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We present a statistical model of a dilute polymer solution in good solvent in the pres-

ence of low-molecular weight co-solvent. We investigate the conformational changes

of the polymer induced by a change of the co-solvent concentration and the type of

interaction between the co-solvent and the polymer. We describe the polymer in so-

lution by the Edwards model, where the partition function of the polymer chain with

a fixed radius of gyration is described in a field-theoretical manner. The polymer-co-

solvent and the co-solvent-co-solvent interactions are treated in the framework of the

mean-field approximation.

For convenience we separate the system volume on two parts: the volume oc-

cupied by the polymer chain expressed through its gyration volume and the bulk

solution. Considering the equilibrium between the two subvolumes we obtain the

total Helmholtz free energy of the solution as a function of radius of gyration and

the cosolvent concentration within gyration volume.

After minimization of the total Helmholtz free energy with respect to its arguments

we obtain a system of coupled equations with respect to the radius of gyration of the

polymer chain and the co-solvent concentration within the gyration volume. Varying

the interaction strength between polymer and co-solvent we show that the polymer

collapse occurs in two limiting cases - either when the interaction between polymer

and co-solvent is repulsive or when the interaction is attractive. The reported effects

could be relevant for different disciplines where conformational transitions of macro-

molecules in the presence of a co-solvent are of interest, in particular in biology,

chemistry and material science.

a)urabudkov@rambler.ru
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I. INTRODUCTION

The coil-globule transition in dilute polymer solutions is one of the most fascinating phe-

nomena in physical chemistry of polymers. The mechanism of conformational transition of a

chain molecule upon a change of environment has found many applications in recent techno-

logical advances ranging from encapsulation of drug molecules in a polymer coil and targeted

delivery1–3 to smart materials changing their properties in response to the environment4,8.

Numerous applications are based on a conformational transition of a polymer sensing the

presense of specific molecules at low concentrations7, inducing a phase change aggregation of

suspensions of colloids coated with pH or temperature responsive polymers5, gels comprising

thermoresponsive polymer networks5,6 to name only a few. In organisms proteins fold into a

compact state attaining a well defined biological function by exposing functional groups to

their environment. Viral DNA collapses to a condensed state to fit in the confined space of

a viral capsid10. First steps in DNA separation for subsequent analysis involve condensation

of DNA using osmolytes or denaturants11,12. Especially water soluable polymers are used

to excert a lateral pressure on the DNA to induce a collapse9. In the present article an

alternative mechanism is outlined that could also lead to a collapse when the low molecular

weight co-solvent has entered the coil of a chain molecule compressing the coil from within.

The ubiquitious presence of chain molecules and the principal possibility to control the

conformational transition by an external stimulus has therefore attracted much attention

from experimental point of view in chemistry, biology and material science.

Theoretical efforts on the other hand formulating a coil-globule transition theory con-

tributed much to a qualitative understanding of this phenomenon.

Today many theoretical contributions exist dedicated to the coil-globule transition rang-

ing from simplified self-consistent field treatment of the solvent to theories based on the

field-theoretic formalism13–20,22–26. It has been shown that, as the solvent becomes poorer,

the polymer coil shrinks leading eventually to a collapse of the polymer coil. Predominantly

the theoretical models describe the solvent only implicitly, i.e. its influence on macro-

molecule taken into account through effective monomer-monomer interaction. However,

nowadays, due to the importance of conformation control of macromolecules in solution

by low-molecular weight co-solvents (for example, adding of osmolytes or denaturants in

protein aqueous solutions28–33) explicit account of the co-solvent in the model seems to be
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indispensible.

However, up to now only a few attempts considering the co-solvent explicetly have been

reported. Noteably in the work of Tanaka, et al.27 the conformational phase transition of

an isolated polymer chain capable of forming physical bonds with solvent molecules treated

the solvent explicitely. On the basis of a Flory type mean-field theory, a formula for the

temperature dependence of the expansion factor of the chain has been derived. The physical-

bond formation between polymer and solvent molecules causes a reentrant conformational

change between coiled and globular state of the polymer chain when temperature is varied.

