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SPECTRAL DISTANCES ON GRAPHS

JIAO GU, BOBO HUA, AND SHIPING LIU

Abstract. By assigning a probability measure via the spectrum of the nor-

malized Laplacian to each graph and using Lp Wasserstein distances between
probability measures, we define the corresponding spectral distances dp on
the set of all graphs. This approach can even be extended to measuring the
distances between infinite graphs. We prove that the diameter of the set of

graphs, as a pseudo-metric space equipped with d1, is one. We further study
the behavior of d1 when the size of graphs tends to infinity by interlacing
inequalities aiming at exploring large real networks. A monotonic relation be-

tween d1 and the evolutionary distance of biological networks is observed in
simulations.

1. Introduction

One major interest in graph theory is to explore the differences of graphs in
structure, that is, in the sense of graph isomorphism. In computational com-
plexity theory, the graph isomorphism problem belongs to NP (undecided P or
NP-complete) and the subgraph isomorphism problem belongs to NP-complete. It
means that certain level of approximation should be acceptable for the sake of
tractability [28]. As we know, all the topological information of one graph can be
found in its adjacency matrix. The spectral graph theory studies the relationship
between the properties of graphs and the spectra of their representing matrices,
such as adjacency matrix and Laplace matrix [9, 15, 14]. In particular, it turns out
that some important topological information of a graph can be extracted from its
spectrum, see e.g. [15, 14, 22, 7, 6]. In spite of the existence of co-spectral graphs
[10, 12], the spectra of graphs can support us one way on exploring problems that
involve (sub-)graph isomorphism by the fast computation algorithms and the close
relationship with the structure of graphs.

A spectral distance on the set of finite graphs of the same size, i.e. the same
number of vertices, was suggested in a problem of Richard Brualdi in [31] to explore
the so-called cospectrality of a graph. It was further studied in [23] using the
spectra of adjacency matrices. Employing certain Gaussian measures associated to
the spectra of normalized Laplacians and the corresponding L1 distances, the first
named author, Jost and Stadler [18, 17] explored a spectral distance well-defined
on the set of all finite graphs without any constraint about sizes. In this paper,
instead of the Gaussian measures, we assign Dirac measures to graphs through
the spectra of normalized Laplacians and use the Wasserstein distances between
probability measures to propose spectral distances between graphs. This notion of
spectral distances is even adaptable for weighted infinite graphs. And we can prove
diameter estimates with respect to these distances, which are sharp for certain
cases.
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A weighted graph is a triple (V,E, θ) where V is the set of vertices, E is the set
of edges and θ : E → (0,∞), (x, y) 7→ θxy, is the (symmetric) edge weight function.
We write x ∼ y or xy ∈ E if θxy > 0. We assume that for any vertex x, the weighted
degree defined by θx :=

∑
y∼x θxy is finite and θxx = 0 (i.e. there is no self-loops).

We denote by ℓ2(V, θ) the space of ℓ2-integrable functions on V with respect to the
measure θ. For details, we refer to Section 2.

As a bounded linear operator on ℓ2(V, θ), the normalized Laplacian of a (pos-
sibly infinite) weighted graph G = (V,E, θ) is densely defined as, for any finitely
supported function f : V → R,

∆Gf(x) = f(x)− 1

θx

∑
y∼x

f(y)θxy.

It is well-known that its spectrum, denoted by σ(G), is contained in [0, 2]. We shall
assign every finite weighted graph a probability measure (for infinite one, a set of
probability measures) by its spectrum information.

Let us first consider finite weighted graphs. We take the convention that the
spectrum of the graph of a single vertex is {1}. Note that this is different from the
standard one in the literature that the isolated vertices contribute to the spectrum
zero eigenvalues. In this way, by the absence of the self-loops the spectrum of any
finite weighted graph σ(G) = {λi}Ni=1 satisfy the trace condition

N∑
i=1

λi = N (1)

where N = ♯V. Now we associate to the spectrum of a graph G a probability
measure on [0, 2] as follows:

µσ(G) :=
1

N

∑
i

δλi
, (2)

where δλi is the Dirac measure concentrated on λi. This is called the spectral mea-
sure for a finite weighted graph. Denote by P ([0, 2]) the set of probability measures
on the interval [0, 2]. For any µ ∈ P ([0, 2]), the first moment of µ is defined as
m1(µ) :=

´
[0,2]

λ dµ(λ). The trace condition (1) is then translated to

m1(µσ(G)) = 1. (3)

This is a key property of the spectral measures for our further investigations.
Let dWp (1 ≤ p < ∞) be the p-th Wasserstein distance on P ([0, 2]), see e.g. [32].

It is well-known that (P ([0, 2]), dWp ) is a complete metric space. One can prove

that diam(P ([0, 2]), dWp ) = 2. Indeed, on one hand, for any µ, ν ∈ P ([0, 2]) by the

optimal transport interpretation of Wasserstein distance, dWp (µ, ν) ≤ 2. On the

other hand, dWp (δ0, δ2) = 2.
We denote by FG the space of all finite weighted graphs. We define a pseudo-

metric on FG via the Wasserstein distance of spectral measures

dp(G,G′) = dWp (µσ(G), µσ(G′)).

Then for any 1 ≤ p < ∞, (FG, dp) is a pseudo-metric space. This is not a metric
space due to the existence of co-spectral graphs. However, in applications this
spectral consideration leads to the simplification of measuring the discrepancy of
graphs.
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One of the main results of our paper is the following theorem.

Theorem 1.1. For any 1 ≤ p < ∞, we have

diam(FG, dp) ≤ 21−
1
p .

Remark 1.2.

(a) Embedded as a subspace of P ([0, 2]), FG is a proper subspace by considering
the diameters.

(b) One can prove an upper bound directly by using Chebyshev inequality, see
Theorem 2.7. Clearly, this theorem improves that estimate.

(c) This estimate is tight for p = 1, i.e. diam(FG, d1) = 1, see Corollary 1.7.
(d) We don’t claim the sharpness of upper bound estimates for p ∈ (1,∞).

In fact, Theorem 1.1 follows from the estimates on the Wasserstein distance of
probability measures in condition of the first moments.

Theorem 1.3 (Measure theoretical version). For any µ, ν ∈ P ([0, 2]) with m1(µ) =
m1(ν) = 1 and p ∈ [1,∞),

dWp (µ, ν) ≤ 21−
1
p . (4)

For any µ ∈ P ([0, 2]), we denote by Fµ (F−1
µ resp.) the (inverse resp.) cumulative

distribution function associated to µ, see Definition 2.1. By Proposition 2.2 and
Lemma 2.5, one easily show that the above measure theoretical version estimate is
equivalent to the following analytic version estimate.

