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EXISTENCE AND NON-EXISTENCE OF AREA-MINIMIZING

HYPERSURFACES IN MANIFOLDS OF NON-NEGATIVE RICCI

CURVATURE

QI DING, J. JOST, AND Y.L. XIN

Abstract. We study minimal hypersurfaces in manifolds of non-negative Ricci curva-
ture, Euclidean volume growth and quadratic curvature decay at infinity. By comparison
with capped spherical cones, we identify a precise borderline for the Ricci curvature de-
cay. Above this value, no complete area-minimizing hypersurfaces exist. Below this
value, in contrast, we construct examples.

1. Introduction

Complete minimal (hyper)surfaces where first considered in Euclidean spaces. In fact,
there was one particular problem that inspired much of the spectacular development of
the field. This was the Bernstein problem, which was concerned with the question to what
extent the classical Bernstein theorem can be generalized. Bernstein’s theorem simply says
that an entire minimal graph in R3 has to be a plane. The original proofs were strictly
two-dimensional, making essential use of conformal coordinates, but the statement itself
certainly is meaningful in any dimension. Partly in order to have mathematical tools with
which to approach such questions, the field of geometric measure theory was developed.
Higher dimensional generalizations of the Bernstein theorem were achieved by successive
efforts of W. Fleming [13], E. De Giorgi [9], F. J. Almgren [1] and J. Simons [28] up to
dimension seven within the framework of geometric measure theory. In 1969, Bombieri-De
Giorgi-Giusti [4] then constructed a nontrivial entire minimal graph in Rn+1 with n > 7
whose tangent cone at infinity had been described earlier by Simons.

Clearly, the Bernstein problem can be further generalized. We can not only increase the
dimension of the ambient space, but also allow for more general Riemannian geometries
than the Euclidean one. In order to see what might happen then, we observe that minimal
graphs in Euclidean space are automatically area minimizing. Thus, the Bernstein problem
is essentially about the (non-)existence of a particular class of complete area-minimizing
hypersurfaces. Therefore, the challenge of the Bernstein problem consists in finding sharp
conditions for the existence or non-existence of complete area-minimizing hypersurfaces
in curved ambient manifolds.

Let us therefore review the previous results in this direction. Using curvature esti-
mate techniques, Schoen-Simon-Yau [25] obtained Lp−estimates for the squared norm of
the second fundamental form for stable minimal hypersurfaces in certain curved ambient
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manifolds. As a consequence, they showed that any stable minimal hypersurface with
Euclidean volume growth in a flat Nn+1 with n ≤ 5 has to be totally geodesic. Later,
Fischer-Colbrie and Schoen [12] proved that there are no stable minimal surfaces in 3-
dimensional manifolds with positive Ricci curvature. Shen-Zhu [26] proved certain rigidity
results for stable minimal hypersurfaces in N4 or N5. On the other hand, P. Nabonnand
[22] constructed a complete manifold Nn+1 with positive Ricci curvature which admits
area-minimizing hypersurfaces. M. Anderson [3] proved a non-existence result for area-
minimizing hypersurfaces in complete non-compact simply connected manifolds Nn+1 of
non-negative sectional curvature with diameter growth conditions. For rotationally sym-
metric spaces with conical singularities, some explicit results were obtained by F. Morgan
in [21]. These results will provide us with important model spaces for the general theory.

In the present paper we will study minimal hypersurfaces in complete Riemannian
manifolds that satisfy three conditions:

C1) non-negative Ricci curvature;
C2) Euclidean volume growth;
C3) quadratic decay of the curvature tensor.

Such manifolds can be much more complicated than Euclidean space, but on the other
hand, this class of manifolds possesses certain topological and analytical properties [23],[8]
that constrain their geometry. They admit tangent cones at infinity over a smooth compact
manifold in the Gromov-Hausdorff sense. These cones may be not unique, but they have
certain nice properties, proved by Cheeger-Colding [5]. Another important fact is that their
Green functions have a well controlled asymptotic behavior. In particular, the Hessian of
such a Green function converges to the metric tensor (up to a constant factor 2) point-
wisely at infinity, as shown by Colding-Minicozzi [8]. The precise results will be described
in section 4.

While our non-existence results are quite general, the existence results that we devel-
op here, mainly for the purpose of showing that our non-existence results are sharp, are
more explicit and depend on special constructions. Essentially, for these constructions, we
consider ambient manifolds of the form Σ × R where Σ is an n-dimensional Riemannian
manifold with a conformally flat metric whose conformal factor depends only on the ra-
dius. This class will include a capped spherical cone with opening angle 2πκ, denoted by
MCSκ. Its tangent cone at infinity is the uncapped spherical cone CSκ, or equivalently,
the Euclidean cone over a sphere of radius κ. These cones will be on one hand our main ex-
amples for existence results and on the other hand our model spaces for the non-existence
results. The border between those two phenomena, existence vs. non-existence, will be
sharp. Existence takes place for κ ≥ 2

n

√
n− 1, non-existence else. The intuitive geometric

reason is simply that for larger values of κ, in order to minimize area, it is most efficient
to go through the vertex of the cone, whereas for smaller values of κ, it is better to avoid
the vertex and go around the cone. This had already been observed by F. Morgan in [21].
As a by-product we can answer some questions raised by M. Anderson in [3].

Whereas the existence examples are specific, our non-existence results will be general.
Essentially, the idea consists in reducing them to the model cases by taking cones at
infinity. For this, we need some heavier machinery, including the theory of Gromov-
Hausdorff limits [16, 17, 24, 15] and the theory of currents in metric spaces developed by
Ambrosio-Kirchheim [2]. In order to apply those tools, we shall analyze the Green function
at infinity of the ambient space and minimal hypersurfaces with Euclidean volume growth,
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in order to carry the stability inequality for minimal hypersurfaces over to the asymptotic
limit. The corresponding results may be of interest in themselves, see Theorem 5.1.

Our main results thus are general non-existence results for stable minimal hypersurfaces
in (n+1)−manifolds N with conditions C1), C2) and C3) under an additional growth con-
dition on the non-radial Ricci curvature involving a constant κ′. For the capped spherical
cones MCSκ, this constant κ′ can be expressed in terms of the constant κ. More precisely,
we show that N admits no complete stable minimal hypersurface with at most Euclidean

volume growth if the above constant κ′ > (n−2)2

4 , see Theorem 5.5. The existence result of
Theorem 3.4 then tells us that our condition on the asymptotic non-radial Ricci curvature
is optimal.

2. Preliminaries

Let Σ be an n-dimensional Riemannian manifold with metric ds2 = σijdxidxj in local
coordinates. Let D be the corresponding Levi-Civita connection on Σ. For a subset Ω ⊂ Σ
let M be a graph in the product manifold Ω × R with smooth defining function u on Σ,
i.e.,

(2.1) M = {(x, u(x)) ∈ Ω× R| x ∈ Ω}.

Since N = Σ× R has the product metric ds2 = dt2 + σijdxidxj , then the induced metric
on M is

ds2 = gijdxidxj = (σij + uiuj)dxidxj ,

where ui = ∂u
∂xj

and uij = ∂2u
∂xi∂xj

in the sequel. Let (σij) be the inverse metric tensor

on Σ. Let Ei and En+1 be the dual vectors of dxi and dt, respectively. Let Γkij be

the Christoffel symbols of Σ with respect to the frame Ei, i.e., DEiEj =
∑

k ΓkijEk. Set

ui = σijuj , |Du|2 = σijuiuj , DiDju = uij − Γkijuk and v =
√

1 + |Du|2. If f stands for

the immersion (2.1) of Σ in M ⊂ N , then Xi = f∗Ei = Ei + uiEn+1, i = 1, · · · , n, are
tangent vectors of M in N . Let νM and H be the unit normal vector field and the mean
curvature of M in N . Then, direct computation yields

νM =
1

v
(−σijujEi + En+1),

H = divΣ

(
Du

v

)
=

1√
detσkl

∂j

(√
detσkl

σijui
v

)
.

M is a minimal graph in Ω× R if and only if H ≡ 0 and u satisfies

(2.2) divΣ

(
Du√

1 + |Du|2

)
=

1√
detσkl

∂j

(√
detσkl

σijui√
1 + |Du|2

)
= 0.

This is the Euler-Lagrangian equation of the volume functional of M in N . Moreover,
similar to the Euclidean case [30], any minimal graph on Ω is also an area-minimizing
hypersurface in Ω× R, see Lemma 2.1 below.

We introduce an operator L on a domain Ω ⊂ Σ by

(2.3) LF =
(
1 + |DF |2

) 3
2 divΣ

(
DF√

1 + |DF |2

)
=
(
1 + |DF |2

)
∆ΣF − Fi,jF iF j ,
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where F i = σikFk, and Fi,j = Fij−ΓkijFk is the covariant derivative. Clearly, {(x, F (x))| x ∈
Ω} is a minimal graph on Σ if and only if LF = 0 on Ω. We call F L-subharmonic (L-
superharmonic) if LF ≥ 0 (LF ≤ 0).

Lemma 2.1. Let Ω be a bounded domain in Σ and M be a minimal graph on Ω as in
(2.1) with volume element dµM . For any hypersurface W ⊂ Ω × R with ∂M = ∂W , one
has

(2.4)

∫
M
dµM ≤

∫
W
dµW ,

with equality if and only if W = M .

Proof. Let U be the domain in N enclosed by M and W . Let Y be a vector field in M
defined by

Y = −
n∑
i=1

σijuj
v

Ei +
1

v
En+1,

Viewing ui and v as functions on Σ and translating Y to W along the En+1 axis, we obtain
a vector field in U , denoted by Y , as well. From the minimal surface equation (2.2) we
have

div(Y ) = −
∑
i

1√
σ
∂xi

(√
σσijuj
v

)
= 0,

where div stands for the divergence operator on N . Let νM , νW be the unit outside normal
vectors of M,W respectively. Observe that Y |M = νM . Then by Green’s formula,

0 =

∫
U

div(Y ) =

∫
M
〈Y, νM 〉dµM −

∫
W
〈Y, νW 〉dµW

≥
∫
M
dµM −

∫
W
dµW .

Obviously, equality holds if and only if M = W . �

The index form from the second variational formula for the volume functional for an
oriented minimal hypersurface M in N is (see Chapter 6 of [30])

(2.5) I(φ, φ) =

∫
M

(
|∇φ|2 − |B̄|2φ2 −RicN (νM , νM )φ2

)
dµM ,

for any φ ∈ C2
c (N), where ∇ and B̄ are the Levi-Civita connection and the second funda-

mental form of M , respectively.

Let Sκ be an n−sphere in Rn+1 with radius 0 < κ ≤ 1, namely,

Sκ = {(x1, · · · , xn+1) ∈ Rn+1| x2
1 + · · ·+ x2

n+1 = κ2}.

If {θi}ni=1 be an orthonormal basis of Sκ, then the sectional curvature of Sκ is

KS(θi, θj) =
1

κ2
for i 6= j.

