
Max-Planck-Institut

für Mathematik

in den Naturwissenschaften

Leipzig

New Estimates for the Recursive Low-Rank

Truncation

(revised version: September 2014)

by

Wolfgang Hackbusch

Preprint no.: 34 2014

New Estimates for the Recursive Low-Rank Truncation

Wolfgang Hackbusch
Max-Planck-Institut Mathematik in den Naturwissenschaften

Inselstr. 22, D-04103 Leipzig

Abstract

The best approximation of a matrix by a low-rank matrix can be obtained by the singular value
decomposition. For large-sized matrices this approach is too costly. Instead one may use a block de-
composition. Approximating the small submatrices by low-rank matrices and agglomerating them into
a new, coarser block decomposition, one obtains a recursive method. The required computation work
is O(rnm) if r is the desired rank and n × m is the size of the matrix. The paper discusses the errors
A − B and M − A where A is the result of the recursive truncation applied to M , while B is the best
approximation.

AMS Subject Classifications: 65Fxx, 65F30, 15A18, 15A45
Key words: low-rank approximation, singular value decomposition, error estimate, hierarchical matrix

1 Introduction

We consider large-scale matrices M ∈ Rn×m which we want to approximate by low-rank matrices. This
means that we want to determine a matrix A of rank r � min{n,m} such that ‖M −A‖ / ‖M‖ is small.
A matrix of rank ≤ r can be represented in the product form A = XY T with X ∈ Rn×r and Y ∈ Rm×r.
We recall that a matrix A has the rank r, if range(A) = range(X) and range(AT) = range(Y) have the
dimension r. The representation of A by XY T allows us to reduce the storage size nm of the general matrix
A to (n+m) r for X and Y . Also operations involving the matrix A are much cheaper to perform using the
representation XY T.

In the optimal case, the matrix has fast decaying singular values σk. For instance, the technique of
hierarchical matrices is based on the fact that suitable submatrices of a boundary element matrix or of the
inverse of a finite element matrix are of this kind (cf. [4], [3], [1]). In these cases, the matrix M from above
has to be replaced by a particular (non-principal) submatrix.

It is well known that the best low-rank matrix can be determined by the singular value decomposition
(SVD, cf. [9]). Let M =

∑
k σkukv

T
k be the singular value decomposition characterised by the singular

values σ1 ≥ σ2 ≥ . . . and orthonormal systems {uk} ⊂ Rn and {vk} ⊂ Rm. Then the ‘SVD truncation’
B := SVDr(M) :=

∑r
k=1 σkukv

T
k is the best solution with respect to the spectral and Frobenius norm.

Throughout this article, we use the Frobenius norm ‖M‖ :=
√∑

i,jM
2
ij as matrix norm. Orthogonality

X⊥Y of matrices is understood with respect to the Frobenius scalar product 〈X,Y 〉 =
∑
i,j XijYij . The

remainder of the SVD truncation is ‖M −B‖ =
√∑

k>r σ
2
k. If, for instance, σk decays like exp(−ωk), the

accuracy ‖M −B‖ / ‖M‖ ≈ ε can be obtained by the choice r ≈ 1
2ω log(ε−2 + 1) ≈ 1

ω log 1
ε . However, the

difficulty is the fact that the computation of the singular value decomposition is very expensive. The cost is
cubic in the size of the matrix. Furthermore, most of the SVD data are contained in the remainder M −B
and not in the desired part B.

For many numerical purposes it is not necessary to use the best approximation B := SVDr(M) of M .
Quasi-optimal approximations are also welcome. These are rank-r matrices A characterised by

‖A−B‖ ≤ C ‖M −B‖ and ‖M −A‖ ≤ C ′ ‖M −B‖ . (1.1)

Here it is essential that the constants C and C ′ in (1.1) do not depend on the matrix M .
An obvious approach is the approximation of the smallest r eigenvalues (the squared singular values) and

corresponding eigenvectors uk of MMT. This yields A :=
∑r
k=1 σ̃kũkṽ

T
k with ṽk := MTũk/σ̃k as a possible

1

rank-r approximation of M . The estimation of ‖M −A‖ can be based on the error estimates of σ̃k and ũk.
Refined error estimates for the symmetric eigenvalue problem can, e.g., be found in Kandler–Schröder [7].
Unfortunately, these estimates always involve some kind of gap condition. Note that the later worst-case
example in (4.5) has a vanishing gap. Therefore, it is an open question how to get an universal bound for
C ′ in (1.1) with A obtained by Krylov methods.

In this article we describe a cheap method for which we can prove quasi-optimality (1.1). Different
versions of the algorithm yield different constants; however, in practice, the results are much better (often
almost as good as the exact SVD truncation; see the numerical examples in Section 9). The algorithm uses
a ‘recursive truncation’ and is an obvious divide and conquer method1 (precise definition in Section 3):

(A) Assume first that the n × n matrix has the block structure with submatrices of rank ≤ r.
Consequently, has a rank bounded by 4r. Its truncation to rank r can be determined by O(nr2 + r3)
operations.

(B) Assume a 2L × 2L block structure of the target matrix M with L > 1 and blocks of rank ≤ r (e.g.,
for L = 2). This matrix can be considered as a 2L−1×2L−1 block matrix with all blocks subdivided into

. Use Step (A) to approximate each block by a submatrix of rank ≤ r. The result is a 2L−1 × 2L−1

block matrix M with blocks of rank ≤ r. Hence, we can apply again (B) if L− 1 > 1, or (A) if L− 1 = 1.
For the error analysis we consider any splitting M = B −∆ such that rank(B) ≤ r (B := SVDr(M) is

a possible choice). Let A of rank ≤ r be the result of the mentioned recursive truncation. We shall prove
an estimate of the form ‖A−B‖ ≤ C ‖∆‖ . This implies that ‖M −A‖ ≤ (1 + C) ‖∆‖, i.e., inequality (1.1)
holds with C ′ := 1 + C. The decisive factor C will be characterised. If the rank-r truncation by singular
value decomposition is successful, i.e., if ‖∆‖ is small, also A is a good approximation of B and M .

Primarily, these methods are implemented in the hierarchical matrix technique (cf. [3, Alg. 2.11]). The
multiplication Z := XY of two hierarchical matrices leads to an intermediate result Z. The hierarchical
format requires that certain submatrices Z|b must be represented as a rank-r matrix (the exact definition
of the restriction Z|b to the block b is given in (2.1)). However, the intermediate result Z|b is subdivided
into further submatrices (cf. [4, §7.4], [3, §2.1.6]). For instance, A1 := Z|b may be substructured as depicted
below:

A1 A2 A3 A4

*

**

*
* *

**

* *

*** *
**

*
**

*

*
*

*
*

*
*
*

*

Replacing the 2×2 blocks indicated by stars with rank-r matrices, we obtain A2 and analogously A3. Finally,
A := A4 is a global rank-r matrix. Also the recompression technique leads to a similar situation (cf. [4,
§6.7.2]).

The same procedure can be applied to a regular block subdivision as indicated above. The computational
cost of the algorithm as well as the error analysis depends on the kind of the tree describing the recursive
subdivision (cf. §3.1). In the general case,2 the computational work is of the order O(rnm).

Although the bound C in (1.1) depends exponentially on the depth of the block decomposition tree (cf.
(3.4a,b)), the observed behaviour is much better. In fact, one can argue that high amplification factors
are not probable (cf. Corollary 5.12). In the special case of unidirectional block decompositions also the
theoretical bound C is much better behaved.

The basic linear algebra tools are (1) the QR decomposition (possibly with pivoting) and (2) the SVD
algorithm. The latter algorithm is only applied to matrices of the size O(r). The QR computation is needed
to split general (small) matrices into the product XY T where X and Y consist of r columns. To bound
the cost of the described algorithms explicitly, we assume that the QR decomposition of an n ×m matrix
(m ≤ n) costs 4nm2 operations, while a singular value decomposition of an n × n matrix requires 21n3

operations. These numbers are taken from [2, §5.2.9 and §5.4.5]. In particular the last number should not
be misunderstood as a strict bound but as an empirical value.3

1The algorithm is completely different from spectral divide and conquer methods, as they are analysed, e.g., in [8] and the
literature cited therein.