Theorem 1.4 (Analytic version). Let f, g : [0, 1] → [0, 2] be two nondecreasing

functions such that
´ 1
0
f(x)dx =

´ 1
0
g(x)dx = 1. Then for any p ∈ [1,∞)(ˆ 1

0

|f − g|p(x)dx
) 1

p

≤ 21−
1
p . (5)

Section 3 is devoted to the proofs of Theorem 1.1, 1.3 and Theorem 1.4.
We extend our approach of the spectral distance to infinite graphs in Section

4. Note that we only use the normalization of the first moment of the spectral
measures, i.e. m1(µσ(G)) = 1, our results generalize to all weighted graphs including
infinite ones. For spectral measures with distinguished vertices on infinite graphs,
we refer to Mohar-Woess [30]. We introduce two definitions of spectral measures
for infinite graphs. One is defined via the exhaustion of the infinite graphs by the
spectral measures of normalized Dirichlet Laplacians on subgraphs. The other is
defined for random rooted graphs following Benjamini-Schramm [8], Aldous-Lyons
[2] and Abért-Thom-Virág [1].

We denote by G the collection of all (possibly infinite) weighted graphs. For
any G ∈ G, we define SM(G) as the spectral measures of G by exhaustion, see
Definition 4.1, which is a closed subset of P ([0, 2]). Then G endowed with the
Hausdorff distance induced from the metric space (P ([0, 2]), dWp ), denoted by dp,H ,
is a pseudo-metric space. A direct application of Theorem 1.3 yields the following
corollary (recalled below as Theorem 4.2).

Corollary 1.5. For p ∈ [1,∞),

diam(G, dp,H) ≤ 21−
1
p .
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For any D ≥ 1, we denote by RRGD the collection of random rooted graphs of
degree D, see Section 4.2 for definitions. Any finite weighted graph G gives rise to
a random graph by assigning the root of G uniformly randomly. There are many
interesting class of random rooted graphs such as unimodular and sofic ones, see
[1]. For each random rooted graph G ∈ RRGD, we associate it with an expected
spectral measure, denoted by µG. In this way, RRGD endowed with dWp Wasserstein
distance for expected spectral measures (dp in short) is a pseudo-metric space. By
Theorem 1.3, one can prove the following corollary (recalled below as Theorem 4.4).

Corollary 1.6. For p ∈ [1,∞),

diam(RRGD, dp) ≤ 21−
1
p .

In fact, there are examples of finite graphs which saturate the upper bounds for
p = 1, see Example 2.8 and 2.9.

Corollary 1.7. All upper bounds on d1 are tight, i.e.

diam(FG, d1) = diam(G, d1,H) = diam(RRGD, d1) = 1.

We then concentrate on the spectral distance d1. In Section 5, we calculate d1
on several particular classes of graphs. For our purpose of application to large real
networks, we are more concerned with the behavior of d1 when the size of graphs
N tends to infinity. We observe convergence behaviors like O(1/N2), O(1/N) in
those examples.

The asymptotic behavior of d1 is studied in general in Section 6 by employing
interlacing inequalities of the spectra of finite weighted graphs. For two graphs
G and G′, which differ from each other by some standard operations including
e.g. edge deleting, vertex replication, vertices contraction and edge contraction, we
prove

d1(G,G′) ≤ C

N
, (6)

where C depends only on the operations and is independent of the size N of G
(see Theorem 6.3). By this result, we further derive a convergence result of graphs
under the d1 distance.

In the last section, we apply the distance d1 to study the evolutionary process
of biological networks by simulations. We start from a Barabási-Albert scale-free
network, which has proven to be a very common type of real large networks [4].
We then simulate the evolutionary process by the operations, edge-rewiring and
duplication-divergence respectively. We observe a monotonic relation between d1
and the evolutionary distance, which is a crucial point to anticipate further appli-
cations in exploring evolutionary history of biological networks.

2. Preliminaries, spectral measures and spectral distances

In this section, we recall basics about graph spectra and Wasserstein distances
on the space of probability measures. We define the spectral distances of finite
graphs in this section. The spectral distances of infinite graphs and random graphs
will be postponed to Section 4.

We recall some basic setting of graphs. Let V be a countable (possibly infinite)
discrete set and θ : V × V → [0,∞), (x, y) 7→ θxy an edge weight function that is
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symmetric, has zero diagonal and satisfies∑
y∈V

θxy < ∞, x ∈ V.

If θxy > 0 we write x ∼ y or xy ∈ E, where E is the set of edges of the graph. The
weighted degree of the vertex x ∈ V is defined as θx :=

∑
y∼x θxy. We call the triple

(V,E, θ) a weighted graph. The graph is called connected if for every two vertices
x, y ∈ V there exists a finite path x = x0 ∼ x1 ∼ · · · ∼ xn = y connecting x and y.

Let G = (V,E, θ) be a weighted graph. We define the (formal) normalized
Laplacian ∆ on the formal domain

F (V ) := {f : V → R |
∑
y∈V

θxy|f(y)| < ∞ for all x ∈ V },

by

∆f(x) =
1

θx

∑
y∈V

θxy(f(x)− f(y)).

As a linear operator, its restriction to the Hilbert space ℓ2(V, θ) := {f : V →
R|
∑

x∈V |f(x)|2θx < ∞}, denoted by ∆G, coincides with the generator of the
Dirichlet form

Q(f) =
1

2

∑
x,y∈V

θxy|f(x)− f(y)|2,

defined on ℓ2(V, θ), for details see [24].
Let G = (V,E, θ) be a weighted graph without isolated vertices, i.e. θx > 0 for

all x ∈ V . The normalized Laplacian of G can be rephrased as

∆G := I −D−1A,

where D is the degree operator and A is the adjacency operator (defined as Dδx =
θxδx and Aδx =

∑
y∼x θyxδy), i.e. for any finitely supported function f : V → R,

∆Gf(x) = f(x)− 1

θx

∑
y∼x

f(y)θxy.

Since D−1A is a bounded selfadjoint operator with operator norm less than or equal
to 1 on ℓ2(V, θ), the spectrum of ∆G, denoted by σ(G), is contained in the interval
[0, 2].

For finite weighted graphs with isolated vertices, we take the following conven-
tion. Assume G = G1 ∪ {xi}Ki=1 is a finite graph with K isolated vertices, then we
set

σ(G) = σ(G1) ∪ {1, · · · , 1︸ ︷︷ ︸
K

}.

As we have commented in the introduction, this convention is different from the
standard one adopted in the literature. However, the reason of taking this conven-
tion will be clear soon. We order the spectrum of any finite weighted graph G in
the nondecreasing way:

0 ≤ λ1 ≤ · · · ≤ λN ≤ 2,

where N = ♯V. For convenience, we also denote the spectrum of G by a vector,
called spectral vector of G, λG := (λi)

N
i=1 = (λ1, λ2, · · · , λN ) ∈ [0, 2]N .
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2.1. Spectral measures. Now we associate to the spectrum of a graph G a prob-
ability measure on [0, 2] as follows:

µσ(G) :=
1

N

∑
i

δλi . (7)

This is called the spectral measure for a finite weighted graph.
Next we recall some basic properties of the probability measures.

Definition 2.1. The cumulative distribution function associated to a probability
measure µ on R, denoted by Fµ, is defined as

Fµ(x) :=

ˆ x

0

dµ(x).

The right-continuous inverse function of Fµ, called the inverse cumulative distribu-
tion function denoted by F−1

µ , is defined as

F−1
µ (x) = inf{t ∈ R : Fµ(t) > x}.

