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HARMONIC FUNCTIONS ON METRIC MEASURE SPACES

BOBO HUA, MARTIN KELL, AND CHAO XIA

ABSTRACT. In this paper, we study harmonic functions on metric measure
spaces with Riemannian Ricci curvature bounded from below, which were in-
troduced by Ambrosio-Gigli-Savaré. We prove a Cheng-Yau type local gradient
estimate for harmonic functions on these spaces. Furthermore, we derive var-
ious optimal dimension estimates for spaces of polynomial growth harmonic
functions on metric measure spaces with nonnegative Riemannian Ricci cur-
vature.

1. INTRODUCTION

In [ | Bakry and Emery introduced the so-called I'-calculus and a purely
analytical Curvature-Dimension condition BE(K,N),N € [1, 0] for Riemannian
manifolds, which are applicable to the general setting of Dirichlet forms and the
associated Markov semigroups. Some years later Lott-Villani [ ] and Sturm
[ , ] introduced independently another Curvature-Dimension condi-
tion CD(K,N),N € [1,00] for general metric measure spaces (mms for short)
coming from a better understanding of gradient flows on associated Wasserstein
spaces. To overcome the lack of a local-to-global property for CD(K, N) with fi-
nite N, Bacher-Sturm | ] introduced a weaker notion called reduced Curvature-
Dimension condition CD*(K,N),N € [1,00). The two notions BE(K, N) and
CD(K, N) are both equivalent to the condition that for weighted Riemannian man-
ifolds the weighted N-Ricci curvature has lower bound K .

Most recently, Ambrosio-Gigli-Savaré made a breakthrough in series of fun-
damental papers | ], by showing that the two notions
CD(K,0) and BE(K, oo) are equ1valent for infinitesimal Hilbertian mms. They
gave a new notion RC'D (K, 00) to indicate such spaces and called them mms with
Riemannian Ricci curvature bounded from below. Actually these spaces exclude
Finsler manifolds since the infinitesimal Hilbertian property implies that the heat
flow is linear. Later Erbar-Kuwada-Sturm | ] introduced for finite dimen-
sional constant N the class RCD*(K, N) and they established the equivalence be-
tween CD*(K,N) and BE(K, N) for infinitesimal Hilbertian mms. This was also
independently discovered in an unpublished paper by Ambrosio-Mondino-Savaré
[AMS13)].

The main goal of this paper is to study harmonic functions on RCD*(K, N)
mms for finite N (see Definition 2.1). We refer to [ ] for various equivalent
definitions of RCD*(K, N). With the calculus developed in recent years, one may
expect that many results in smooth Riemannian manifolds and Alexandrov spaces
(see | , | for definitions) can be extended to RCD*(K, N) mms. We
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will show in this paper that a local calculus can be developed in order to prove
local gradient estimates for harmonic functions, as well as dimension estimates for
spaces of polynomial growth harmonic functions.

Let us start with a brief introduction of the framework. Throughout the paper,
we assume

(X,d,m) is a metric measure space,
where (X, d) is a complete and separable metric space,
and m is a nonnegative o-finite Borel measure.

Note that we do not require X to be compact. We make the setup for o-finite
Borel measures in order to include important geometric objects such as noncom-
pact finite dimensional Riemannian manifolds with Ricci lower bounds equipped
with the volume measure, the measured Gromov-Hausdorff limit spaces of Rie-
mannian manifolds with a uniform Ricci lower bound and a uniform dimension
upper bound equipped with a natural Radon measure, see Cheeger-Colding [ ,

, ] and finite dimensional Alexandrov spaces with Ricci lower bounds,
see Zhang-Zhu | ] and Petrunin | ]

The first part of the paper is devoted to a quantitative gradient estimate of
harmonic functions. In 1975, Yau | ] proved a Liouville type theorem for har-
monic functions on Riemannian manifolds with nonnegative Ricci curvature. Then
Cheng-Yau [ ] used Bochner’s technique to derive a local gradient estimate for
harmonic functions, which is now a fundamental result in geometric analysis. On
general metric spaces, Bochner’s technique fails due to the lack of higher differ-
entiability of the metric. By the semigroup approach, Garofalo-Mondino | ]
proved Li-Yau type global gradient estimate for solutions of heat equations on
RCD*(K,N) mms equipped with a probability measure. Their arguments heavily
rely on the probability measure assumption. A generalization to the o-finite mea-
sure case would meet essential difficulties. In addition, their results are global from
which one cannot easily derive the local version.

Our concern is to obtain a local gradient estimate for harmonic functions on
RCD*(K,N) mms with o-finite measures. For this purpose, we shall first need
a local version of Bochner inequality for RCD*(K, N) mms. The global version
was proven by Erbar-Kuwada-Sturm | ]. Here “global” means the state-
ment of their Bochner inequality is only valid for global W'2-functions. Note that
Zhang-Zhu | ] proved a similar Bochner inequality on Alexandrov spaces with
Ricci curvature bounded below. A delicate local structure, so-called DC-differential
structure (see e.g. [Per]), of Alexandrov spaces plays an essential role in the proof
of | ]. This rules out the possibility of this strategy in our setting. Nevertheless,
we can choose nice cut-off functions and apply the global Bochner inequality proven
by Erbar-Kuwada-Sturm | | to derive the local one. This is the novelty of
our approach. An important ingredient we need is the local Lipschitz regularity for
W,.? functions with Laplacian in LP, which was obtained independently by Jiang
[ | and the second author [ ] using the method initiated in [ , I,
see Lemma 3.2 below.

