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EXISTENCE AND NON-EXISTENCE OF AREA-MINIMIZING
HYPERSURFACES IN MANIFOLDS OF NON-NEGATIVE RICCI
CURVATURE

QI DING, J. JOST, AND Y.L. XIN

ABSTRACT. We study minimal hypersurfaces in manifolds of non-negative Ricci curva-
ture, Euclidean volume growth and quadratic curvature decay at infinity. By comparison
with capped spherical cones, we identify a precise borderline for the Ricci curvature de-
cay. Above this value, no complete area-minimizing hypersurfaces exist. Below this
value, in contrast, we construct examples.

1. INTRODUCTION

Complete minimal (hyper)surfaces where first considered in Euclidean spaces. In fact,
there was one particular problem that inspired much of the spectacular development of
the field. This was the Bernstein problem, which was concerned with the question to what
extent the classical Bernstein theorem can be generalized. Bernstein’s theorem simply says
that an entire minimal graph in R? has to be a plane. The original proofs were strictly
two-dimensional, making essential use of conformal coordinates, but the statement itself
certainly is meaningful in any dimension. Partly in order to have mathematical tools with
which to approach such questions, the field of geometric measure theory was developed.
Higher dimensional generalizations of the Bernstein theorem were achieved by successive
efforts of W. Fleming [13], E. De Giorgi [9], F. J. Almgren [1] and J. Simons [28] up to
dimension seven within the framework of geometric measure theory. In 1969, Bombieri-De
Giorgi-Giusti [4] then constructed a nontrivial entire minimal graph in R*"*! with n > 7
whose tangent cone at infinity had been described earlier by Simons.

Clearly, the Bernstein problem can be further generalized. We can not only increase the
dimension of the ambient space, but also allow for more general Riemannian geometries
than the Fuclidean one. In order to see what might happen then, we observe that minimal
graphs in Euclidean space are automatically area minimizing. Thus, the Bernstein problem
is essentially about the (non-)existence of a particular class of complete area-minimizing
hypersurfaces. Therefore, the challenge of the Bernstein problem consists in finding sharp
conditions for the existence or non-existence of complete area-minimizing hypersurfaces
in curved ambient manifolds.

Let us therefore review the previous results in this direction. Using curvature esti-
mate techniques, Schoen-Simon-Yau [25] obtained LP—estimates for the squared norm of
the second fundamental form for stable minimal hypersurfaces in certain curved ambient
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manifolds. As a consequence, they showed that any stable minimal hypersurface with
Euclidean volume growth in a flat N"*! with n < 5 has to be totally geodesic. Later,
Fischer-Colbrie and Schoen [12] proved that there are no stable minimal surfaces in 3-
dimensional manifolds with positive Ricci curvature. Shen-Zhu [26] proved certain rigidity
results for stable minimal hypersurfaces in N* or N°. On the other hand, P. Nabonnand
[22] constructed a complete manifold N™*! with positive Ricci curvature which admits
area-minimizing hypersurfaces. M. Anderson [3] proved a non-existence result for area-
minimizing hypersurfaces in complete non-compact simply connected manifolds N"*1 of
non-negative sectional curvature with diameter growth conditions. For rotationally sym-
metric spaces with conical singularities, some explicit results were obtained by F. Morgan
in [21]. These results will provide us with important model spaces for the general theory.

In the present paper we will study minimal hypersurfaces in complete Riemannian
manifolds that satisfy three conditions:

C1) non-negative Ricci curvature;
C2) Euclidean volume growth;
C3) quadratic decay of the curvature tensor.

Such manifolds can be much more complicated than Euclidean space, but on the other
hand, this class of manifolds possesses certain topological and analytical properties [23],[8]
that constrain their geometry. They admit tangent cones at infinity over a smooth compact
manifold in the Gromov-Hausdorff sense. These cones may be not unique, but they have
certain nice properties, proved by Cheeger-Colding [5]. Another important fact is that their
Green functions have a well controlled asymptotic behavior. In particular, the Hessian of
such a Green function converges to the metric tensor (up to a constant factor 2) point-
wisely at infinity, as shown by Colding-Minicozzi [8]. The precise results will be described
in section 4.

While our non-existence results are quite general, the existence results that we devel-
op here, mainly for the purpose of showing that our non-existence results are sharp, are
more explicit and depend on special constructions. Essentially, for these constructions, we
consider ambient manifolds of the form ¥ x R where ¥ is an n-dimensional Riemannian
manifold with a conformally flat metric whose conformal factor depends only on the ra-
dius. This class will include a capped spherical cone with opening angle 27k, denoted by
MCS,. Its tangent cone at infinity is the uncapped spherical cone C'S,, or equivalently,
the Euclidean cone over a sphere of radius k. These cones will be on one hand our main ex-
amples for existence results and on the other hand our model spaces for the non-existence
results. The border between those two phenomena, existence vs. non-existence, will be
sharp. Existence takes place for k > %\/ n — 1, non-existence else. The intuitive geometric
reason is simply that for larger values of &, in order to minimize area, it is most efficient
to go through the vertex of the cone, whereas for smaller values of k, it is better to avoid
the vertex and go around the cone. This had already been observed by F. Morgan in [21].
As a by-product we can answer some questions raised by M. Anderson in [3].

Whereas the existence examples are specific, our non-existence results will be general.
Essentially, the idea consists in reducing them to the model cases by taking cones at
infinity. For this, we need some heavier machinery, including the theory of Gromov-
Hausdorff limits [16, 17, 24, 15] and the theory of currents in metric spaces developed by
Ambrosio-Kirchheim [2]. In order to apply those tools, we shall analyze the Green function
at infinity of the ambient space and minimal hypersurfaces with Euclidean volume growth,
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in order to carry the stability inequality for minimal hypersurfaces over to the asymptotic
limit. The corresponding results may be of interest in themselves, see Theorem 5.1.

Our main results thus are general non-existence results for stable minimal hypersurfaces
in (n+1)—manifolds N with conditions C1), C2) and C3) under an additional growth con-
dition on the non-radial Ricci curvature involving a constant x’. For the capped spherical
cones M C'S,, this constant k' can be expressed in terms of the constant x. More precisely,
we show that N admits no complete stable minimal hypersurface with at most Euclidean
volume growth if the above constant ' > %, see Theorem 5.5. The existence result of
Theorem 3.4 then tells us that our condition on the asymptotic non-radial Ricci curvature

is optimal.

2. PRELIMINARIES

Let ¥ be an n-dimensional Riemannian manifold with metric ds®> = o;jdx;dz; in local
coordinates. Let D be the corresponding Levi-Civita connection on X. For a subset 2 C X
let M be a graph in the product manifold €2 x R with smooth defining function v on ¥,
ie.,

(2.1) M = {(z,u(x)) € A x R| z € Q}.

Since N = 3 x R has the product metric ds® = dt? + o;jdx;dxj, then the induced metric
on M is
ds?® = gijdr;dr; = (O'Z'j + u,-uj)dxidxj,

where u; = 6‘97“]_ and u;; = %8”:@ in the sequel. Let (¢%) be the inverse metric tensor
on Y. Let F; and E,1; be the dual vectors of dx; and dt, respectively. Let Ffj be
the Christoffel symbols of ¥ with respect to the frame E;, ie., Dg,E; = >, Ff]Ek Set
u' = oYy, |Dul? = 0wy, DiDju = u;j — Ffjuk and v = /1 + |Dul?. If f stands for
the immersion (2.1) of ¥ in M C N, then X; = f.E; = E; + wjFEpi1, i = 1,--- ,n, are
tangent vectors of M in N. Let vj; and H be the unit normal vector field and the mean
curvature of M in N. Then, direct computation yields

1 ..
VUpyr = ;(—O'Z]UJ‘Ei + En+1),

Du 1 o,
H=di — | = ——0; | Vdet ‘).
WE( v ) Vvdet oy j< IR )

M is a minimal graph in 2 x R if and only if H = 0 and w satisfies

Du 1 oy,
2.2 divy = 0; detop—= | =
(22) ( 1+|Du!2> \/m3<v I+ Duf?
This is the Euler-Lagrangian equation of the volume functional of M in N. Moreover,
similar to the Euclidean case [30], any minimal graph on  is also an area-minimizing
hypersurface in 2 x R, see Lemma 2.1 below.