For simplicity, we denote by FG the cumulative distribution function of µσ(G),

and by F−1
G its inverse function. Since σ(G) ⊆ [0, 2], we have FG : [0, 2] → [0, 1]

and F−1
G : [0, 1] → [0, 2]. By taking the trace of ∆G, we obtain∑

1≤i≤N

λi = N. (8)

This is the key property of the spectrum of normalized Laplacians for our purpose
here which is the reason why we set eigenvalues 1 for isolated vertices. From this
key property, we have the following proposition.

Proposition 2.2. Let G = (V,E, θ) be a finite weighted graph. Then the following
are true:

(a) FG and F−1
G are nonnegative nondecreasing step functions;

(b)
´ 2
0
FG(x)dx = 1;

(c)
´ 1
0
F−1
G (x)dx = 1.

Proof. (a) is trivial. (c) follows from the trace condition (8). (b) is equivalent to
(c) since the total area of the rectangle [0, 1]× [0, 2] is 2. �
2.2. Spectral distances. Let (X, d) be a Polish space (i.e. a complete, separa-
ble metric space). For p ∈ [1,∞), let Pp(X) denote the collection of all proba-
bility measures µ on M with finite p-th moment: for some (hence all) x0 ∈ X,´
X
d(x, x0)

pdµ(x) < ∞.

Definition 2.3. The p-th Wasserstein distance between two probability measures
µ and ν in Pp(X) is defined as

dWp (µ, ν) :=

(
inf

π∈Π(µ,ν)

ˆ
X×X

d(x, y)pdπ(x, y)

)1/p

,

where Π(µ, ν) denotes the collection of all measures on X × X with marginals µ
and ν on the first and second factors respectively, i.e. π ∈ Π(µ, ν) if and only if
π(A×X) = µ(A) and π(X ×B) = ν(B) for all Borel subsets A,B ⊆ X.

It is well-known that (Pp(X), dWp ) are complete metric spaces for p ∈ [1,∞)
which induce the weak topology of measures (see e.g. [32, Theorem 6.9]).
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Definition 2.4. Given two finite weighted graphsG = (V,E, θ) andG′ = (V ′, E′, θ′),
the spectral distance between G and G′ is defined as

dp(G,G′) := dWp (µσ(G), µσ(G′)).

Let us denote by FG the space of all finite weighted graphs. As we have men-
tioned, for any 1 ≤ p < ∞, (FG, dp) is a pseudo-metric space because of the
existence of cospectral graphs.

Since the spectrum of the normalized Laplacian of a graph lies in the interval
[0, 2] ⊂ R, one may calculate the spectral distance explicitly. This is an advantage
of probability measures supported in the 1-dimensional space. Let µσ(G), µσ(G′)

be the spectral measure of two finite weighted graphs G,G′, and FG, FG′ the
cumulative distributions of these measures respectively. Now the spectral distance
of these graphs, i.e. the Wasserstein distance of two spectral measures, can be
calculated by the inverse cumulative distribution functions F−1

G and F−1
G′ thanks to

the following lemma.

Lemma 2.5 (see Theorem 8.1 in [29]). Let µ, ν ∈ P ([0, 2]) and F−1
µ , F−1

ν be their
inverse cumulative distribution functions. Then for any p ∈ [1,∞),

dWp (µ, ν) =

(ˆ 1

0

|F−1
µ (x)− F−1

ν (x)|pdx
)1/p

.

One can show that if two graphs having the same number of vertices, say N ,
then the spectral distance between them is reduced to the ℓp distance between the
spectral vectors, i.e. for any 1 ≤ p < ∞,

dp(G,G′) =
1

N
∥λG − λG′∥ℓp .

In this paper, we are interested in the diameter of the pseudo-metric space
(FG, dp) for p ∈ [1,∞). By the optimal transportation explanation of Wasser-
stein distance and the fact σ(G) ⊆ [0, 2], it is a trivial fact that for any two finite
weighted graphs G and G′,

dp(G,G′) ≤ 2, for 1 ≤ p < ∞.

Hence diam(FG, dp) ≤ 2. This upper bound is less likely to be tight for p > 1.
We denote by {·} a graph consisting of a single vertex without any edge. Then

by our convention, σ({·}) = {1}. Clearly, for any weighted graph G,

dp(G, {·}) ≤ 1, for 1 ≤ p < ∞.

In the following, we use (integral) Chebyshev inequality to derive a refined upper
bound for the diameter.

Lemma 2.6 (Chebyshev inequality, see Section 2.17 of [19] or [16]). For any non-
negative, monotonically increasing integrable functions f, g : [0, 1] → [0,∞), we
have ˆ 1

0

f(x)g(x)dx ≥
ˆ 1

0

f(x)dx

ˆ 1

0

g(x)dx. (9)

Theorem 2.7. For any 1 ≤ p ≤ 2, we have

diam(FG, dp) ≤
√
2,

i.e. for any finite weighted graphs G and G′,

dp(G,G′) ≤
√
2.
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Proof. Let us denote f = F−1
G and g = F−1

G′ . Then by Chebyshev inequality (9)
and Proposition 2.2 (c), ˆ 1

0

fg ≥
ˆ 1

0

f

ˆ 1

0

g = 1.

Hence, for any 1 ≤ p ≤ 2 we have(ˆ 1

0

|f − g|p
)2/p

≤
ˆ 1

0

|f − g|2 =

ˆ 1

0

f2 +

ˆ 1

0

g2 − 2

ˆ 1

0

fg

≤ 2

ˆ 1

0

f + 2

ˆ 1

0

g − 2 = 2,

where we have used that f ≤ 2 and g ≤ 2. This proves the theorem. �
In the next section, we will give a tighter upper bound for the diameter estimates.

In particular, in the case of p = 1, we derive an optimal upper bound, that is, we
will prove that diam(FG, d1) = 1. The tightness of this estimate can be seen from
the following two examples.

Example 2.8. Let G = {·} and G′ = P2 be the path on two vertices. Then
σ(G′) = {0, 2}. Hence we have

dp(G,G′) = 1, p ∈ [1,∞).

The following example is more convincing.

Example 2.9. Let G′ = P2 be the path on two vertices and GN an unweighted
(i.e. θxy = 1 for every edge xy) complete graph on N vertices. Then it is known
that

σ(GN ) = {0, N

N − 1
, . . . ,

N

N − 1︸ ︷︷ ︸
N−1

}. (10)

Therefore we have

dp(GN , G′) =

[(
1

2
− 1

N

)
Np

(N − 1)p
+

1

2

(
2− N

N − 1

)p] 1
p

.

In particular, d1(GN , G′) = 1− 1
N−1 . Observe that

lim
N→+∞

dp(GN , G′) = 1.

3. The proof of the diameter estimate

This section is devoted to the proofs of Theorem 1.1, 1.3 and Theorem 1.4. We
first prove some lemmata.