Theorem 1.1 (Local Bochner inequality). Let (X, d,m) be an RCD*(K, N) mms.
Let u be a function in Dype(A) with Au.e W22 N L2 (X, d,m) for p > N. Then

loc loc

[Vul? € W2 (X, d,m)

C
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and the Bochner inequality holds in the weak sense of measures

A 2
Lz > 2 (( Zz;) dm + (Vu, V(Au))dm + K|Vu2dm> , (1)
that is, for all ¢ € WY2(X,d, m) with compact support we have

/<w,V|vu\2>dm > 2(/¢(Aﬁ)2dm+/w(Vu,V(Au»dm

+K/<p|Vu|2dm).

One of our main result is Cheng-Yau type local gradient estimate for harmonic
functions on RCD*(K, N)-mms. A function u is called harmonic (subharmonic
resp.) on an open set Q C X if u € Wlf)f(Q) and

/(Vu, V)dm =0 (<0 resp.)

Q

for any 0 < ¢ € Lip(Q2) with compact support. This is equivalent to say that
L, =0 (>0 resp.) (see Section 2).

Theorem 1.2 (Cheng-Yau type gradient estimate). Let (X, d,m) be an RCD*(K, N)
mms for K < 0. Then there exists a constant C = C(N) such that every positive
harmonic function u on geodesic ball Bop C X satisfies

1++v—-KR
R

Vel _ ¢ in Bp.
U

Since Bochner’s technique using the maximum principle on Riemannian mani-
folds is not available on metric spaces, we adopt the Moser iteration to prove the
local gradient estimate, following the idea of Zhang-Zhu | ]. Note that for the
case K < 0, one shall carry out a more delicate Moser iteration as done by the
first and third authors in | , ]. In order to carry out the Moser iteration,
we need the regularity result, |Vul? € VVlic2 (X), for a harmonic function u. This
follows from a general result by Savaré using Dirichlet form calculation, see | ,
Lemma 3.2] or Lemma 3.1 below. For a different proof of this result on Alexandrov
spaces with Ricci lower bounds, we refer to | , Theorem 1.2]. This will also
be crucial in order to prove Theorem 1.5, where we essentially use the fact that
IVu|? € W,2?(X) is subharmonic for every harmonic function u on RC'D*(0, N)
mins.

Theorem 1.2 immediately yields Cheng’s Liouville theorem for sublinear growth
harmonic functions on RCD*(0, N) spaces.

Corollary 1.3 (Cheng’s Liouville theorem). On an RCD*(0,N) mms, there are
no nonconstant harmonic functions of sublinear growth, i.e. if u is harmonic and

1
limsup = sup |u| =0
R—o0 BR

then it is constant.

The second part of the paper is on dimension estimates for spaces of polynomial
growth harmonic functions on RCD*(K, N) mms. The history leading to these
results started in the study of Riemannian geometry. Cheng-Yau’s gradient estimate
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[ ] implies that sublinear growth harmonic functions on Riemannian manifolds
with nonnegative Ricci curvature are constant. Yau further conjectured in | ,

] that the space of polynomial growth harmonic functions on such manifolds
with growth rate less than or equal to d should be of finite dimension. Colding-
Minicozzi | , , ] gave an affirmative answer to Yau’s conjecture
in a very general framework of weighted Riemannian manifolds utilizing volume
doubling property and Poincaré inequality which are even adaptable to general
metric spaces. A simplified argument by the mean value inequality can be found
in [ , ] where the dimension estimates are nearly optimal. This inspired
many generalizations on manifolds [ , , , , , ,

]. The crucial ingredients of these proofs are the volume growth property
and the Poincaré inequality (or mean value inequality).

Let HY(X) := {u € W (X) : L, = 0,|u(z)| < C(1 + d(z,p))?} denote the
space of polynomial growth harmonic functions on X with growth rate less than
or equal to d for some (hence all) p € X. Before stating the theorem, we shall
point out a main difference between harmonic functions on Riemannian manifolds
and those on other metric spaces. The unique continuation property for harmonic
functions on mms is unknown, leaving us with the problem of verifying the inner
product property of the following bilinear form

(u, V)R :/ wvdm, u,v € L*(X,m),
Br

where By, is a geodesic ball with radius R. We circumvent this difficulty by a lemma
in [ | (see Lemma 5.1 below). By using the Bishop-Gromov volume comparison
(see Theorem 2.7) and the Poincaré inequality (see Theorem 2.8) on RC'D*(0, N)
spaces, we obtain the following optimal dimension estimate for H?(X).

Theorem 1.4 (Polynomial growth harmonic functions). Let (X, d, m) be an RCD*(0, N)
mms. Then there exists some constant C = C(N) such that

dim HY(X) < Ca™ 1.

For the space of linear growth harmonic functions, we can give more precise
estimate.

Theorem 1.5 (Linear growth harmonic functions). Let (X, d, m) be an RCD*(0, N)
mms and p € X. Suppose the volume growth of (X,d, m) satisfies

lim sup m(Br(p)) < 00 (2)
R—o0 R

for some n < N, then

dim H'(X) <n+1.

