon. Here m1 < 0.

In particular, fact 5 provides examples of ALH metrics with positive ALH mass, which can
be represented an ALH graph over P−1,m′ with m′ < 0, but can be not represented as an ALH
graph over P−1,0.

Since the above metrics have R + n(n − 1) > 0, one can perturb these metrics to obtain
non-rotationally symmetric ALH graphs with similar properties.

Appendix B. Definitions of ALH graphs

In this appendix we show for a graph over Pκ,m\Ω in Qκ,m, Definition 1.1 and Definition 1.2
are equivalent.

Proposition B.1. A graph over Pκ,m\Ω in Qκ,m is an ALH graph in the sense of Definition
1.2 if and only if it is an ALH manifold in the sense of Definition 1.1.

Proof. We prove the “only if” part. Since the Kottler-Schwarzschild space (Pκ,m, gκ,m) is ALH
in the sense of Definition 1.1, there exists a compact subset K0 ⊂ Pκ,m and a diffeomorphism at
infinity Φ0 : Pκ,m \K0 → N × (ρ0,+∞) ⊂ Pκ, where ρ0 > 1 such that

(B.1) ‖(Φ−1
0 )∗gκ,m − bκ‖bκ + ‖∇bκ

(
(Φ−1

0 )∗gκ,m
)
‖bκ = O(ρ−τ ), τ >

n

2
.

Since (Mn, g) is an ALH graph over Pκ,m\Ω in the sense of Definition 1.2, there exists a compact
subset K and a diffeomorphism at infinity Φ1 :M\K → N × (ρ̃0,+∞) ⊂ Pκ,m\(K0 ∪ Ω) such
that

(B.2) ‖(Φ−1
1 )∗g − gκ,m‖gκ,m + ‖∇̄

(
(Φ−1

1 )∗g
)
‖gκ,m = O(ρ̃−τ ), τ >

n

2
,

where ρ̃ is such that (y, ρ̃) = Φ−1
0 (x, ρ) ∈ N × (ρ̃0,∞). Define Φ :M\K → N × (ρ0,+∞) ⊂ Pκ

by Φ = Φ0 ◦ Φ1, then it is easy to see from (B.1) and (B.2) that

‖(Φ−1)∗g − bκ‖bκ + ‖∇bκ
(
(Φ−1)∗g

)
‖bκ = O(ρ−τ ), τ >

n

2
.

The integrability condition (1.5) follows directly from (1.15), since at infinity, Vκ,m and Vκ are
comparable. The “if” part can be proved in a similar way. �
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[36] H. Mirandola and F. Vitório, The positive mass Theorem and Penrose inequality for graphical manifolds,

arXiv:1304.3504.
[37] B. Michel, Geometric invariance of mass-like asymptotic invariants, J. Math. Phys. 52 (2011), no. 5.
[38] A. Neves, Insufficcient convergence of inverse mean curvature flow on asymptotically hyperbolic manifolds,

J. Differential Geom 84 (2010), no.1, 711-748.
[39] R. Schneider, Convex bodies: The Brunn-Minkowski theory, Cambridge University, (1993), MR1216521.
[40] R. Schoen and S.-T. Yau, On the proof of the positive mass conjecture in general relativity, Commun.

Math. Phys., 65 (1979), 45-76.
[41] X. Wang, Mass for asymptotically hyperbolic manifolds, J.Diff.Geom. 57 (2001), 273-299.
[42] G. Wang and C. Xia, Isoperimetric type problems and Alexandrov-Fenchel type inequalities in the hyper-

bolic space, arXiv:1304.1674.
[43] E. Witten, A new proof of the positive energy theorem, Commun. Math. Phys., 80 (1981), 381-402.
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