We introduce an operator £ on a domain 2 C ¥ by

(2.3) LF = (1+|DF|?)? divs, <DF> = (1+|DF|*) AxF — F, jF'F,
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where F' = ¢'*F),, and F; j = Fij—Fijk is the covariant derivative. Clearly, {(z, F(z))| z €
2} is a minimal graph on ¥ if and only if £F = 0 on Q. We call F' £-subharmonic (£-
superharmonic) if £F >0 (£F <0).

Lemma 2.1. Let Q be a bounded domain in 3 and M be a minimal graph on Q as in
(2.1) with volume element dups. For any hypersurface W C Q x R with OM = 0W, one
has

(2.4) / dpnm < / dpw,
M w
with equality if and only if W = M.

Proof. Let U be the domain in N enclosed by M and W. Let Y be a vector field in M
defined by

y “ g i Uj E 1
= — . + — ,
; v 1 v n+1
Viewing u; and v as functions on ¥ and translating Y to W along the F,, axis, we obtain
a vector field in U, denoted by Y, as well. From the minimal surface equation (2.2) we

have .
_ 1745 .
W) = -3 0 (ﬁ”“> o,

where div stands for the divergence operator on N. Let vj7, vy be the unit outside normal
vectors of M, W respectively. Observe that Y|y, = vas. Then by Green’s formula,

0= [ @) = [ Voddias = [ (Vowdi

Z/ d,UM—/ dpw -
M W

Obviously, equality holds if and only if M = W. g

The index form from the second variational formula for the volume functional for an
oriented minimal hypersurface M in N is (see Chapter 6 of [30])

(2.5) 1(6,6) = /M (IV[? = |B[26> — Ricx (var, var)6?) dpas,

for any ¢ € C?(N), where V and B are the Levi-Civita connection and the second funda-
mental form of M, respectively.

Let S, be an n—sphere in R"*! with radius 0 < &£ < 1, namely,
Sk = {(331,"' ,$n+1) S Rn+1’ a;% 4+ ... _|_3;EL+1 = 52}_

If {6;}"  be an orthonormal basis of Sy, then the sectional curvature of S, is

1 .
Ks(0;,0;) = e for i # j.
Let CSk = R x, S, be the cone over S, with vertex o, which has the metric
oc = dp* + K p?db?,

where d6? is the standard metric on S™(1).
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Let {ea}l_4 U{a%} be an orthonormal basis at the considered point of C'S,, away from
the vertex, then the sectional curvature and Ricci curvature of C'S, are

(2.6)
0 1 1
K a 1 Ca | =Y, K a =—|—=-1 3
5 ((%’e ) 0. Kos(ca-es) P (HQ )

o 0 0 n—1/1
. — . o =0, ) s = — — — 1 60{ .
Riccs, (3p’ 3p) Riccs, (3;)’6 ) 0, Riccs,(€a,ep) 2 </~£2 > 8

Set p = r", then o¢ can be rewritten as a conformally flat metric

n+1 n+1
(27) oo = H2r25—2dr2 + KQTQHCZHQ _ H2T2ﬁ_2 § :d.%’? _ 62 log k—2(1—k) log r Z deZ’
=1 =1

where r? = Y. 22

Let Y be an (n — 1)—dimensional minimal hypersurface in S,, with the second funda-
mental form B and CY be the cone over Y in CS, with vertex o. For any 0 < ¢ < 1
denote

CY.={tzr eSS, xR|z €Y, telel]}
Clearly, Y is a minimal hypersurface in Sy if and only if C'Y; is minimal in C'S,;. Moreover,
let B be the second fundamental form of C'Y, in C'S,;, then

. 1
|B® = ?|B|2~

At any considered point, we can suppose that 6, is the unit normal vector of Y C S, and
{Qi}?z_ll is the orthonormal basis of TY. Let v = %Qn be the unit normal vector of CY.

Let dp and duy be the volume element of C'Y, and Y, respectively (see Chapter 6 of [30]
for a more detailed argument when xk = 1).

Now, from (2.5), the index form of CY, in C'S, becomes
(2.8) I(¢,¢) = /CY (=pAcy¢ — |BI?¢* — Riccs, xr(v,v)e?) dp

for any ¢ € C2(CY \ {o}). Noting Rics, (6;,0;) = "5 6;; and

1 n—1 n—-1/1
Ri = —Ricg, (0,,0,) — ——=—5—[—=5—-1].
iccs, (v,v) e icsy, (On, 0n) e 2 </@2 >

When ¢ is written as ¢(z, p) € C3(Y x R), a simple calculation implies

1 n—190¢ 0%
(2.9) Acyo = ?AYéf) + % sza
then
! —1
6.0 = [ ([ (~ave-18o-"Zto 4 (- 10
(2.10) Y

im0 _ 20% "3
(n 1)/)8[) Ly ¢ dpy | p" " dp.

When k£ =1 and Y is the Clifford minimal hypersurface in the unit 7—sphere

V2 V2
e(3)(9)
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then, C'Y is Simons’ cone, proved to be unstable in [28] (see also Chapter 6 of [30]).

3. CONSTRUCTIONS OF AREA-MINIMIZING HYPERSURFACES

Let ¥ be Euclidean space R"*! with a conformally flat metric

n+1
ds? = e?r) Z dx?,
=1

where r = |z| = \/x% + - +da2_ | and ¢(|z]) is smooth in R"T. Let F be a function on

R Let E; = {%} be a standard basis of R"t! and u; = E;u be the ordinary derivative
in R+, Moreover,

/ T T; T,
Ffj = % (52k7j + (5]'1471 — (5,‘]‘7) .

Denote |0F|? =, F?. Let A be the standard Laplacian of R"*1 then

/ . .
AgF =0 F,; = e 95 <E _ % (&‘kﬁ + 53'1@& _ 5”%) Fk)
T r T

-1 A
—e¢ <AF + qﬁ’Fixl) .

2 r
By (2.3) we can compute £F in the conformal flat metric as follows.
(3.2)

-1 : OF|? :
SF =% (14 7%|oF ) (AF + 5 ¢’Fi”:> — e <FZ-]~E~Fj _ 2' ¢’Fifj>

(3.1)

n—1

2

—=((1+ e ?OF2) AF — e P FyFiF; ) +¢° ( + ;e—¢yaFP> ¢’Fi%

—e2? (|6F|2 (AF + ggb’F%) - FijFiFj) te (AF + - > ¢'Fifj) .

Lemma 3.1. Let F = F(6,r) be a function with

0 — Tn+1
3.3 B
(3:3) \/$%+"‘+xgz+1

on [—1,1] x (0,00). Then we have

F? L oF,
crecn(o (- o) ()

F? (0Fy F, 1—6?
(3.4) +(1-H-L (ff + ) +— (EGF, + F?Fpg — 2FyF, Fyy) )

r2 r

— 2 2
’ r=gTy T,

2 n n n—1
+€_¢<Frr+ FGG“‘;FT_*FG"‘ gb,Fr)-

r2 r2 2

Proof. For 1 < a < n we have

Fa = 3%F :FG ' (_xocf;z—i—l) +Frx7aa

(3:5) 1 a2 2
Foy1 = 0p, I =Fp - (7‘ - :;1> + Frxn:l = Iy 270:39606 + $nr+1'
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Hence
F2

(36) |8F’2 ZFQ +F2 220& o +F2 ( _02) r% +F3’
and

n+1
(3.7) > aF; = Z%F + Zpp1 Fpyp1 = rEy.