Let CSκ = R×ρ Sκ be the cone over Sκ with vertex o, which has the metric

σC = dρ2 + κ2ρ2dθ2,

where dθ2 is the standard metric on Sn(1).
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Let {eα}nα=1

⋃
{ ∂∂ρ} be an orthonormal basis at the considered point of CSκ away from

the vertex, then the sectional curvature and Ricci curvature of CSκ are
(2.6)

KCSκ

(
∂

∂ρ
, eα

)
= 0, KCSκ(eα, eβ) =

1

ρ2

(
1

κ2
− 1

)
,

RicCSκ

(
∂

∂ρ
,
∂

∂ρ

)
= RicCSκ

(
∂

∂ρ
, eα

)
= 0, RicCSκ(eα, eβ) =

n− 1

ρ2

(
1

κ2
− 1

)
δαβ.

Set ρ = rκ, then σC can be rewritten as a conformally flat metric

(2.7) σC = κ2r2κ−2dr2 + κ2r2κdθ2 = κ2r2κ−2
n+1∑
i=1

dx2
i = e2 log κ−2(1−κ) log r

n+1∑
i=1

dx2
i ,

where r2 =
∑

i x
2
i .

Let Y be an (n − 1)−dimensional minimal hypersurface in Sκ with the second funda-
mental form B and CY be the cone over Y in CSκ with vertex o. For any 0 < ε < 1
denote

CYε = {tx ∈ Sκ × R| x ∈ Y, t ∈ [ε, 1]}.
Clearly, Y is a minimal hypersurface in Sκ if and only if CYε is minimal in CSκ. Moreover,
let B̄ be the second fundamental form of CYε in CSκ, then

|B̄|2 =
1

ρ2
|B|2.

At any considered point, we can suppose that θn is the unit normal vector of Y ⊂ Sκ and
{θi}n−1

i=1 is the orthonormal basis of TY . Let ν = 1
ρθn be the unit normal vector of CYε.

Let dµ and dµY be the volume element of CYε and Y , respectively (see Chapter 6 of [30]
for a more detailed argument when κ = 1).

Now, from (2.5), the index form of CYε in CSκ becomes

(2.8) I(φ, φ) =

∫
CYε

(
−φ∆CY φ− |B̄|2φ2 −RicCSκ×R(ν, ν)φ2

)
dµ

for any φ ∈ C2
c (CY \ {o}). Noting RicSκ(θi, θj) = n−1

κ2
δij and

RicCSk(ν, ν) =
1

ρ2
RicSk(θn, θn)− n− 1

ρ2
=
n− 1

ρ2

(
1

κ2
− 1

)
.

When φ is written as φ(x, ρ) ∈ C2(Y × R), a simple calculation implies

(2.9) ∆CY φ =
1

ρ2
∆Y φ+

n− 1

ρ

∂φ

∂ρ
+
∂2φ

∂ρ2
,

then

(2.10)

I(φ, φ) =

∫ 1

ε

(∫
Y

(
−∆Y φ− |B|2φ−

n− 1

κ2
φ+ (n− 1)φ

− (n− 1)ρ
∂φ

∂ρ
− ρ2∂

2φ

∂ρ2

)
φ dµY

)
ρn−3dρ.

When κ = 1 and Y is the Clifford minimal hypersurface in the unit 7−sphere

Y = S3

(√
2

2

)
× S3

(√
2

2

)
,
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then, CY is Simons’ cone, proved to be unstable in [28] (see also Chapter 6 of [30]).

3. Constructions of area-minimizing hypersurfaces

Let Σ be Euclidean space Rn+1 with a conformally flat metric

ds2 = eφ(r)
n+1∑
i=1

dx2
i ,

where r = |x| =
√
x2

1 + · · ·+ dx2
n+1 and φ(|x|) is smooth in Rn+1. Let F be a function on

Rn+1. Let Ei = { ∂
∂xi
} be a standard basis of Rn+1 and ui = Eiu be the ordinary derivative

in Rn+1. Moreover,

Γkij =
φ′

2

(
δik
xj
r

+ δjk
xi
r
− δij

xk
r

)
.

Denote |∂F |2 =
∑

i F
2
i . Let ∆ be the standard Laplacian of Rn+1, then

(3.1)

∆ΣF =σijFi,j = e−φδij

(
Fij −

φ′

2

(
δik
xj
r

+ δjk
xi
r
− δij

xk
r

)
Fk

)
=e−φ

(
∆F +

n− 1

2
φ′Fi

xi
r

)
.

By (2.3) we can compute LF in the conformal flat metric as follows.
(3.2)

LF =e−φ
(

1 + e−φ|∂F |2
)(

∆F +
n− 1

2
φ′Fi

xi
r

)
− e−2φ

(
FijFiFj −

|∂F |2

2
φ′Fi

xi
r

)
=e−φ

((
1 + e−φ|∂F |2

)
∆F − e−φFijFiFj

)
+ e−φ

(
n− 1

2
+
n

2
e−φ|∂F |2

)
φ′Fi

xi
r

=e−2φ
(
|∂F |2

(
∆F +

n

2
φ′Fi

xi
r

)
− FijFiFj

)
+ e−φ

(
∆F +

n− 1

2
φ′Fi

xi
r

)
.

Lemma 3.1. Let F = F (θ, r) be a function with

(3.3) θ =
xn+1√

x2
1 + · · ·+ x2

n+1

, r =
√
x2

1 + · · ·+ x2
n+1,

on [−1, 1]× (0,∞). Then we have

(3.4)

LF =e−2φ

(
n

((
1− θ2

) F 2
θ

r2
+ F 2

r

)(
Fr
r

+
φ′

2
Fr −

θFθ
r2

)
+ (1− θ2)

F 2
θ

r2

(
θFθ
r2

+
Fr
r

)
+

1− θ2

r2

(
F 2
θ Frr + F 2

r Fθθ − 2FθFrFrθ
))

+ e−φ
(
Frr +

1− θ2

r2
Fθθ +

n

r
Fr −

nθ

r2
Fθ +

n− 1

2
φ′Fr

)
.

Proof. For 1 ≤ α ≤ n we have

(3.5)

Fα = ∂xαF =Fθ ·
(
−xαxn+1

r3

)
+ Fr

xα
r
,

Fn+1 = ∂xn+1F =Fθ ·
(

1

r
−
x2
n+1

r3

)
+ Fr

xn+1

r
= Fθ

∑
α x

2
α

r3
+ Fr

xn+1

r
.
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Hence

(3.6) |∂F |2 =
∑
α

F 2
α + F 2

n+1 = F 2
θ

∑
α x

2
α

r4
+ F 2

r =
(
1− θ2

) F 2
θ

r2
+ F 2

r ,

and

(3.7)
n+1∑
i=1

xiFi =
∑
α

xαFα + xn+1Fn+1 = rFr.

In polar coordinates,

n+1∑
i=1

dx2
i = dr2 + r2

(
dβ2 + cos2 β dSn−1

)
,

where sinβ = θ ∈ [−1, 1] and dSn−1 is the standard metric in the unit sphere Sn−1 ∈ Rn.
Hence

n+1∑
i=1

dx2
i = dr2 +

r2

1− θ2
dθ2 + r2(1− θ2)dSn−1,

and

(3.8)

∆F =
1

rn(1− θ2)
n
2
−1

(
∂r

(
rn(1− θ2)

n
2
−1Fr

)
+ ∂θ

(
rn(1− θ2)

n
2
−1 1− θ2

r2
Fθ

))
=Frr +

n

r
Fr +

1− θ2

r2
Fθθ −

nθ

r2
Fθ.

Moreover,

(3.9)

∑
1≤i,j≤n+1

FijFiFj =
1

2

∑
i

Fi∂i|∂F |2

=
1

2

∑
α

(
−xαxn+1

r3
Fθ +

xα
r
Fr

)(
−xαxn+1

r3
∂θ|∂F |2 +

xα
r
∂r|∂F |2

)
+

1

2

(∑
α x

2
α

r3
Fθ +

xn+1

r
Fr

)(∑
α x

2
α

r3
∂θ|∂F |2 +

xn+1

r
∂r|∂F |2

)
=

1

2

∑
α x

2
α

r4
Fθ∂θ|∂F |2 +

1

2
Fr∂r|∂F |2

=
1− θ2

2r2
Fθ∂θ

((
1− θ2

) F 2
θ

r2
+ F 2

r

)
+

1

2
Fr∂r

((
1− θ2

) F 2
θ

r2
+ F 2

r

)
=− θ(1− θ2)

F 3
θ

r4
+ (1− θ2)2FθFθθ

r4
+ 2(1− θ2)

FθFrFrθ
r2

− (1− θ2)
F 2
θ Fr
r3

+ F 2
r Frr.
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Hence by (3.2) we have

(3.10)

LF =e−2φ

(((
1− θ2

) F 2
θ

r2
+ F 2

r

)(
Frr +

n

r
Fr +

1− θ2

r2
Fθθ −

nθ

r2
Fθ +

n

2
φ′Fr

)
−
(
− θ(1− θ2)

F 3
θ

r4
+ (1− θ2)2FθFθθ

r4
+ 2(1− θ2)

FθFrFrθ
r2

− (1− θ2)
F 2
θ Fr
r3

+ F 2
r Frr

))
+ e−φ

(
Frr +

n

r
Fr +

1− θ2

r2
Fθθ −

nθ

r2
Fθ +

n− 1

2
φ′Fr

)
=e−2φ

(
n

((
1− θ2

) F 2
θ

r2
+ F 2

r

)(
Fr
r

+
φ′

2
Fr −

θFθ
r2

)
+ (1− θ2)

F 2
θ

r2

(
θFθ
r2

+
Fr
r

)
+

1− θ2

r2

(
F 2
θ Frr + F 2

r Fθθ − 2FθFrFrθ
))

+ e−φ
(
Frr +

1− θ2

r2
Fθθ +

n

r
Fr −

nθ

r2
Fθ +

n− 1

2
φ′Fr

)
.

�

Theorem 3.2. Let Σ be an (n+ 1)−dimensional Euclidean space Rn+1, n ≥ 2, endowed
with a smooth conformally flat metric ds2 = eφ

∑
dx2

i , where φ′(r) ≥ −2(1 − κ)r−1 and
κ ≥ 2

n

√
n− 1. If

F (θ, r) = Cθrp = Cxn+1r
p−1 , F(xn+1, r)

with any constant C > 0 and p = n
2κ−

√
n2κ2

4 − (n− 1), then except at the origin we have

(3.11) LF(xn+1, r)

{
≥ 0 if (x1, · · · , xn) ∈ Rn, xn+1 ≥ 0

≤ 0 if (x1, · · · , xn) ∈ Rn, xn+1 ≤ 0
.