In the work33 the collapse and swelling behavior of a homopolymer has been studied using

implicit-solvent, explicit co-solvent Langevin dynamics computer simulations. Varying the

interaction strength the results of two theoretical models have been compared with the

simulation findings. The first model was based on an effective one-component description

where the co-solutes have been averaged out - the second model treated the fully two-

component system in a Flory-de Gennes type of approach. A conclusion has been reached

that the simulation results were in accord with the predictions of the second model.

However, to our best knowledge, there does not seem to exist an approach starting from

first principals of statistical mechanics describing the influence of the co-solvent on confor-

mational behaviour of the polymer chain - specifically the concentration dependence of the

radius of gyration of the polymer chain taking into account the type of co-solvent interactions

with the polymer. In the present work such a statistical model of a flexible polymer chain

in good solvent in the presence of a low-molecular co-solvent is developed. The influence of

co-solvent concentration and quality of its interaction with monomers on the collapse and

swelling behavior of polymer chain is investigated.

The paper organized as follows. In Sec. II, we present our theoretical model and in

Sec. III the numerical results are given. In Sec. IV, we discuss the obtained results and

summarize our findings.

II. THEORY

We consider the case of a polymer chain immersed in a good solvent. We will describe

the polymer in the framework of the Edwards model (flexible polymer chain with exclud-

ed volume)38. The polymer chain molecule and the low-molecular weight co-solvent at a
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specified concentration are immersed in a solvent described by a continuous, structureless

medium. We assume further that the volume of the system consists of two parts: the gyra-

tion volume containing predominantly monomers of the polymer chain and a bulk solution

(see, fig. 1). Thus, we consider the co-solvent concentration at equilibrium in the two sub-

volumes varying the strength of interaction of the polymer-co-solvent. In order to find the

solution of the posed problem the minimum of total Helmholtz free energy of the system as

function of the radius of gyration and the number of co-solvent molecules within gyration

volume is sought.

We assume further that the concentration of the co-solvent beyond the gyration volume

is rather small so that the assumption of an ideal gas holds. Our aim is to study the

dependence of polymer chain conformations as a function of the co-solvent concentration

and the type of interaction between co-solvent and monomers.

Figure 1. Pictorial representation of the model. The system consists of a polymer chain in a good

solvent which is represented by a continuous, structureless medium and a low-molecular weight

co-solvent at a specified concentration. The total volume of the system consists of two parts: the

gyration volume containing predominantly monomers of the polymer chain and a bulk solution.

The partition function of the polymer-co-solvent system takes the form (for details, see

Appendix)

Z(Rg, N1) = Zc(Rg, N1)Zp(Rg), (1)
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where

Zc(Rg, N1) =
(Vg −N1vc)

N1 (V − Vg)
Nc−N1

(Nc −N1)!N1!
e
−wpcN1N

Vg (2)

is a partition function of low-molecular weight co-solvent in solution; N1 is a number of

co-solvent molecules which are within the gyration volume Vg =
4πR3

g

3
(Rg is the radius

of gyration); N is a degree of polymerization - e.g. length of the polymer chain; wpc is

a parameter of volume interaction polymer-co-solvent corresponding to the second virial

coefficient; Nc is a total number of co-solvent molecules and vc is the excluded volume of

co-solvent molecules. The second term in the product (1)

Zp(Rg) =

∫
dΓ(Rg)e

−wp
2

NR

0

NR

0

ds1ds2δ(~r(s1)−~r(s2))
(3)

is a partition function of the polymer chain with fixed radius of gyration; the symbol∫
dΓ(Rg)(..) denotes an integration over microstates of the polymer chain at a fixed radius

of gyration; wp is a parameter of volume monomer-monomer interaction which corresponds

to the second virial coefficient too.

Using the standard Hubbard-Stratonovich transformation38, we rewrite Zp(Rg) as follows

Zp(Rg) =

∫
Dϕ
C
e
− 1

2wp

R
d~xϕ2(~x)

∫
dΓ(Rg)e

i(ρ̂ϕ) = Zid(Rg)

∫
Dϕ
C
e
− 1

2wp

R
d~xϕ2(~x) 〈

ei(ρ̂ϕ)
〉
Rg
,

(4)

where Zid(Rg) is the partition function of the ideal gaussian polymer chain at a fixed radius

of gyration; the symbol 〈(..)〉Rg
= 1

Zid(Rg)