=1

In polar coordinates,
n+1

Z dx% = dr® + r? (dﬁ2 + cos? I5; dS”_l) ,
i=1

where sin 3 = 0 € [~1,1] and dS™ ! is the standard metric in the unit sphere S"~*

Hence
n+1
Zd:p = dr? + 0 ———d6* +1r°(1 — 6%)ds" !,
and
AF =y (ar (7’”(1 —6?)z F) + 0y (rn(1 —6?)2
(3.8) "1 -0
1— 02 né
=Fpr + F+ Fyg — 2F9-
Moreover,
1
Y F;FF;= 3 > Foi|oFP
1<i,j<n+1 i
1 Z ( $a$n+1 .’L'iaFr) (_l'aflfg—l-l 89’8F|2 + &8T|0F|2)
T T T
]. n 2 n
w g (Beon s 2ot ) (Zefoajory + 2220, o
2 T T r r
. 1 2 1
(39) —22;4% FydplOF | + S F,0,0F
16 2 2 1 o\ 5 2
=2 Fods ((1—6 )—+F ) + 50, ((1—9 )T2+FT>
F3 FyFpo FyF . Fre

F
—(1-6)"2" + F?F,,.
'I“

)

€ R™
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Hence by (3.2) we have

LF :e—2¢< (( 92) +F2> <FW+ “po i 9 —5—Fypg — §F9+Z¢’Fr>

F3 FyF, FyF,F, F2F,
‘(‘9(1_92)7«3“1_92)2 o "“’+2(1—92> 972 ST (1 62) %
1—92 0 -1
+F7'2F7"7’>>+€ (Frr+ —F. + F96_£F0+n2 ¢/F7’>
(3.10) . oF
o0 ) (2 m o)
T
F? (0F, F, 1—6?
+(1- Qz)rfg <7“29 + 7“> + 2 (FQQFTT' —FFT,QFGG - 2F9FrFr9)>
1—6? 0 -1
+e? <FW+ S Fpg+ —Fy— 4 ’F,).
r T r 2
O

Theorem 3.2. Let ¥ be an (n + 1)—dimensional Euclidean space R"" n > 2, endowed
with a smooth conformally flat metric ds* = e dz?, where ¢/'(r) > —2(1 — k)r~! and
k> 2yn—1.If

F(0,r) = COrP = Cxpy17P ' & F(apie,r)

with any constant C'> 0 and p = Gk — # — (n — 1), then except at the origin we have
>0 it (x1, - ,2,) €ER™, 241 >0

(3.11) LF(Tnt1,7) )
SO if (xla"‘axn)ERn? $n+1§0

Proof. Since ¢/ > —2(1 — k)r~! for 0 < kK <1 and F, = CpfrP~1. By (3.4) except at the
origin we have

OCF >0 2 <n (( -0 % +F2> (”F 9F9)

r 72

(3.12) +(1- 92) (91;9 + F) + 1o 92

r r

(F9 F..+ F Fypo — 2FyF,. Frg) >

2

1-— F
+ e ? (FM +——Fp+ ((n— 1)k + 1)% - :29Fg> )

Furthermore, we take the derivatives of F' and get
(3.13)

OLF >C30e~2? (n( (1 — 92) r2P=2 4 02p2r2p*2> (/ﬁﬁprp*Q — Hrp*2)

1 — g2
+ (1= 6%)r*=2 (0rP~2 + OprP~2) + 29 (p(p — 1)0r*P=2 — 2p0r*~2) )
r

+ Che™? (p(p —1)6rP~2 4 (n—1r+ 1)p¢9rp_2 - n9rp_2>
:03067%( (n(kp—1) +1—p*) (1 — %) + np*(kp — 1)02> 3P4

+ Che™? (p2 +(n—1)kp — n) HrP—2,
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Note

n?k?

4

nKk

n(/ip—l)—i—l—pz:—( —7)24-

—(n—1)=0.

By the definition of p, we obtain
= () ()
(3.14) n2k n n K
_ 2
SULY Sy PO b UL | R I CUNS Sl P
2 n (n—2)2 /-@2 K n—2 K

Hence

(3.15) OSF >CPe*np’(sp — DI+ Ce (9 + (n = Dp —n )6r0
>CeO — )6 20

We complete the proof. -

Remark 3.3. There are other £-sub(super)harmonic functions on X. For instance, for
all 5 > 0, £(jzp1wP™) > 0 on 2,01 > 0 and L(jzu1wP™t) <0 on z,01 < 0, where
w= /2 + - +a2.

Denote Bg = {(z1,++ ,Zn41) € R"TH 2f + - + 22 | < R?}
Theorem 3.4. If n > 3 and
2
—vn—1<k <1,
n

then any hyperplane through the origin in ¥ as described in Theorem 3.2, that is, R"1
equipped with a particular conformally flat metric, is area-minimizing.

Proof. We shall show that the hyperplane T = {(z1,- -+ ,2Zp+1) € R*"| 2,41 = 0} in X
with the induced metric is area-minimizing.

Set (r =fye % dr. Let us define p = ¢(r) and \(p) = r¢/(r), then the Riemannian
metric in E can be written in polar coordinates as ds? = dp? + A\?(p)df?, where df? is the
standard metric on S™(1). Moreover,

dx  dX\dr

N . 1
(3.16) dp  drdp (¢/+7”¢”)¢~),—1+"”(10g¢/)/—1+2T¢/21—(1—"¢)—H-

When n > 3 and

let Fj(xnt1,7) = jopgir? for j > 0 with r = \/x% + - —i—aziﬂ. By Theorem 3.2 we
obtain

>0 in {(z1,+,@ng1) € R™ apia > 01\ {0}
<0 in {(z1,+,@np1) € R™ apyq <031\ {0}

Combining (3.16) and formula (2.9) in [10], we know that any geodesic sphere centered at
the origin has positive inward mean curvature. By the existence theorem for the Dirichlet

(3.17) LFj(Tnt1,7) {
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problem for minimal hypersurface in ¥ x R, see Theorem 1.5 in [29], for any constant

R>0and j=1,2,---,00, there is a solution u; € C°°(B;g) to the Dirichlet problem
Suj =0 in BjR

(3.18)
U; = ./."j on 8BjR

By symmetry, u; = 0 on Br=NT for any fixed R* > 0. Let U = {(ml, Cee  Tpy1) € ]R”H} Tpt1 > 0},
then the comparison theorem on B+ \ {0} implies

(3.19) ]1520 uj > ]lgrolo]: +0oo in Br-NU
and
(3.20) Jim uj < lim Fj = —co in Bp-N (R™H1\ D).

Let U; denote the subgraph of u; in Br« x R, namely,
U; = {(z,t) € B xR| t <uj(z)}.

Clearly, its characteristic function Xy, converges in Ll ve(Br+ xR) to x,,.»- By an analogous
argument as in Lemma 9.1 in [14] for the Euclidean case, for any compact set £ C Br+ X R,
that Graph(u;j) = {(z,u;(x))| € R""!} is an area-minimizing hypersurface implies that
(UxR)NE is a minimizing set in E. Hence U X R is a minimizing set in B xR C ¥ x R.
By an analogous argument as in Proposition 9.9 in [14] for the Euclidean case, U is a
minimizing set in B+, namely, the hyperplane T" minimizes perimeter in Br~. Since R*
is arbitrary, we complete the proof. O

As we showed in the previous section, on the cone C'S,, the usual metric can be rewritten
as a conformally flat one. Our constructions will be those modified from the cone CS.

Lemma 3.5. Let A be the rotational symmetric function on R™ defined by

1;;{2 /331 +x2 on Rn—H \ Bl

321)  Afx) = { m( — ?flw\ arctanﬁ( ))ds) on B ’

K

1
where £(s) = s (e 1-s2 — e) . It is a smooth convex function on R"t1,

Proof. In fact, £(0) = 0, £2¥)(0) = 0 for k > 0 and £U)(1) = 400 for j > 0. Then on B;
2V1—k% z

9ih(z) =" "L arctan&(|z),
(3.22) AT ]
FijA(x) s <5ij B :Uﬂj) arotang  W1-w2 € sy
KT ||2 || KT 1+&2 |z)2
Since

arctanf i Q(k ( S e) 2k-+1

k=0
in [0, €] for small € > 0, ¢~ 3 arctan £(v/t) is a smooth function for ¢ € [0,1) and

V1-—#k? L arctan £(v/%)
Ax) = 1- \x|2 7 dt)
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is a smooth convex function on Bj. Denote A(r) = A(|z|), then the radial derivative of A

at 1is
2y/1 — K2 V1 — k2
lim 0,A(r) = Voo arctan&(1) = 7FL,
r—1 R K
and the higher order radial derivative of A at 1 is
- 2v1 — K2 -
lim (8,7 T A (r) :75(&«)] arctan{(r)
r—1 R r=1
2v1 — K2 , &
== (0,) " =0 forj>1.
KT (9) <1+f2> 1 o=
Hence A is a smooth convex function on R"*1. 0

Now we suppose that MCSy is an (n + 1)-dimensional smooth entire graphic hyper-
surface in R"*2? with the defining function A. We see that it has non-negative sectional
curvature everywhere. In fact, MCS, is a k—sphere cone C'S,; with a smooth cap, which
we shall call the modified k— sphere cone.

We already showed that the metric of the k—sphere cone is conformally flat, and we
shall now also derive this for MC'S,.

Lemma 3.6. The (n+ 1)—dimensional MCS,, has a smooth conformally flat metric
ds? = 2" Z dx?
1<i<n+1
on R™ with —2(1 — k) < @ < 0.