On Riemannian manifolds, Theorem 1.5 was studied by Li-Tam [ ] and the
equality case was characterized by Cheeger-Colding-Minicozzi | ]. For the
investigation of linear growth harmonic functions, see also Wang | ], Li [Li95]
on Kéhler manifolds and Munteanu-Wang | ] on weighted Riemannian man-

ifolds with nonnegative Ricci curvature.
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One of the key ingredients of the proof is the following so-called mean value
theorem at infinity for nonnegative subharmonic functions (see Theorem 5.4),

1
lim 7/ udm = ess sup u.
R—o0 m(BR) Br X

The original proof for this mean value theorem by Li [Li&0] (see also [Lil2, Lemma 16.4])
used heat kernel estimates. It can also be proved by a tricky monotonicity formula
involving the mean value of harmonic functions on geodesic spheres, see | ,
Theorem 3.3] and | , Corollary 6.6]. However, these methods seem hard to be
extended to general metric spaces. For our purpose, we present a new proof only
using the weak Harnack inequality for superharmonic functions, which is a conse-
quence of Moser iteration, see Theorem 4.1 below. This will be the main ingredient
to prove the optimal dimensional bound of the space of linear growth harmonic
functions.

We remark that since the proof of above theorem involves the Bochner inequality,
Theorem 1.5 is the first result on the dimension estimate of linear growth harmonic
functions on nonsmooth metric spaces, even on Alexandrov spaces | , ,

].

To summarize, we prove a local Bochner inequality on RCD*(K, N) mms. Then
we adopt a delicate Moser iteration to show Cheng-Yau type local gradient esti-
mate of harmonic functions. By using the Bishop-Gromov’s volume comparison,
the Poincaré inequality and the Bochner inequality, we extend various optimal
dimension estimates of the spaces of polynomial growth harmonic functions on Rie-
mannian manifolds to a large class of nonsmooth mms satisfying the RCD*(0, N)
condition. To this extent, we provide a relatively complete picture of global prop-
erties of harmonic functions on mms with nonnegative Riemannian Ricci lower
bound.

The paper is organized as follows: In Section 2 we collect the basics of the
analysis on mms with Riemannian Ricci curvature bounds. Section 3 is devoted
to the proof of the local Bochner inequality, Theorem 1.1. In Section 4 we prove
the Cheng-Yau type gradient estimate on RCD spaces, Theorem 1.2. In the last
section, we prove the optimal dimension estimates of the spaces of polynomial
growth harmonic functions and linear growth harmonic functions, Theorem 1.4
and Theorem 1.5 respectively.

2. PRELIMINARIES

We will only introduce some necessary notations and refer to | , | for
proofs of the statements and further references.

Throughout the paper we assume (X, d, m) is a metric measure spaces and the
measure m is o-finite and satisfying a maximum growth bound, i.e. for some C' > 0

|B7‘(x)| < C- eCT’z’

where |B,.(z)| is an abbreviation for m(B,(x)). Additionally assume that (X, d) is a
locally compact length space. Both assumptions simplify the following statements.
Since any RC'D mms will satisfy them they are in no way restrictive.

For the subset of L?(X,m) containing all Lipschitz functions with compact sup-
port one can define a weak upper gradient |V fl,, (see e.g. | ). The Cheeger
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energy Ch is defined by
cn(s) = [ 1Vsdm.

The subset of L2-functions with finite Cheeger energy will be denoted by W12( X, m).
Equipped with the norm

[ullwrz == [lufl L2 + Ch(w),

W12(X,m) is a Banach space. It can be shown that all Lipschitz functions with
compact support have weak upper gradients in L* (X, m) and are contained in
W12(X,m). Because the weak upper gradient is a local object, there is also a
well-defined notation of WI})CQ (X, m): For any open set Q2 C X, W2(Q) is the set
of functions whose weak upper gradient restricting to Q have finite L?(Q) norm;
The set W,L2(Q) is defined as the set of functions which belongs to W12(Q') for
any precompact open set ' C Q. We denote by Lip,(Q2) and W12(Q) the set of
functions in Lip(2) and W2(Q) with compact support in 2 respectively.

It can be shown that the Cheeger energy Ch is convex and lower semicontinuous.
Thus the natural gradient flow P, : L? — L2, called heat flow, can be defined. By
the calculus developed in | ] one can define a natural Laplace operator A on
a dense subset of L? as subdifferential of Ch. Furthermore, the following holds

P, is linear <= Ch is a quadratic form <= A is linear,

An mms whose Cheeger energy is quadratic will be called infinitesimal Hilbertian.
Our main focus will be the following subset of infinitesimal Hilbertian spaces

Definition 2.1 (RCD*(K,N) mms). We say an infinitesimal Hilbertian met-
ric measure spaces is a (finite-dimensional) RCD*(K, N) mms or satisfies the
RCD*(K, N) condition for some K € R and N > 0, if for any f € WH2(X,m) and
we have m-a.e. in X,

VP f|2 + £|AP 2 <e2KIP,(IVf12)
tf w N(eth — 1) tf > € t f w/*
Remark 2.2. By | , Theorem 7] this is equivalent to the more classical

CD*(K, N) condition defined via Wasserstein geodesics or the Bochner inequality
(6) defined below.

Because Ch is a quadratic form in W12(X,m), there is an associated Dirichlet
form &, ie., & : WH2(X,m) x WH2(X,m) — R is the unique bilinear symmetric
form satisfying

E(f, f) = Ch(f).
It was proven (see Section 4.3 in [ ]) that the Dirichlet form can be written

as
1
E(u,v) = 3 /(Vu,Vv}dm, u,v € WH2(X,m)

where
V(v +ew)li, — [Vl

2¢ '
The notion (Vu, Vv) should be understood as a bilinear and symmetric map from
W2 x wh2 — L' We remark that |Vu|? = (Vu, Vu) and (Vu,Vv) € L' are a
well-defined objects whereas Vu is not.

(Vu, Vo)(z) = lir%
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- 1,2 .
Gigli | | also showed that each v € W7 (X,m) admits a measure valued
Laplacian £,, such that

E(v,u) = —%/Udﬁu

for all v € W12(X,m). If £, has local L?-density w.r.t. m we just write Au. The
subset of such functions will be denoted by Dioc(A) (resp. D(A) if u € WH2(X, m)
and Au € L?(X,m)).