Proof. Since φ′ ≥ −2(1− κ)r−1 for 0 < κ ≤ 1 and Fr = Cpθrp−1. By (3.4) except at the
origin we have

(3.12)

θLF ≥θe−2φ

(
n

((
1− θ2

) F 2
θ

r2
+ F 2

r

)(
κFr
r
− θFθ

r2

)
+ (1− θ2)

F 2
θ

r2

(
θFθ
r2

+
Fr
r

)
+

1− θ2

r2

(
F 2
θ Frr + F 2

r Fθθ − 2FθFrFrθ
))

+ θe−φ
(
Frr +

1− θ2

r2
Fθθ +

(
(n− 1)κ+ 1

)Fr
r
− n

r2
θFθ

)
.

Furthermore, we take the derivatives of F and get
(3.13)

θLF ≥C3θe−2φ

(
n
( (

1− θ2
)
r2p−2 + θ2p2r2p−2

) (
κθprp−2 − θrp−2

)
+ (1− θ2)r2p−2

(
θrp−2 + θprp−2

)
+

1− θ2

r2

(
p(p− 1)θr3p−2 − 2p2θr3p−2

))
+ Cθe−φ

(
p(p− 1)θrp−2 +

(
(n− 1)κ+ 1

)
pθrp−2 − nθrp−2

)
=C3θe−2φ

( (
n(κp− 1) + 1− p2

)
(1− θ2) + np2(κp− 1)θ2

)
θr3p−4

+ Cθe−φ
(
p2 + (n− 1)κp− n

)
θrp−2.
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Note

n(κp− 1) + 1− p2 = −
(
p− nκ

2

)2
+
n2κ2

4
− (n− 1) = 0.

By the definition of p, we obtain

(3.14)

p =
nκ

2

(
1−

√
1− 4(n− 1)

n2κ2

)
=
nκ

2

(
1− n− 2

n

√
1− 4(n− 1)

(n− 2)2

(
1

κ2
− 1

))

≥nκ
2

(
1− n− 2

n

(
1− 2(n− 1)

(n− 2)2

(
1

κ2
− 1

)))
=

1

κ

(
1 +

1− κ2

n− 2

)
≥ 1

κ
.

Hence

(3.15)
θLF ≥C3e−2φnp2(κp− 1)θ4r3p−4 + Ce−φ

(
p2 + (n− 1)κp− n

)
θ2rp−2

≥Ce−φ(p2 − 1)θ2rp−2 ≥ 0.

We complete the proof. �

Remark 3.3. There are other L-sub(super)harmonic functions on Σ. For instance, for
all j > 0, L(jxn+1w

p−1) ≥ 0 on xn+1 ≥ 0 and L(jxn+1w
p−1) ≤ 0 on xn+1 ≤ 0, where

w =
√
x2

1 + · · ·+ x2
n.

Denote BR = {(x1, · · · , xn+1) ∈ Rn+1| x2
1 + · · ·+ x2

n+1 ≤ R2}.

Theorem 3.4. If n ≥ 3 and
2

n

√
n− 1 ≤ κ < 1,

then any hyperplane through the origin in Σ as described in Theorem 3.2, that is, Rn+1

equipped with a particular conformally flat metric, is area-minimizing.

Proof. We shall show that the hyperplane T = {(x1, · · · , xn+1) ∈ Rn+1| xn+1 = 0} in Σ
with the induced metric is area-minimizing.

Set φ̃(r) =
∫ r

0 e
φ(r)
2 dr. Let us define ρ = φ̃(r) and λ(ρ) = rφ̃′(r), then the Riemannian

metric in Σ can be written in polar coordinates as ds2 = dρ2 + λ2(ρ)dθ2, where dθ2 is the
standard metric on Sn(1). Moreover,

(3.16)
dλ

dρ
=
dλ

dr

dr

dρ
=
(
φ̃′ + rφ̃′′

) 1

φ̃′
= 1 + r(log φ̃′)′ = 1 +

1

2
rφ′ ≥ 1− (1− κ) = κ.

When n ≥ 3 and

q =
n

2
κ−

√
n2κ2

4
− (n− 1)− 1,

let Fj(xn+1, r) = jxn+1r
q for j > 0 with r =

√
x2

1 + · · ·+ x2
n+1. By Theorem 3.2 we

obtain

(3.17) LFj(xn+1, r)

{
≥ 0 in {(x1, · · · , xn+1) ∈ Rn+1| xn+1 ≥ 0} \ {0}

≤ 0 in {(x1, · · · , xn+1) ∈ Rn+1| xn+1 ≤ 0} \ {0}
.

Combining (3.16) and formula (2.9) in [10], we know that any geodesic sphere centered at
the origin has positive inward mean curvature. By the existence theorem for the Dirichlet
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problem for minimal hypersurface in Σ × R, see Theorem 1.5 in [29], for any constant
R > 0 and j = 1, 2, · · · ,∞, there is a solution uj ∈ C∞(BjR) to the Dirichlet problem

(3.18)

{
Luj = 0 in BjR

uj = Fj on ∂BjR
.

By symmetry, uj = 0 onBR∗∩T for any fixedR∗ > 0. Let U =
{

(x1, · · · , xn+1) ∈ Rn+1
∣∣ xn+1 > 0

}
,

then the comparison theorem on BR∗ \ {0} implies

(3.19) lim
j→∞

uj ≥ lim
j→∞

Fj = +∞ in BR∗ ∩ U

and

(3.20) lim
j→∞

uj ≤ lim
j→∞

Fj = −∞ in BR∗ ∩ (Rn+1 \ U).

Let Uj denote the subgraph of uj in BR∗ × R, namely,

Uj =
{

(x, t) ∈ BR∗ × R
∣∣ t < uj(x)

}
.

Clearly, its characteristic function χUj converges in L1
loc(BR∗×R) to χ

U×R . By an analogous

argument as in Lemma 9.1 in [14] for the Euclidean case, for any compact set E ⊂ BR∗×R,

that Graph(uj) , {(x, uj(x))| x ∈ Rn+1} is an area-minimizing hypersurface implies that
(U×R)∩E is a minimizing set in E. Hence U×R is a minimizing set in BR∗×R ⊂ Σ×R.
By an analogous argument as in Proposition 9.9 in [14] for the Euclidean case, U is a
minimizing set in BR∗ , namely, the hyperplane T minimizes perimeter in BR∗ . Since R∗

is arbitrary, we complete the proof. �

As we showed in the previous section, on the cone CSκ the usual metric can be rewritten
as a conformally flat one. Our constructions will be those modified from the cone CSκ.

Lemma 3.5. Let Λ be the rotational symmetric function on Rn+1 defined by

(3.21) Λ(x) =

{ √
1−κ2
κ

√
x2

1 + · · ·+ x2
n on Rn+1 \B1√

1−κ2
κ

(
1− 2

π

∫ 1
|x| (arctan ξ(s)) ds

)
on B1

,

where ξ(s) = s
(
e

1
1−s2 − e

)
. It is a smooth convex function on Rn+1.

Proof. In fact, ξ′(0) = 0, ξ(2k)(0) = 0 for k ≥ 0 and ξ(j)(1) = +∞ for j ≥ 0. Then on B1

(3.22)

∂iΛ(x) =
2
√

1− κ2

κπ

xi
|x|

arctan ξ(|x|),

∂ijΛ(x) =
2
√

1− κ2

κπ

(
δij −

xixj
|x|2

)
arctan ξ

|x|
+

2
√

1− κ2

κπ

ξ′

1 + ξ2

xixj
|x|2

.

Since

arctan ξ(
√
t)√

t
=
∞∑
k=0

(−1)k

2k + 1
tk
(
e

1
1−t − e

)2k+1

in [0, ε] for small ε > 0, t−
1
2 arctan ξ(

√
t) is a smooth function for t ∈ [0, 1) and

Λ(x) =

√
1− κ2

κ

(
1− 1

π

∫ 1

|x|2

arctan ξ(
√
t)√

t
dt

)
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is a smooth convex function on B1. Denote Λ(r) = Λ(|x|), then the radial derivative of Λ
at 1 is

lim
r→1

∂rΛ(r) =
2
√

1− κ2

κπ
arctan ξ(1) =

√
1− κ2

κ
,

and the higher order radial derivative of Λ at 1 is

lim
r→1

(∂r)
j+1Λ(r) =

2
√

1− κ2

κπ
(∂r)

j arctan ξ(r)
∣∣∣
r=1

=
2
√

1− κ2

κπ
(∂r)

j−1

(
ξ′

1 + ξ2

) ∣∣∣∣
r=1

= 0 for j ≥ 1.

Hence Λ is a smooth convex function on Rn+1. �

Now we suppose that MCSκ is an (n + 1)-dimensional smooth entire graphic hyper-
surface in Rn+2 with the defining function Λ. We see that it has non-negative sectional
curvature everywhere. In fact, MCSκ is a κ−sphere cone CSκ with a smooth cap, which
we shall call the modified κ− sphere cone.

We already showed that the metric of the κ−sphere cone is conformally flat, and we
shall now also derive this for MCSκ.

Lemma 3.6. The (n+ 1)−dimensional MCSκ has a smooth conformally flat metric

ds2 = eΦ(r)
∑

1≤i≤n+1

dx2
i

on Rn+1 with −2
r (1− κ) ≤ Φ′ ≤ 0.

Proof. MCSκ is defined as an entire graph on Rn+2. Its induced metric can also be written
in polar coordinates as

(3.23) ds2 = dρ2 + λ2(ρ)dθ2,

where dθ2 is a standard metric on Sn(1), and

(3.24) λ(ρ) =

{
κ
(
ρ+ 1

κ − ρ0

)
for ρ ≥ ρ0

ζ(ρ) for 0 ≤ ρ ≤ ρ0

.

Here

1 < ρ0 =

∫ 1

0

√
1 + (∂rΛ)2dr <

1

κ
,

and the inverse function of ζ satisfies

ζ−1(s) =

∫ s

0

√
1 + (∂rΛ)2dr,

where Λ is defined in the last lemma. Moreover, κ ≤ ζ ′ ≤ 1.

Let ψ(r) be a function on
[
0,
(

1
κ

) 1
κ

)
with ψ

((
1
κ

) 1
κ

)
= ρ0 and

(3.25) ψ′(r) =
1

r
ζ(ψ(r)) on

[
0,

(
1

κ

) 1
κ )

.

In fact, let ζ̃(ρ) =
∫ ρ

1
1
ζ(t)dt for ρ ∈ (0, ρ0], then we integrate the above ordinary differential

equation and obtain

ζ̃(ψ(r))− ζ̃(ρ0) = log r +
1

κ
log κ.
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Since ζ̃ is a monotonic function, we can solve the desired ψ. Note κρ ≤ ζ(ρ) ≤ ρ on [0, ρ0],
comparison theorem implies that(

1

κ

)− 1
κ

ρ0r ≤ ψ(r) ≤ κρ0r
κ on

[
0,

(
1

κ

) 1
κ ]
.