Proof. MCS,, is defined as an entire graph on R"2. Its induced metric can also be written
in polar coordinates as

(3.23) ds® = dp® + N\*(p)d6?,
where df? is a standard metric on S”(1), and
k(p+ £ —po) for p > po
(3.24) A(p) =
C(p) for 0 < p < po
Here

1
1
1 < po :/ \/1+(8TA)2dT < Pt
0

and the inverse function of { satisfies
C(s) = / VT (@A,
0

where A is defined in the last lemma. Moreover, xk < (' < 1.

1
K

Let ¢ (r) be a function on [O, (%) > with 1) ((%)%> = po and

1
1 1\~
(3.29) = rewe) o o (1)),
In fact, let C(p) = 17 %dt for p € (0, pol, then we integrate the above ordinary differential

equation and obtain

C(¥(r)) = ¢(po) = logr + % log £.
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Since ¢ is a monotonic function, we can solve the desired ¥. Note rp < ¢ (p) < pon [0, pol,
comparison theorem implies that

() sz o ()]

In particular, ¢(0) = 0. Since

!
¢ _ ¢
P'(r) = - ' 3= 772((,—1)7
then,
k=1 _¢"'(r) (-1
3.26 < = <0.
(3.26) TR
Let
N T’{*%+p0 forrz(%)é
(3.27) p=(r) = o
p(r) for 0 <r < (L)%
then ¢ also satisfies (3.25) and hence ¥ is smooth on [0, 00). Set
1
2,.2k—2 1\ %
~ 9 KT for r > =)
(3.28) e®() = (W(r)) = ( ) L
(¥")2(r) for 0 <r < (L)%
then
(3.29) ds? = M dr? 4 e2r2qg? = 2 Z da?,
1<i<n+1

where r? = Y, 22. By (2.7) and (3.26) we have

2
—=(1-r)<® <0.
.

Now, Lemma 3.6 and Theorem 3.4 yield the following conclusion.
Theorem 3.7. Let n > 3. If
%\/ﬁ <k <1,
then any hyperplane through the origin in MCS, is area-minimizing.

Remark 3.8. Let {eq}]_; U{a%} be an orthonormal basis at the considered point of

MCS,,. Compared with (2.6) we calculate the sectional curvature and Ricci curvature
of MCS,; as follows (see Appendiz A in [19] for instance).

a A// 1 . /\/ 2
KMCS»@ <6P’ea> = _7 2 07 KMCSn(eCVae,B) = )\(2) 2 07

0 8) '

9V 2 >0
dp’ Op "N =0

(3.30) Ricyes, (8 e ) =0, Ricpycs, ( \

8p’ 87
1— ()\/)2 )\//

Ricyres, (easep) = <(n - 1)7 - )\>5a/3 > 0.
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In particular, for p > po with 1 < py < % we have

K (ae)—o K (easep) = L w
MCSN apu « - Y MC’SK ) ﬁ - I€2(p+%—p0)2’
0 0 0
3.31 Ri —,— | =Ri =€ | =0,
(3.31) ICMCS, ( ap 8p) ICMCS, < 8p’6 >
1— k2

Ricyes, (€arep) = (n—1) 500

K2(p + 5 = po)
From the construction above we see that M CSy is a complete simply connected manifold
with non-negative sectional curvature.

Remark 3.9. Since MCS, in Theorem 3.4 cannot split off a Euclidean factor R isomet-
rically, the Cheeger-Gromoll splitting theorem [6] implies that it does not contain a line.
Consequently, this gives a negative answer to the question (1) in [3], which is

If M is a complete area-minimizing hypersurface in a complete simply connected mani-
fold N of non-negative curvature, does it follow that N contains a line, that is a complete
length-minimizing geodesic?

If we define for each x € R™
~ 01— g2 [l
Az) = ”/
TK 0

then A is a smooth strictly convex function on R” and the hypersurface & = {(z, A(z))| z €

arctan sds,

R™} is a smooth manifold with positive sectional curvature everywhere. In fact, ¥ can be
seen as a Riemannian manifold (R", &) with

& = dp* + \*(p)d6?

in polar coordinates, where the inverse function of A satisfies

A l(s) = /OS \/ 1+ (8,A)2dr = /Os \/1 + W(amtan r)2dr.

Hence )
5 4(1 — x?) < o) 2
1> N(s) = <1 + W(amtan A(s)) > K,
and
4(1 — 2 73 4(1 — K2) N(s)
N _ - 1 2 - ~
Ni(s) = <1 + 22 (arctan A(s)) ) 3.3 arctan \(s) PR CTY n 5\2(8).

Clearly,

lim Als) = lim N(s) = &, and lim (s2)(s)) = —2(1 — k).

s—o0 8 s—00 §—00 ™

If {9,} and {e,}"Z] are an orthonormal basis of 5, then the sectional curvature of %
is
N2(1 - K?) 1—-X2 1 k2
0<K(ap7€a):—j'\‘w, K(Ca,eﬁ): 5\2 ~ ,{,252 .

Clearly,

1— 72 2
i ~)\ (5)24(1 k%) 0.
s=0  \2(s) m2K2
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Hence & = {(z, A(z))| € R"} has positive sectional curvature everywhere.

Theorem 3.10. Letn > 4 and & = (R™, &) be a complete manifold with positive sectional
curvature as above. If
2

n—1

vn—2<k<l,

then any hyperplane through the origin in Y= (R™, &) is area-minimizing.

Proof. Note k < X < 1, then we can rewrite the metric ¢ similar to (3.27)(3.28)(3.29).
Apply Theorem 3.4 to complete the proof. O

Remark 3.11. Our theorem above gives an example for the question (2) in [3], which is

If N is a complete manifold of positive sectional curvature, does N ever admit an
area-minimizing hypersurface?

Now scaling the manifold MCS,, yields e2MCS, for € > 0, which is R"*! endowed
with the metric

_ g2, 2\2(P 2
(3.32) o = dp* + €2\ (6)d9

in polar coordinates, where A and df? as in (3.23) and (3.24). Obviously e (£) < kp and

€A (f) converges to kp uniformly as ¢ — 0. Hence o, converges to o as € — 0, where o¢
is the metric of C'Sy; defined in (2.7).

Now we can derive the result of F. Morgan in [21], obtained there by a different method
due to G. R. Lawlor [18].

Proposition 3.12. Letn > 3 and k > %\/n— 1. Then any hyperplane in (n + 1)-
dimensional C'S\ through the origin is area-minimizing.

Proof. Let T, denote the hyperplane in €2MCS, corresponding to T'C MCS,, during the
re-scaling procedure. Denote Ty = lime_9 7. C lim._q e2MCS,, = CS,.. Let H? and H{
be the n-dimensional Hausdorff measures of €2MCS,, and CS,..

Now we consider a bounded domain Qg C Ty and a subset set Wy € CS,, with 909y =
OWy. View Qg as a set Q C R™ with the induced metric from Ty and Wy as a set W in
R™*! with the induced metric from CS,. Let Q. be the set Q C R™ with the induced
metric from 7. and W, be the set W in R"*! with the induced metric from e2MCS,.
Clearly, Qo = lim¢_,0 Q¢ and Wy = lim._,g W, with 0Q, = OW..

Since T is area-minimizing in €23, then
HE(Qe) < HE (W),
e (2) < kp implies
He(We) < Hg (Wo).
Since also e (f) — kp uniformly as € — 0, we obtain

M () = lim H7(0) < limsup H] (W) < H (o).

e—0

Hence Tj is an area-minimizing hypersurface in C'S. U
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Actually, here the number %\/n — 1 is optimal. Namely, if x < %\/n — 1 then every
hyperplane in C'S,; is no more area-minimizing and even not stable. This also has been
proved in [21]. Let us show this fact by using the second variation formula for the volume
functional.