2The applications to hierarchical matrices are cheaper because of their special structures.
3In principle, the cost must depend on the underlying machine precision. The constants also depend on the implemented

version of the algorithms etc. We introduce these explicit numbers to be able to indicate the cost of the later algorithm
quantitatively. Otherwise, only statements using O(. . .) are possible.

2

Another recursive truncation is used for the rank-r truncation of a sum M =
∑L
k=0Mk of matrices Mk of

rank ≤ r. The recursion S0 := M0 and Sk := SVDr(Sk−1+Mk) (1 ≤ k ≤ L) results in A = SL, which is taken
as an approximation of B = SVDr(M) (cf. [4, §2.6.3]). Here, the well-known cancellation effect can occur.
Already for L = 1, one can construct matrices M0 and M1 such that M = M0 +M1 = SVDr(M) = B, while
SVDr(M0) = −SVDr(M1) so that A = 0. In this case, inequality (1.1) cannot hold because of M −B = O:
‖A−B‖ = ‖M‖ � C ‖∆‖ . However, in the present case, cancellation is excluded, since we consider the
agglomeration A,B 7→ [A B] of matrices. Formally, the matrices are extended by zero: A 7→ [A O] and
B 7→ [O B] (this does not change the rank) and the extended matrices are added: [A B] = [A O] + [O B].
Cancellation is prevented by the fact that the latter terms are orthogonal with respect to the Frobenius
scalar product.

In Section 2 we introduce the notations, the representation of rank-r matrices in the product form XY T,
and the singular value decomposition.

The recursive truncation algorithm is described in Section 3. The algorithm in §3.2 uses a partition tree
introduced in §3.1. We illustrate the block decomposition by four typical model examples.

The analysis in Section 5 applies to general block decompositions. We discuss the error estimate in the
general case and for the mentioned model examples. The proof is based on an estimate stated in Theorem
4.5. Although this result is sharp, we show in Section 6 that the worst case is rather improbable. In
particular, for applications which are typical for hierarchical matrices, we show much better estimates under
the condition that the error M − SVDr(M) is equally distributed over the matrix entries.

A particular block decomposition is the unidirectional splitting studied in Section 7. In this case, quite
different tools can be used for an estimate of the error. The bound is given by the square root of the
depth of the tree (see Theorem 7.2). Note that the depth of the tree is O(log n), where n is the size of the
matrix. Section 8 discusses the combination of two unidirectional splittings (column-wise and row-wise).
The previous result still allows satisfactory error bounds. The numerical examples in Section 9 show that
the practical results are by far better than the theoretical bounds.

2 Basic Statements

2.1 Notations

If S is any set, #S denotes the cardinality of this set.
If I and J are finite index sets, RI is the set of vectors (vi)i∈I with vi ∈ R. Similar for RJ . We consider

real vector spaces, but note without further comment that the algorithms extend straightforwardly to the
complex case.

If τ ⊂ I is a subset, the restriction v|τ ∈ Rτ denotes the vector (vi)i∈τ .
The vector space RI×J of matrices consists of (Mij)(i,j)∈I×J , where Mij ∈ R. The set b = τ × σ with

τ ⊂ I and σ ⊂ J is called a block (in I × J). The restriction of a matrix M to b yields the matrix block

M |b := (Mij)(i,j)∈τ×σ ∈ R
τ×σ. (2.1)

Vice versa, the extension of M ∈ Rτ×σ to the larger index set I × J is defined by M |I×J with the entries

(M |I×J)ij = Mij for (i, j) ∈ τ × σ and (M |I×J)ij = 0 otherwise.

R(r, I, J) denotes the subset of matrices of a rank not exceeding r:

R(r, I, J) :=
{
M ∈ RI×J : rank(M) ≤ r

}
.

The agglomeration A,B 7→ [A B] of A ∈ Rτ×σ′ and B ∈ Rτ×σ′′ into [A B] ∈ Rτ×σ for the disjoint union
σ = σ′ ∪̇σ′′ is formally defined by

[A B] := A|τ×σ +B|τ×σ. (2.2a)

Similarly, we have agglomerations of the types

A,B 7→
[
A
B

]
∈ Rτ×σ for A ∈ Rτ

′×σ, B ∈ Rτ
′′×σ, τ = τ ′ ∪̇ τ ′′ (2.2b)

3

and

A11, A12, A21, A22 7→
[
A12 A12

A21 A22

]
for Aij ∈ Rτi×σj , σ = σ1 ∪̇σ2, τ = τ1 ∪̇ τ2. (2.2c)

For all cases, we use the respective notations Aggl{A,B} and Aggl{A11, A12, A21, A22}. The context will
indicate the underlying case (2.2a–c).

2.2 r-Term Representation

Whenever a matrix M belongs to R(r, τ, σ), we use the representation

M = XY T with X ∈ Rτ×ρ, Y ∈ Rσ×ρ, ρ = {1, . . . , r}. (2.3)

If x(k), y(k) are the k-th columns of X and Y , the equivalent equation M =
∑r
k=1 x

(k)y(k)T explains the
name ‘r-term representation’. M ∈ R(r, τ, σ) may have a rank r′ lower than r. Then, formally, we can add
r − r′ zero terms to again obtain

∑r
k=1 x

(k)y(k)T.

The sum of M1 = X1Y
T
1 and M2 = X2Y

T
2 can be described without computational cost. Write X1 ∈

Rτ×ρ1 and Y1 ∈ Rσ×ρ1 with ρ1 = {1, . . . , r} as in (2.3), but use the disjoint set ρ2 = {r + 1, . . . , 2r} for
X2 ∈ Rτ×ρ2 and Y2 ∈ Rσ×ρ2 . Then

M1 +M2 = M = [X1 X2][Y1 Y2]T with X ∈ Rτ×ρ, Y ∈ Rσ×ρ, ρ = {1, . . . , 2r}

involves the agglomerated factors X = [X1 X2] and Y = [Y1 Y2], for which the enlarged ranks are at most
2r.

Remark 2.1 Let #τ = #ρ = r. If a matrix M ∈ Rτ×ρ is given as full matrix, M belongs to R(r, τ, ρ) and
the QR decomposition M = QR yields the r-term representation (2.3). The related computational cost is
4r3 (cf. [2, §5.2.9]).

2.3 Singular Value Decomposition

The singular value decomposition of a matrix M with µ := rank(M) is the µ-term representation

M =

µ∑
k=1

σkukv
T
k with {uk} and {vk} orthonormal, σ1 ≥ σ2 ≥ . . . ≥ σµ > 0. (2.4)

For r ≤ µ the matrix M ∈ RI×J can be split into

M = A+ E with A = SVDr(M) :=

r∑
k=1

σkukv
T
k ,

while E =
∑
k>r σkukv

T
k is the remainder. SVDr(M) is called the rank-r truncation of M . SVDr(M)

is optimal in the sense that ‖M − SVDr(M)‖ = min{‖M −B‖ : B ∈ RI×J , rank(B) ≤ r}. Note that
SVDr(M) is uniquely defined if and only if σr 6= σr+1. If σr = σr+1, SVDr(M) denotes one of the possible
solutions selected by the particular software.

A typical SVD application is the truncation of a matrix M given in the format M = XY T with X ∈ Rn×s
and Y ∈ Rm×s, s > r, to rank r. Concerning the stability of the representation M = XY T, note that the
following constructions (QR, SVD) lead to factors which are either orthogonal4 up to scaling or at least
triangular.

Algorithm 2.2 Assume M = XY T ∈ Rn×m with X ∈ Rn×s and Y ∈ Rm×s, min{n,m} ≥ s > r.
(a) Determine the QR decompositions X = QXRX and Y = QYRY (QX ∈ Rn×s, QY ∈ Rm×s, RX , RY ∈
Rs×s; cost: 4ns2 + 4ms2).
(b) Compute the product P := RXR

T
Y ∈ Rs×s (cost: 1

3s(2s
2 + 1)).

(c) Determine SVDr(P) = UΣV T (U, V ∈ Rs×r orthogonal, Σ = diag{σ1, . . . , σr}; cost: 21s3, cf. [2,

4We use the term ‘orthogonal matrix’ also for rectangular matrices whose columns are pairwise orthonormal.