Definition 2.3 (Harmonic, subharmonic and superharmonic functions). A func-
tion wu is called harmonic (subharmonic, superharmonic resp.) on the domain € if
uwe W) and

loc

- / (Vu,Vo)dm =0 (> 0,< 0 resp.)
Q
for any 0 < ¢ € Lip.(9)

Remark 2.4. It turns out | , Prop. 4.12] that this is equivalent to
L, =0 (>0,<0 resp.).

By the definition of harmonic (subharmonic) functions and integration by parts
with cut-off functions, we obtain the following Caccioppoli inequality. We omit the
proof here.

Lemma 2.5 (Caccioppoli inequality). Let (X,d,m) satisfy RCD*(K,N) condi-
tion. Then for any nonnegative subharmonic function u on Bag, we have

/ |Vul?dm < %/ u?dm,
Br R Bar

We summarize the local calculus of the weak upper gradient and the Laplace
operator as follows.

where C' = C(N).

Theorem 2.6 (| ) ). Assume (X,d, m) is an infinitesimal Hilbertian
mms. Assume u,v,w € VV&)C?(X7 m) Then the following holds:
(1) |Vulw = |Vily m-a.e. on{u=a} and |Vul, =0 m-a.e. on {u = ¢} for
ceR.

(2) ue I/Vll’Q(X, m) iff u-x € WH2(X, m) for all x € Lip,, moreover, if u has

compact support then it is in WH2(X,m).

(8) Assume u € Dioe(A). The Laplace operator is a local object, i.e. if @ C X
is open and {Q;}icr an open covering of Q) then
(a) Lyjq = p iff for all v e WH2(X, m) with suppv C Q

1
E(v,u) = —§/Ud£u,
(b) set Lyja, = ki if fijo.n, = Hjjo.ne, whenever Q; N, # & then
(Luja)ona, = Hi-
(4) |V - |w and A satisfy the chain rule, i.e. if ¢ : R — R is Lipschitz then
[Vo(u)|w = |¢' (w)||Vulw m-a.e.
and if, in addition, u is Lipschitz then

A(f) = ¢ (HAF+ " (HIVFE m-ae.



8 BOBO HUA, MARTIN KELL, AND CHAO XIA

(5) The inner product (V-,V-) and A satisfy the product rule, i.e. if u,v €
W20 L2 (X, m) then

loc loc
(V(u-v), Vw) = v(Vu, Vw) + u(Vo, Vw) m-a.e.

and
Alu-v)=v-Au+u-Av+2(Vu,Vv) m-a.e.
(6) The space W22 (X, m)N L2 (X, m) and Dipe(A) N L2.(X,m) are algebras,

loc loc loc
ie. if u,v € W2(X,m) N L®(X,m) then u-v € WL (X, m) N L>®(X,m)
and similar for Dioc(A) N LY. (X, m).

(7) The Cauchy-Schwarz inequality holds,
[(Vu, V)| < [Vu|| V.

Next, we recall some basic geometric properties of RCD*(K, N) mms. The
following volume comparison theorem is well-known.

Theorem 2.7 (Bishop-Gromov volume comparison). Let (X, d, m) be an RCD*(K, N)
space. Then for any 0 <r < R < o0,
B V(R
Ba@)] _ VER) "
|Br ()| — Vi (r)

where VA (R) is the volume of the ball of radius R in a complete simply-connected
N -dimensional manifold of constant sectional curvature N[i In particular, if K =

o
0, then

|Bmm|<<R)N_

B (@) ~ \r

(4)

In order to prove Cheng-Yau’s local gradient estimate for the space satisfying
RCD*(K, N) condition with K < 0, we need the Poincaré and Sobolev inequalities
with precise dependence on K and radii of the balls.

The Poincaré inequality was proved by several authors, see Lott-Villani | 1,
von Renesse | ], Rajala [Theorem 1.1] [ l, | ] for mms satisfying
CD(K,N).

Theorem 2.8 (Poincaré inequalty). Let (X,d,m) be mms satisfying CD(K, N)
for K < 0. For any 1 < p < oo, there exists a constant C = C(N,p) such that for
all u € W2(Bag),

/ lu —upg|Pdm < CRpeCV_KR/ [VulPdm, (5)
Br Bar

where ug, = ﬁ [5,, udm.

Remark 2.9. For a precise statement of the CD(K, N) condition see | , ,
]. In infinitesimal Hilbertian setting this is equivalent to the RCD*(K, N)
condition stated above.
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3. A LOCAL BOCHNER INEQUALITY

In the rest of the paper, we assume throughout that (X, d, m) is an RCD*(K, N)
mms for K < 0.

The following lemma was proven in | ]. We will include a more technical
statement of Savaré | ]

Lemma 3.1 (Bochner formula, | , Theorem 5], [ , Lemma 3.2]). Let
(X,d,m) be an RCD*(K,N) mms. For any u € D(A) with Au € WH2(X,d, m)
and all bounded and nonnegative g € D(A) with Ag € L= (X, m) we have

1 1
§/Ag\Vu\2dm2 N/g(Au)de+/g(Vu,V(Au))dm+K/g|Vu|2dm. (6)

Furthermore, if u € Lip(X) N L>®(X) then |Vul? € WY2(X,d,m) N L>(X,m)

and
(Au)? )
Livupz > 2 Tdm—i— (Vu, V(Au))dm + K|Vul°dm | .