In particular, ψ(0) = 0. Since

ψ′′(r) =
ζ ′

r
ψ′ − ζ

r2
=

ζ

r2
(ζ ′ − 1),

then,

(3.26)
κ− 1

r
≤ ψ′′(r)

ψ′(r)
=
ζ ′ − 1

r
≤ 0.

Let

(3.27) ρ = ψ̃(r) =

 rκ − 1
κ + ρ0 for r ≥

(
1
κ

) 1
κ

ψ(r) for 0 ≤ r ≤
(

1
κ

) 1
κ

,

then ψ̃ also satisfies (3.25) and hence ψ̃ is smooth on [0,∞). Set

(3.28) eΦ(r) =
(
ψ̃′(r)

)2
=

 κ2r2κ−2 for r ≥
(

1
κ

) 1
κ

(ψ′)2(r) for 0 ≤ r ≤
(

1
κ

) 1
κ

,

then

(3.29) ds2 = eΦ(r)dr2 + eΦ(r)r2dθ2 = eΦ(r)
∑

1≤i≤n+1

dx2
i ,

where r2 =
∑

i x
2
i . By (2.7) and (3.26) we have

−2

r
(1− κ) ≤ Φ′ ≤ 0.

�

Now, Lemma 3.6 and Theorem 3.4 yield the following conclusion.

Theorem 3.7. Let n ≥ 3. If
2

n

√
n− 1 ≤ κ < 1,

then any hyperplane through the origin in MCSκ is area-minimizing.

Remark 3.8. Let {eα}nα=1

⋃
{ ∂∂ρ} be an orthonormal basis at the considered point of

MCSκ. Compared with (2.6) we calculate the sectional curvature and Ricci curvature
of MCSκ as follows (see Appendix A in [19] for instance).

(3.30)

KMCSκ

(
∂

∂ρ
, eα

)
= −λ

′′

λ
≥ 0, KMCSκ(eα, eβ) =

1− (λ′)2

λ2
≥ 0,

RicMCSκ

(
∂

∂ρ
, eα

)
= 0, RicMCSκ

(
∂

∂ρ
,
∂

∂ρ

)
= −nλ

′′

λ
≥ 0,

RicMCSκ(eα, eβ) =

(
(n− 1)

1− (λ′)2

λ2
− λ′′

λ

)
δαβ ≥ 0.
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In particular, for ρ ≥ ρ0 with 1 < ρ0 <
1
κ we have

(3.31)

KMCSκ

(
∂

∂ρ
, eα

)
= 0, KMCSκ(eα, eβ) =

1− κ2

κ2(ρ+ 1
κ − ρ0)2

,

RicMCSκ

(
∂

∂ρ
,
∂

∂ρ

)
=RicMCSκ

(
∂

∂ρ
, eα

)
= 0,

RicMCSκ(eα, eβ) = (n− 1)
1− κ2

κ2(ρ+ 1
κ − ρ0)2

δαβ.

From the construction above we see that MCSκ is a complete simply connected manifold
with non-negative sectional curvature.

Remark 3.9. Since MCSκ in Theorem 3.4 cannot split off a Euclidean factor R isomet-
rically, the Cheeger-Gromoll splitting theorem [6] implies that it does not contain a line.
Consequently, this gives a negative answer to the question (1) in [3], which is

If M is a complete area-minimizing hypersurface in a complete simply connected mani-
fold N of non-negative curvature, does it follow that N contains a line, that is a complete
length-minimizing geodesic?

If we define for each x ∈ Rn

Λ̃(x) =
2
√

1− κ2

πκ

∫ |x|
0

arctan sds,

then Λ̃ is a smooth strictly convex function on Rn and the hypersurface Σ̃ = {(x, Λ̃(x))| x ∈
Rn} is a smooth manifold with positive sectional curvature everywhere. In fact, Σ̃ can be
seen as a Riemannian manifold (Rn, σ̃) with

σ̃ = dρ2 + λ̃2(ρ)dθ2

in polar coordinates, where the inverse function of λ̃ satisfies

λ̃−1(s) =

∫ s

0

√
1 + (∂rΛ̃)2dr =

∫ s

0

√
1 +

4(1− κ2)

π2κ2
(arctan r)2dr.

Hence

1 ≥ λ̃′(s) =

(
1 +

4(1− κ2)

π2κ2
(arctan λ̃(s))2

)− 1
2

> κ,

and

λ̃′′(s) = −
(

1 +
4(1− κ2)

π2κ2
(arctan λ̃(s))2

)− 3
2 4(1− κ2)

π2κ2
arctan λ̃(s)

λ̃′(s)

1 + λ̃2(s)
.

Clearly,

lim
s→∞

λ̃(s)

s
= lim

s→∞
λ̃′(s) = κ, and lim

s→∞
(s2λ̃′′(s)) = − 2

π
(1− κ2).

If {∂ρ} and {eα}n−1
α=1 are an orthonormal basis of Σ̃, then the sectional curvature of Σ̃

is

0 < K(∂ρ, eα) = − λ̃
′′

λ̃
∼

2(1− κ2)

πκs3
, K(eα, eβ) =

1− λ̃′2

λ̃2
∼

1− κ2

κ2s2
.

Clearly,

lim
s→0

1− λ̃′2(s)

λ̃2(s)
=

4(1− κ2)

π2κ2
> 0.
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Hence Σ̃ = {(x, Λ̃(x))| x ∈ Rn} has positive sectional curvature everywhere.

Theorem 3.10. Let n ≥ 4 and Σ̃ = (Rn, σ̃) be a complete manifold with positive sectional
curvature as above. If

2

n− 1

√
n− 2 ≤ κ < 1,

then any hyperplane through the origin in Σ̃ = (Rn, σ̃) is area-minimizing.

Proof. Note κ < λ′ ≤ 1, then we can rewrite the metric σ̃ similar to (3.27)(3.28)(3.29).
Apply Theorem 3.4 to complete the proof. �

Remark 3.11. Our theorem above gives an example for the question (2) in [3], which is

If N is a complete manifold of positive sectional curvature, does N ever admit an
area-minimizing hypersurface?

Now scaling the manifold MCSκ yields ε2MCSκ for ε > 0, which is Rn+1 endowed
with the metric

(3.32) σε = dρ2 + ε2λ2
(ρ
ε

)
dθ2

in polar coordinates, where λ and dθ2 as in (3.23) and (3.24). Obviously ελ
(ρ
ε

)
< κρ and

ελ
(ρ
ε

)
converges to κρ uniformly as ε→ 0. Hence σε converges to σC as ε→ 0, where σC

is the metric of CSκ defined in (2.7).

Now we can derive the result of F. Morgan in [21], obtained there by a different method
due to G. R. Lawlor [18].

Proposition 3.12. Let n ≥ 3 and κ ≥ 2
n

√
n− 1. Then any hyperplane in (n + 1)-

dimensional CSκ through the origin is area-minimizing.

Proof. Let Tε denote the hyperplane in ε2MCSκ corresponding to T ⊂MCSκ during the
re-scaling procedure. Denote T0 = limε→0 Tε ⊂ limε→0 ε

2MCSκ = CSκ. Let Hnε and Hn0
be the n-dimensional Hausdorff measures of ε2MCSκ and CSκ.

Now we consider a bounded domain Ω0 ⊂ T0 and a subset set W0 ⊂ CSκ with ∂Ω0 =
∂W0. View Ω0 as a set Ω ⊂ Rn with the induced metric from T0 and W0 as a set W in
Rn+1 with the induced metric from CSκ. Let Ωε be the set Ω ⊂ Rn with the induced
metric from Tε and Wε be the set W in Rn+1 with the induced metric from ε2MCSκ.
Clearly, Ω0 = limε→0 Ωε and W0 = limε→0Wε with ∂Ωε = ∂Wε.

Since Tε is area-minimizing in ε2Σ, then

Hnε (Ωε) ≤ Hnε (Wε).

ελ
(ρ
ε

)
< κρ implies

Hnε (Wε) ≤ Hn0 (W0).

Since also ελ
(ρ
ε

)
→ κρ uniformly as ε→ 0, we obtain

Hn0 (Ω0) = lim
ε→0
Hnε (Ωε) ≤ lim sup

ε→0
Hnε (Wε) ≤ Hn0 (W0).

Hence T0 is an area-minimizing hypersurface in CSκ. �
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Actually, here the number 2
n

√
n− 1 is optimal. Namely, if κ < 2

n

√
n− 1 then every

hyperplane in CSκ is no more area-minimizing and even not stable. This also has been
proved in [21]. Let us show this fact by using the second variation formula for the volume
functional.

Theorem 3.13. Let κ ∈ (0, 1] and n ≥ 3. Any hyperplane in (n + 1)-dimensional CSκ
through the origin is area-minimizing if and only if

(3.33) κ ≥ 2

n

√
n− 1.

Proof. By Proposition 3.12 we only need to prove that if (3.33) fails to hold, any hyper-
plane in CSκ through the origin is not area-minimizing. Let X be a totally geodesic sphere
in Sκ, then X is minimal in Sκ and P , CX is a hyperplane in CSκ through the origin.
Clearly, P is a minimal hypersurface in CSκ. The second variation formula is (see also
(2.10))

(3.34)

I(φ, φ) =

∫ 1

ε

(∫
X

(
−∆Xφ−

n− 1

κ2
φ+ (n− 1)φ

− (n− 1)ρ
∂φ

∂ρ
− ρ2∂

2φ

∂ρ2

)
φ dµX

)
ρn−3dρ,

where φ(x, t) ∈ C2(X ×ρ R). Define a second order differential operator L by

L = ρ2 ∂
2

∂ρ2
+ (n− 1)ρ

∂

∂ρ
.

If s = log ρ, then

L =
∂2

∂s2
+ (n− 2)

∂

∂s
= e−

n−2
2
s ∂

2

∂s2

(
e
n−2
2
s·
)
− (n− 2)2

4
.

So the k(k ≥ 1)-th eigenvalue of L on [ε, 1] is

(3.35)
(n− 2)2

4
+

(
kπ

log ε

)2

with the k-th eigenfunction (see [28] or [30] for instance)

ρ
2−n
2 sin

(
kπ

log ε
log ρ

)
.

By the second variation formula (3.34), P is stable if and only if

−n− 1

κ2
+ n− 1 +

(n− 2)2

4
≥ 0,

i.e.,

κ ≥ 2

n

√
n− 1.

�
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4. A class of manifolds with non-negative Ricci curvature

Let N be an (n+1)-dimensional complete non-compact Riemannian manifold satisfying
the following three conditions:

C1) Nonnegative Ricci curvature: Ric ≥ 0;

C2) Euclidean volume growth:

VN , lim
r→∞

V ol
(
Br(x)

)
rn+1

> 0;

C3) Quadratic decay of the curvature tensor: for sufficiently large ρ = d(x, p), the
distance from a fixed point in N ,

|R(x)| ≤ c

ρ2(x)
.