4

§5.4.5]).
Then, SVDr(M) = QXUΣV TQT

Y is the desired SVD truncation. To obtain again a representation of the
form SVDr(M) = X ′Y ′T, set X ′ := QXUΣ and Y ′ := QY V (cost: (1 + 2n+ 2m)rs− (n+m) r). The total
cost is

2 (n+m) (2s+ r) s+
65

3
s3 + (s−m− n) r +

1

3
s. (2.5a)

Sharper bounds can be obtained if we exploit the special block structures of the matrices X, Y, and of
their QR factors.

Corollary 2.3 Let M be the agglomeration of matrices of rank ≤ r. Depending of the agglomeration pro-
cedure, the following bounds hold (compare Footnote 3):

truncation cost ≤

 (20n+ 6m) r2 + 511
3 r3 +

(
2
3 + 2r − n−m

)
r for case (2.2a),

(6n+ 20m) r2 + 511
3 r3 +

(
2
3 + 2r − n−m

)
r for case (2.2b),

20 (n+m) r2 + 4064
3 r3 +

(
4
3 + 2r − n−m

)
r for case (2.2c).

 (2.5b)

Proof. (i) Consider the case (2.2a), i.e., M = [M1 M2] with Mi = XiY
T
i , Yi ∈ Rmi×r, m = m1 + m2.

Extension by zero yields

[M1 O] = X1

[
Y1

O

]T
, [O M2] = X2

[
O
Y2

]T
, M = XY T with Y =

[
Y1 O
O Y2

]
.

Since X = [X1 X2] has no special structure, the QR decomposition of X = QXRX costs 4n (2r)
2

operations.
However, the QR decomposition of Y can be reduced to the QR decompositions Yi = QiRi (i = 1, 2),

requiring 4mr2 operations. Y = QYRY holds with QY =

[
Q1 O
O Q2

]
and RY =

[
R1 O
O R2

]
. Hence, the

cost of part (a) is 4n (2r)
2

+ 4mr2 = (16n+ 4m) r2.
The multiplication RXR

T
Y is cheaper than in the general case because of the upper right zero block and

requires less than 7
3r

3 + 2
3r operations.

The SVD cost is 21 (2r)
3
. The multiplication QXUΣ needs (1 + 2n)2r2 − nr operations, while QY V is

cheaper because of the block diagonal form of QY : 2mr2 −mr operations. The sum of all terms yields the
first line in (2.5b).

(ii) Case (2.2b) coincides with case (2.2a) applied to the transpose MT. This proves the second line in
(2.5b).

(iii) Case (2.2c) leads to X =

[
X1 O
O X2

]
, Xi ∈ Rni×2r, Y =

[
Y1 O
O Y2

]
, Yi ∈ Rmi×2r with n1+n2 = n,

m1 + m2 = m. Correspondingly, the matrices QX , RX are of the form QX =

[
Q1 O
O Q2

]
, Qi ∈ Rni×2r,

RX =

[
R1 O
O R2

]
, Ri ∈ R2r×2r, and similar for QY , RY . The arising costs are:

(a) 4 (n+m) (2r)2 for the QR decompositions,
(b) 2 ∗ 1

3 (2r)(2(2r)2 + 1) for the multiplication RXR
T
Y ,

(c) 21(4r)3 for the singular value decomposition, (4n+ 2) r2 − nr for the multiplication in QXUΣ, and
(4r − 1)mr for the multiplication QY V . In total, we obtain the number in the third line of (2.5b).

3 Recursive Truncation Algorithm

3.1 Partition Tree

The opposite of the agglomeration is the partition of the matrix (or of a matrix block) into submatrices.
Formally, this recursive partition is described by a tree T . The root of the tree is the index pair I × J . For
the partition of I × J we consider three possibilities.

(A) Partition of J (→). Let J = σ1 ∪̇σ2 be a disjoint union. This induces the partition of I × J
into the two blocks bi := I × σi (i = 1, 2).

5

(B) Partition of I (→). Let I = τ1 ∪̇ τ2 be a disjoint union. This induces the partition of I × J
into the two blocks bi := τi × J (i = 1, 2).

(C) Partition of I and J (→). Let I = τ1 ∪̇ τ2 and J = σ1 ∪̇σ2 as above. This induces the
partition of I × J into the four blocks bij := τi × σj (i, j = 1, 2).

We define the set of sons of I×J by S(I×J) := {b1, b2} (cases A and B) and S(I×J) := {b11, b12, b21, b22}
(case C), respectively.

The obtained blocks can be split again into subblocks according to the rules A–C. If a block b is not
partitioned further (i.e., S(b) = ∅), b is called a leaf of the tree. The set of all leaves yields the final block
partition

P := {b ∈ T : S(b) = ∅}. (3.1)

Remark 3.1 P satisfies
⋃
b∈P b = I × J (disjoint union).

Remark 3.2 If we want to truncate the matrix M ∈ RI×J to rank r, blocks b = τ×σ with min{#τ,#σ} ≤ r
should not be subdivided.

Each node b ∈ T of the tree has a level number. Its recursive definition is level(I × J) := 0 and,
level(b′) = level(b) + 1 for b′ ∈ S(b). The value level(b) can be interpreted as the length of the path from the
root to b. We define depth(T) := maxb∈T level(b) and

T (`) := {b ∈ T : level(b) = `} for 0 ≤ ` ≤ depth(T).

The following examples will be used later as model cases.

Example 3.3 Let M ∈ RI×J with #I = 2Lr, where r, L ∈ N. Apply the partition rule B L times, i.e., any
b := τ × J ∈ T is split into b1 := τ1 × J and b2 := τ2 × J . The size of the index subset τ in b = τ × J ∈ T (`)

is #τ = 2L−`r (regular splitting). L is the depth of the tree; i.e., the leaves are blocks b = τ ×J with #τ = r
(cf. Remark 3.2). The following picture illustrates the case of L = 3:

Example 3.4 Let M ∈ RI×J with #I = #J = 2pr, where r, p ∈ N. Apply L := 2p partition steps according
to the rules A, B, A, B,. . . , A, B in this order. The size of the index subsets τ, σ in b = τ × σ ∈ T (`) is
#τ = #σ = 2p−`/2r for even `, while it is #τ = 2p−(`−1)/2r and #σ = 2p−(`+1)/2r for odd `. L is the depth
of the tree; i.e., the leaves are blocks b = τ × σ with #τ = #σ = r (cf. Remark 3.2). The following picture
illustrates the case of L = 4:

The same partition as in Example 3.4 is also obtained by the next tree.

Example 3.5 Let M ∈ RI×J with #I = #J = 2Lr, where r, L ∈ N. Apply the partition rule C L times.
The size of the index subsets τ, σ in b = τ × σ ∈ T (`) is #τ = #σ = 2L−`r. L is the depth of the tree; i.e.,
the leaves are blocks b = τ × σ with #τ = #σ = r. The following picture illustrates the case of L = 2:

The previous examples lead to regular balanced trees. Note that L = O(log #I/r).
In the context of the hierarchical matrix technique, for instance the following partition is of interest.

6

Example 3.6 Let M ∈ RI×J with #I = #J = 2Ln0, where n0, L ∈ N. Apply the partition rule C L times,
but only to one son of S(b) as indicated in the following illustration:

Tree:

L is the depth of the tree. Now the partition P consists of blocks b ∈ T (`)∩P of different sizes 2L−`n0×2L−`n0

(` = 1, . . . , L). It is assumed that all submatrices M |b (b ∈ P) are represented in the form M |b = XbY
T
b .

3.2 Algorithm

Assume that a matrix M ∈ RI×J and a tree T with the partition P (cf. (3.1)) is given. r ∈ N is the desired
rank for the truncation. The next remark defines Ab for the blocks b ∈ P .

Remark 3.7 Concerning the submatrices M |b for b = τ × σ ∈ P we can distinguish three cases:
(i) M |b is already given by the product M |b = XbY

T
b with Xb ∈ Rτ×ρ and Yb ∈ Rσ×ρ for ρ = {1, . . . , r}

(i.e., M |b ∈ R(r, τ, ρ)). Set Ab := M |b.
(ii) M |b is given as full matrix with min{#τ,#σ} ≤ r. Then M |b ∈ R(r, τ, ρ) holds and the representation

M |b = XbY
T
b from case (1) can be determined by a QR decomposition (cost ≤ 4r2 max{#τ,#σ}). Set

Ab := M |b.
(iii) M |b is given as full matrix and min{#τ,#σ} > r. Then set Ab := SVDr(M |b). The SVD cost is

21 min{#τ,#σ}2 max{#τ,#σ}. The product Ab = XbY
T
b is a side product of the singular value decomposi-

tion.