We call a function f : [0, 1] → [0, 2] an admissible 2-step function if there exist
a ∈ [0, 1

2 ] and b ∈ [12 , 1] such that

f(x) =


0, 0 ≤ x < a,
2b−1
b−a , a ≤ x < b,

2, b ≤ x ≤ 1.
(11)

In particular, we say f jumps at a and b. Clearly,
´ 1
0
f(x)dx = 1 and

´ 2
0
f−1(x)dx =

1. The name for a 2-step function is evident from the graph of the function. In
particular, any inverse function F−1

G of a cumulative distribution function of a
graph G with 3 vertices is an admissible 2-step function.
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Lemma 3.1. Let f, g be admissible 2-step functions on [0, 1]. Then we haveˆ 1

0

|f − g|(x)dx ≤ 1, (12)

where ”=” holds if and only if (ignoring the order of f, g)

f(x) =

{
0, 0 ≤ x < 1

2 ;
2, 1

2 ≤ x ≤ 1,
g(x) = 1, 0 ≤ x ≤ 1. (13)

Observe that the inverse cumulative distribution functions in Example 2.8 are
exactly the two functions in (13).

Proof. Let f : [0, 1] → [0, 2] (g : [0, 1] → [0, 2] resp.) be an admissible 2-step
function jumping at a and b (c and d resp.). Denote the height of the first jump of
f and g by h1 := 2b−1

b−a and h2 := 2d−1
d−c respectively.

The proof is divided into four cases and several subcases as follows:
Case 1. 0 ≤ a ≤ c ≤ 1

2 ≤ d ≤ b ≤ 2.
Subcase 1.1. h2 ≥ h1. See Fig. 1.
For each domain I (II resp.) in Fig 1.1, we denote by |I| (|II| resp.) the area

of that domain. We reflect the domain II along the line {x = c} to obtain a new
domain II′. By the fact that c ≤ 1

2 , we have
ˆ 1

0

|f − g| = |I|+ |II| = |I|+ |II′| ≤
ˆ 1

0

g = 1.

Subcase 1.2. h2 ≤ h1. See Fig. 2.
Reflect the domain I along the line {x = d} to obtain I′. Thenˆ 1

0

|f − g| = |I|+ |II| = |I′|+ |II| ≤
ˆ 2

0

g−1(y)dy = 1.

   I

II

a c d b 10

2

II'

g

f

Figure 1.

   I

II

a c d b 10

2

Figure 2.

Case 2. 0 ≤ a ≤ c ≤ 1
2 ≤ b ≤ d ≤ 2.

We claim that h1 ≤ h2. Suppose not, by Fig 3, we have

1 =

ˆ 1

0

f >

ˆ 1

0

g = 1.

A contradiction. This proves the claim.
Subcase 2.1. h1 ≥ 1, see Fig. 4.
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Reflect the domain II along the line {y = h1} to get II′. Since h1 ≥ 1,

ˆ 1

0

|f − g| = |I|+ |II|+ |III| = |I|+ |II′|+ |III| ≤
ˆ 1

0

f = 1.

a c db 10

2

Figure 3.

a c db 10

2

III

II

I

1

Figure 4.

Subcase 2.2. h1 ≤ 1. Further, we divide it into more subcases.
Subcase 2.2.1. h2 ≤ 1, see Fig. 5.
Reflect the domain II along the line {y = h2} to have II′. By h2 ≤ 1,

ˆ 1

0

|f − g| = |I|+ |II|+ |III| = |I|+ |II′|+ |III| ≤
ˆ 2

0

g−1(y)dy = 1.

Subcase 2.2.2. h2 ≥ 1. Moreover,
Subcase 2.2.2.1. h2 − h1 ≤ 1.
Then by the basic estimate,

ˆ 1

0

|f − g| = |I|+ |II|+ |III| = (2− h2)(d− b) + (h2 − h1)(b− c) + h1(c− a)

≤ d− b+ b− c+ c− a = d− a (by max{2− h2, h2 − h1, h1} ≤ 1)

≤ 1.

Subcase 2.2.2.2. h2 − h1 ≥ 1, see Fig. 6.
Reflect I along the line {y = h2} to obtain I′, and III along the line {x = c} to

obtain III′. Then by the fact h2 − h1 ≥ 1 ≥ 2− h2, I
′ ∩ III′ = ∅. Thus,

ˆ 1

0

|f − g| = |I|+ |II|+ |III| = |I′|+ |II|+ |III′| ≤
ˆ 1

0

g = 1.

Case 3. 0 ≤ c ≤ a ≤ 1
2 ≤ b ≤ d ≤ 2. By interchanging the role of a, b and c, d,

this reduces to the Case 1.
Case 4. 0 ≤ c ≤ a ≤ 1

2 ≤ d ≤ b ≤ 2. This reduces to Case 2 by the same change
as in Case 3.

Combining all the cases and subcases, we prove (12). Finally, we can check that
in all cases except Subcase 2.2.2.2, the equality can be achieved only when f, g is
the two in (13). And in Subcase 2.2.2.2, it is impossible to have equality, since we
can not ensure 2−h2, h2−h1, h1 = 1 simultaneously. This completes the proof. �
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Before proving the next lemma, we recall some basic facts from convex analysis.
Let Ω be a convex subset of RN , possibly having lower Hausdorff dimension. A
function f : Ω → R is called convex if for any x, y ∈ Ω and 0 ≤ t ≤ 1,

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

In particular, for any norm ∥ · ∥ on RN , the function f : RN → R defined by
f(x) = ∥x − x0∥ for some fixed x0 is a convex function. We say a point x ∈ Ω
extremal if it cannot be written as the nontrivial convex combination of two other
points in Ω, i.e. if x = tx1 + (1 − t)x2 for some 0 < t < 1 and x1, x2 ∈ Ω, then
x = x1 = x2. The set of extremal points of a convex set Ω is denoted by Ext(Ω). A
subset P ⊂ RN is called a (closed) convex polytope if it is the intersection of finite
many half spaces, i.e. there exist K ∈ N linear functions {Lj}Kj=1 on RN such that

P =
K∩
j=1

{x ∈ RN : Lj(x) ≤ 0}.

We state a well-known fact which will be used to prove the next lemma.

Fact 3.2. Let P be a compact convex polytope in RN and f : P → R a convex
function. Then

max
P

f = max
Ext(P )

f. (14)

The following lemma is the special case of Theorem 1.1 when two graphs have
the same number of vertices.

Lemma 3.3. Let N ≥ 1. Assume that α = (αi)
N
i=1 and β = (βi)

N
i=1 satisfy 0 ≤

α1 ≤ · · · ≤ αN ≤ 2 and 0 ≤ β1 ≤ · · · ≤ βN ≤ 2 and

∥α∥ℓ1 = ∥β∥ℓ1 = N.

Then we have
∥α− β∥ℓ1 ≤ N.

Proof. Let P denote the compact convex polytope {α ∈ RN : 0 ≤ α1 ≤ · · · ≤ αN ≤
2, ∥α∥ℓ1 = N}. Then by the induction on N, one can show that the set of extremal
points of P is

Ext(P ) =

(0, · · · , 0︸ ︷︷ ︸
k

, a, · · · , a︸ ︷︷ ︸
N−k−l

, 2, · · · , 2︸ ︷︷ ︸
l

) : 0 ≤ k, l ≤ N

2
, a =

N − 2l

N − k − l

 .
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We divide the interval [0, 1] equally into N subintervals {[ i−1
N , i

N ]}Ni=1. Then for
any α ∈ P, we define a step function fα : [0, 1] → [0, 2] by

fα|[ i−1
N , i

N ] = αi.