Theorem 3.13. Let x € (0,1] and n > 3. Any hyperplane in (n + 1)-dimensional CSy,
through the origin is area-minimizing if and only if

(3.33) k> ZVn— 1.

n

Proof. By Proposition 3.12 we only need to prove that if (3.33) fails to hold, any hyper-
plane in C'S,; through the origin is not area-minimizing. Let X be a totally geodesic sphere
in S,, then X is minimal in S, and P £ CX is a hyperplane in C'S,, through the origin.
Clearly, P is a minimal hypersurface in C'S,,. The second variation formula is (see also

(2.10))
16.0= [ ([ (-axe-"Zro -1

a¢ 2 82¢ n—3
i — 1) 22"

(3.34)

where ¢(z,t) € C?(X x,R). Define a second order differential operator L by

2

L=p’—— —1)p—=—.
p ap2-+(n )pap
If s = log p, then
0? 0  _n2,0% /a2 \  (n—2)2
L= gt =g = e e () - S

So the k(k > 1)-th eigenvalue of L on [, 1] is

(3.35) (n;®2+<£;)2

with the k-th eigenfunction (see [28] or [30] for instance)
2-n ( km >
p 2 sin| —logp|.
log €

By the second variation formula (3.34), P is stable if and only if

-1 —2)2
nol gy 2
K

>0
4 — y

i.e.,

k> —vn—1.
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4. A CLASS OF MANIFOLDS WITH NON-NEGATIVE RICCI CURVATURE

Let N be an (n+1)-dimensional complete non-compact Riemannian manifold satisfying
the following three conditions:

C1) Nonnegative Ricci curvature: Ric > 0;

C2) Euclidean volume growth:

Vol(B,(z))
A r .
Vv = rlig)lo rntl > 07
C3) Quadratic decay of the curvature tensor: for sufficiently large p = d(z,p), the
distance from a fixed point in N,
c

)

By Gromov’s compactness theorem [16], for any sequence €; — 0 there is a subsequence
{€i} converging to zero such that ;N = (N, ¢;g, p) converges to a metric space (Noo, doo)
with vertex o in the pointed Gromov-Hausdorff sense. It is called the tangent cone at
infinity. Noo \ {0} is a smooth manifold with C1% Riemannian metric go.(0 < a < 1)
which is compatible with the distance dn,. The precise statements were derived in [15]
and [24] on the basis of the harmonic coordinate constructions of [17]. In fact, N \ {0} is
a DV1-Riemannian manifold (see [15, 24]). For any compact domain K C Ny \ {0}, there
exists a diffeomorphism ®; : K — ®;(K) C ¢;N such that ®'(¢;g) converges as i — 00 to
Joo in the C'M“-topology on K.

[R(z)] <

Cheeger-Colding (see Theorem 7.6 in [5]) proved that under the conditions C1) and
C2) the cone N is a metric cone. Ny, = CX = RT x p X for some n dimensional smooth
compact manifold X with Diam X < 7 and the metric

Goo = dp* + p?s;;d0;d;
where s;;df;df; is the metric of X and s;; € C19(X). Let p; be the distance function
from p to the considered point in ¢, N. Set B:(z) be the geodesic ball with radius r and

centered at z in (N, ¢€;g), and B,(z) be the geodesic ball with radius r and centered at x
in Noo. In particular, X = 0B;(o).

Mok-Siu-Yau [20] showed that if C1) and C2) hold, then there exists the Green function
G(p,-) on N™ 1 with lim, o0 SUPy B, (p) |Gr”_1 _ 1‘ — 0 and

(4.1) T < Gp,z) < CrtT"
for any n > 2, x € 0B, (p) and some constant C'. Set R = Gﬁ, then
(4.2) ANR?* =2(n+1)|[VR]

Under the additional condition C3), Colding-Minicozzi (see Corollary 4.11 in [8]) showed
that

R _
(4.3) lim sup (sup —1’+sup“VR‘—1D =0,
r—00 OB, | T OB,
and
(4.4) lim sup <sup |Hessp2 — 2g|> =0,
7—00 OB,
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where Hessg: is the Hessian matrix of R? in N. In particular, [VR| < C(n, V) which is
a constant depending only on n, V.

For any f € C*(0By), we can extend f to No \ {0} by defining
f(pf) = f(0)

for any p > 0 and 8 € 0B;. Let V be the Levi-Civita connection of Noo, then
~ 0

4.5 Vf,—)=0.

(4.5 (¥1.5)

For any Ko > K; > 0 and € > 0, let ®; : %\B%Kl — @i(@\BgKl) C N be
a diffeomorphism such that ®%(e;g) converges as i — 00 to goo in the Ch*-topology on
@\B; K,- Moreover, ®; is C**-bounded relative to harmonic coordinates with a bound
independent of i (see [17]).

Let V', Ay, Hess’, Rice, v and | R, v| be the Levi-Civita connection, Laplacian operator,
Hessian matrix, Ricci curvature and curvature tensor of €; N, respectively, then on ¢; N we
have the relations

1

pi =€2p, V' =V, N =€ AN, Hess" = Hess,
. 1. 1 ntl
Ric.,n = €; "Ric, |Re,n| =€ "|R], dpe,n =€, > dun

where p; and du.,ny are the distance function and volume element on ¢; /N, respectively,
and dupy is the volume element on N. We see that conditions C1), C2) and C3) are all
scaling invariant. Let

then
BR2 = ANR2 =2(n+ 1)[VR|2 = 2(n + 1)[V'R;|?

and so 7511_” is the Green function on ¢;N. By (4.4) we have

(4.6) lim sup sup |Hessk, —2¢g| | = 0.

; . . R2
— 00 T T 1
' BK2\B€K1

For each € ¢; N there is a minimal normal geodesic v, from p to x such that v pi(z) =

V}E When ¢; = 1, we define Vp(x) corresponding to the normal geodesic 7. Hence Vp(x)
depends on the choice of ;. Note that p(z) is just a Lipschitz function, but the definition
of Vp(x) is is equivalent to the common one if p is C'! at the considered point.

Now if x € B}Q \BzKl, let = YL (t), e = Yi(te) € 832}{1 N+, then for any parallel
vector field ¢ along 7%, we have

ds.

ad =55 t*i =~ i t i S
(17) ViRMw) - ViRia) = [ Vi TeRHGi(e)ds = [ Hesst, (Tpicc)
e te ' 75 (5)
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Hence

VR @) — Ve (a)| < |VeRE (o) — Vep ()

+ /tj — Hess! o2 (V ,0@,5)

t .
=cer /t o (Vo) 1i(s)

<Ce+ Ko Sl\lg ‘Hess%? (ﬁpz’@) —2 <viﬂi,§>

Hessk, (v 0i, g) ds

Vi (s) Vi (s)

ds

Hess (V Dis 5)

)

eKq

where C' depends only on Kj, K9 and the manifold N. With (4.6) we obtain

(4.9) limsup sup  |V'R3(x) = V'pi(a)| < Ce.

1—00 Bl \BeKl

Since the geodesics 7% in ¢; N converge to a geodesic in N, with (4.5) we have

(4.10) limsup sup ’<§Z(f o @:1),77522» < Cle,
: i—00 BZ \ngl

and

(4.11) limsup sup (ﬁz ﬁi(f o @;l)D < 0.

1—00 Bl \BEK1

Let II; be the rescaling map from (N, g) to ¢ N = (N, €;g,p). Now (4.10) and (4.11)
are equivalent to

limsup  sup }(V(f od; 1o HJ,?RZH < Cie,

(4.12) i—00 B, \Bek,
and
limsup  sup (R ‘v(f ° cbi_l °© HZ)D < oo
(4.13) i—00 B, \Bek,
Vi VA

The theory of integral currents in metric spaces was developed by Ambrosio and Kirch-
heim in [2]. It provides a suitable notion of generalized surfaces in metric spaces, which
extends the classical Federer-Fleming theory [11]. We shall need the compactness Theo-
rem (see Theorem 5.2 in [2]) and the closure Theorem (see Theorem 8.5 in [2]) for normal
currents in a metric space E.

Theorem 4.1. Let (T},) C Ni(E) be a bounded sequence of normal currents, and assume
that for any integer p > 1 there exists a compact set K, C E such that

1
TG ) + TN\ Kp) < for all h € N.

Then, there exists a subsequence (T (y)) converging to a current T' € Ni(E) satisfying

17| BN Ky | + 110711 | BN |J Ky | =0

p=1
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Theorem 4.2. Let Zy(E) be the class of integer-rectifiable currents in E. Let (Ty,) C
Ny (E) be a sequence weakly converging to T' € Ny(E). Then, the conditions

Ty, € Iy (E), sup N(Tj) < oo
heN
imply T € Iy (E).

Now let M denote a minimal hypersurface in NV with the induced metric g from N.
Since N has nonnegative Ricci curvature, then Vol(0B,) < w,r", where w, is the volume
of the n-dimensional unit sphere in R™*!'. Suppose that M has Euclidean volume growth
at most, namely,

(4.14) lim sup (7"_”/ 1d,u> < 400,
r—00 MNB,

where dp is the volume element of M. Hence there is a smallest positive constant Vs such
that

/ ldp < Vg r™ for any r > 0.
MNB,

Denote ¢;M = (M, ¢€;g). For any fixed r > 1 let ®; :3727“\82% — ®;(Ba, \ BQ%) Cc N
be a diffeomorphism such that ®7(e;g) converges as i — 00 to Joo in the C1*-topology on
Ba, \ B L We see that the minimality is also scaling invariant and ¢; M are also minimal
hypersurfaces of ¢;/N. Since

2r
/ ldp = / Vol (M NOBg)ds < V2"
MnNBa, 0

which is scaling invariant, there exists a sequence l; € (r, 2r) such that Vol (qM N 8Blii) +
Vol (eiM N aBli_,l) is uniformly bounded for every i.