Before proving the local version of Bochner inequality, Theorem 1.1, we point
out that every function with Laplacian in LP(X,m) for p > N is locally Lipschitz
continuous. This was first proven for Ahlfors regular spaces in | ) ] but
also holds in our setting (see | ] for the L>° case and more general spaces and
[ ] for necessary adjustments for the case p > N in our setting).

Lemma 3.2 (Lipschitz regularity | , L.l , D). Let (X,d,m) be
an RCD*(K,N) mms. Anyu € Wli)’f(X, d,m) with Au € LY (X,d,m) andp > N
is locally Lipschitz continuous.

One of the main tool to prove Theorem 1.1 is the construction of the following
nice cut-off functions.

Lemma 3.3. Let (X,d,m) be an RCD*(K,N) space and xo any point in X.
There is a Lipschitz function ¥ = W, : X — R such that ¥V, AV € W12(X, d,m)N
L>(X,m) and ¥ is constant in a neighborhood of x.

Proof. Note that by the RCD*(K, N) assumption P; is hypercontractive, ([ ,
Remark 6.4]) i.e.

P : L*(X,m) — D(A) N L>®(X,m).

Furthermore, if p; is the heat kernel of P; then
pilo0,2) = Py (ps (20, 7)) (@).
In addition, note that P;Au = AP,u for any u € D(A).

Now let ¢(z) := pt(xo,x). Then ¢ € D(A) N L>®(X,d,m) with Ay € D(A)N
L>(X,d,m). Because 1 is Lipschitz, |V¢|> € WY2(X,d,m) N L>(X,d,m) by
Lemma 3.1.

If we choose t sufficiently small than there are two constants 0 < I < L < oo
such that ¢(x) > L in a neighborhood U of xy and ¢(x) < [ outside a sufficiently
large neighborhood ). Now define a smooth real-valued cut-off function A : R — R
such that h(r) = 1 for r > L and h(r) = 0 for r < [. By chain rule we have for
U:=hot

AT = K opAip + B 0 1p| V|2
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Because h is smooth and v is bounded, ¥ is Lipschitz and
U, AV € WH3(X,d,m) N L¥(X,d,m).

In particular, ¥ and AV have compact support and are constant in a neighborhood
of xg. O

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. It suffices to show that the Bochner inequality holds locally,
that is for all p € W12(X,d, m) we have

/<V¢,V|VU‘2>dm = /(pdﬁ|vu‘2

2(/ga(AZ;L;)zder/cp(Vu,V(Au))dm
+K/¢|Vu|2dm).

Furthermore, we can assume without loss of generality that for each xy € X there
is a neighborhood U’ such that the Bochner inequality above holds for all ¢ €
W12(X,d, m) with support in U’.

Let ¥ be the cut-off function of the previous lemma and let €2 be open and
bounded containing the support of ¥. In addition, let U be a neighborhood of zq
such that ¥ is constant in U. Then

Alu-V)y = Ay
By Leibniz rule
A(u-¥) = uAV + YAy + 2(Vu, V).
Also note by bilinearity of (V-, V-)

T ) (1) {|v<u+ V@)~ (TuP () + [VIP@) reQ

0 x & .
ie. (Vu,V¥) is a sum of local Wh2-functions and thus itself in Wh?(X, d, m).
Because it has compact support, it is in W?(X, m). So that we conclude A(u-¥) €
Wh2(X,d,m).

Because Au € LY (X, m) we know by Lemma 3.2 that u is locally Lipschitz.
Therefore, u - ¥ is Lipschitz continuous and has compact support. Thus we can
apply the Bochner inequality (6) to w- ¥, in particular, the inequality holds for test
functions with support in U. Because u and u - ¥ agree on U we have for all open
U ccU

A 2
/ 0dLvy2> > 2 </ gp%dm +/ ©o(Vu, V(Au))dm + K <p|Vu|2dm) .
U/ ’ ’ U/

O
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4. CHENG-YAU TYPE LOCAL GRADIENT ESTIMATE

In this section, we shall prove Cheng-Yau type local gradient estimate for har-
monic functions on RCD*(K, N) mms. We denote by Br = Br(x) the open ball
in X centered at some point zg € X with radius R.

For RCD*(0, N) mms, the standard Moser iteration using the volume doubling
property (implied by the Bishop-Gromov volume comparison (3)) and the Poincaré
inequality (5) yield the following Harnack inequality, see e.g. Han-Lin | ].

Theorem 4.1. Let (X,d, m) be an RCD*(0,N) mms. Then

(a) (mean value inequality) there exists a constant C = C(N) such that for any
subharmonic function u on Bag

esssup |u| < C lu|dm, (7)
Br Bar
_ 1
where fg, |uldm = z— [5, |uldm.
(b) (weak Harnack inequality) there exists a constant C = C(N) such that for any
nonnegative superharmonic function u on Bag

Br

essinfu > C’][ udm.
Bar

(¢) (Harnack inequality) there exists a constant C = C(N) such that for any non-
negative harmonic function u on Bag
supu < Cinf u.
Br Br
In order to prove Theorem 1.2, we need to adopt a delicate Moser iteration based
on the local Bochner inequality. By the Bishop-Gromov volume comparison and
the Poincaré inequality for RCD*(K, N) mms above, we can prove the following
Sobolev inequality, see e.g. | , Lemma 3.2].