Clearly,
´ 1
0
fα = 1

N ∥α∥ℓ1 = 1. In addition, for any γ ∈ Ext(P ), fγ is an admissible
2-step function defined in (11).

Note that for any fixed β0 ∈ RN , the function F : RN ∋ α 7→ ∥α− β0∥ℓ1 ∈ R is
a convex function on RN . We claim that

max
α∈P
β∈P

∥α− β∥ℓ1 = max
γ∈Ext(P )
θ∈Ext(P )

∥γ − θ∥ℓ1 . (15)

By Fact 3.2,

max
α∈P
β∈P

∥α− β∥ℓ1 = max
β∈P

max
α∈P

∥α− β∥ℓ1 = max
β∈P

max
γ∈Ext(P )

∥γ − β∥ℓ1

= max
γ∈Ext(P )

max
β∈P

∥γ − β∥ℓ1 = max
γ∈Ext(P )

max
θ∈Ext(P )

∥γ − θ∥ℓ1 .

This proves the claim.
For any γ, θ ∈ Ext(P ), noting that fγ and fθ are admissible 2-step functions, by

Lemma 3.1, we have

∥γ − θ∥ℓ1 = N

ˆ 1

0

|fγ − fθ| ≤ N.

Combining this with (15), we prove the lemma. �

Now we can prove Theorem 1.4. A function f : [0, 1] → [0, 2] is called a rationally
distributed step function if there is a (rational) partition 0 = r0 < r1 < r2 < · · · <
rN = 1 with ri ∈ Q for all 0 ≤ i ≤ N and an increasing sequence 0 ≤ a1 < · · · <
aN ≤ 2 such that

f(x) =


a1, 0 ≤ x < r1,
a2, r1 ≤ x < r2,
...

aN , rN−1 ≤ x ≤ 1.

Proof of Theorem 1.4. First, we consider p = 1. By the standard approximation
argument, any such functions, f and g, can be approximated in L1 norm by a se-
quence of rationally distributed step functions, say {fn}∞n=1 and {gn}∞n=1, satisfying´ 1
0
fn =

´ 1
0
gn = 1. Hence it suffices to prove the theorem for rationally distributed

step functions.
W.l.o.g., we may assume f and g are rationally distributed step functions, say

f |[ri−1,ri] = ai for 1 ≤ i ≤ L and g|[tj−1,tj ] = bj for 1 ≤ j ≤ K where L,K ∈ N. Let
N denote the least common multiple of {mi}Li=1 ∪ {nj}Kj=1 where mi, nj are the

denominators of ri =
ci
mi

and tj =
dj

nj
(ci,mi, dj , nj ∈ N), 1 ≤ i ≤ L, 1 ≤ j ≤ K.

Then we have for any 1 ≤ p ≤ N

f |[ p−1
N , p

N ] = αp,

g|[ p−1
N , p

N ] = βp,
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where αp = al and βp = bk for some 1 ≤ l ≤ L, 1 ≤ k ≤ K. Obviously, 0 ≤ α1 ≤
· · · ≤ αN ≤ 2, 0 ≤ β1 ≤ · · · ≤ βN ≤ 2 and

∥α∥ℓ1 = ∥β∥ℓ1 = N.

Hence Lemma 3.3 implies that

∥α− β∥ℓ1 ≤ N.

That is, ˆ 1

0

|f − g| ≤ 1.

For p ∈ (1,∞), it can be easily derived from the result for p = 1.ˆ 1

0

|f − g|p ≤ 2p−1

ˆ 1

0

|f − g|

≤ 2p−1.

This proves the theorem. �

Theorem 1.3 then follows directly.

Proof of Theorem 1.3. Let Fµ and Fν denote the cumulative distribution functions
of the measures µ and ν respectively. Since the total area of the square [0, 1]× [0, 2]
is equal to 2, by the assumption m1(µ) = m1(ν) = 1 we haveˆ 1

0

F−1
µ (x)dx =

ˆ 1

0

F−1
ν (x)dx = 1.

Then our theorem follows from Theorem 1.4 and Lemma 2.5. �

Now we can prove Theorem 1.1.

Proof of Theorem 1.1. This follows from Theorem 1.3 directly. �

4. Spectral distances of infinite graphs

In this section, we introduce two definitions of spectral measures for infinite
weighted graphs and extend our approach of spectral distance to this setting.

4.1. Spectral measures by exhaustion. LetG = (V,E, θ) be an infinite weighted
graph and Ω ⊂ V a finite connected subgraph of G. We introduce the Dirichlet
boundary problem of the normalized Laplacian on Ω, see e.g. [6]. Let ℓ2(Ω, θ) de-
note the space of real-valued functions on Ω. Note that every function f ∈ ℓ2(Ω, θ)

can be extended to a function f̃ ∈ ℓ2(V, θ) by setting f̃(x) = 0 for all x ∈ V \ Ω.
The normalized Laplacian with the Dirichlet boundary condition on Ω, denoted by
∆Ω, is defined as ∆Ω : ℓ2(Ω, θ) → ℓ2(Ω, θ),

∆Ωf = (∆Gf̃)|Ω.

Thus for x ∈ Ω the Dirichlet normalized Laplacian is pointwise defined by

∆Ωf(x) = f(x)− 1

θx

∑
y∈Ω

θxyf(y) = f̃(x)− 1

θx

∑
y∈V

θxy f̃(y).

A simple calculation shows that ∆Ω is a positive self-adjoint operator. We arrange
the eigenvalues of the Dirichlet Laplace operator ∆Ω in nondecreasing order, i.e.
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λ1(Ω) ≤ λ2(Ω) ≤ . . . ≤ λN (Ω), where N is the cardinality of the set Ω, i.e. N = ♯Ω.
By the trace condition, we also have the key property

N∑
i=1

λi = N.

As same as finite graphs, we associate it with the spectral measure,

µΩ =
1

N

N∑
i=1

δλi .

Hence m1(µΩ) = 1.
A sequence of finite connected subgraphs {Ωn}∞n=1 is called an exhaustion of the

infinite graph G if Ωn ⊂ Ωn+1 for all n ∈ N and ∪∞
n=1Ωn = V. Hence we have

a sequence of probability measures {µΩn}∞n=1 on [0, 2]. Since P ([0, 2]) is compact
under the weak topology, up to a subsequence, w.l.o.g. we have µΩn ⇀ µ for some
µ ∈ P ([0, 2]). Note that any subsequence of an exhaustion is still an exhaustion.
Therefore we define the spectral measures of an infinite graph by all possible ex-
haustions. Note that the convergence of the spectral structure was studied in more
general setting by Kuwae-Shioya [26].