∫
dΓ(Rg)(..) denotes the average over microstates

of the ideal polymer chain at a fixed radius of gyration; ρ̂(~x) =
N∫
0

dsδ(~x − ~r(s)) is the

local density of monomers. Moreover, we introduce a following short-hand notation (ρ̂ϕ) =∫
d~xρ̂(~x)ϕ(~x). Evaluating the functional integral (4) in the case when N � 1 the following

relations hold

ρ̂(~x) = 〈ρ̂(~x)〉Rg
+ δρ̂(~x), (5)

〈ρ̂(~x)〉Rg
'

{ N

Vg
, |~x| ≤ Rg

0, |~x| > Rg;

ϕ(~x) = φ(~x) + ψ(~x), (6)

φ(~x) =

{
φ0, |~x| ≤ Rg

0, |~x| > Rg.
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Note, that the coordinates are taken with the origin at the center of mass of the polymer.

The function ψ(~x) satisfies a following condition∫
Vg

d~xψ(~x) = 0. (7)

Using equalities (5-7), one can express for the partition function of the polymer in the

following form

Zp(Rg) = ZMF (Rg)Zfl(Rg), (8)

where

ZMF (Rg) = Zid(Rg)

∞∫
−∞

dφ0

C0

e
−Vgφ2

0
2wp

+iNφ0 = Zid(Rg)e
−N2wp

2Vg (9)

is the partition function in the framework of the mean-field approximation with C0 =
+∞∫
−∞

dφ0e
−Vgφ2

0
2wp =

√
2πwp

Vg
as a normalization constant;

Zfl(Rg) =

∫
Dψ
C1

e
− 1

2wp

R
d~xψ2(~x) 〈

ei(δρ̂ψ)
〉
Rg

(10)

is the partition function describing the fluctuation corrections to mean-field approximation;

C1 =
∫
Dψe−

1
2wp

R
d~xψ2(~x) is a normalization constant in a gaussian measure for the functional

integral (10). In the framework of a gaussian approximation38 the fluctuation partition

function can be written as

Zfl(Rg) =

∫
Dψ
C1

e
− 1

2wp

R
d~xψ2(~x)

exp

[
−1

2

∫
d~x

∫
d~y 〈δρ̂(~x)δρ̂(~y)〉Rg

ψ(~x)ψ(~y)

]
. (11)

For N � 1 the correlator of local density fluctuations becomes translationaly invariant, i.e.

〈δρ̂(~x)δρ̂(~y)〉Rg
' N

Vg
S(~x− ~y). (12)

The structure factor S(~x − ~y) is nonzero when ends of radius vectors ~x, ~y lie within the

gyration volume, so that

Zfl(Rg) =

∫
Dψ
C1

e
− 1

2wp

R
d~xψ2(~x)

exp

−1

2

∫
Vg

d~x

∫
Vg

d~y 〈δρ̂(~x)δρ̂(~x)〉Rg
ψ(~x)ψ(~y)

 =

' exp

[
−Vg

2

∫
d~k

(2π)3
ln

(
1 + wp

N

Vg
S(~k)

)]
. (13)
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In the last expression in the exponent it is necessary to exclude due to convergence reasons

a term related to the self-interaction energy of the polymer chain Nwp

2

∫
d~k

(2π)3
S(~k)39. Using

the well known interpolation formula for the structure factor S(~k)37

S(~k) =
1

1 +
k2R2

g

2

' 2

k2R2
g

, (14)

excluding the self-interaction energy we arrive at an expression for the fluctuation partition

function within the gaussian approximation (random phase approximation)

Zfl = exp

[
Vgκ

3

12π

]
, (15)

where κ2 = 2wpN

VgR2
g
. Therefore, we have a following expression for the polymer free energy

βFp(Rg) = − lnZp(Rg) = βFid(Rg) +
N2wp
2Vg

− Vgκ
3

12π
, (16)

where βFid(Rg) = − lnZid(Rg) is the Helmholtz free energy of the ideal polymer chain,

β = 1
kBT

. Based on the results of Fixman36 we construct an interpolation formula for the

free energy of the ideal polymer chain:

βFid(Rg) =
9

4

(
α2 +

1

α2

)
− 3

2
lnα2, (17)

where α = Rg

R0g
denotes the expansion parameter, R2

0g = Nb2

6
is a mean-square radius of

gyration of the ideal polymer chain and b is the Kuhn length of the segment. Rewriting the

polymer free energy in terms of the expansion parameter α we obtain

βFp(α) =
9

4

(
α2 +

1

α2

)
− 3

2
lnα2 +

9
√

6wp
√
N

4πb3α3
−
(

3

π

)3/2
61/4

N3/4

( wp
α3b3

)3/2

. (18)