Let T; = ¢,MN (BZZ \ Bi'_l), then ®; (7;) is a minimal hypersurface in (@;1(6¢N), P (€:9))
with the unit normal vector U;. Now we change the metric ®](e;g) to goo, then the
hypersurface @;1(Ti) induces a metric, say §; from (Cb;l(eiN),goo) C (Noo,goo). Set
ﬁ = (<I>i_ 1(T¢), gz-), and 7; be the unit normal vector of smooth hypersurface ﬁ in the
metric space (Noo,goo).

Q¥ (€;) — oo implies im; o0 U5 = lim;_y00 U5 £ 1y and these two convergences are both
uniform. Then obviously
H™(T;) + H"1(9T3)
is uniformly bounded. By Theorem 4.1 and 4.2 (see also [27] for compactness of currents
in the Euclidean case), there is a subsequence of ¢;, such that

(4.15) T;, =T as j — oo,

where T is an integer-rectifiable current in No,. Denote Tij by T, for simplicity. Let D"(Q2)
be the set containing all smooth differential n-forms with compact support in 2. For any

w e D" <BQT\B%) we have

(4.16) lim ~<w,u};>dﬂ¢:/<w,uw>duc@,
T

1—00 T;
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where dfi; and dp, are the volume elements of f’, and T, respectively, and v, is the unit
normal vector of T'. Since v; — vy and U; — vy uniformly, then we have

(117) [ o= tim [ (o= i [ (oo @7 )du,
T

1—>00 {);l(Tl) 1—00 Ti

where dgi; and dp are the volume elements of Q)i_l(Ti) and T;, respectively. Then we
conclude that

(4.18) T;=aM[)Bi\B-. =T asi— oo

5. NON-EXISTENCE OF AREA-MINIMIZING HYPERSURFACES
Before we can prove our main results, we still need volume estimates for minimal
hypersurfaces. In fact, these results are interesting in their own right.

Theorem 5.1. let M be a complete minimal hypersurface in a complete non-compact
Riemannian manifold N satisfying conditions C1), C2), C3). Then

i) every end E of M has infinite volume;
ii) if M is a proper immersion, then M has Fuclidean volume growth at least,

1
(5.1) lim inf n/ ldp | >0, for any p € N,
r—00 T MﬂBT(p)
iii) If M has at most Euclidean volume growth, i.e.,
(5.2) lim sup <r_"/ 1du> < 00,
r—00 MNB,

then M is a proper immersion.

Proof. For any 0 < § < 1, set Q = (% + 1). For any fixed point p € N and arbitrary
q € 0Bq,(p), we have

d(p,x) > \f T, for any x € B,(q).
Then by condition C3) the sectional curvature satisfies
52
(5.3) |Kn(2)| <

< % for any x € B,(q).

Note Vol(Bs(q)) > Vns™ for any s > 0 as conditions C1),C2). By [7], for sufficiently small
d depending only on n,c, Vi the injectivity radius at ¢ satisfies i(q) > r. Hence py(x) is
smooth for x € B,(q) \ {¢}.

Let {e;} be a local orthonormal frame field of M. Then

n

AMPZ = Z (Veiveiﬂg — (Veei) Pg)

i=1
(5.4) = Z (ﬁeiﬁelpg — (Ve,€5) pg) + Z (Ve,ei — Ve,€i) ,53
i=1 i=1

n
= ZHesspg(ei, ei).
i=1
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For any £ € I'(T'N) we denote fg =&— <§, aipq> a‘zq Combining Hess (gq , dpq>

o) o) _ :
and Hesspg (87(17 87[1) = 2, we obtain

a 2
Hesspg(ei,ei) :Hesspg ((el)qT,( ) ) +2 <ei, 8p>
(5.5) Yo
=2p,Hess,, ((ei)qT, (ei)qT) +2 <ei, a> )
Pq
By the Hessian comparison theorem, for any §La%q we have

Hess,, (£, €) = gcot <5qu> €[>

Since 5’) <L cot (%) <1 for p; < r with sufficiently small J, then

AMpq>2quCot( > ‘+22<ez,>

(5.6) 225? (5pq> Z} I +2 <fq> '”1 <ei’3apq>2

1) 1)
:2nﬁ cot <'Oq>.
T T

For any t € [0,1) we have cost > 1 — ¢, then

tant t / 1 1 <0
ant — = - :

11—t cos?t  (1—1t)2 —
So on [0,1)

t
tant < ——.
an 1—¢

Denote the extrinsic ball Ds(q) = Bs(¢) N M. Hence on D,(q) we have

2ndpq(x)

r

(5.7 Br(a) 2 20 (1= (o)) = 20—

21

=0

Let péw and BM(q) be the distance function from ¢ and the geodesic ball with radius s
and centered at ¢ in M. Obviously, the intrinsic ball BM(q) ¢ Ds(q) for any s € (0,7)

and (5.7) is valid on BM(q).

Integrating (5.7) by parts on BY(q) yields

)
65 [ (1—%) <[ dug=[ Vs [ 1w,
BM(q) r BM(q) dBM(q) oBM(q)
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where v is the normal vector to 9BM (q). Then

9 s_"/ 1 :ns_"_l/ 1+S_n/ 1
0s BM(q) BM (q) 0BM(q)
> — ns_”_l/ 1+ s_"/ Vgl
BM (q) dBM(q)
Z o ns—n—l/ 1 + TLS_n_l/ (1 _ 6p9’>
BM(q) BM(q) r

=— nésn/ 1.
r BM(q)

Integrating the above inequality implies for 0 < s < r

(5.10) vol(BM (q)) 2 / |5 Wnoln s Wl n g,
BM (q) n n

Here w1 is the measure of the standard (n — 1)-dimensional unit sphere in Euclidean
space.

(i) Let E be an and of M. If E is not contained in any bounded domain in N, then we
choose r large enough and some ¢ € dBg,(p). By (5.10), E then has infinite volume.

Now we suppose that E C Bpr,(p) for some constant Ry > 0. Since the injectivity
radius at p is positive, then analogously to the above proof for (5.10) we have constants
rp > 0 and C}, > 0 such that

(5.11) vol(BY (p)) > Cpry.

Recalling (5.10), there is a constant ro > 0 so that for any 0 < r < g and z € E we have
a constant Cy > 0 such that

(5.12) vol(BM (2)) > Cor™.

Since E is noncompact, then we can choose a sequence {z;} such that BM (z;)nBM (z;) # 0
for ¢ # j. Hence

(2

vol(E) > Zvol(Bﬁg (z) = Co Y _rf = oo.

( (ii)) Since BM(q) C Ds(q) for any point ¢ € dBgq,(p) and any s € (0,7), then with
5.10) we obtain

(5.13) / 1> Enlgnend o every s € (0,r].
Ds(q) n
Hence we conclude that (5.1) holds.