Definition 4.1. Let G be an infinite weighted graph. We define the spectral mea-
sures of G by exhaustion as

SM(G) := {µ ∈ P ([0, 2]) : there is an exhaustion {Ωn}∞n=1 s.t. µΩn ⇀ µ}.

One can show that SM(G) is a closed subset of P ([0, 2]). Since m1(Ωn) = 1 for
any n ∈ N, by the weak convergence, we have m1(µ) = 1 for any µ ∈ SM(G).

For any metric space (X, d), one can define the Hausdorff distance between the
subsets of X. For any subset A ⊂ X, we define the distance function to the subset
A as X ∋ x 7→ d(x,A) = inf{d(x, y)|y ∈ A}, and the r-neighborhood of A as
Ur(A) := {y ∈ X|d(y,A) < r}, r > 0. Given two subsets A,B ⊂ X, the Hausdorff
distance between them is defined as

dH(A,B) := inf{r > 0|A ⊂ Ur(B), B ⊂ Ur(A)}.
One can show that the set of closed subsets of X endowed with the Hausdorff
distance is a metric space.

Note that for p ∈ [1,∞), P ([0, 2]) endowed with the p-th Wasserstein distance
is a metric space and SM(G) is a closed subset of P ([0, 2]) for any weighted graph
G. We denote by G the collection of all (possibly infinite) weighted graphs. Hence
G endowed with the Hausdorff distance induced from (P ([0, 2]), dWp ), denoted by
dp,H , is a pseudo-metric space.

A direct application of Theorem 1.3 yields

Theorem 4.2. For p ∈ [1,∞),

diam(G, dp,H) ≤ 21−
1
p .

4.2. Spectral measures for random rooted graphs. We follow Benjamini-
Schramm [8], Aldous-Lyons [2] and Abért-Thom-Virág [1] to define random rooted
graphs.

For any D ≥ 1, we define a subcollection of G, GD := {(V,E, θ) ∈ G|degx ≤
D, θxy ≤ D for all x, y ∈ V } where degx = ♯{y ∈ V |y ∼ x}, i.e. the set of weighted
graphs with bounded combinatorial degree (≤ D) and bounded edge weights (≤ D).
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Let RGD denote the set of graphs G in GD with a distinguished vertex, called the
root of G.

For any x, y ∈ G = (V,E, θ), we denote by dC(x, y) the combinatorial distance
between x and y, i.e. dC(x, y) := inf{n| there exist {xi}ni=0 s.t. x = x0 ∼ x1 ∼
· · · ∼ xn = y}, and by Bk(x) := {z ∈ V |dC(x, z) ≤ k}, k ∈ N ∪ {0}, the ball of
radius k centered at x. Let (G1, o1) and (G2, o2) be two rooted graphs. We call that
Bk(o1) is isomorphic to Bk(o2) if there exists a bijective map f : Bk(o1) → Bk(o2)
such that f(o1) = f(o2) and x ∼ y for x, y ∈ Bk(o1) if and only if f(x) ∼ f(y). For
(G1, o1), (G2, o2) ∈ RGD with G1 = (V1, E1, θ1) and G2 = (V2, E2, θ2), we define
the rooted distance between G1 and G2 as 1/K where

K = max{k ∈ N| ∃ an isomorphism f : Bk(o1) → Bk(o2)

such that sup
x,y∈Bk(o1)

|θ1,xy − θ2,f(x)f(y)| ≤
1

k
}.

One can prove that RGD endowed with the rooted distance is a compact metric
space.

By a random rooted graph of degree D we mean a Borel probability distribution
on RGD. We denote by RRGD the collection of random rooted graphs of degree
D. Any finite weighted graph G gives rise to a random graph by assigning the root
of G uniformly randomly.

For a rooted weighted graph (G, o) ∈ RGD with G = (V,E, θ), the normalized
Laplacian is a bounded self-adjoint operator on ℓ2(V, θ) which is independent of
o. By spectral theorem, there is a projection-valued measure, denoted by P•, on
[0, 2], i.e. PA is a projection on ℓ2(V, θ) for any Borel A ⊂ [0, 2], such that for any
continuous function f ∈ C([0, 2]) we have the functional calculus

f(∆G) =

ˆ
[0,2]

f(x)dPx (16)

where Px = P[0,x]. We define the spectral measure of the rooted graph (G, o) as

µG,o =
1

θo
⟨PAδo, δo⟩, ∀A ⊂ [0, 2],

where ⟨·, ·⟩ is the inner product for ℓ2(V, θ). One can easily show that µG,o is a
probability measure on [0, 2]. Further calculation by using (16) yieldsm1(µG,o) = 1.
Now we can define the expected spectral measure for rooted random graphs.

Definition 4.3. Let G be a random rooted graph. We define the expected spectral
measure of G as

µG = E(µG,o)

where the expectation is taken over the distribution on RGD.

Let G be a random rooted graph rising from a finite weighted graph with uniform
distribution on its vertices. A similar calculation as in Abért-Thom-Virág [1] shows
that

µG =
1

N

N∑
i=1

δλi

where {λi}Ni=1 is the spectrum of the finite graph. Hence the expected spectral
measure of random rooted graphs generalizes the spectral measure of finite graphs.
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There are other interesting classes of random rooted graphs such as unimodular
and sofic ones, see e.g. [1].

The set of random rooted graphs of degree D, RRGD, endowed with dWp Wasser-
stein distance for expected spectral measures (dp in short) is a pseudo-metric space.
By Theorem 1.3, one can prove the following theorem.

Theorem 4.4. For p ∈ [1,∞),

diam(RRGD, dp) ≤ 21−
1
p .

5. Calculation of examples

From now on, we will concentrate on the study of the spectral distance d1. We
calculate this distance for several classes of graphs in this section. Rather than the
exact value of the d1 distance between two graphs, we are more concerned with
the asymptotical behavior of the distance between two sequences of graphs which
become larger and larger, as the sizes of real networks in practice nowadays are
typically huge. All example graphs we consider in the section are unweighted.

Proposition 5.1. For two complete graphs G and G′ with N and M (M > N)
vertices respectively, we have

d1(G,G′) = 2
M −N

N(M − 1)
.

Proof. Recall the spectrum (10) of a complete graph. We then calculate the distance
(i.e. the area of the grey region shown in Fig. 7),

d1(G,G′) =
M

M − 1

(
1

N
− 1

M

)
+

(
N

N − 1
− M

M − 1

)(
1− 1

N

)
= 2

M −N

N(M − 1)
.

    1

1/N

1/M

0                                           1                                            2
N-1M-1

M N

Figure 7.

�

Remark 5.2. When the size difference M −N of two complete graphs is a fixed
constant C, we have

d1(G,G′) = O(1/N2) as N → ∞.
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Proposition 5.3. For two connected complete bipartite graphs G and G′ with size
N and M (M > N) respectively, we have

d1(G,G′) = 2
M −N

NM
.

Proof. The spectrum of a complete bipartite graph G with N vertices is

σ(G) = {0, 1, . . . , 1︸ ︷︷ ︸
N−2

, 2}.

Then the distance is (the area of the grey region shown in Fig. 8)

d1(G,G′) =

(
1

N
− 1

M

)
+

(
M − 1

M
− N − 1

N − 1

)
= 2

M −N

NM
.