Theorem 4.2 (local uniform Sobolev inequality). Let (X, d, m) satisfy RCD*(K, N),
with K < 0. Then there exist two constants v > 2 and C, both depending only on
N, such that for B C X and u € W'11’2(BR),

oc
—2

(/ (’LL—UBR)”ZUde> Y geC(1+\/—KR)R2|BR|—%/ |vu|2dm7 (8)
Br Br

where up,, = fBR udm. In particular,

(/ uf_”z,dm> v Sec(1+\/jR)R2|BR|7%/ (|vu|2+R72u2)dm. (9)
Br Br

By the Sobolev inequality above, we may adopt a delicate Moser iteration as in
Hua-Xia | ] to prove Cheng-Yau’s local gradient estimate, Theorem 1.2. For
the completeness, we include the proof here.

Proof of Theorem 1.2. Without loss of generality, we may assume that u is a posi-
tive harmonic function on B4g. Lemma 3.2 and Theorem 1.1 yield that u is locally
Lipschitz continuous in Byg and |Vu|? € Wll)f (Bsr). Set v :=logu. One can easily
verify that

L, =—|Vv|]* - dm. (10)
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Since v € Lip(Bag), by setting f = |Vv|?, it follows from the Bochner inequality
(1) in Theorem 1.1 that for any 0 <7 € Lip,.(B2r),

/ (Vn, Vfdm < / n <2<Vv, V) —2Kf— 2f2> dm. (11)
Bar Bar N

In fact, by an approximation argument, (11) holds for any 0 < n € W1?(Byg) N
L= (Bag). Let n = ¢ f°, with ¢ € Lip,(Bagr), 0 < ¢ <1 and 8 > 1. Then 7 is an
admissible test function for (11). Hence we have from (11) that

/B (BS2 PV + 2647 (V £, V) dm

< [ s (2<w, V) - 2K f - fvﬂ) dm.

Bar

It follows from the Cauchy-Schwarz inequality ((7) in Theorem 2.6) that

46 2 6+1 9 4 B+1 B+1
Y IV fdm < ——— of = V|V =" |dm
e | | 551/, Vel |
4 B+2 B+1
+— P*f 2 |VF 2 |dm
B+1J)Byg | |
2
— — > B 2dm — 2K ¢% P+ dm.
Bar N Bar

Using the Hoélder inequality, we obtain

GV Pdm < C | VP dm O | 62 2dm
Bsr Bagr Bar

-Cp / &P 2dm — CBK & fPHdm.
Bagr Bar

We remark that from now on, C' denotes various constants depend only on N.
For ( sufficiently large, we can absorb the second term on the right hand side
and get

/ IV(f7 ) 2dm + CB &> fP2dm
Bar

Bar

< 20 |Vo|? P dm — CBK P fPH 1 dm. (12)
Bar Bar

Using the Sobolev inequality (9), we obtain

1

( ¢2Xf(ﬁ+1)xdm) x < ec(1+\/—KR)R2|BQR|7% (C’/ \V¢|2fﬁ+1dm
Bar B

2R

+(CR2—CBK) [ ¢*f +dm -3 ¢2fﬁ”dm>, (13)

B2R BZR

where x =v/(v — 2).

We first use (13) to prove the following;:
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Lemma 4.3. There exists two large positive constants Cy and C' such that for
Bo = Co(14++—KR) and 5, = (Bo + 1)x, we have f € L (Bzg) and

1+ vV—-KR)? =R
1700 (5, < e UM (14)

Proof. Let Cj be large enough such that 3y = Cy(1 + v—KR) satisfies (12) and
(13). We rewrite (13) for 5 = Gy as

( ¢2Xf(ﬁ°“)"dm)x < eC"°|BQRi<CR2 / Vo[ o+ dm (15)
Bar

Bar

+C41 63 & Pt dm — By R? ? fﬁ0+2dm).
Bar Bar

We estimate the second term on the right-hand side of (15) as follows:

Cify | @ dm = Cif (/ ¢2fﬁ°+1dm+/ ¢2fﬁo+1dm>
{f>2C165R~?} {f<2C1B2R-2}

Bar
1
< —BoR?
2 Bar
Set ¢ = 1P+2 with o € Lipy(Bag) satisfying

0<v<1, $=1inByp |V¢\§%.

Then

2(Bg+1)
Bo+2

R*|V¢|* < Ci3¢

By the Holder inequality and the Young inequality, the first term in the right-hand
side of (15) can be estimated as follows:

2(Bg+1)
CR? / Vo2 fPotlam < CB2 ¢ Forz fPotlam
Bar Bar
%
0+2
< e ([ )" il
Bar
1
< §ﬂOR2 ¢2f’80+2dm+C,@g0+3R_2(ﬁo+1)|BQR|-
Bar

(17)

Substituting the estimates (16) and (17) into (15), we obtain
x 3 2(Bo+1)
( ¢2Xf(5°+1)xdm> < 2eCPoCPot1 3 <0> |32R\1_%.
Bar - R

Taking the (8p + 1)-st root on both sides, we get

o) a
55,0 < € (%) 1Bnl

2 £Bo+2 Bo+1 93  Po 2o D)
o f dm+C B = | Bar].

(16)
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Now we start from (13) and use Moser’s iteration to prove Theorem 1.2.
Let R, = R+ R/2* and ¢, € Lip,(Bg, ) satisfy
2k‘+1

0<or <1, ¢]€ElinBRk+l7 |v¢k|§0 R

Let [y, 81 be the numbers in Lemma 4.3 and Sx41 = Bk x for k£ > 1. One can deduce
from (13) with 34 1 = 8% and ¢ = ¢, that (we have dropped the last term on the
right-hand side of (13) since it is negative)

2 1
v

cBo _ 1
1 Lo (B, ,,y < € P [ Barl > (4" + B3B8 P 1l Lov (B, -

Hence by iteration we get

c 1 _2 B 1
1l By < €72 T | Byl 72 20 3 TT(4* + 285555 1l s (3, ).
3 2

: 1 _ v k
Since }; 3- = 5 and ), 5= converges, we have

che 5 -4
[fllLe(Bry < Ce M By " |Bap| 7 ||f||Lff1(B%R)
1
< CIBar| P fllLec (B, ,)-
2

Using Lemma 4.3, we conclude

(1++V—KR)?

||f||L°°(BR) < C(N) R2 )

which implies

1++v—-KR

|V1ogullpe(pg) < C(N) I

This proves Theorem 1.2.