(iii) If M is not a proper immersion into N, there exist an end E C M and a constant
0, such that F C B,,(p). The assumption that M has at most Euclidean volume growth
implies M has finite volume, which contradicts the results in (i). O

Let M be a minimal hypersurface in N with Euclidean volume growth at most. Com-
bining (4.1)(4.3) and the definition of R, the quantity

o / VR|2dy
MN{R<r}
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is uniformly bounded for any r € (0,00), then there exists a sequence r; — oo such that

(5.14) lim sup 7’_”/ |[VR[?dpu | = lim Ti"/ IVR|%du | .
r—00 Mn{R<r} 00 Mn{R<r;}

Lemma 5.2. There is a sequence §; — 07 such that for any constants Ko > K1 > 0 and
€ € (0,1) and any bounded Lipschitz function f on N \ By we have

. 51’ n/ 712 < 61’ )n/ |2
lim su VR|* — | — VR
i—>oop <K2Ti) Mn{Rg%’"l’}f' | Ky Mﬂ{RSKgi}f' |
(5.15) o
5
<Ce€" sup |f] —Himsup/ 5”1/ RVf-VR | ds.
N\Bi ioo JEL MO{ < <R<s)

Proof. Let {e;} be an orthonormal basis of T'M and v be the unit normal vector of M.
Then by (4.2) we have

AR =) (Ve,Ve,R? = (Ve,ei) R?)
i=1
(5.16) = Z (ﬁeiVeZRz - (Veiei) R2) + Z (Weiei - Veiei) R2
i=1 =1
=ANR? — Hessg2 (v, v)

=2(n + 1)|VR|? — Hessga2 (v, v).
By (4.4) and (4.3) there exists a sequence ¢; — 07 such that on M \ B s we have

(5.17) |AMR? = 2n|VR?| < 26| VR

1
For any s > oyr? with o; > 1 and f € Lip(IV \ By), integrating by parts yields
(5.18)

1
23/ fIVR| — Qairf/
MN{R=s} MN{R=a;r;

:/ 1 Vf-VR2+/ . fAuRZ
M

N{air? <R<s} Mn{a;r? <R<s}

fIVR| = / , divar (fVR?)
} M

N{a;r? <R<s}

[N
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Hence,
(5.19)

0 <s—" / fIVR\2)
0s MN{R<s}
o - B VR|?
:—nsnl/ fVR2+s”/ 1
Mn{R<s} ’ ’ Mn{R=s} IVR’
(VR,v)?

_ g / FIVRP + 57 / SIVR| 45" / PAKCLN
M{R<s} MA{R=s} Mr{r=s}  |VR]

— 1
= —ns ! / fIVR|? + s / ) fAMR?
MN{R<s} 2 Mn{a;r2 <R<s}

1
+airgs ! /M (R fIVR| + s 1 /M . RVf-VR
n QT

2} N{or? <R<s}

2

e / TR

Mn{r=s} " |VR|
= —ns_n_l/ L fIVR? + 257 1/ . f(AuR? = 2n|VR|?)
MM{R<a;r?} Mn{a;r? <R<s}
1
+ oz,-rfs"l/ , fIVR|+ 5"1/ , RVf-VR

MM{R=a;r?} Mn{a;r? <R<s}

(VR,v)?

+ 5" / e
Mn{r=s}  |VR]

Select f =1 and a; = 1 in (5.19) and integrate. Then for any r > /r; there is a constant
C depending only on N and Vj; such that
(5.20)

6" TRI2 = / VRI?
MN{R<6;%r} MN{R<r}
67 %r - 67 %r N2 2
/ s lds — O / fds+ / 5N / SR 4
T MnN{R=s} |VR|

3 61. r 2
> - 01 1 205 10g6; +/ s”/ VRV 4,
r . Mn{r=s} |VR|

Choose r = r; in the above inequality and let ¢ go to infinity, then we obtain
lim sup r"/ IVR* | — lim Ti_”/ |[VR|?
r—00 MN{R<r} 4700 Mn{R<ri}
(5.21) > lim | (6;%r;) " / IVR? | — lim [ 7" / |[VR[?
100 MN{R<6;%r;} 100 MN{R<r:}

67 % V2 2
> lim s"/ VR, v)” ds.
i—00 Jy, Mn{r=s} |VR|

which together with (5.14) implies

8 ?ri (VR,v)?
(5.22) lim s"/ ~———]ds=0,
=00 Jr, Mn{R=s} IVR|

e

> —nCr
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namely,

5.23 lim
( ) i—00 Mﬂ{ri<R§6;2ri} R™

1
Set |flo £ supy f < co and a; = eK1r26; * for any small € € (0,1) in (5.19), then for
any r > er;0; 1

‘(Km-” / VR — (Kir)™ / VR
MN{R<Kyr} MN{R<K 17}

K i n Kor Kor 1
<nC|f|0 <6 Ak ) / s s + C5Z|f|0/ ;ds

51 Kir Kir

K ; Kor
+Uflo [ < 1r/ VR / s 1ds
0i  JMn{r="1"1) Kur
Kor
+/ s—"—l/ RVf-VR | ds
Kqr Mm{%dzgs}

Kor <§R I/>2
+f / s"/ ———| ds
(5.24) [£lo o ( ey VR

Ky Kor
<Clflo n+05\f|olog+/ 3"1/ . RVf-VR | ds
oF K Kir MA{ELL <R <)

| flo / 2 /KQT - / (VR,v)?
+ AR+ |f s ———]ds
2nK{r" Mm{Rg@} flo Kir Mn{r=s} |VR]
’f‘ Kor
<C|flos +C<s\f|olog / ‘"‘1/ RVf-VR | ds
oprm Kir M{ELE <R <s)

| flo Kor [ / (VR,v)2
oA N s WV gs.
2nd;'r™ d Kir Mn{R=s} |VR]

T

Let r = §* and ¢ — oo, then we complete the proof. O

Let ¢; = 5227“; 2 and suppose that ¢; N converges to (Nuo, dso) Without loss of generality.
Let ;M = (M, €;g) and Dﬁ(m) = ¢ MNBi(z). Clearly, ¢;M is still a minimal hypersurface
in ;N with Vol (M N BL(p)) < Vg r™.

Lemma 5.3. There erists a subsequence {€;,;} C {€;} such that ¢;; M converges to a cone
CY =R" x,Y in Ny, where Y C 9B1(0) is an (n — 1)-dimensional Hausdorff set with
H" 1Y) > 0.

Proof. Note (4.18). By choosing a diagonal sequence, we can assume
<I>Z._j1 (ei].MﬂB"jT\Bzf) - T as j — oo,

for any r > 1, where T is an integer-rectifiable current in No,. For convenience, we still
write ¢; instead of €i; -
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Let f be a homogenous function in C*(Ny \ {0}), that is,

f(p0) = £(0)

for any p > 0 and 6 € 0B;. Let II; be the re-scaling map from (N, g) to ¢, N = (N, €3, p) as

before, then both of (4.12) and (4.13) hold. Now we can extend the function fo®; *oIl; to a

uniformly bounded function F; in BKQM = Bk, with F; = fo®,~ LoTI; on BKQTZ \Beryr, =
d;

2
Bk, \ Bk,. Note (4.1) and the deﬁmtlon of R. Hence for sufﬁmently large i and
Ve Ve

5 € (%, l%”), combining (4.12) and (4.13) we have

/ RVE-VRg/ R (VE - VR + [VF|- |(VR. 1))
Mﬂ{%(Rgs} Mﬂ{%<7€§s}
(5.25) S/ e (Cae + C2|[(VR, 1))
Mﬂ{$<72§s}
<Cses™ + Oy / (VR,v)|
Mm{%dzgs}
for some constants Co, C3 > 1. By the Cauchy inequality we get
(5.26)
el |
lim sup/ ’ n+1/ RVFZ -VR ds
imoo JEI \ S MN{< <R <s)
F (e C (VR,v)? :
<limsup /Klrf 73 + Snil (/ i 77%’" / o, Rﬂ) ds
imoo J =t Mﬂ{Tl<R§s} MO{TL<R§S}

Kor; :

Ko 5, 1 ﬁR, 22
<Cjselog i, + Cy limsup /K - —ds / o . #
i—s00 (sl'rl S Mﬁ{ € 517”1 <R§ 62;7, } R

7

K K VR, )2\ 2
<Cselog — + C4log — lim sup / m )
K Kl i—00 Mﬁ{ejfsl_ri <RSK§T7‘} Rn

where Cy is a constant. Note F; is uniformly bounded for all ¢, then by Lemma 5.2 and
(5.23) we obtain

lim sup
1—00

G o 55
Kor; Mm{Rg%”i} Ky MW{RS%T"}

Ky K
<Cjselog el + Cylimsup | € sup |F;| | < Cselog ?2 + C5€e™
1

1—»00 Bkyr;

(5.27)

i
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for some constant Cy. For any ¢ € (0,1), together with (4.3) we have

(5.28)
L 1

R f— 2=
K2 /TO(BKQ\BéKl) Kl TQ(BKI\B(;Kl)

/

& \" = 5 \" _
) Lo P9 G Ly P
imoo [\ Kori ) St cr< Kany Kari ) Jun{imicr< Ky
. 51 " = 2 (51 " — 2
<lim sup F|\VR|* — | — F;|VR|
; i \" TP |2 g \" o2
+ lim sup EFIVR|* — | — F;|VR]
i—300 Kor; Mn{R< KLy Kir; MA{R<2K1miy

<Cyelog 22 4 ¢ ”+C’<1 1)1' 5?/ 1d
elog — € — — — | limsup [ + :
= K, i ° K Ky i—>oop i JMa{rR< E1my a
Letting 6 — 0 and € — 0 implies

1 1

Kg TﬂBKz K{L TﬂBKl

(5.29) f.