As a result of this preparation, we have a representation Ab = XbY
T
b ∈ R(r, τ, ρ) approximating M |b for

all b ∈ P . Now the following algorithm is applied.

for ` := depth(T)− 1 downto 0 do for all b ∈ T (`) do
if b /∈ P then

begin Âb := Aggl{Ab′ : b′ ∈ S(b)};
Ab := SVDr(Âb)

end;

(3.2)

The truncation Ab := SVDr(Âb) includes the computation of the representation Ab = XbY
T
b . The

algorithm terminates with ` = 0. The only block in T (0) is b = I × J, i.e., the truncation

A = AI×J (3.3a)

of M is computed. In the following, we shall discuss the difference between A and the optimal SVD truncation

B := SVDr(M). (3.3b)

Note that the truncation of the submatrices always uses the destination rank r. Using smaller ranks for
truncating smaller-sized matrices is not appropriate, since then we cannot prove the desired estimate (1.1)
with a bound C ′ independent of the matrix. A counter-example is the matrix M ∈ RI×J with support in b,
i.e., M = (M |b)I×J .

In §5 we shall prove the estimate

‖A−B‖ ≤ q1+L ‖M −B‖ for A,B in (3.3a,b), (3.4a)

where q := 1+
√

5
2 is derived from Theorem 4.5, while L = depth(T) is the depth of the underlying partition

tree. This estimate corresponds to (1.1) with C = q1+L. More detailed results for the model problems are
presented in §5.2.

For the particular unidirectional partition defined in §7 the better estimate

‖A−B‖ ≤
(

1 +
√
L+ 1

)
‖M −B‖ (3.4b)

7

will be stated in Theorem 7.2.
We do not claim that the inequalities (3.4a,b) are sharp. Optimal bounds are unknown. Next we give

some examples. Let Ir be the unit matrix in Rr×r and define En ∈ Rn×n by the entries En,ij := 1.

Example 3.8 (a) A possible realisation of algorithm (3.2) with r = 1 for the tensor product M := I2⊗E2 ∈
R4×4 is

M =

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

7→

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

7→

1 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

7→

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

= A.

Note that the local SVD truncations are non-unique. Therefore one can construct A such that the entry 1
appears at any position (i, j) with i + j even. Embedding M into a larger matrix and choosing a similar
truncation strategy, M := I2 ⊗ En ∈ R2n×2n may yield the result A with A11 = 1 and Aij = 0 otherwise.

Together with B :=

[
0 0
0 1

]
⊗En, the norms ‖A−B‖2 = 1+n2, ‖M −A‖2 = 2n2−1, and ‖M −B‖2 = n2

show that ‖A−B‖/ ‖M −B‖ > 1 and ‖M −A‖ / ‖M −B‖ = 2− n−2.
(b) Similar (but more involved) constructions for larger r can be applied to M := Ir+1 ⊗ En and

lead to ‖A − B‖2 = Cr + rn2, ‖M −A‖2 = (r + 1)n2 − Cr, and ‖M −B‖2 = n2. Therefore, the ratio
‖M −A‖ / ‖M −B‖ approaches

√
r + 1. This shows that (3.4a,b) cannot hold with a constant independent

of r.

4 A Perturbation Estimate

An essential tool for the later analysis of algorithm (3.2) is Theorem 4.5. A weaker result stated in Grasedyck–
Hackbusch [3] is based on the following trivial estimate (4.3), which can be regarded as a perturbation
analysis. In the case of M = A with A ∈ R(r, I, J), the SVD result B = SVDr(M) coincides with A, i.e.,
‖A−B‖ = 0. Now we perturb A by ∆ and ask for the norm of B −A = SVDr(A−∆)−A. The following
assumption µ > r avoids the trivial case of M = A.

Lemma 4.1 Assume M ∈ RI×J with µ := rank(M) > r. Let

M = A−∆ with A ∈ R(r, I, J) (4.1a)

be an arbitrary splitting, while the optimal SVD splitting is given by

M = B + E with B = SVDr(M). (4.1b)

(a) Then the remainder E in (4.1b) can be estimated by

‖E‖ ≤ ‖∆‖ . (4.2)

(b) Furthermore, the matrices A and B differ by

‖A−B‖ = ‖∆ + E‖ ≤ 2 ‖∆‖ . (4.3)

Proof. Part (a) follows from the best approximation property of the SVD truncation. Part (b) is an easy
consequence of (a).

Estimate (4.3) is too pessimistic as proved next. We introduce the following supremum:

qI×J := q := sup
M=A−∆=B+E∈RI×J according

to (4.1a,b) with ∆6=0

‖A−B‖
‖∆‖

. (4.4)

Note that the supremum is taken over all pairs M,A ∈ RI×J , while B and E result from (4.1b). This
states that the estimate ‖A−B‖ ≤ q ‖∆‖ holds for all matrices M ∈ RI×J independently of their (spectral)
properties.

The later results will show that qI×J does not depend on I×J provided that #I,#J ≥ 2. Therefore, we
write q instead of qI×J . Inequality (4.3) states that q ≤ 2. Next we prove that the supremum is a maximum.

8

Lemma 4.2 There are matrices M , A, B satisfying (4.1a,b) and ‖A−B‖‖∆‖ = q with q defined in (4.4).

Proof. Let I × J be fixed. First we assume that ‖A− B‖/ ‖∆‖ = q − ε holds for all matrices M,A ∈ RI×J
with ε = ε(M,A) > 0. Since inequality (4.3) is scaling invariant and ∆ does not vanish, we restrict ourselves
to matrix pairs with ‖∆‖ = 1. There is a sequence Mk, Ak ∈ RI×J with ε(Mk, Ak) → 0. By compactness,
there is a subsequence such that ∆k := Ak −Mk → ∆ with ‖∆‖ = 1. The matrices Mk, Ak may diverge,
but their divergent parts must coincide. Consider Bk = SVDr(Mk) =

∑r
ν=1 σν,kuν,kv

T
ν,k. The diverging

part Bdiv
k :=

∑∗
σν,kuν,kv

T
ν,k sums over those ν with supk σν,k = ∞. Set Dk :=

∑∗
(σν,k − 2)uν,kv

T
ν,k

and define M̂k := Mk − Dk and Âk := Ak − Dk. By construction, M̂k and Âk are bounded and B̂k :=
SVDr(M̂k) = SVDr(Mk) −Dk, i.e., Ek and ∆k are not changed by this construction (note that ‖∆k‖ = 1
implies σν,k ≤ 1 for all singular values of Ek := Mk − Bk). Choosing a second subsequence, the limits

M,A,B,E of M̂k, Âk, B̂k, Ek exist and prove ‖∆ + E‖ = q ‖∆‖ for the pair M, A.

Corollary 4.3 Estimate (4.3) is not sharp; i.e., q < 2.

Proof. Assuming q = 2, Lemma 4.2 states the existence of a pair (M,A) such that ‖A − B‖ = 2 ‖∆‖ and
∆ 6= 0. Because (4.2), ‖∆ + E‖ = ‖∆‖ + ‖E‖ and ‖E‖ = ‖∆‖ hold. The first equality implies that ∆ and
E are linearly dependent, since ‖·‖ is a Hilbert norm. The second equation shows that ∆ = E. We conclude
that M = A − E = B + E and A = B + 2E with E 6= 0. The structures of B and E in (4.1b) imply that
rank(A) = rank(B + 2E) = µ > r, in contradiction to A ∈ R(r, I, J).

On the other hand, q is larger than one, as proved by the following example.

Example 4.4 Let M =

[
1 0
0 1

]
and r = 1. Possible realisations of (4.1a,b) are given by

A =

[
0 0

0 1+
√

5
2

]
, ∆ =

[
−1 0

0 −1+
√

5
2

]
, B =

[
1 0
0 0

]
, E =

[
0 0
0 1

]
.