By Gromov’s compactness theorem [16], for any sequence ε̄i → 0 there is a subsequence
{εi} converging to zero such that εiN = (N, εiḡ, p) converges to a metric space (N∞, d∞)
with vertex o in the pointed Gromov-Hausdorff sense. It is called the tangent cone at
infinity. N∞ \ {o} is a smooth manifold with C1,α Riemannian metric ḡ∞(0 < α < 1)
which is compatible with the distance d∞. The precise statements were derived in [15]
and [24] on the basis of the harmonic coordinate constructions of [17]. In fact, N∞ \{o} is
a D1,1-Riemannian manifold (see [15, 24]). For any compact domain K ⊂ N∞ \ {o}, there
exists a diffeomorphism Φi : K → Φi(K) ⊂ εiN such that Φ∗i (εiḡ) converges as i→∞ to
ḡ∞ in the C1,α-topology on K.

Cheeger-Colding (see Theorem 7.6 in [5]) proved that under the conditions C1) and
C2) the cone N∞ is a metric cone. N∞ = CX = R+×ρX for some n dimensional smooth
compact manifold X with Diam X ≤ π and the metric

ḡ∞ = dρ2 + ρ2sijdθidθj

where sijdθidθj is the metric of X and sij ∈ C1,α(X). Let ρi be the distance function
from p to the considered point in εiN . Set Bi

r(x) be the geodesic ball with radius r and
centered at x in (N, εiḡ), and Br(x) be the geodesic ball with radius r and centered at x
in N∞. In particular, X = ∂B1(o).

Mok-Siu-Yau [20] showed that if C1) and C2) hold, then there exists the Green function
G(p, ·) on Nn+1 with limr→∞ sup∂Br(p)

∣∣Grn−1 − 1
∣∣ = 0 and

(4.1) r1−n ≤ G(p, x) ≤ Cr1−n

for any n ≥ 2, x ∈ ∂Br(p) and some constant C. Set R = G
1

1−n , then

(4.2) ∆NR2 = 2(n+ 1)|∇R|2.

Under the additional condition C3), Colding-Minicozzi (see Corollary 4.11 in [8]) showed
that

(4.3) lim sup
r→∞

(
sup
∂Br

∣∣∣∣Rr − 1

∣∣∣∣+ sup
∂Br

∣∣∣ ∣∣∇R∣∣− 1
∣∣∣) = 0,

and

(4.4) lim sup
r→∞

(
sup
∂Br

|HessR2 − 2ḡ|
)

= 0,
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where HessR2 is the Hessian matrix of R2 in N . In particular, |∇R| ≤ C(n, VN ) which is
a constant depending only on n, VN .

For any f ∈ C1(∂B1), we can extend f to N∞ \ {o} by defining

f(ρθ) = f(θ)

for any ρ > 0 and θ ∈ ∂B1. Let ∇̃ be the Levi-Civita connection of N∞, then

(4.5)

〈
∇̃f, ∂

∂ρ

〉
= 0.

For any K2 > K1 > 0 and ε > 0, let Φi : B2K2 \ B ε2K1
→ Φi(B2K2 \ B ε2K1

) ⊂ εiN be

a diffeomorphism such that Φ∗i (εiḡ) converges as i → ∞ to ḡ∞ in the C1,α-topology on

B2K2 \B ε2K1
. Moreover, Φi is C2,α-bounded relative to harmonic coordinates with a bound

independent of i (see [17]).

Let∇i, ∆i
N , Hessi, RicεiN and |RεiN | be the Levi-Civita connection, Laplacian operator,

Hessian matrix, Ricci curvature and curvature tensor of εiN , respectively, then on εiN we
have the relations

ρi =ε
1
2
i ρ, ∇i = ∇, ∆i

N = ε−1
i ∆N , Hessi = Hess,

RicεiN = ε−1
i Ric, |RεiN | = ε−1

i |R|, dµεiN = ε
n+1
2

i dµN

where ρi and dµεiN are the distance function and volume element on εiN , respectively,
and dµN is the volume element on N . We see that conditions C1), C2) and C3) are all
scaling invariant. Let

R̃i =
√
εiR on εiN,

then

∆i
NR̃2

i = ∆NR2 = 2(n+ 1)|∇R|2 = 2(n+ 1)|∇iR̃i|2

and so R̃1−n
i is the Green function on εiN . By (4.4) we have

(4.6) lim sup
i→∞

 sup
BiK2

\BiεK1

∣∣∣HessiR̃2
i

− 2εiḡ
∣∣∣
 = 0.

For each x ∈ εiN there is a minimal normal geodesic γix from p to x such that ∇iρi(x) =

γ̇ix. When εi = 1, we define ∇ρ(x) corresponding to the normal geodesic γ̇x. Hence ∇ρ(x)
depends on the choice of γix. Note that ρ(x) is just a Lipschitz function, but the definition
of ∇ρ(x) is is equivalent to the common one if ρ is C1 at the considered point.

Now if x ∈ Bi
K2
\ Bi

εK1
, let x = γix(t), xε = γix(tε) ∈ ∂Bi

εK1
∩ γix, then for any parallel

vector field ξ along γix, we have

(4.7) ∇iξR̃2
i (x)−∇iξR̃2

i (xε) =

∫ t

tε

∇iγ̇ix∇
i
ξR̃2

i (γ
i
x(s))ds =

∫ t

tε

HessiR̃2
i

(
∇iρi, ξ

) ∣∣∣∣
γix(s)

ds.
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Hence

(4.8)

∣∣∣∇iξR̃2
i (x)−∇iξρ2

i (x)
∣∣∣ ≤ ∣∣∣∇iξR̃2

i (xε)−∇
i
ξρ

2
i (xε)

∣∣∣
+

∫ t

tε

∣∣∣∣∣HessiR̃2
i

(
∇iρi, ξ

) ∣∣∣∣
γix(s)

−Hessiρ2i

(
∇iρi, ξ

) ∣∣∣∣
γix(s)

∣∣∣∣∣ ds
≤Cε+

∫ t

tε

∣∣∣∣∣HessiR̃2
i

(
∇iρi, ξ

) ∣∣∣∣
γix(s)

− 2
〈
∇iρi, ξ

〉 ∣∣∣∣
γix(s)

∣∣∣∣∣ ds
≤Cε+K2 sup

BiK2
\BiεK1

∣∣∣HessiR̃2
i

(
∇iρi, ξ

)
− 2

〈
∇iρi, ξ

〉∣∣∣ ,
where C depends only on K1,K2 and the manifold N . With (4.6) we obtain

(4.9) lim sup
i→∞

sup
BiK2

\BiεK1

∣∣∣∇iR̃2
i (x)−∇iρ2

i (x)
∣∣∣ ≤ Cε.

Since the geodesics γix in εiN converge to a geodesic in N∞, with (4.5) we have

(4.10) lim sup
i→∞

sup
BiK2

\BiεK1

∣∣∣〈∇i(f ◦ Φ−1
i ),∇iR̃2

i

〉∣∣∣ ≤ C1ε,

and

(4.11) lim sup
i→∞

sup
BiK2

\BiεK1

(
R̃i
∣∣∣∇i(f ◦ Φ−1

i )
∣∣∣) <∞.

Let Πi be the rescaling map from (N, ḡ) to εiN = (N, εiḡ, p). Now (4.10) and (4.11)
are equivalent to

(4.12)
lim sup
i→∞

sup
B K2√

εi

\B εK1√
εi

∣∣〈∇(f ◦ Φ−1
i ◦Πi),∇R2

〉∣∣ ≤ C1ε,

and

(4.13)
lim sup
i→∞

sup
B K2√

εi

\B εK1√
εi

(
R
∣∣∇(f ◦ Φ−1

i ◦Πi)
∣∣) <∞.

The theory of integral currents in metric spaces was developed by Ambrosio and Kirch-
heim in [2]. It provides a suitable notion of generalized surfaces in metric spaces, which
extends the classical Federer-Fleming theory [11]. We shall need the compactness Theo-
rem (see Theorem 5.2 in [2]) and the closure Theorem (see Theorem 8.5 in [2]) for normal
currents in a metric space E.

Theorem 4.1. Let (Th) ⊂ Nk(E) be a bounded sequence of normal currents, and assume
that for any integer p ≥ 1 there exists a compact set Kp ⊂ E such that

||Th||(E \Kp) + ||∂Th||(E \Kp) <
1

p
for all h ∈ N.

Then, there exists a subsequence (Th(n)) converging to a current T ∈ Nk(E) satisfying

||T ||

E \ ∞⋃
p=1

Kp

+ ||∂T ||

E \ ∞⋃
p=1

Kp

 = 0.



EXISTENCE AND NON-EXISTENCE OF AREA-MINIMIZING HYPERSURFACES 19

Theorem 4.2. Let Ik(E) be the class of integer-rectifiable currents in E. Let (Th) ⊂
Nk(E) be a sequence weakly converging to T ∈ Nk(E). Then, the conditions

Th ∈ Ik(E), sup
h∈N

N(Th) <∞

imply T ∈ Ik(E).

Now let M denote a minimal hypersurface in N with the induced metric g from N .
Since N has nonnegative Ricci curvature, then V ol(∂Br) ≤ ωnrn, where ωn is the volume
of the n-dimensional unit sphere in Rn+1. Suppose that M has Euclidean volume growth
at most, namely,

(4.14) lim sup
r→∞

(
r−n

∫
M∩Br

1dµ

)
< +∞,

where dµ is the volume element of M . Hence there is a smallest positive constant VM such
that ∫

M∩Br
1dµ ≤ VM rn for any r > 0.

Denote εiM = (M, εig). For any fixed r > 1 let Φi : B2r \ B 1
2r
→ Φi(B2r \ B 1

2r
) ⊂ εiN

be a diffeomorphism such that Φ∗i (εiḡ) converges as i→∞ to ḡ∞ in the C1,α-topology on

B2r \ B 1
2r

. We see that the minimality is also scaling invariant and εiM are also minimal

hypersurfaces of εiN . Since∫
M∩B2r

1dµ =

∫ 2r

0
V ol (M ∩ ∂Bs) ds ≤ VM 2nrn

which is scaling invariant, there exists a sequence li ∈ (r, 2r) such that V ol
(
εiM ∩ ∂Bi

li

)
+

V ol
(
εiM ∩ ∂Bi

l−1
i

)
is uniformly bounded for every i.

Let Ti = εiM∩
(
Bi
li
\Bi

l−1
i

)
, then Φ−1

i (Ti) is a minimal hypersurface in
(
Φ−1
i (εiN),Φ∗i (εiḡ)

)
with the unit normal vector ν̂i. Now we change the metric Φ∗i (εiḡ) to ḡ∞, then the

hypersurface Φ−1
i (Ti) induces a metric, say g̃i from

(
Φ−1
i (εiN), ḡ∞

)
⊂
(
N∞, ḡ∞

)
. Set

T̃i =
(
Φ−1
i (Ti), g̃i

)
, and ν̃i be the unit normal vector of smooth hypersurface T̃i in the

metric space
(
N∞, ḡ∞

)
.