The expression for the co-solvent Helmholtz free energy takes the form

βFc(Rg, N1) =
wpcNN1

Vg
−N1 ln (Vg −N1vc)− (Nc −N1) ln(V − Vg)+

+N1 (lnN1 − 1) + (Nc −N1) (ln(Nc −N1)− 1) . (19)

Minimizing βFc(Rg, N1) with respect to N1, i.e. equating to zero the derivative ∂(βFc(Rg ,N1))

∂N1

and expressing N1 we obtain (to the first order in Vg

V
)

N1 '
Nc (Vg −N1vc)

V
exp

[
− ρ1vc

1− ρ1vc
− wpcN

Vg

]
. (20)
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Introducing the notations ρ1 = N1

Vg
and ρ = Nc

V
we finally obtain the equation for the density

of the co-solvent within the gyration volume ρ1

ρ1

1− ρ1vc
= ρ exp

[
− ρ1vc

1− ρ1vc
− wpcN

Vg

]
, (21)

which valid for V � Vg.

It should be noted that the value of the expansion parameter, which corresponds to

a minimum of the total Helmholtz free energy. Thus, using the equations (18-21), and

calculating a derivative of the total free energy with respect to α and equating it to zero,

we obtain

α5 − 2

3
α3 − α =

3
√

6

2π
w̃p
√
N −

(
3

π

)3/2

61/4 w̃
3/2
p

N3/4α3/2
−

−2π
√

6

81
N3/2α6

(
ρ̃− ρ̃1

1− ρ̃1ṽc

)
+

2

3
Nw̃pcρ̃1α

3, (22)

where w̃p = wpb
−3, w̃pc = wpcb

−3, ρ̃ = ρb3, ṽc = vc

b3
; ρ̃1 = ρ1b

3 satisfies the equation

ρ̃1

1− ρ̃1ṽc
= ρ̃ exp

[
− ρ̃1ṽc

1− ρ̃1ṽc
− 9

√
6w̃pc

2π
√
Nα3

]
. (23)

The first term in a right hand side of equation (22) relates to the monomer-monomer

volume interaction. At ρ̃→ 0 we have a swelling regime α ∼ w̃
1/5
p N1/10 that is described by

the classical Flory theory40. The second term is a fluctuation correction to the mean-field

approximation. This term gives very small correction to the mean-field approximation for

long polymer chains. The third term relates to a pressure difference between the co-solvent

molecules within gyration volume and in the bulk solution. The last term is related to the

polymer-co-solvent interaction.

Now, we consider the situation when w̃pc

2π
√
Nα3 � 1, i.e. when interaction co-solvent-

polymer is strongly repulsive. In this case ρ̃1 � ρ and the equation (22) simplifies to

α5 − 2

3
α3 − α =

3
√

6

2π
w̃p
√
N −

(
3

π

)3/2

61/4 w̃
3/2
p

N3/4α3/2
− 2π

√
6

81
ρ̃N3/2α6. (24)

If the third term on the right hand side of equation (24) dominates then neglecting all

except the first and third terms we obtain the following relations for expansion parameter

and radius of gyration

α '
(

243

4π2

)1/6(
w̃p
ρ̃

)1/6

N− 1
6 ,

Rg

b
'
√

6

6

(
243

4π2

)1/6(
w̃p
ρ̃

)1/6

N1/3, (25)
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which corresponds to a globular conformation. This regime occurs when the following con-

ditions
w̃p
N
� ρ̃� 1. (26)

are fulfilled.