Then ‖A−B‖ =

∥∥∥∥[1 0

0 − 1+
√

5
2

]∥∥∥∥ =

√
5+
√

5
2 and ‖∆‖ =

√
5−
√

5
2 prove q ≥ 1+

√
5

2 = 1.618

In this example, the SVD truncation B is not unique. However, uniqueness holds for M =

[
1 0
0 1− ε

]
,

A =

[
0 0

0 (1 +
√

5)/2− ε

]
with 0 < ε < 1. Then q ≥ (1 +

√
5)/2 −O(ε) and the definition q := sup{. . .}

in (4.4) imply again that q ≥ (1 +
√

5)/2.
The above example turns out to be the worst case. The next theorem states that Lemma 4.1 holds with

1+
√

5
2 ‖∆‖ in (4.3) instead of 2 ‖∆‖ and that this estimate is sharp.

Theorem 4.5 The quantity in (4.4) is q = 1+
√

5
2 .

Proof. (i) In RI (RJ) we use the orthogonal basis obtained by extension of {uk} ({vk}) from (2.4). Then the
matrix representations of M , B, and E with respect to these bases are diagonal: M = diag{σ1, σ2, . . .}, B =
diag{σ1, . . . , σr, 0, . . .}, E = diag{0, . . . , 0, σr+1, . . .}. Split A into the diagonal part A0 := diag{A11, A22, . . .}
and A⊥ := A − A0. Note that A⊥ is perpendicular to any diagonal matrix, in particular to M , B, and E.
Let ∆ = ∆0 + ∆⊥ be the analogous splitting. One concludes that A⊥ = ∆⊥ and that(

‖A−B‖
‖∆‖

)2

=
‖A0 −B‖2 + ‖A⊥‖2

‖∆0‖2 + ‖∆⊥‖2
=
‖A0 −B‖2 + ‖∆⊥‖2

‖∆0‖2 + ‖∆⊥‖2
≤
(

max

{
‖A0 −B‖
‖∆0‖

, 1

})2

.

Since we want to maximise ‖A − B‖/ ‖∆‖, we consider only the case ‖A0 − B‖/ ‖∆0‖ > 1. The existence
of such matrices is given by Example 4.4. Then the unique maximum is attained for ‖∆⊥‖ = 0, i.e., the
critical choice of A has to be diagonal.

9

(ii) A diagonal matrix A with the additional property A ∈ R(r, I, J) contains at most r diagonal entries;
i.e., there is an index subset I ′ with5

#I ′ = r, A =
∑
i∈I′

λiuiv
T
i .

Split I ′ into I ′1 := I ′∩{1, . . . , r} and I ′2 := I ′∩{r+1, . . . , µ}. Similarly, the complement I ′′ := {1, . . . , µ}\I ′ is
split into I ′′1 and I ′′2 . Hence, the unions in I ′1∪I ′2 = I ′, I ′′1 ∪I ′′2 = I ′′, I ′1∪I ′′1 = {1, . . . , r}, I ′2∪I ′′2 = {r+1, . . . , µ}
are disjoint.

A corresponds to the perturbation ∆ = A −M =
∑
i∈I′ (λi − σi)uivTi −

∑
i∈I′′ σiuiv

T
i . The quantity

considered above is equal to(
‖A−B‖
‖∆‖

)2

=

∑
i∈I′1

(λi − σi)2 +
∑
i∈I′′1

σ2
i +

∑
i∈I′2

λ2
i∑

i∈I′ (λi − σi)
2

+
∑
i∈I′′ σ

2
i

=

[∑
i∈I′1

(σi − λi)2 +
∑
i∈I′′1

σ2
i

]
+
∑
i∈I′2

λ2
i[∑

i∈I′1
(λi − σi)2

+
∑
i∈I′′1

σ2
i

]
+
∑
i∈I′2

(λi − σi)2
+
∑
i∈I′′2

σ2
i

.

The expression is strictly maximised by shifting all indices of I ′1 into the part I ′2 and choosing λi (i ∈ I ′2)

such that (λi − σi)2
< σ2

i . As a result I ′1 = ∅ holds. Then the values σ2
i for i ∈ I ′′2 only appear in the term∑

i∈I′′2
σ2
i of the denominator. Hence the choice σi = 0 for i ∈ I ′′2 increases the expression again, which is

now of the simpler form(
‖A−B‖
‖∆‖

)2

=

∑
i∈I′′1

σ2
i +

∑
i∈I′2

λ2
i∑

i∈I′′1
σ2
i +

∑
i∈I′2

(λi − σi)2 with #I ′′1 = #I ′2 = r.

The next maximisation step concerns the singular values σi for i ∈ I ′′1 = {1, . . . , r}, while the values σi for
i ∈ I ′2 are fixed. Set σ := σr+1. The expression ‖A− B‖/ ‖∆‖ increases if the sum

∑
i∈I′′1

σ2
i decreases. Its

minimal value is rσ for the constant choice σk = σ for 1 ≤ k ≤ r, since the σi are ordered by size. For i ∈ I ′2
replace σi by σ ≥ σi and λi by λi + σ − σi. This increases the value again and yields(

‖A−B‖
‖∆‖

)2

=
rσ +

∑2r
i=r+1 λ

2
i

rσ +
∑2r
i=r+1 (λi − σ)

2 .

Optimisation with respect to λi yields λ := 1+
√

5
2 σ for all i. Insertion yields ‖A−B‖‖∆‖ ≤ 1+

√
5

2 . This shows

that q = 1+
√

5
2 is the maximum of ‖A−B‖/ ‖∆‖.

Since the previous steps are strict maximisations, the matrices M and A attaining this bound must be
of the form

M = σ I2r , A =

[
0 0
0 λIr

]
, ∆ =

[
−σIr 0

0 (λ− σ)Ir

]
, B =

[
σIr 0
0 0

]
, (4.5)

with σ 6= 0 and λ = 1+
√

5
2 σ, where Ir denotes the identity matrix of size r × r.

Let A ∈ R(r, I, J) be any rank-r approximation of M . A simple modification yields a possibly better
approximation: M = Â− ∆̂ with Â := ωA, ω := 〈A,M〉 /‖A‖2, and ∆̂ := ωA−M . The choice of ω ensures
that Â⊥ ∆̂. Â can be considered as ΠM , where Π is the orthogonal projection onto span{A}.

In Proposition 5.1 we shall show for particular cases that A⊥∆ holds for the unmodified matrices.

Remark 4.6 Under the additional condition A⊥∆, the maximal value q in (4.4) is q =
√

2. This maximum
is taken for the matrices from (4.5) with λ replaced by σ.

5 First Approach

The following estimations can be used for all block decompositions, while the second approach from Section 7
applies only to the unidirectional splitting as, e.g., in Example 3.3.

5The possible case of rank(A) < r is included since we may choose λi = 0.

10

5.1 Comparison with B|b
For M ∈ RI×J we consider the optimal SVD splitting

M = B −∆ with B := SVDr(M) (5.1)

(for theoretical purpose only). The following statements about the restrictions B|b and ∆|b to the blocks of
the tree T are trivial, but important:

‖∆‖2 =
∑
b∈P

‖∆|b‖2 , ‖∆|b‖2 =
∑

b′∈S(b)

‖∆|b′‖2 for b ∈ T\P. (5.2)

The property B ∈ R(r, I, J) implies

B|b ∈ R(r, τ, σ) for b = τ × σ ∈ T. (5.3)

The agglomeration is trivial:

B|b = Aggl{B|b′ : b′ ∈ S(b)}, ∆|b = Aggl{∆|b′ : b′ ∈ S(b)}. (5.4)

Although B is the optimal rank-r matrix, this statement does not hold for the restriction B|b (b 6= I×J).
Its remainder is ∆|b:

M |b = B|b −∆|b. (5.5)

Nevertheless, for the analysis, we consider the distance of Ab from B|b:

Ab = B|b − Fb, (5.6)

and try to estimate Fb := B|b − Ab. We recall that Ab (b ∈ P) are the matrices determined by algorithm
(3.2).

Proposition 5.1 The definition of B and ∆ implies B⊥∆. In general, B|b⊥∆|b does not hold for the
blocks of T\{I × J}. However, if b is of the form τ × J or I × σ, B|b⊥∆|b is valid.