Φ∗i (εiḡ)→ ḡ∞ implies limi→∞ ν̂i = limi→∞ ν̃i , ν0 and these two convergences are both
uniform. Then obviously

Hn(T̃i) +Hn−1(∂T̃i)

is uniformly bounded. By Theorem 4.1 and 4.2 (see also [27] for compactness of currents
in the Euclidean case), there is a subsequence of εij such that

(4.15) T̃ij ⇀ T as j →∞,

where T is an integer-rectifiable current in N∞. Denote T̃ij by T̃i for simplicity. Let Dn(Ω)
be the set containing all smooth differential n-forms with compact support in Ω. For any

ω ∈ Dn
(
B2r \ B 1

r

)
we have

(4.16) lim
i→∞

∫
T̃i

〈ω, ν̃i〉dµ̃i =

∫
T
〈ω, ν∞〉dµ∞,
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where dµ̃i and dµ∞ are the volume elements of T̃i and T , respectively, and ν∞ is the unit
normal vector of T . Since ν̂i → ν0 and ν̃i → ν0 uniformly, then we have

(4.17)

∫
T
〈ω, ν∞〉dµ∞ = lim

i→∞

∫
Φ−1
i (Ti)

〈ω, ν̂i〉dµ̂i = lim
i→∞

∫
Ti

〈ω ◦ Φ−1
i , νi〉dµi,

where dµ̂i and dµ are the volume elements of Φ−1
i (Ti) and Ti, respectively. Then we

conclude that

(4.18) Ti = εiM
⋂
Bi
li
\Bi

l−1
i
⇀ T as i→∞.

5. Non-existence of area-minimizing hypersurfaces

Before we can prove our main results, we still need volume estimates for minimal
hypersurfaces. In fact, these results are interesting in their own right.

Theorem 5.1. let M be a complete minimal hypersurface in a complete non-compact
Riemannian manifold N satisfying conditions C1), C2), C3). Then

i) every end E of M has infinite volume;
ii) if M is a proper immersion, then M has Euclidean volume growth at least,

(5.1) lim inf
r→∞

(
1

rn

∫
M∩Br(p)

1dµ

)
> 0, for any p ∈ N ;

iii) If M has at most Euclidean volume growth, i.e.,

(5.2) lim sup
r→∞

(
r−n

∫
M∩Br

1dµ

)
<∞,

then M is a proper immersion.

Proof. For any 0 < δ ≤ 1, set Ω =
(√

c
δ + 1

)
. For any fixed point p ∈ N and arbitrary

q ∈ ∂BΩr(p), we have

d(p, x) ≥
√
c

δ
r, for any x ∈ Br(q).

Then by condition C3) the sectional curvature satisfies

(5.3) |KN (x)| ≤ δ2

r2
, for any x ∈ Br(q).

Note V ol(Bs(q)) ≥ VNsn for any s > 0 as conditions C1),C2). By [7], for sufficiently small
δ depending only on n, c, VN the injectivity radius at q satisfies i(q) ≥ r. Hence ρq(x) is
smooth for x ∈ Br(q) \ {q}.

Let {ei} be a local orthonormal frame field of M . Then

(5.4)

∆Mρ
2
q =

n∑
i=1

(
∇ei∇eiρ2

q − (∇eiei) ρ2
q

)
=

n∑
i=1

(
∇ei∇eiρ2

q −
(
∇eiei

)
ρ2
q

)
+

n∑
i=1

(
∇eiei −∇eiei

)
ρ̄2
q

=

n∑
i=1

Hessρ2q(ei, ei).
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For any ξ ∈ Γ(TN) we denote ξTq = ξ −
〈
ξ, ∂

∂ρq

〉
∂
∂ρq

. Combining Hessρ2q

(
ξTq ,

∂
∂ρq

)
= 0

and Hessρ2q

(
∂
∂ρq

, ∂
∂ρq

)
= 2, we obtain

(5.5)

Hessρ2q(ei, ei) =Hessρ2q
(
(ei)

T
q , (ei)

T
q

)
+ 2

〈
ei,

∂

∂ρq

〉2

=2ρqHessρq
(
(ei)

T
q , (ei)

T
q

)
+ 2

〈
ei,

∂

∂ρq

〉2

.

By the Hessian comparison theorem, for any ξ⊥ ∂
∂ρq

we have

Hessρq(ξ, ξ) ≥
δ

r
cot

(
δρq
r

)
|ξ|2.

Since
δρq
r cot

(
δρq
r

)
≤ 1 for ρq ≤ r with sufficiently small δ, then

(5.6)

∆Mρ
2
q ≥2ρq

n∑
i=1

δ

r
cot

(
δρq
r

) ∣∣(ei)Tq ∣∣2 + 2

n∑
i=1

〈
ei,

∂

∂ρq

〉2

≥2
δρq
r

cot

(
δρq
r

) n∑
i=1

∣∣(ei)Tq ∣∣2 + 2
δρq
r

cot

(
δρq
r

) n∑
i=1

〈
ei,

∂

∂ρq

〉2

=2n
δρq
r

cot

(
δρq
r

)
.

For any t ∈ [0, 1) we have cos t ≥ 1− t, then(
tan t− t

1− t

)′
=

1

cos2 t
− 1

(1− t)2
≤ 0.

So on [0, 1)

tan t ≤ t

1− t
.

Denote the extrinsic ball Ds(q) = Bs(q) ∩M . Hence on Dr(q) we have

(5.7) ∆Mρ
2
q(x) ≥ 2n

(
1− δ

r
ρq(x)

)
= 2n− 2nδρq(x)

r
.

Let ρMq and BM
s (q) be the distance function from q and the geodesic ball with radius s

and centered at q in M . Obviously, the intrinsic ball BM
s (q) ⊂ Ds(q) for any s ∈ (0, r)

and (5.7) is valid on BM
r (q).

Integrating (5.7) by parts on BM
s (q) yields

(5.8) 2n

∫
BMs (q)

(
1− δρq

r

)
≤
∫
BMs (q)

∆Mρ
2
q =

∫
∂BMs (q)

∇ρ2
q · ν ≤ 2s

∫
∂BMs (q)

|∇ρq|,
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where ν is the normal vector to ∂BM
s (q). Then

(5.9)

∂

∂s

(
s−n

∫
BMs (q)

1

)
=− ns−n−1

∫
BMs (q)

1 + s−n
∫
∂BMs (q)

1

≥− ns−n−1

∫
BMs (q)

1 + s−n
∫
∂BMs (q)

|∇ρq|

≥ − ns−n−1

∫
BMs (q)

1 + ns−n−1

∫
BMs (q)

(
1− δρq

r

)
=− nδ

r
s−n

∫
BMs (q)

1.

Integrating the above inequality implies for 0 < s ≤ r

(5.10) vol(BM
s (q)) ,

∫
BMs (q)

1 ≥ ωn−1

n
sne−

nδs
r ≥ ωn−1

n
sne−nδ.

Here ωn−1 is the measure of the standard (n − 1)-dimensional unit sphere in Euclidean
space.

(i) Let E be an and of M . If E is not contained in any bounded domain in N , then we
choose r large enough and some q ∈ ∂BΩr(p). By (5.10), E then has infinite volume.

Now we suppose that E ⊂ BR0(p) for some constant R0 > 0. Since the injectivity
radius at p is positive, then analogously to the above proof for (5.10) we have constants
rp > 0 and Cp > 0 such that

(5.11) vol(BM
rp (p)) ≥ Cprnp .

Recalling (5.10), there is a constant r0 > 0 so that for any 0 < r ≤ r0 and z ∈ E we have
a constant C0 > 0 such that

(5.12) vol(BM
r (z)) ≥ C0r

n.

Since E is noncompact, then we can choose a sequence {zi} such that BM
r0 (zi)∩BM

r0 (zj) 6= ∅
for i 6= j. Hence

vol(E) ≥
∑
i

vol(BM
r0 (zi)) ≥ C0

∑
i

rn0 =∞.

(ii) Since BM
s (q) ⊂ Ds(q) for any point q ∈ ∂BΩr(p) and any s ∈ (0, r), then with

(5.10) we obtain

(5.13)

∫
Ds(q)

1 ≥ ωn−1

n
sne−nδ for every s ∈ (0, r].

Hence we conclude that (5.1) holds.

(iii) If M is not a proper immersion into N , there exist an end E ⊂M and a constant
r0, such that E ⊂ Br0(p). The assumption that M has at most Euclidean volume growth
implies M has finite volume, which contradicts the results in (i). �

Let M be a minimal hypersurface in N with Euclidean volume growth at most. Com-
bining (4.1)(4.3) and the definition of R, the quantity

r−n
∫
M∩{R≤r}

|∇R|2dµ
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is uniformly bounded for any r ∈ (0,∞), then there exists a sequence ri →∞ such that

(5.14) lim sup
r→∞

(
r−n

∫
M∩{R≤r}

|∇R|2dµ

)
= lim

ri→∞

(
r−ni

∫
M∩{R≤ri}

|∇R|2dµ

)
.

Lemma 5.2. There is a sequence δi → 0+ such that for any constants K2 > K1 > 0 and
ε ∈ (0, 1) and any bounded Lipschitz function f on N \B1 we have

(5.15)

lim sup
i→∞

∣∣∣∣∣
(

δi
K2ri

)n ∫
M∩{R≤K2ri

δi
}
f |∇R|2 −

(
δi
K1ri

)n ∫
M∩{R≤K1ri

δi
}
f |∇R|2

∣∣∣∣∣
≤Cεn sup

N\B1

|f |+ lim sup
i→∞

∫ K2ri
δi

K1ri
δi

(
s−n−1

∫
M∩{ εK1ri

δi
<R≤s}

R∇f · ∇R

)
ds.

Proof. Let {ei} be an orthonormal basis of TM and ν be the unit normal vector of M .
Then by (4.2) we have

(5.16)

∆MR2 =

n∑
i=1

(
∇ei∇eiR2 − (∇eiei)R2

)
=

n∑
i=1

(
∇ei∇eiR2 −

(
∇eiei

)
R2
)

+

n∑
i=1

(
∇eiei −∇eiei

)
R2

=∆NR2 −HessR2(ν, ν)

=2(n+ 1)|∇R|2 −HessR2(ν, ν).

By (4.4) and (4.3) there exists a sequence δi → 0+ such that on M \B√ri we have

(5.17)
∣∣∆MR2 − 2n|∇R|2

∣∣ ≤ 2δi|∇R|2.