We turn now to the opposite limiting case when w̃pc < 0 and |w̃pc|
2π
√
Nα3 � 1, i.e. when

interaction co-solvent-polymer is strongly attractive. In this case ρ̃1 � ρ. Therefore the

difference of co-solvent pressures between interior of the gyration volume and the bulk can

lead to an additional swelling the polymer coil. The excluded volume of co-solvent molecules

has the same affect. However, the strong attraction between co-solvent and monomers leads

to a shrinking of the polymer coil. Due to the competition between these trends the coil-

globule transition can occur. Two collaps regimes can take place. In the first case, when

w̃p → 0 (near the θ-temperature), one can neglect in equation (22) all terms except last

two terms in the right hand side. The expansion parameter α and radius of gyration are

therefore

α '

(
9
√

6|w̃pc|
2π

)1/3

(1− ρ̃1ṽc)
1/3N−1/6,

Rg

b
'
(

3|w̃pc|
4π

)1/3

(1− ρ̃1ṽc)
1/3N1/3. (27)

In this regime the size of the globule is determined by a competition between the co-solvent-

polymer attraction and the co-solvent excluded volume effect.

In the second regime, when w̃p � 1 all terms except first and last on the right hand side

of the equation (22) can be neglected. This leads to the following result

α '

(
9
√

6

4π

)1/3(
w̃p

|w̃pc|ρ̃1

)1/3

N−1/6,
Rg

b
'
(

3

8π

)1/3(
w̃p

|w̃pc|ρ̃1

)1/3

N1/3. (28)

In this case size of the globule is determined by a competition between co-solvent-polymer

attraction and monomer-monomer repulsion. We would like to stress that in the globular

regimes the co-solvent concentration ρ̃1 within gyration volume does not depend on the

expansion parameter.

III. NUMERICAL RESULTS

Turning to the numerical analysis of the system of equations (22-23) we will fix the

excluded volume parameter of co-solvent ṽc = 1.
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We first discuss the case when the interaction polymer-co-solvent is a purly repulsive.

Fig. 2 (a) shows the expansion parameter α as a function of the co-solvent concentration

ρ̃ at different values of w̃pc and at N = 104. At increasing co-solvent concentration the

expansion parameter monotonicaly decreases and is asymptotically close to limit given by

(25) corresponding to a globular conformation. Increasing the interaction parameter w̃pc the

coil-globule transition becomes sharper. Fig. 2 (b) shows the co-solvent concentration in

the gyration volume as a function of co-solvent concentration in the bulk for two values of

polymer-co-solvent interaction parameters. In the region of coil-globule transition the co-

solvent concentration within the gyration volume shows a sufficiently pronounced maximum.

Such behaviour can be interpreted as follows. At small values of ρ̃ the gyration volume

offers enough space for the co-solvent to intrude leading to a swelling of the polymer coil.

In contrast, increasing ρ̃ the size of polymer coil decreases leading to a more confined space

increasing therefore the repulsion between co-solvent and monomers and as a consequence

the co-solvent is expelled from polymer coil. Thus, when the co-solvent concentration in the

bulk drops below a certain value the co-solvent concentration within the gyration volume

tends to zero.

It is instructive to evaluate the dependency of the maximum of co-solvent concentration

within gyration volume ρ̃1 on parameters of interaction w̃p and w̃pc. We rewrite ρ̃1 as function

of ρ̃ and optimize it with respect to ρ̃. Since in the considered regime ρ̃1 � ρ̃ the expansion

parameter α can be evaluated via (25) such that we can write

ρ̃1 ' ρ̃ exp

[
−
√

2w̃pc

w̃
1/2
p

ρ̃1/2

]
. (29)

The optimization of a function (29) with respect to ρ̃ yields

ρ̃∗ ' 2w̃p
w̃2
pc

, ρ̃∗1 '
2

e2
w̃p
w̃2
pc

. (30)

Thus the maximal co-solvent concentration ρ̃∗1 in the gyration volume is determined only by

two parameters - the volume interaction w̃p and w̃pc and is approximately e2 ≈ 7.389 times

less than co-solvent concentration in the bulk solution.

For the case when the polymer-co-solvent interaction is attractive (w̃pc < 0) an abrupt

collapse of the polymer chain takes place. Fig. 3 (a) shows the expansion parameter α as

a function co-solvent concentration for different values of w̃pc. At values of bulk co-solvent

concentration at which the collapse occurs there is also a jump of co-solvent concentration
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in the gyration volume to very dense packing (fig. 3 (b)). In contrast to the previous case,

in this regime the polymer collapse happens as a first - order phase transition at which the

jump of the co-solvent concentration takes place. As mentioned above, this phase transition

is due to the competition between polymer - co-solvent attraction, which tends to shrink the

polymer chain, and a steric factor of the co-solvent molecules, which tends to expand it.