Proof. The block b := I × {j} (j ∈ J) is a column. One easily verifies that the columns B|b, ∆|b are
perpendicular. This proves B|b⊥∆|b for b = I × σ. Similar for b = τ × J .

For leaves b ∈ P we have Ab := SVDr(M |b) (if M |b ∈ R(r, b), Ab = M |b holds). Theorem 4.5 proves that

‖Fb‖ = ‖Ab −B|b‖ ≤ q ‖∆|b‖ for b ∈ P (q = 1+
√

5
2) (5.7)

If b /∈ P, the algorithm computes Âb := Aggl{Ab′ : b′ ∈ S(b)} and Ab := SVDr(Âb). Statement (5.4) implies
that

Âb = B|b − Êb with Êb := Aggl{Fb′ : b′ ∈ S(b)};

therefore,

‖Êb‖2 =
∑

b′∈S(b)

‖Fb′‖2 .

Let Eb be the SVD remainder in

Âb = Ab + Eb with Ab := SVDr(Âb). (5.8)

This implies that (5.6) holds with
Fb := Êb + Eb.

Again, Theorem 4.5 states that

‖Fb‖ = ‖B|b −Ab‖ ≤ q ‖Êb‖ = q

√ ∑
b′∈S(b)

‖Fb′‖2

with q = 1+
√

5
2 . This proves the following lemma.

11

Lemma 5.2 The norm of Fb satisfies the recursive inequality

‖Fb‖2 ≤ q2
∑

b′∈S(b)

‖Fb′‖2 for b ∈ T\P, (5.9)

while ‖Fb‖ ≤ q‖∆|b‖ for b ∈ P . The final result A := AI×J satisfies ‖A−B‖ = ‖FI×J‖ for B = SVDr(M).

Corollary 5.3 (a) Let χ be the matrix defined by χij = q`+1 with ` := level(b) and b ∈ P such that (i, j) ∈ b.
Then6

‖A−B‖ ≤ ‖χ ◦∆‖

holds with ∆ from (5.1). An equivalent estimate is ‖A−B‖2 ≤
∑
b∈P q

2(1+level(b))‖∆|b‖2.
(b) An upper bound is ‖A−B‖ ≤ q1+L‖∆‖ with L = depth(T).

Proof. (a) The inductive hypothesis is ‖Fb‖2 ≤
∑
b′∈P,b′⊂b q

2(1+level(b)−level(b′))‖∆|b′‖2. The induction starts
at the leaves. Here, the statement follows from (5.7), since the only block b′ ∈ P with b′ ⊂ b is b′ = b.

Let b ∈ T\P and assume that the hypothesis holds for the sons b′ ∈ S(b). The statement for ‖Fb‖2
follows from (5.9) and level(b′) = level(b) + 1.

(b) For part (b) use level(b) ≤ L and
∑
b∈P ‖∆|b‖2 = ‖∆‖2.

5.2 Application to the Model Problems

We discuss the previous estimate for Examples 3.3 to 3.6. Furthermore, we describe the computational work
of the recursive truncation.

Proposition 5.4 The recursive truncation (3.2) applied to Example 3.3 yields a result A := AI×J satisfying

‖A−B‖ ≤ qL+1 ‖∆‖ (5.10)

with L = depth(T) = log2(#I/r) and B and ∆ from (5.1).

Remark 5.5 The preparation at the leaves together with the algorithm (3.2) requires a computational work
of

(24r − 1)nm+ r2
(
(6L+ 511

3)n− 20m− 511
3 r
)

+O(mr + n), where n := #I, m := #J.

Proof. The first part follows from level(b) = L for all b ∈ P .
According to Remark (ii), each leaf requires 4r2#J operations. Since there are 2L leaves, the total work

is 4r#I#J (note that #I = 2Lr).
The agglomeration and singular value decomposition yielding Ab for b ∈ T (`) cost

(
6 · 2L−`r + 20#J

)
r2+

511
3 r3 +

(
2
3 + 2r − 2L−`r −#J

)
r operations (see Corollary 2.3, case (2.2b) with n = 2L−`r and m = #J).

The number of blocks in T (`) is 2`. Summation of 0 ≤ ` ≤ L − 1 yields 20rnm − 20mr2 + 6r2Ln +
511
3 r2 (n− r) + 2

3n−
2
3r + 2rn+mr − 2r2 − nm− Lrn.

While the inequality in Theorem 4.5 is sharp, we do not claim that (5.10) is sharp. To prove that the
bound in (5.10) can be obtained, one has to find an example where in each step of the recursive truncation
the matrices are of the form (4.5).

Proposition 5.6 The recursive truncation (3.2) applied to Example 3.4 yields a result A := AI×J satisfying
(5.10) with L = depth(T) = log2(#I#J/r2).

Remark 5.7 The preparation at the leaves together with the algorithm (3.2) requires a computational work
of (

232 + 1
3

)
rn2 +

(
2
3r − 5

)
n2, where n := #I = #J = 2pr.

6χ ◦ δ is the Hadamard product (entry-wise product) defined by (χ ◦ δ)ij = χijδij .

12

Proof. According to Remark (ii), the cost at the leaves is 4r3. Multiplication by the number 2L of leaves
yields 4r#I#J .

Let ` be even. The agglomeration and singular value decomposition for b ∈ T (`) require 26 · 2(L−`)/2r3 +
511
3 r3 +

(
2
3 + 2r − 21+(L−`)/2r

)
r operations (see Corollary 2.3, case (2.2a) with n = m = 2(L−`)/2r). Note

that #T (`) = 2`. Summation over all even levels ` = 0, 2, . . . , L − 2 yields 745
9 n2r − 10

3 n
2 − 26nr2 + 2nr +

2
9n

2/r − 511
9 r3 − 2

3r
2 − 2

9r with n := #I = #J .

For odd `, the cost connected to b ∈ T (`) is 16 · 2(L−`+1)/2r3 + 511
3 r3 +

(
2
3 + 2r − 3 · 2(L−`−1)/2r

)
r (see

Corollary 2.3, case (2.2b) with n = 2(L−`+1)/2r, m = 2(L−`−1)/2r). Again #T (`) = 2` holds. Summation
over all odd levels ` = 1, 3, . . . , L− 1 yields 1310

9 rn2 − 5
3n

2 + 4
9n

2/r − 32r2n+ 3rn− 1022
9 r3 − 4

3r
2 − 4

9r.

Together with the first part, we obtain the sum 697
3 n2r− 58nr2− 2

3r+ 2
3
n2

r + 5nr− 5n2− 2r2− 511
3 r3.

The larger factor in front of rn2 is caused by the larger number of blocks in T : #P = 2 (n/r)
2 − 1 for

Example 3.4 compared with #P = 2 (n/r)−1 for Example 3.3. For each block a singular value decomposition
is required.

Proposition 5.8 The recursive truncation (3.2) applied to Example 3.5 yields a result A := AI×J satisfying
(5.10) with L = depth(T) = log2(n/r), n = #I = #J .

Remark 5.9 The preparation at the leaves together with algorithm (3.2) requires a computational work of
less than (

495 + 5
9

)
rn2

operations.

Proof. Again, the cost at the leaves is 4r3. Multiplication with the number 4L of leaves yields 4rn2.
The agglomeration and singular value decomposition for b ∈ T (`) require 40 · 2L−`r3 + 4064

3 r3 +(
4
3 + 2r − 2L−`+1r

)
r operations (see Corollary 2.3, case (2.2c) with n = m = 2L−`r). Note that #T (`) = 4`.

Summation over all even levels 0 ≤ ` ≤ L − 1 yields
(
40 + 4064

9

)
rn2 − 2n2 − 4

9r + 4
9n

2/r + 2rn − 40r2n +
2
3n

2 − 2
3r

2 − 4064
9 r3.

Here, the larger factor of rn2 is caused by the fact that the agglomeration of four blocks quadruples the
rank.

Example 3.6 is quite different since much less blocks are involved.

Proposition 5.10 The recursive truncation (3.2) applied to Example 3.6 yields a result A := AI×J satisfy-
ing (5.10) with L = depth(T) = log2(n/n0), n = #I = #J .

Remark 5.11 The algorithm (3.2) requires a computational cost of

80r2n+ 4064
3 Lr3 +O(r2)

operations.