5. POLYNOMIAL GROWTH HARMONIC FUNCTIONS

Since the Laplace operator on RC'D mms is linear, we may study the dimen-
sion of the space of polynomial growth harmonic functions as Colding-Minicozzi
did | , , ]. In this section, we will prove our main results on
dimension estimates, Theorem 1.4 and Theorem 1.5.

Fix some p € X. For any d > 0, let

HY(X) = {u € Wg2(X) : L, =0, |u(z)| < C(1 + d(x,p))"}

denote the space of polynomial growth harmonic functions on X with growth rate
less than or equal to d.

To estimate the dimension of H%(X), we need the Bishop-Gromov volume com-
parison (3) and the Poincaré inequality (5), see [ , , ]. In the
following, we shall prove Theorem 1.4 for which we do not need the Bochner in-
equality. The first lemma follows easily from a contradiction argument.
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Lemma 5.1 (| , Lemma 3.4]). For any finite dimensional subspace S C
HY(X), there exists a constant Ro(S) depending on S, such that for V R > Ry

<u,v>R:/ wvdm
Br

is an inner product on S.

The next lemma follows verbatim from | , Lemma 28.3] or | , Lemma
3.7].

Lemma 5.2. Let (X,d,m) be an RCD*(0,N) mms and S be a k-dimensional
subspace of Hd( ). Foranyp € X,08 > 1,06 > 0,Ry > 0, there exists R > Ry
such that if {uz ", is an orthonormal basis of S with respect to the inner product
< u,v >gRi= fBBR(p) uvdm, then

k
/ ufdm > kﬂ_(2d+N+5).
Br(p)

The following lemma can be derived from the mean value inequality for subhar-
monic functions, see Theorem 4.1 (a).

Lemma 5.3. Let (X,d,m) be an RCD*(0,N) mms and S be a k-dimensional
subspace of HY(X). Then there exists a constant C(N) such that for any basis of
S, {uitr,Vpe X,R>0,0<e< i wehave

k

Z/ u2dm < C(N)e~ V=Y sup / u?dm,
i=1 Y Br(p) u€(AU) J B(146)r(D)

where (A, U) = {v =3, aju;, y_; a7 = 1}.

Proof. For fixed x € Bgr(p), we set S, = {u € S | u(z) = 0}. The subspace
- ;J)((z) w € S;. Then

there exists an orthogonal transformatlon mapping {uz}l 1 to {v;}F_; such that
v; € Sy, © > 2. By the mean value inequality (7), we have

k
Zuf(x) = Zv )< C vidm
i=1 Bite)R—r(x)(T)
< C‘B(lJre)Rfr(I) (-’I;)‘_l sSup / uzdm, (18)
uw€(A,U) J B14e)r(p)

where r(x) = d(p, ). For simplicity, we denote V,(t) = |B(x)| and A, (t) = LV, (1)
for a.e. t € [0, 00).
By the Bishop-Gromov volume comparison (3), we have

(1+e)R—r(x)\V (1+e)R—r(x)\V
_ D R A S > — = .
V(+ R - vl = (L0 v.eRr) > (B8 Vo(R)
Hence, substituting it into (18) and integrating over Br(p), we have

271
Z/ uidm < ¢ sup / u*dm (1+e—R™r(z)) Ndm(x)
B Vo(B) ue(a,0) JBiusoyn(v) Br(p)
(19)
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Define f(t) = (1 +e— R71)™N, then f/(t) = £ (1 +e— R1)~ O+ > 0. Since
|[Vr|(x) =1 for m-a.e. = € X (see [ , Theorem 5.3] and the proof of | ,
Corollary 5.15]), the coarea formula implies that

R
/ F(r(@))dm(z) < / F(0) Ay (1)t
Br(p) 0

Since Ay(t) = V/ (t) a.e., integrating by parts we obtain

/ 1) — FOV () I - / V()£ (1)t

Noting that f’ (t) > 0 and the Bishop-Gromov volume comparison (3), we have

ATy V(R /
[ vwrwa = B0 [ pga

V(R
= B g i [
Therefore
NV,(R) [T n_ N _(N—
d < P [ N=Dgyar < v (N-1),
[, Hean) < S [T 0 < v ).
Combining this with (19), we prove the lemma. O

By using the previous two lemmas, we are able to prove the optimal dimension
estimate for the space of polynomial growth harmonic functions.

Proof of Theorem 1.4. For any k-dimensional subspace S C H%(X), we set 3 =
1+ e Let {u;}F_, be an orthonormal basis of S with respect to the inner product
< -,->gr . By Lemma 5.2, we have

k

Z/ uZdm > k(1 4 )~ (24TN+o),
i—1 Y Br(p)

Lemma 5.3 implies
k

Z/ uZdm < C(N)e~ W=D,
i—1 Y Br(p)
Setting € = 5; and letting ¢ tend to 0, we have
1\ --D) 1\ 4+N+)
k< C(N) (261) (1 + 2d> <cd¥t. (20)
Noting that (20) holds for arbitrary subspace S of H%(X), we prove the theorem.