�

    1

1/N

1/M

0                                           1                                            2

(M-1)/M
(N-1)/N

Figure 8.

Remark 5.4. If the size difference M − N of two complete bipartite graphs is a
fixed constant C, we again observe the behavior

d1(G,G′) = O(1/N2) as N → ∞.

Proposition 5.5. For two cubes G and G′ of size 2N and 2N+1 respectively, we
have

d1(G,G′) =
1

N + 1
.

Proof. The spectrum of the cube G with 2N vertices is{
2i

N
with multiplicity

(
N

i

)
, i = 0, . . . , N

}
.

Firstly, observe 2i
N = 2j

N+1 when i = j = 0 or i = N , j = N + 1. And for j = i,
we have

2(i− 1)

N
<

2j

N + 1
<

2i

N
, for 1 ≤ i ≤ N.

Secondly, by the recursive formula
(
N+1
k

)
=
(

N
k−1

)
+
(
N
k

)
, for 1 ≤ k ≤ N , we

derive

1

2N+1

k∑
i=0

(
N + 1

i

)
<

1

2N

k∑
i=0

(
N

i

)
<

1

2N+1

k+1∑
i=0

(
N

i

)
, for 0 ≤ k ≤ N − 1.
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Therefore the distance between G and G′ equals the area of the grey region depicted
in Fig. 9. Again by the recursive formula of binomial numbers, we calculate,

    1

0                  1/2  2/3             1              4/3 3/2                   2

15/16
7/8

1/8
1/16

1/2

5/16

11/16

k=1,...,N

2(k-1)/N  2k/(N+1)      2k/N

1
2N+1

N+1

i

k

i=0
(    )

1
2N

N

i

k-1

i=0
(   )

1
2N+1

N+1

ii=0
(    )

k-1

N=3

Figure 9. An example of two neighboring cubes N = 3 and N +
1 = 4.

d1(G,G′) =
N∑

k=1

{(
2k

N + 1
− 2(k − 1)

N

)[
1

2N

k−1∑
i=0

(
N

i

)
− 1

2N+1

k−1∑
i=0

(
N + 1

i

)]

+

(
2k

N
− 2k

N + 1

)[
1

2N+1

k∑
i=0

(
N + 1

i

)
− 1

2N

k−1∑
i=0

(
N

i

)]}

=
1

2NN(N + 1)

{
N∑

k=1

(N − k + 1)

[
2
k−1∑
i=0

(
N

i

)
−

k−1∑
i=0

(
N + 1

i

)]

+k

[
k∑

i=0

(
N + 1

i

)
− 2

k−1∑
i=0

(
N

i

)]}

=
1

2NN(N + 1)

N∑
k=1

[
(N − k + 1)

(
N

k − 1

)
+ k

(
N

k

)]

=
2

2NN(N + 1)

N∑
k=1

k

(
N

k

)
=

2

2NN(N + 1)
·N · 2N−1 =

1

N + 1
.

�
Remark 5.6. The distance between two neighboring cubes (N -cube and (N +1)-
cube) is O(1/N) as N tends to infinity. Recall a crucial difference of this example
from previous ones is that the size difference, 2N , is not uniformly bounded as
N → ∞.

Proposition 5.7. For two paths G and G′ of size N and N + 1 respectively, we
have

d1(G,G′) =
1

N(N + 1)

(
cot2

π

2N
− cot2

π

2(N − 1)
+ 1

)
Proof. The spectrum of the path G with with N vertices is{

1− cos
πi

N − 1
, i = 0, 1, . . . , N − 1

}
.

Since i
N−1 < i+1

N < i+1
N−1 for i = 0, . . . , N − 2, and every eigenvalue of a path has

multiplicity one, the situation is similar to Proposition 5.5, as shown in Fig. 10.
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    1

 0     1-cos(  /4)   2/3             1              4/3  1-cos(3  /4)    2

4/5
3/4

1/2

1/4

3/5

k=1,...,N-1

1-cos(        )

N=4

1/5

2/5

  k-1

N-1
 1-cos(      )

k

N
1-cos(        )

  k

N-1
 

  k+1

N
  k
N+1
  k
N

Figure 10. An example of two neighboring paths N = 3 and
N + 1 = 4.

d1(G,G′) =
N−1∑
k=1

{(
cos

k − 1

N − 1
π − cos

k

N
π

)(
k

N
− k

N + 1

)
+

(
cos

k

N
− cos

k

N − 1
ππ

)(
k + 1

N + 1
− k

N

)}
=

2

N(N + 1)

N−1∑
k=1

k

(
cos

k − 1

N − 1
π − cos

k

N
π

)
=

1

N(N + 1)

(
cot2

π

2N
− cot2

π

2(N − 1)
+ 1

)
.

For the last equality above we use the Lagrange’s trigonometric identities

N∑
k=1

sin kx =
cos 1

2x− cos(n+ 1
2 )x

2 sin 1
2x

,
N∑

k=1

cos kx =
sin(n+ 1

2 )x− sin 1
2x

2 sin 1
2x

,

and their derivatives. �
Remark 5.8. By a Taylor expansion argument, we observe that

cot2
π

2N
− cot2

π

2(N − 1)
= O(N), as N → +∞.

Therefore in this example, we have d1(G,G′) = O(1/N) as N tends to infinity.

We can calculate the example of cycles similarly.

Proposition 5.9. For two cycles G and G′ of size N and N + 1 respectively, we
have

d1(G,G′) =


1
N + 1

N(N+1)

(
1

1−cos( π
N+1 )

− 4
1−cos( 2π

N )

)
, if N is even;

1
N+1 − 1

N(N+1)

(
1

1−cos( π
N ) −

4
1−cos( 2π

N+1 )

)
, if N is odd.

Remark 5.10. For N - and (N + 1)-cycles, we also have d1(G,G′) = O(1/N) as
N tends to infinity.

6. Distance between large graphs

In this section we explore the behaviors of the spectral distance d1 between large
graphs in general. We require two large graphs are different from each other only
by finite steps of operations which will be made clear in Remark 6.1. The main tool
we employ is the so-called interlacing inequalities, which describe the effect on the
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spectrum when we perform some operations on the underlying graph. Such kind of
results for normalized Laplacian of a graph have been studied in [13, 27, 11, 20, 3].
In fact, we can observe the interlacing phenomena of eigenvalues for paths and
cycles in Proposition 5.7 and 5.9.

Let the cardinality of vertices of G and G′ be N and N − j respectively, where
j ∈ Z can be either negative or positive. Assume

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λN and 0 ≤ λ′
1 ≤ λ′

2 ≤ · · · ≤ λ′
N−j

are the spectra of the corresponding normalized Laplacian ∆G and ∆G′ . Then
interlacing inequalities have the following general form.

λi−k1 ≤ λ′
i ≤ λi+k2 , for each i = 1, 2, . . . , N − j, (17)

with the notation that λi = 0 for i ≤ 0 and λi = 2 for i > N , and k1, k2 are
constants independent of the index i.

Remark 6.1. G′ can be obtained from G by performing the following operations.