For any s ≥ αir
1
2
i with αi ≥ 1 and f ∈ Lip(N \B1), integrating by parts yields

(5.18)

2s

∫
M∩{R=s}

f |∇R| − 2αir
1
2
i

∫
M∩{R=αir

1
2
i }
f |∇R| =

∫
M∩{αir

1
2
i <R≤s}

divM
(
f∇R2

)
=

∫
M∩{αir

1
2
i <R≤s}

∇f · ∇R2 +

∫
M∩{αir

1
2
i <R≤s}

f∆MR2.
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Hence,
(5.19)

∂

∂s

(
s−n

∫
M∩{R≤s}

f |∇R|2
)

=− ns−n−1

∫
M∩{R≤s}

f |∇R|2 + s−n
∫
M∩{R=s}

f
|∇R|2

|∇R|

=− ns−n−1

∫
M∩{R≤s}

f |∇R|2 + s−n
∫
M∩{R=s}

f |∇R|+ s−n
∫
M∩{R=s}

f
〈∇R, ν〉2

|∇R|

=− ns−n−1

∫
M∩{R≤s}

f |∇R|2 +
1

2
s−n−1

∫
M∩{αir

1
2
i <R≤s}

f∆MR2

+ αir
1
2
i s
−n−1

∫
M∩{R=αir

1
2
i }
f |∇R|+ s−n−1

∫
M∩{αir

1
2
i <R≤s}

R∇f · ∇R

+ s−n
∫
M∩{R=s}

f
〈∇R, ν〉2

|∇R|

=− ns−n−1

∫
M∩{R≤αir

1
2
i }
f |∇R|2 +

1

2
s−n−1

∫
M∩{αir

1
2
i <R≤s}

f
(
∆MR2 − 2n|∇R|2

)
+ αir

1
2
i s
−n−1

∫
M∩{R=αir

1
2
i }
f |∇R|+ s−n−1

∫
M∩{αir

1
2
i <R≤s}

R∇f · ∇R

+ s−n
∫
M∩{R=s}

f
〈∇R, ν〉2

|∇R|
.

Select f ≡ 1 and αi = 1 in (5.19) and integrate. Then for any r ≥ √ri there is a constant
C depending only on N and VM such that
(5.20)(

δ−2
i r
)−n ∫

M∩{R≤δ−2
i r}
|∇R|2 − r−n

∫
M∩{R≤r}

|∇R|2

≥− nCr
n
2
i

∫ δ−2
i r

r
s−n−1ds− Cδi

∫ δ−2
i r

r

1

s
ds+

∫ δ−2
i r

r

(
s−n

∫
M∩{R=s}

〈∇R, ν〉2

|∇R|

)
ds

≥− C
r
n
2
i

rn
+ 2Cδi log δi +

∫ δ−2
i r

r

(
s−n

∫
M∩{R=s}

〈∇R, ν〉2

|∇R|

)
ds.

Choose r = ri in the above inequality and let i go to infinity, then we obtain

(5.21)

lim sup
r→∞

(
r−n

∫
M∩{R≤r}

|∇R|2
)
− lim
i→∞

(
r−ni

∫
M∩{R≤ri}

|∇R|2
)

≥ lim
i→∞

((
δ−2
i ri

)−n ∫
M∩{R≤δ−2

i ri}
|∇R|2

)
− lim
i→∞

(
r−ni

∫
M∩{R≤ri}

|∇R|2
)

≥ lim
i→∞

∫ δ−2
i ri

ri

(
s−n

∫
M∩{R=s}

〈∇R, ν〉2

|∇R|

)
ds.

which together with (5.14) implies

(5.22) lim
i→∞

∫ δ−2
i ri

ri

(
s−n

∫
M∩{R=s}

〈∇R, ν〉2

|∇R|

)
ds = 0,
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namely,

(5.23) lim
i→∞

∫
M∩{ri<R≤δ−2

i ri}

〈∇R, ν〉2

Rn
= 0.

Set |f |0 , supN f < ∞ and αi = εK1r
1
2
i δ
−1
i for any small ε ∈ (0, 1) in (5.19), then for

any r ≥ εriδ−1
i

(5.24)

∣∣∣∣∣(K2r)
−n
∫
M∩{R≤K2r}

f |∇R|2 − (K1r)
−n
∫
M∩{R≤K1r}

f |∇R|2
∣∣∣∣∣

≤nC|f |0
(
εK1ri
δi

)n ∫ K2r

K1r
s−n−1ds+ Cδi|f |0

∫ K2r

K1r

1

s
ds

+ |f |0

(
εK1ri
δi

∫
M∩{R=

εK1ri
δi
}
|∇R|

)∫ K2r

K1r
s−n−1ds

+

∫ K2r

K1r

(
s−n−1

∫
M∩{ εK1ri

δi
<R≤s}

R∇f · ∇R

)
ds

+ |f |0
∫ K2r

K1r

(
s−n

∫
M∩{R=s}

〈∇R, ν〉2

|∇R|

)
ds

≤C|f |0
εnrni
δni r

n
+ Cδi|f |0 log

K2

K1
+

∫ K2r

K1r

(
s−n−1

∫
M∩{ εK1ri

δi
<R≤s}

R∇f · ∇R

)
ds

+
|f |0

2nKn
1 r

n

∫
M∩{R≤ εK1ri

δi
}

∆MR2 + |f |0
∫ K2r

K1r

(
s−n

∫
M∩{R=s}

〈∇R, ν〉2

|∇R|

)
ds

≤C|f |0
εnrni
δni r

n
+ Cδi|f |0 log

K2

K1
+

∫ K2r

K1r

(
s−n−1

∫
M∩{ εK1ri

δi
<R≤s}

R∇f · ∇R

)
ds

+ C1
|f |0

2nδni r
n
εnrni + |f |0

∫ K2r

K1r

(
s−n

∫
M∩{R=s}

〈∇R, ν〉2

|∇R|

)
ds.

Let r = ri
δi

and i→∞, then we complete the proof. �

Let εi = δ2
i r
−2
i and suppose that εiN converges to (N∞, d∞) without loss of generality.

Let εiM = (M, εig) and Di
r(x) = εiM ∩Bi

r(x). Clearly, εiM is still a minimal hypersurface
in εiN with V ol

(
εiM ∩Bi

r(p)
)
≤ VM rn.

Lemma 5.3. There exists a subsequence {εij} ⊂ {εi} such that εijM converges to a cone

CY = R+ ×ρ Y in N∞, where Y ⊂ ∂B1(o) is an (n − 1)-dimensional Hausdorff set with
Hn−1(Y ) > 0.

Proof. Note (4.18). By choosing a diagonal sequence, we can assume

Φ−1
ij

(
εijM

⋂
Bij r \B

ij
1
r

)
⇀ T as j →∞,

for any r > 1, where T is an integer-rectifiable current in N∞. For convenience, we still
write εi instead of εij .
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Let f be a homogenous function in C1(N∞ \ {o}), that is,

f(ρθ) = f(θ)

for any ρ > 0 and θ ∈ ∂B1. Let Πi be the re-scaling map from (N, ḡ) to εiN = (N, εiḡ, p) as
before, then both of (4.12) and (4.13) hold. Now we can extend the function f◦Φ−1

i ◦Πi to a

uniformly bounded function Fi in BK2ri
δi

= B K2√
εi

with Fi = f ◦Φ−1
i ◦Πi on BK2ri

δi

\B εK1ri
δi

=

B K2√
εi

\ B εK1√
εi

. Note (4.1) and the definition of R. Hence for sufficiently large i and

s ∈
(
εK1ri
δi

, K2ri
δi

)
, combining (4.12) and (4.13) we have

(5.25)

∫
M∩{ εK1ri

δi
<R≤s}

R∇Fi · ∇R ≤
∫
M∩{ εK1ri

δi
<R≤s}

R
(
∇Fi · ∇R+ |∇Fi| ·

∣∣〈∇R, ν〉∣∣)
≤
∫
M∩{ εK1ri

δi
<R≤s}

(
C2ε+ C2

∣∣〈∇R, ν〉∣∣)
≤C3εs

n + C2

∫
M∩{ εK1ri

δi
<R≤s}

∣∣〈∇R, ν〉∣∣
for some constants C2, C3 > 1. By the Cauchy inequality we get
(5.26)

lim sup
i→∞

∫ K2ri
δi

K1ri
δi

(
1

sn+1

∫
M∩{ εK1ri

δi
<R≤s}

R∇Fi · ∇R

)
ds

≤ lim sup
i→∞

∫ K2ri
δi

K1ri
δi

C3ε

s
+

C2

sn+1

(∫
M∩{ εK1ri

δi
<R≤s}

〈∇R, ν〉2

Rn

∫
M∩{ εK1ri

δi
<R≤s}

Rn
) 1

2

 ds

≤C3ε log
K2

K1
+ C4 lim sup

i→∞

∫ K2ri
δi

K1ri
δi

1

s
ds

(∫
M∩{ εK1ri

δi
<R≤K2ri

δi
}

〈∇R, ν〉2

Rn

) 1
2


≤C3ε log

K2

K1
+ C4 log

K2

K1
lim sup
i→∞

(∫
M∩{ εK1ri

δi
<R≤K2ri

δi
}

〈∇R, ν〉2

Rn

) 1
2

.

where C4 is a constant. Note Fi is uniformly bounded for all i, then by Lemma 5.2 and
(5.23) we obtain

(5.27)

lim sup
i→∞

∣∣∣∣∣
(

δi
K2ri

)n ∫
M∩{R≤K2ri

δi
}
Fi|∇R|2 −

(
δi
K1ri

)n ∫
M∩{R≤K1ri

δi
}
Fi|∇R|2

∣∣∣∣∣
≤C3ε log

K2

K1
+ C4 lim sup

i→∞

εn sup
BK2ri

δi

|Fi|

 ≤ C3ε log
K2

K1
+ C5ε

n
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for some constant C5. For any δ ∈ (0, 1), together with (4.3) we have
(5.28)∣∣∣∣∣ 1

Kn
2

∫
T∩(BK2

\BδK1)
f − 1

Kn
1

∫
T∩(BK1

\BδK1)
f

∣∣∣∣∣
= lim
i→∞

∣∣∣∣∣
(

δi
K2ri

)n ∫
M∩{ δK1ri

δi
≤R≤K2ri

δi
}
Fi|∇R|2 −

(
δi
K1ri

)n ∫
M∩{ δK1ri

δi
≤R≤K1ri

δi
}
Fi|∇R|2

∣∣∣∣∣
≤ lim sup

i→∞

∣∣∣∣∣
(

δi
K2ri

)n ∫
M∩{R≤K2ri

δi
}
Fi|∇R|2 −

(
δi
K1ri

)n ∫
M∩{R≤K1ri

δi
}
Fi|∇R|2

∣∣∣∣∣
+ lim sup

i→∞

∣∣∣∣∣
(

δi
K2ri

)n ∫
M∩{R≤ δK1ri

δi
}
Fi|∇R|2 −

(
δi
K1ri

)n ∫
M∩{R≤ δK1ri

δi
}
Fi|∇R|2

∣∣∣∣∣
≤C3ε log

K2

K1
+ C5ε

n + C5

(
1

Kn
1

− 1

Kn
2

)
lim sup
i→∞

(
δni
rni

∫
M∩{R≤ δK1ri

δi
}

1dµ

)
.