Proof. In the worst case, the remainder has its support in the blocks of P ∩ T (L). Then again we obtain
estimate (5.10).

Since there is only one block in P ∩ T (`) for each 0 ≤ ` ≤ L− 1, the work is the sum of 40 · 2L−`r2n0 +
4064

3 r3 +
(

4
3 + 2r − 2L−`+1n0

)
r (see Corollary 2.3, case (2.2c) with n = m = 2L−`n0) over 0 ≤ ` ≤ L − 1,

which is equal to 2Lr2 + 4064
3 Lr3 + 4

3Lr + 80r2n− 4rn+ 4rn0 − 80r2n0.
As mentioned in the proof, the estimate (5.10) with the amplification factor qL+1 can appear only if

the support of the remainder ∆ is concentrated in the four tiny subblocks of the level L. Obviously, this
distribution of ∆ is not very probable. Instead we may assume that ∆ is equally distributed. Then ‖∆|b‖2 =
‖∆‖2#b/#(I × J) = 4−`‖∆‖2 is the expectation value for b ∈ P (`) := P ∩ T (`). Since #P (`) = 3 for 0 ≤
` ≤ L− 1 and #P (L) = 4, Corollary 5.3 yields ‖A−B‖2 ≤

∑
b∈P q

2(1+level(b))‖∆|b‖2 =
∑L−1
`=1 q

2(`+1) ‖∆‖2 +

q2(L+1) · 4 · 4−L ‖∆‖2 < 33
√

5+75
10 ‖∆‖2. This proves the following result.

Corollary 5.12 In the case of Example 3.6 with an equally distributed ∆, the following inequality holds
independently of the depth L of the tree:

‖A−B‖ ≤ c ‖∆‖ with c =

√
33
√

5+75
10 = 3.857

13

6 Discussion of Theorem 4.5

One observes from (4.5) that M must be of a very particular form to reach the bound q. Below we shall
argue that the estimate by q is sharp but not probable.

The first singular values of (4.5) coincide. However, if M = σIµ with increasing rank µ, the ratio
qµ := max ‖A−B‖/ ‖∆‖ tends to zero as µ→∞. The following table shows qµ for r = 1 and varying µ:

µ 2 3 4 10 100

qµ (1 +
√

5)/2 1.3066 1.1976 1.0599 1.0051

Usually, one expects that the singular values are decaying. In the following experiments, we consider sets
of singular values Σ = {σ1 > σ2 > . . . > σµ} of M with different decay rates. The corresponding worst cases
are computed numerically.

For σk = exp(−kω), the following values are obtained:7

ω 0.01 0.05 0.1 0.2 0.4 0.5 0.8 1 2 5
qω 1.463 1.287 1.273 1.267 1.267 1.272 1.231 1.193 1.070 1.003

If ω ≥ 0.34, the worst case is given by

B = diag{σ1, . . . , σr−1, 0, λr+1, 0, . . .} (6.1)

with suitable λr+1.
For σk = exp(−

√
kω), the numerical results for µ = 50, r = 25, and varying ω are8:

ω 0.01 0.05 0.1 0.2 0.5 1 2 5 10 20
q 1.447 1.336 1.303 1.279 1.264 1.261 1.259 1.263 1.257 1.267

In this case, the results depend weakly on the choice of r.
For σk = 1/k2, the bounds are mainly between 1.12 and 1.25.
For σk = 1/k, typical values are between 1.17 and 1.27 (the latter value corresponds to µ = 2r).
In particular, the bound improves for the asymptotic case of ‖∆‖ → 0. Here, the asymptotic starts when

‖∆‖ is clearly smaller than the singular value σr:

‖A−B‖
‖∆‖

≤ 1 + ε+O(ε2) as ε :=
‖∆‖
σr
→ 0.

The prototypic example is r = 1, σ1 = 1, M = diag{1, ε}, A = diag{1, 0}, B = diag{0, ϑ}, ∆ = diag{−1, ϑ−
ε}. The worse case is given by ϑ = 1

2ε+ 1
2

√
4 + ε2 leading to 1+ϑ2

1+(ϑ−ε)2 = 1 + ε+ 1
2ε

2 +O(ε3).

We conclude that for a realistic behaviour of the singular values, the bounds are smaller than (1+
√

5)/2.
Under the additional condition of Remark 4.6, values about 1.05 to 1.07 are rather probable.

7 Analysis for Unidirectional Partitions

We call a partition unidirectional if only partition rule A or only rule B is applied (cf. §3.1). Example 3.3
is unidirectional, whereas the other examples are not. We shall see that in the unidirectional case certain
orthogonality properties hold allowing much better estimates. Without loss of generality, we assume in the
following that only rule B is applied; i.e., all blocks b ∈ T (`) are of the ‘horizontal’ form τ × J with τ ⊂ I.
Proposition 5.1 shows that in the unidirectional case additional properties are valid. However, we shall not
use Proposition 5.1, but estimate in a different way.

Equation (5.8) describes the addition of the remainder Eb caused by the singular value decomposition in
the block b at level ` = level(b). Now we explicitly add up the remainders of all previous levels.

7The particular values are µ = 50 and r = 25. For ω = 0, the choice of 2r = µ yields the worse case q = (1+
√

5)/2. However,
for larger values of ω, the results are rather independent of µ and r.

8For ω ≥ 12, the worse case is again given by (6.1).

14

First, we consider blocks b ∈ P and set formally

E
(`)
b := 0 for all ` > level(b), b ∈ P.

Nonzero remainders E
(`)
b occur only for blocks b ∈ T (`), since a singular value decomposition is performed

at these blocks. We sum the distributions E
(`)
b′ of a fixed level ` over bigger blocks and define

E
(`)
b := Aggl{E(`)

b′ : b′ ∈ T (`), b′ ⊂ b}.

Now the error Fb in Ab = B|b − Fb (cf. (5.6)) can be written as

Fb = ∆|b +

L∑
k=`

E
(k)
b for b ∈ T (`). (7.1)

Lemma 7.1 Let b ∈ T (`). Then E
(`′)
b and E

(`′′)
b are pairwise orthogonal for all `′ 6= `′′ with ` ≤ `′, `′′ ≤ L.

Furthermore, there exists a subspace V such that9 Âb ∈ V ⊗ RJ , while E
(k)
b ∈ V ⊥ ⊗ RJ for `+ 1 ≤ k ≤ L.

Proof. Consider b = τ × J ∈ T (λ−1) with b = b1 ∪ b2, τ = τ1 ∪ τ2, where bi = τi × J ∈ T (λ) (cf. rule B in

§3.1). On the level λ, the singular value decomposition generates Âbi = Abi +E
(λ)
bi

, where Abi ∈ Vi⊗RJ and

E
(λ)
bi
∈ V ⊥i ⊗RJ (i = 1, 2). At the next level λ− 1, the submatrix Âb := Aggl{Ab1 , Ab2} belongs to V̂ ⊗RJ ,

where V̂ is the agglomeration of subspaces defined by

V̂ := Aggl{V1, V2} := {v ∈ Rτ : v = Aggl{v1, v2}, v1 ∈ V1, v2 ∈ V2} .

The singular value decomposition of Âb yields Ab +E
(λ−1)
b . Both terms again belong to V̂ ⊗RJ . Note that

V̂ is orthogonal to Aggl{V ⊥1 , V ⊥2 }, so that

E
(λ−1)
b ⊥ E(λ)

b = Aggl{E(λ)
b1
, E

(λ)
b2
}.

More precisely, Ab ∈ V ⊗RJ holds for a subspace V ⊂ V̂ , while Eb ∈ (V ⊥∩ V̂)⊗RJ belongs to an orthogonal

subspace. By induction, one obtains E
(`)
b ⊥ E

(λ)
b for all b ∈ T (`), ` < λ.

Note that the statements about the subspaces V1, V2, V do not hold for the corresponding minimal
subspaces W1,W2,W with Abi ∈ Vi⊗Wi and Ab ∈ V ⊗W . The reason is that Âb := Aggl{Ab1 , Ab2} belongs
to V̂ ⊗ Ŵ with Ŵ = W1 + W2. Since W⊥2 need not be orthogonal to W1, one cannot conclude that Ŵ is
orthogonal to W⊥1 +W⊥2 .