• G′ is the proper difference of G and one of its subgraph L. We say L is
a subgraph of G if the weights θL,uv ≤ θG,uv for all u, v. And the proper
difference of G and L is a weighted graph with weights θG − θL. In this
case,

k1 = number of vertices in L− number of connected components of L

and

k2 = number of vertices in L

(Horak-Jost [20, Corollary 2.11], see also Butler [11]). This includes the
operation of deleting an edge (see Chen et al [13] for the result for this par-
ticular operation). Symmetrically, this also covers the operation of adding
a graph, see Bulter [11] for particular results and Atay-Tuncel [3] for vertex
replication.

• G′ is the image of an edge-preserving map φ : G → G′. By an edge-
preserving map here we mean an onto map from the vertices of G to vertices
of G′, such that

θH,xy =
∑

u∈φ−1(x)

v∈φ−1(y)

θG,uv

for all vertices x, y of G′, and the degree of vertices are defined according
to the edge weights as usual in both graphs. Notice that for our purpose,
we do not allow φ maps two neighboring vertices in G to the same vertex
in G′ in order to avoid self-loops. In this case,

k1 = 0 and k2 = j.

(Horak-Jost [20, Theorem 3.8].) This includes the operation of contracting
vertices u, v such that N(u)∩(N(v)∪{v}) = ∅ (see Chen et al. [13]), where
N(u) stands for the neighborhood of u.

• G′ is obtained from G by contracting an edge. We only consider edges (u, v)
in G such that du, dv > 1. By edge contracting we mean deleting the edge
(u, v) and identifying u and v (Horak-Jost [20, Definition 4.2]). Denote the
number of common neighbors of u, v by m. Then

when m ̸= 0, k1 = 2m, k2 = 1 + 2m; when m = 0, k1 = 0, k2 = 2.
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(Horak-Jost [20, Theorem 4.1], where the unweighted normalized Laplacian
case was discussed. We do not know whether it is also true for weighted
normalized Laplacian.)

Remark 6.2. To the knowledge of the authors, the above three classes of opera-
tions includes all the operations discussed in the literature for interlacing results of
normalized Laplacian.

We prove the following result.

Theorem 6.3. Let G, G′ be two graphs, for which the spectra of corresponding
normalized Laplacians satisfy (17). Then we have

d1(G,G′) ≤ C(k1, k2, j)
1

N
. (18)

Proof. By definition, we have

d1(G,G′) = dW1

(
1

N

N∑
i=1

δλi ,
1

N + j

N+j∑
i+1

δλ′
i

)
.

By symmetry, w.l.o.g., we can suppose j ≥ 0. We use a particular transport plan
to derive the upper bound estimate. We move the mass 1

N from λi to λ′
i for i =

1, 2, . . . , N − j. We then move the mass at the remaining positions λN−j+1, . . . , λN

to fill the gaps at λ′
1, λ

′
2, . . . , λ

′
N−j with a cost for every transportation at most 2.

That is, we have

d1(G,G′) ≤ 1

N

N−j∑
i=1

|λi − λ′
i|+

j

N
× 2

≤ 1

N

N+j∑
i=1

|λi+k2 − λi−k1 |+
2j

N

≤ k1 + k2 + 1

N

N∑
i=1

|λi+1 − λi|+
2j

N

≤ 2(k1 + k2 + j + 1)
1

N
.

In the second inequality above, we used interlacing inequalities (17). This complete
the proof. �
Remark 6.4. A path of size N can be obtained from a path of size N + 1 by
deleting an edge. A cycle of size N can be obtained from a cycle of size N + 1 by
contracting an edge. Recall our calculation in Proposition 5.7 and 5.9, we see the
estimate (18) is sharp in the order of 1/N .

Remark 6.5. This theorem tells that if two large graphs share similar structure,
then the spectral distance between them is small.

If G′ is the graph obtained from G by performing operations such that k1, k2 are
bounded (then j is also bounded), we say G′ differs from G by a bounded operation.

Corollary 6.6. Let {Gi}∞i=1 be a sequence of graphs with size Ni tending to infinity.
Assume that for any i, G′

i differs from Gi by a uniformly bounded operation, then

lim
i→∞

d1(Gi, G
′
i) = 0

.
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7. Applications to biology networks

In this section, we apply the spectral distance d1 to study the evolutionary
history of networks in biological systems. In networks such as protein interaction
network and genetic network, edge-rewiring and duplication-divergence are two edit
operations which have proven to be closely related to some evolutionary mechanism,
see [21, 25]. In principle, the spectral distance reflects the structure differences
of networks and intuitively describes the corresponding evolutionary process. We
evolve graphs by these two operations and check the connection between the spectral
distance d1 and the evolutionary distance (i.e. the number of evolutionary operation
steps). We restrict our simulations in the following to unweighted graphs.

Let us first explain the two edit operations on an unweighted graph G = (V,E)
explicitly.

• Edge-rewiring: Select randomly two edges v1v3, v4v5 ∈ E on four distinct
vertices v1, v3, v4, v5 ∈ V (see Fig. 11(a)). Delete these two edges v1v3,
v4v5 and add new edges v1v4, v3v5. Note that, after this operation, the size
of the graph is preserved, and so is the degree sequence.

• Duplication-divergence: Select randomly a target vertex v3 ∈ V . Add a
replica v2 of v3 and new potential edges connecting v2 with every neighbor
of v3. Each of these potential edges is activated with certain probability
(0.5 in our simulations). Then if at least one of these potential edges is
established, keep the replica v2; otherwise, delete the replica v2 (see Fig.
11(b)).

Figure 11. (a) Edge-rewiring; (b) Duplication-divergence.

Our simulations are designed as follows. We start form a Barabási-Albert scale-
free graph with 1000 vertices. This is obtained through a mechanism incorporating
growth and preferential attachment from a small complete graph of size 10, see [4],
[5]. For each step of preferential attachment, we add one vertex with two edges. In
fact, this kind of graphs is a very common type of large real networks, particularly
of biological networks. We carry out the edge-rewiring operation on this graph
iteratively without any designed principle, i.e. all the correlative vertices and edges
are chosen randomly. Then we plot the relation of the spectral distance and the
evolutionary distance between new obtained graphs and the original scale-free one,
see Fig. 12. We also evolve this graph by duplication-divergence operations and
investigate the relation between the two distances in that case correspondingly.
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In the plot of Fig. 12, we observe that the spectral distance between graphs
obtained by edge-rewiring operations and the original one increases more quickly
than that obtained by duplication-divergence operations. This indicates that, after
the same number of operation steps, edge-rewiring brings in more randomness to
the graph than duplication-divergence. Recall also the fact that the sizes of graphs
are invariant in the former case and vary in the later case.

Figure 12. The relation between the spectral distance d1 and the
evolutionary distance. Edit operations includes (a) edge-rewiring;
(b) duplication-divergence.

Although there is no strictly linear relation between the two distances, the spec-
tral distance increases monotonically with respect to the evolutionary distance.
Based on this crucial point, the spectral distance is very useful for exploring the
hiding evolutionary history of large real networks.
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