O

By Corollary 1.3, we know that H*(X) = 1 for any o < 1. The Bochner in-
equality can be used to obtain the following dimension estimate for the space of
harmonic functions of linear growth. This estimate for the dimension of the space
of linear growth harmonic functions is more tricky, see [Lil2].

The following auxiliary theorem on the behavior of subharmonic functions on
RCD*(0, N) mms appearing in the proof of Theorem 1.5 is interesting in its own
right.
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Theorem 5.4 (Mean value theorem at infinity). Let (X,d,m) be an RCD*(0, N)
mms. Then for any bounded nonnegative subharmonic function u,

lim udm = esssup u,
R—oo /By X

_ 1
where fBR udm = BT fBR udm.

Proof. Set w = esssupy u — u. It suffices to show that

lim wdm = 0.
R—oo B
R

Since essinfx w = 0, for any € > 0 there exists an R, > 0 such that

ess inf w < e.
Re

Note that w is a bounded nonnegative superharmonic function on X. The weak
Harnack inequality, Theorem 4.1 (b), implies that for any R > 2R,

][ wdm < Cess inf w < ess inf w < e.
Br

in P
This proves the lemma. O

Now we prove the dimension estimate for linear growth harmonic functions on
RCD*(0, N) mms using only the weak Harnack inequality for superharmonic func-
tions.

Proof of Theorem 1.5. We claim that for any f € HY(X), |[Vf|? is a bounded
subharmonic function on X. By the Bochner inequality in Theorem 1.1, |V f|? is
a subharmonic function. Using the Caccioppoli inequality, Theorem 2.5, and the
mean value inequality, Theorem 4.1 (a), we have

esssup |[Vf? < C |V f|2dm < %][ f2dm
B B R Jp
R 2R 4R
(supp, f)?
< C’T; <C,

where we used the linear growth property of f in the last inequality. This is true for
any R > 0, hence esssupy |V f|?> < C. This proves the claim. Hence, Theorem 5.4
yields that
Jim |V f|?dm = esssup |V f|*. (21)
For a fixed point p € X, we define a subspace of HY(X) by H' = {f €
HY(X)|f(p) = 0}, and a bilinear form D on H’ by

D(f,g) = lim (Vf,Vg)dm.
R—o0 gy (p)

It is easy to see that H’ is of at most codimension one in H*(X). In addition, D is
an inner product on H' by the mean value theorem at infinity, Theorem 5.4. Given
any finite dimensional subspace H” in H' with dimH" =k, let {f1, f2, -+, fx} be
an orthonormal basis of H” with respect to the inner product D. Set F?(x) :=

Zle f?(z) and FO(z) := Zle f?(z) +6, (6 > 0). Since {f;}¥_, are Lipschitz,
the weak upper gradient |V f;],(z) is well defined for m-a.e. x € X, that is, there
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exists a measurable subset Y C X with m(X \'Y) = 0 such that |V f;].(y) is
well defined for all y € Y. For any y € Y, there is an orthogonal transformation

T’y : Rk - Rk such that Ty(fl(y)7f2(y)7 e 7f/€(y)) = (Z?:l sz(y)aOa e ,O) We
denote g;(z) := Z?zl T,.i;fi(z) for any 2z € X. Clearly, {g;}}_; is an orthonormal

basis of H” with respect to D and (F?®)?(z) = Zle g2(z) + § for all z € X. Since
T, is a constant matrix, |Vg;|,(2) is well defined for all z € Y.
By the product rule (5) in Theorem 2.6,

k
IVE|,(y)Foly) = Zgz—(y)lvmlw(y)

91(W)IVailw(y), (by gi(y) =0, i>2).

Since {g;}¥_, is the orthonormal basis of H”, the equation (21) implies that
esssupy |Vg;| < 1 for any 1 < i < k. Then {g;}} , are Lipschitz functions of
Lipschitz constant at most 1. Hence the chain rule yields for all y € Y,

VF(S gl(y)
[VE?|(y) < NGO

Hence for any 6 > 0, F is a Lipschitz function of Lipschitz constant at most 1.
Since F(x) — F(z) for any ¢ € X as § — 0, F is a Lipschitz function with
[VF| < 1. Note that F(p) = 0, integrating along a geodesic we have

F(z) < d(z,p).
For any R > 0, ¢ > 0, we define a cut-off function as
(R +€— d(ﬂ%p))-‘,-

€

A 1.

Xe(T) :=
Then x. is a Lipschitz function supported in Bri. with xc|p, =1 and |Vx,| < %
Since {f;}¥_, are harmonic, F? is subharmonic, i.e. Lz2> > 0. Then

Br

k
22/ \Vfl|2dm = L:Fz < Epz(Xe)
i=1"Br

= —/ (VF? Vx:)dm
BRrye

2

< */ F|VF|dm
€ JBry\Br
2(R+ ¢

< u|BR+e\BR|'

€
Let € — 0, we have for a.e. R >0

k
Sof (npan < SR (22)
i=1 Y Br |BR‘

The fact that {f;}¥_, is the orthonormal basis for the inner product D implies
that for any €; > 0, there exists R, such that for any R > R, we have

k
Z][ IV fil2dm >k — €.
i=17Br
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Combining this with (22), we obtain for any R > R.,,

k—El < ‘AR|

R~ |Bgr|

Integrating this inequality from R., to R, we have for any R > R,,

k—El
( R ) _ 1Bal
Rﬁl |BR51

Hence the assumption (2) on the volume growth of X yields k—e; < n. Let ¢ — 0,
we prove the theorem.

O
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