Letting δ → 0 and ε→ 0 implies

(5.29)
1

Kn
2

∫
T∩BK2

f =
1

Kn
1

∫
T∩BK1

f.

By the argument in the proof of Theorem 19.3 in [27], the above equality means that T is
a cone in N∞ up to a set of measure zero, as f is an arbitrary homogeneous function. In
fact, by Fubini’s Theorem the above equality becomes

(5.30) Kn
1

∫ K2

0

(∫
T∩∂Bs

f

)
ds = Kn

2

∫ K1

0

(∫
T∩∂Bs

f

)
ds.

Differentiating w.r.t. K2 and K1 implies

(5.31)
1

Kn−1
2

∫
T∩∂BK2

f =
1

Kn−1
1

∫
T∩∂BK1

f.

Since N∞ = CX is a cone and any point in it can be represented by (ρ, θ) for some θ ∈ X,
then we define 1

rT by {(ρr , θ) ∈ N∞| (ρ, θ) ∈ T}. So

(5.32)

∫
1
K2

T∩∂B1
f =

∫
1
K1

T∩∂B1
f.

Hence 1
K2
T = 1

K1
T up to a set of measure zero, namely, T is a cone, say, CY , where

Y ∈ ∂B1(o) is an (n − 1)-dimensional Hausdorff set. By (5.1), we know Hn(CY ) > 0,
which implies Hn−1(Y ) > 0. �

Remark 5.4. By a simple modification, Lemma 5.2 and Lemma 5.3 also apply to minimal
submanifolds of high codimensions with Euclidean volume growth in N .

For any ω ∈ Dn
(
Bi

2
ε

\Bi
ε

)
let

(5.33) εiM(ω) =

∫
εiM
〈ω, νi〉dµi, CY (ω ◦ Φi) =

∫
T
〈ω ◦ Φi, ν∞〉dµ∞,

where dµi and dµ∞ are the volume elements of εiM and CY , and νi and ν∞ are the unit
normal vectors of εiM and CY .
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For any sufficiently small fixed constant ε ∈ (0, 1), εiM
⋂(

Bi
2
ε

\Bi
ε

)
converges to

CY
⋂(
B 2
ε
\ Bε

)
in the varifold sense. Then

(5.34) lim
i→∞

εiMx
(
Bi

2
ε

\Bi
ε

)
(ω ◦ Φ−1

i ) = CY x
(
B 2
ε
\ Bε

)
(ω)

for any ω ∈ Dn
(
B 2
ε
\ Bε

)
.

Let

(5.35) Ei ,

{
x ∈ εiM

⋂(
Bi

2
ε

\Bi
ε

) ∣∣∣∣ ∣∣∣〈∇iρi(x), νi

〉∣∣∣ ≥ ε} .
If ρ∞(x) = d∞(o, x) is the distance function on N∞, then limi→∞ ρ ◦Φi = ρ∞ in Bi

2
ε

\Bi
ε.

For any compact set K ∈ B 2
ε
\ Bε by (5.34) we have

(5.36) 0 = lim
i→∞

(εiMxΦi(K)) (ω∗ ◦ Φ−1
i ) = lim

i→∞

∫
εiM∩Φi(K)

〈ω∗ ◦ Φ−1
i , νi〉dµi,

where ω∗ is the dual form of ∂
∂ρ∞

in TN∞. Hence for any sufficiently small ε > 0 we

conclude that for sufficiently large i there holds

(5.37) Hn(Ei) < εn+1.

Now we assume that M is a stable minimal hypersurface in N . Then εiM is still a
stable minimal hypersurface in εiN . Let Bi be the second fundamental form of εiM in
εiN , and RicεiN the Ricci curvature of εiN . For any Lipschitz function φ with compact
support in εiM we have from (2.5)

(5.38)

∫
εiM

(
|Bi|2 +RicεiN (νi, νi)

)
φ2 ≤

∫
εiM
|∇iφ|2,

where ∇i is the Levi-Civita connection of εiM . Note that ∇ρ and ∇iρi have been defined
in section 4. Now we suppose that there exists some sufficiently large r0 > 0 such that the
non-radial Ricci curvature of N satisfies

(5.39) inf
∂Br

Ric
(
ξT , ξT

)
≥ κ′

r2
> 0

for all r ≥ r0 and n ≥ 2, where ξ is a local vector field on N , ξT = ξ −
〈
ξ,∇ρ

〉
∇ρ with

|ξT | = 1, and κ′ is a positive constant. Then

inf
∂Bis

RicεiN
(
ηT , ηT

)
≥ κ′

r2
> 0

for all s ≥ √εir0 and n ≥ 2, where η is a local vector field on εiN , ηT = η−
〈
η,∇iρi

〉
∇iρi

with |ηT | = 1. Using conditions C1) and C3) which are both scaling invariant, we obtain

(5.40)
RicεiN (νi, νi) ≥RicεiN (νTi , ν

T
i ) + 2

〈
νi,∇

i
ρi

〉
RicεiN (νTi ,∇

i
ρi)

≥RicεiN (νTi , ν
T
i )− c′

〈
νi,∇

i
ρi

〉
ρ−2
i

for some absolute constant c′ > 0. Let φ be the Lipschitz function on εiN defined by

φ(x) = (ρi(x))
2−n
2 sin

(
π

log ρi(x)

log ε

)
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in Bi
1 \ Bi

ε and φ = 0 in other places. Here ε is a small positive constant less than

min{1
2 ,

κ′

2c′ }, which implies κ′(1− ε2)− c′ε ≥ κ′

4 . So from (5.35), (5.37) and (5.40)

(5.41)

∫
εiM

RicεiN (νi, νi)φ
2dµi

≥
∫

(εiM\Ei)∩(Bi1\Biε)

(
κ′

ρ2
i

∣∣νTi ∣∣2 − c′

ρ2
i

〈
νi,∇

i
ρi

〉)
sin2

(
π

log ρi
log ε

)
ρ2−n
i dµi

≥
(
κ′(1− ε2)− c′ε

) ∫
(εiM\Ei)∩(Bi1\Biε)

sin2

(
π

log ρi
log ε

)
ρ−ni dµi

≥
(
κ′(1− ε2)− c′ε

)(∫
εiM∩(Bi1\Biε)

sin2

(
π

log ρi
log ε

)
ρ−ni dµi − ε−nHn(Ei)

)

≥
(
κ′(1− ε2)− c′ε

) ∫
εiM∩(Bi1\Biε)

sin2

(
π

log ρi
log ε

)
ρ−ni dµi − κ′ε(1− ε2).

Substituting this into (5.38) yields

(5.42)

(
κ′(1− ε2)− c′ε

) ∫
εiM∩(Bi1\Biε)

sin2

(
π

log ρi
log ε

)
ρ−ni dµi − κ′ε(1− ε2)

≤
∫
εiM

RicεiN (νi, νi)φ
2 ≤

∫
εiM
|∇iφ|2

≤
∫
εiM∩(Bi1\Biε)

(
2− n

2
sin

(
π

log ρi
log ε

)
+

π

log ε
cos

(
π

log ρi
log ε

))2

ρ−ni dµi.

Due to Lemma 5.3, we let i→∞, to get

(5.43)

(
κ′(1− ε2)− c′ε

) ∫
CY ∩(B1\Bε)

sin2

(
π

log ρ∞
log ε

)
ρ−n∞ dµ∞ − κ′ε(1− ε2)

≤
∫
CY ∩(B1\Bε)

(
2− n

2
sin

(
π

log ρ∞
log ε

)
+

π

log ε
cos

(
π

log ρ∞
log ε

))2

ρ−n∞ dµ∞.

Since

(5.44)

∫
CY ∩(B1\Bε)

sin2

(
π

log ρ∞
log ε

)
ρ−n∞ dµ∞ =Hn−1(Y )

∫ 1

ε
sin2

(
π

log s

log ε

)
1

s
ds

=

(
log

1

ε

)
Hn−1(Y )

∫ 1

0
sin2(πt)dt,

and Hn−1(Y ) > 0, then

(5.45)

(
κ′(1− ε2)− c′ε

)(
log

1

ε

)
Hn−1(Y )

∫ 1

0
sin2(πt)dt− κ′ε(1− ε2)

≤Hn−1(Y )

∫ 1

ε

(
2− n

2
sin

(
π

log s

log ε

)
+

π

log ε
cos

(
π

log s

log ε

))2 1

s
ds

=

(
log

1

ε

)
Hn−1(Y )

∫ 1

0

(
2− n

2
sin(πt) +

π

log ε
cos(πt)

)2

dt

=

(
log

1

ε

)
Hn−1(Y )

(
(n− 2)2

4
+

π2

(log ε)2

)∫ 1

0
sin2(πt)dt,
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which implies

κ′ ≤ (n− 2)2

4
.

Finally, we obtain the following results.

Theorem 5.5. Let N be an (n+1)-dimensional complete Riemannian manifold satisfying
conditions C1), C2) and C3), and with non-radial Ricci curvature inf∂Br Ric

(
ξT , ξT

)
≥

κ′r−2 for a constant κ′ and sufficiently large r > 0, where ξ is a local vector field on N

with |ξT | = 1 defined in (5.39). If κ′ > (n−2)2

4 , then N admits no complete stable minimal
hypersurface with at most Euclidean volume growth.

It is well known that area-minimizing hypersurfaces have Euclidean volume growth
automatically. Let M be an n-dimensional area-minimizing hypersurface in N . Then
the s-dimensional Hausdorff measure of the singular set of S is Hs(SingM) = 0 for all
s > n − 7 (see [27] for example). We readily check that Lemmas 5.2 and 5.3 also hold
for M . Namely, there is a sequence {εi} converging to zero such that εiN = (N, εiḡ, p)
converges to a metric cone (N∞, d∞), and εiM converges to the cone CY = R+ ×ρ Y in
N∞, where Y ∈ ∂B1(o) is an (n− 1)-dimensional Hausdorff set.

Corollary 5.6. Let N be an (n+1)-dimensional complete Riemannian manifold satisfying
conditions C1), C2) and C3), and with non-radial Ricci curvature inf∂Br Ric

(
ξT , ξT

)
≥

κ′r−2 for a constant κ′ and sufficiently large r > 0, where ξ is a local vector field on N with

|ξT | = 1 defined in (5.39). If κ′ > (n−2)2

4 , then N admits no complete area-minimizing
hypersurface.

Remark 5.7. κ = 2
n

√
n− 1 in Remark 3.8 is equivalent to

RicMCSκ

(
ξT , ξT

)
=

(n− 2)2

4(ρ+ 1
κ − ρ0)2

for all ρ ≥ ρ0,

where ξT = ξ −
〈
ξ, ∂∂ρ

〉
∂
∂ρ ,

∣∣ξT ∣∣ = 1 and ρ0 ∈ (1, 1
κ) is a constant. Hence the constant κ′

in Theorem 5.5 and Corollary 5.6 is optimal.
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