We still have to estimate E
(`)
b for b ∈ T (`). As in the first approach, we represent the matrix Âb = Ab+E

(`)
b

as a perturbation of B|b:

Âb = B|b −∆|b −
L∑

k=`+1

E
(k)
b for b ∈ T (`).

Let Âb ∈ V × RJ be the representation from Lemma 7.1 and define P : RI → V ⊂ RI as the orthogonal

projection onto V . Since P maps V ⊥ into zero, we obtain PE
(k)
b = 0 (` < k ≤ L) and therefore

Âb = PÂb = P (B|b)− P (∆|b).

Note that again P (B|b) ∈ R(r, b). Therefore, Lemma 4.1a (with M,B,∆ replaced with Âb, P (B|b), P (∆|b))
proves the estimate ‖E(`)

b ‖ ≤ ‖P (∆|b)‖ ≤ ‖∆|b‖ for b ∈ T (`). The agglomeration of several E
(`)
bi

yields again

‖E(`)
b ‖ ≤ ‖∆|b‖ for any b ∈ T (k), k ≤ `.
The estimate of Fb from (7.1) becomes

‖Fb‖ ≤

∥∥∥∥∥∆|b +

L∑
k=`

E
(k)
b

∥∥∥∥∥ ≤ ‖∆|b‖+

∥∥∥∥∥
L∑
k=`

E
(k)
b

∥∥∥∥∥ ≤ ‖∆|b‖+

√√√√ L∑
k=`

‖E(k)
b ‖2 ≤ ‖∆|b‖+

√√√√ L∑
k=`

‖∆|b‖2

=
(

1 +
√
L− `+ 1

)
‖∆|b‖ .

The particular case for ` = 0 proves the next theorem.

9For subspaces V ⊂ RI and W ⊂ RJ , the tensor space V ⊗W is defined by span{vwT : v ∈ V,w ∈W} (cf. [5, Remark 1.3]).

15

Theorem 7.2 Assume that T describes a unidirectional partition of depth L. Let M = B − ∆ with
rank(B) ≤ r , while A is the result of the recursive truncation. Then the following estimate holds:

‖A−B‖
‖∆‖

≤ 1 +
√
L+ 1.

The computational cost is described in Proposition 5.4.

The representation A = B − ∆ −
∑L
`=0E

(`)
I×J together with M = B − ∆ yields the next result, which

states that the recursive truncation is optimal up to a factor
√
L+ 1.

Corollary 7.3 Under the conditions of Theorem 7.2 we have

‖M −A‖
‖∆‖

≤
√
L+ 1.

8 Mixed Application

The block decomposition of both Examples 3.4 and 3.5 yields a partition into an n/r × n/r block matrix
consisting of r × r blocks. Such a partition can also be obtained by two unidirectional partitions.

Example 8.1 Let M ∈ RI×J with #I = #J = 2pr, where r, p ∈ N. Apply partition rule B p times and
then partition rule A p times. This yields a binary tree of depth L := 2p. The partition obtained in Example
3.3 is the result of the first p steps, while the final partition is the same as in Examples 3.4 and 3.5.

The first p steps are unidirectional. Therefore, Ab = B|b − Fb (b ∈ T (p)) holds with ‖Ab − B|b‖ ≤(
1 +
√
L+ 1

)
‖∆|b‖. The second p steps are again unidirectional, so that ‖A − B‖ ≤

(
1 +
√
L+ 1

)
‖F‖,

where F := Aggl{Fb : b ∈ T (p)}. Together, we obtain the following result.

Proposition 8.2 The recursive truncation described in Example 8.1 satisfies

‖A−B‖
‖∆‖

≤ L+ 2
√
L+ 1 + 2.

The computational work of Example 8.1 is
(
(643

3 + 6L)r + 2
3r − L

)
n2 + (6L+ 2

r − 40)nr2.

We recall that the decompositions of the Examples 3.4, 3.5, and 8.1 yield the same partition P . The
third approach is the cheapest one. Furthermore, this approach offers the minimal amplification factor.

In principle, also Example 3.4 is of mixed type: partition step A is unidirectional as well as partition step

B, but not their combination. Correspondingly, one can prove that subsequent terms E
(k)
b in (7.1) satisfy

E
(k)
b ⊥ E(k+1)

b . However, it is not obvious whether this property can be exploited to obtain better estimates
than (5.10).

9 Numerical Examples

We consider the Helmholtz equation ∆u+ k2u = 0 with k = 100 on the unit sphere S = {x ∈ R3 : |x| = 1}.
The corresponding single-layer operator has the kernel function k(x, y) = 1

4π
exp(ik|x−y|)
|x−y| . As discretisation we

use the Galerkin method with piecewise constant elements τ ∈ T defined on small flat triangles with corner
points on S. The system matrix K has the entries Kτσ :=

∫
τ

∫
σ
k(x, y)dxdy for all τ, σ ∈ T (the index set T is

of the size #T = 1026). Let ∆′ and ∆′′ be two large spherical triangles on S both consisting of 128 elements
of T . The algorithm is applied to the submatrix M = K|b ∈ R128×128 where b = {(τ, σ) : τ ⊂ ∆′, σ ⊂ ∆′′}.
The spherical triangles ∆′ and ∆′′ meet in one corner point. Therefore, they satisfy only a weak admissibility
condition (cf. [4, §9.3] and [6]). This fact as well as the large wave number k leads to a slow decay of the
singular values of the singular values depicted left in Fig. 9.1.

The recursive truncation starts with blocks of size 16× 16. The further recursion is performed according
to the Examples 3.3 to 3.5. The results for the target ranks r = 1 to 65 are shown in Fig. 9.1. In particular,

16

20 40 60 80 100 120
singular values

10−8

10−7

10−6

10−5

10−4

10 20 30 40 50 60
rank

10−3

10−2

10−1

1

‖A
−
B
‖/
‖∆
‖

Example 3.3
Example 3.4
Example 3.5

10 20 30 40 50 60
rank

1.000

1.005

1.010

1.015

1.020

1.025

1.030

1.035

‖M
−
A
‖/
‖∆
‖

Example 3.3
Example 3.4
Example 3.5

Figure 9.1: Left: singular values; middle and right: errors ‖A−B‖‖∆‖ and ‖M−A‖‖∆‖ for various ranks r

the values of ‖M −A‖ / ‖∆‖ indicate that the result of the recursive truncation is rather close to the best
approximation, which is characterised by the value 1.

Other tests yield results where ‖A−B‖ / ‖∆‖ is close to zero, i.e., the result of the recursive truncation
is more or less equal to the SVDr result. We could not find practical examples for which A deviates strongly
from B.

Acknowledgement. We thank Dr. R. Kriemann for providing the numerical tests.

References

[1] M. Bebendorf and W. Hackbusch, Existence of H-matrix approximants to the inverse FE-matrix
of elliptic operators with L∞-coefficients, Numer. Math., 95 (2003), pp. 1–28.

[2] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins University Press,
Baltimore, 3rd ed., 1996.

[3] L. Grasedyck and W. Hackbusch, Construction and arithmetics of H-matrices, Computing, 70
(2003), pp. 295–334.

[4] W. Hackbusch, Hierarchische Matrizen - Algorithmen und Analysis, Springer, Berlin, 2009.

[5] , Tensor Spaces and Numerical Tensor Calculus, vol. 42 of SCM, Springer, Berlin, 2012.

[6] W. Hackbusch, B. Khoromskij, R. Kriemann, Hierarchical matrices based on a weak admissibility
criterion. Computing, 73 (2004), pp. 207–243.

[7] U. Kandler and C. Schröder, Spectral error bounds for Hermitian inexact Krylov methods. Preprint
11-2014, Institute of Mathematics, Technische Universität Berlin, 2014.

[8] Y. Nakatsukasa and N. J. Higham, Stable and efficient divide and conquer algorithms for the sym-
metric eigenvalue decomposition and the SVD, SIAM J. Sci. Comput., 35 (2013), pp. A1325–A1349.

[9] E. Schmidt, Zur Theorie der linearen und nichtlinearen Integralgleichungen. I. Teil: Entwicklung
willkürlicher Funktionen nach Systemen vorgeschriebener, Math. Ann., 63 (1907), pp. 433–476.

17