By the argument in the proof of Theorem 19.3 in [27], the above equality means that T is
a cone in Ny, up to a set of measure zero, as f is an arbitrary homogeneous function. In
fact, by Fubini’s Theorem the above equality becomes

oot (g e ()

Differentiating w.r.t. K9 and K implies

5.31 1/ f= . f
( ’ ) K;_l T086K2 K?_l TﬂaBKl

Since No, = C'X is a cone and any point in it can be represented by (p, #) for some 6 € X
then we define 1T by {(£,6) € Nuo| (p,0) € T}. So

(5.32) / X f= / X f
K—2T0861 fleagl

Hence I%T = KilT up to a set of measure zero, namely, T is a cone, say, C'Y, where
Y € 9Bi(0) is an (n — 1)-dimensional Hausdorff set. By (5.1), we know H"(CY) > 0,
which implies H*~1(Y") > 0. O

Remark 5.4. By a simple modification, Lemma 5.2 and Lemma 5.3 also apply to minimal
submanifolds of high codimensions with Euclidean volume growth in N.

For any w € D" (Bl2 \Bé) let

(5.33) GiM(w)_/ (w, vi)dpi, CY(wo<I>¢)—/<wo<I>i,voo>duoo,
e;M T

where du; and dpus are the volume elements of ¢, M and CY, and v; and v, are the unit
normal vectors of ¢,M and CY.
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For any sufficiently small fixed constant € € (0,1), M) (BZ2 \Bﬁ_) converges to
cY N (B 2 \BG> in the varifold sense. Then

(5.34) Jim M (B \ BY) (wo @) = Vi (B2 \ B.) (w)
for any w € D" (B% \Be).

Let
(5.35) B2 {az €M () (Bi% \Bg‘) ‘ ‘<7pi(m),ui> > e} .

If poo() = doo(0, ) is the distance function on N, then lim; o po ®; = poo in B \ BL

For any compact set K € B2 \ B¢ by (5.34) we have

(5.36) 0= lim (ML®;(K)) (w* o ®; ') = lim (W o @71 ) du,

1—00 1—00 GZMﬂq)Z(K)
where w* is the dual form of % in TNy. Hence for any sufficiently small ¢ > 0 we
conclude that for sufficiently large ¢ there holds

(5.37) H"(F;) < "t

Now we assume that M is a stable minimal hypersurface in N. Then ¢;M is still a
stable minimal hypersurface in ¢;N. Let B’ be the second fundamental form of €M in
€N, and Ric.,n the Ricci curvature of ¢;/N. For any Lipschitz function ¢ with compact
support in ;M we have from (2.5)

(5.38) /M(’Bi|2+RiC€iN(ViaVi))¢2§/ Vol

e M

i

where V¢ is the Levi-Civita connection of ;M. Note that Vp and Vipi have been defined
in section 4. Now we suppose that there exists some sufficiently large ro > 0 such that the

non-radial Ricci curvature of N satisfies
/

. . (T T K
(5.39) é%erzc(f € )2§>0

for all r > 79 and n > 2, where ¢ is a local vector field on N, ¢7 = ¢ — <f,vp> Vp with
|7 =1, and &' is a positive constant. Then

/

K
inf Rice, T phy > 2
OB €N (77 1 ) =2

>0

for all s > \/€;rg and n > 2, where 7 is a local vector field on €N, nt =n— <n,7pi> ﬁpi
with |nT| = 1. Using conditions C1) and C3) which are both scaling invariant, we obtain
Rice,n (vi,vi) >Ricen (v v]) +2 <Vi7ﬁipz‘> Ricen(v!', ¥ pi)

(5.40) —
ZR’L'CEZ.N(VZ-T, V-T) —c <1/i, \v4 ,ol-> ,0;2

for some absolute constant ¢’ > 0. Let ¢ be the Lipschitz function on ¢; N defined by

o(z) = (pi(z)) =" sin (ﬂlfip>
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in Bi \ B! and ¢ = 0 in other places. Here € is a small positive constant less than
min{1, 2’%}, which implies /(1 — €2) — e > '%. So from (5.35), (5.37) and (5.40)

/ Rice, N (v, VZ)
Z

=i log p; _
_/ (FLQ <Vi7 \% Pz>> sin” (ﬂogp) i "y
(e; M\ E;)N(Bi\B:) \ P; log e
. logp;\ _
(1—€*) —Ce / sin? (7’[’ ) p; "dp
(541> ( ( M\E Bz\Bz lOgE
logpi\ _ _
2!6/1—6 —C€ / sm2<7r ) "y, — e "H™(E;
(s'( - oge ) Pk (Ei)

1 .
> (K'(1 - €?) — de) / sin? <7T0gpz> p; i — K'e(1 — €2).
& MN(B{\B{) log e

Substituting this into (5.38) yields

logpi\ _
(K'(1— €)= Cce) / sin? <7r o8P ) p; i — K'e(1 — €2)
& MN(B{\BY) log e

(5.42) S/ RiceiN(Viﬂ/i)(bzg/ V'
e M e M

2— log p; log pi\ \*
g/ < " sin <7r o8 P > + T cos <7r o8 p )) p; dp;.
¢ MN(Bi\B) 2 log e log e log e

Due to Lemma 5.3, we let ¢ — o0, to get

log poo \ _
(K'(1—€*) =) / sin? <7T &P ) pltdpies — K'e(1 — €%)
CYN(B1\Be) log e

(5.43) )
2—n . log poo 0 log poo .
< sin | 7 + cos | Pog Qoo
cynBi\Bo) \ 2 log e log e log €
Since
log poo ! 1 1

/ sin? <7r 0gp ) Poctd oo :H”l(Y)/ sin? <7r OgS) Zds

(5.44) CYN(B1\Be) loge . loge ) s

1 1
= <10g ) H”_I(Y)/ sin?(mt)dt,
€ 0
and H"71(Y)) > 0, then

1 1
(&'(1 - €?) — de) <log > H"_l(Y)/ sin?(mt)dt — K'e(1 — €%)
€ 0
1 _ 2
SH”_l(Y)/ 2-n sin Wlogs + T cos Wlogs 1als
e 2 log e log € log € s
(5.45) , A 7r ,
— 1 - HTL—]. Y - .
( og 6) ( )/0 ( 5 sin(7t) + Tog e COS(ﬂ't)) dt
LY pn— (n—-2? = b
—(log= ) H" (VY 2
(og 6) (Y) < T (log e )2 /0 sin”(mt)dt,
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which implies

Finally, we obtain the following results.

Theorem 5.5. Let N be an (n+1)-dimensional complete Riemannian manifold satisfying
conditions C1), C2) and C3), and with non-radial Ricci curvature infyp, Ric (¢7,¢7) >
k'r=2 for a constant k' and sufficiently large r > 0, where & is a local vector field on N
with |€T| = 1 defined in (5.39). If ' > %, then N admits no complete stable minimal
hypersurface with at most Fuclidean volume growth.

It is well known that area-minimizing hypersurfaces have Euclidean volume growth
automatically. Let M be an n-dimensional area-minimizing hypersurface in N. Then
the s-dimensional Hausdorff measure of the singular set of S is H*(Sing M) = 0 for all
s >mn — T (see [27] for example). We readily check that Lemmas 5.2 and 5.3 also hold
for M. Namely, there is a sequence {¢;} converging to zero such that ¢, N = (N, €;g,p)
converges to a metric cone (N, ds), and ;M converges to the cone CY = Rt x p YV in
Noo, where Y € 0B1(0) is an (n — 1)-dimensional Hausdorff set.

Corollary 5.6. Let N be an (n+1)-dimensional complete Riemannian manifold satisfying
conditions C1), C2) and C3), and with non-radial Ricci curvature infyp, Ric (¢7,¢7) >
k'r=2 for a constant k' and sufficiently large r > 0, where £ is a local vector field on N with
2
I€T| = 1 defined in (5.39). If ' > @, then N admits no complete area-minimizing
hypersurface.
Remark 5.7. k = %\/n — 1 in Remark 3.8 is equivalent to
(n—2)°

Ricyes, (€7,¢") = Ap+I=po?

for all p = po,

where 7 = € — <§, 8%> 8%7 §T‘ =1 and pp € (1, %) is a constant. Hence the constant k'

in Theorem 5.5 and Corollary 5.6 is optimal.
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