It is interesting to consider the dependence of the expansion parameter α on the polymer-

co-solvent interaction w̃pc parameter. As shown in fig. 4 this dependence is sufficiently

nonmonotonic. The collapse of polymer chain takes place in this case in the range of negative

values of w̃pc. At increasing w̃pc the expansion parameter towards zero a maximum occurs.

Further increasing (towards positive values) w̃pc the expansion parameter again monotonicaly

decreases and smoothly approach the globule regime. Such behaviour is in agreement with

results of computer simulations obtained in33.

IV. SUMMARY

We have outlined a first principles theory of conformational changes of a polymer chain

depending on the co-solvent concentration and the type of interactions between co-solvent

and the polymer. The explicit account of the co-solvent leads to the fundamentally new

effects, namely polymer chain collapse occurs in two limiting cases. The first case, when

the co-solvent-polymer interaction is a strongly repulsive and, in the opposite case, when

this interaction is strongly attractive. In the first case, the coil-globule transition is smooth

accompanied by a maximum concentration of the co-solvent molecules within the gyra-

tion volume. Interestingly, the location of the maximum is determined only by the virial

coefficients of the monomer-monomer and monomer-co-solvent. In the second case when

polymer-co-solvent interaction is attractive the collapse occurs as a first-order phase transi-

tion, i.e. discontinous change of the radius of gyration and the co-solvent density within the

gyration volume. We call these phenomena “co-solvent-induced coil-globule transitions”.

The described phenomena may be relevant for applications, where the mixed-solvent

polymer solutions are used. In particular where the solvent conditions are used to induce a

change in polymer conformation the described mechanism might offer an additional routine

to exert control on the polymer conformational transition. In addition we have provided

an estimate of the co-solvent concenration within the polymer coil, which might proove
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useful in drug delivery technologies where the amount of the captured co-solvent need to be

controled.

The present theory, however has natural limitations. Firstly, it can not describe a dilute

polyelectrolyte solutions, where many-body effects due to long-range electrostatic interac-

tions play crucial role. Such a first-principals theory, which can describe the collapse of the

charged polymer chain in dilute polyelectrolyte solution, has been recently developed in the

work42. Moreover, our theory does not take into account a possibility the formation of chem-

ical bonds between polymer and co-solvent molecules. Apart from the above limitations our

theory does not account for specific interactions, such as hydrogen bonds formation. We

note that work in this direction has been recently published43, where the problem of the

helix-coil transition in explicit solvent has been addressed analytically. Employing a spin-

based models the influence of the hydrogen bonds formation on the helix-coil transition has

been investigated. It would be interesting to investigate how the chemical bond formation

and specific interactions influence on the coil-globule transition in dilute polymer solutions.

We believe, that these problems can be a subject worthwhile for forthcoming publications.

V. APPENDIX

To address a derivation of expression (1) for the partition function of the solution we

start from the canonical partition function of the solution which can be written as follows

Z(Rg) =

∫
dΓp(Rg)

∫
dΓc exp [−βHp − βHc − βHpc] , (31)

where the symbol
∫
dΓ(Rg)(..) denotes the integration over microstates of polymer chain

performed at a fixed radius of gyration; the symbol
∫
dΓc(..) = 1

Nc!

∫
d~r1..

∫
d~rNc(..) denotes

the integration over cosolvent molecules coordinates;

βHp =
wp
2

N∫
0

ds1

N∫
0

ds2δ (~r(s1)− ~r(s2)) =
wp
2

∫
d~xρ̂2

p(~x) (32)

is the Hamiltonian of the monomer-monomer interaction; wp is a second virial coefficient

for the monomer-monomer interaction and ρ̂p(~x) =
N∫
0

dsδ(~x − ~r(s)) is the monomer local

density;

βHpc = wpc

N∫
0

ds

Nc∑
j=1

δ (~r(s)− ~rj)) = wpc

∫
d~xρ̂p(~x)ρ̂c(~x) (33)
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is the Hamiltonian of the polymer-co-solvent interaction; wpc is the second virial coefficient

for the polymer-cosolvent interaction and ρ̂c(~x) =
Nc∑
i=1

δ (~x− ~ri) is the local density of co-

solvent molecules;

βHc =
1

2

∑
j 6=i

Vhc(~ri − ~rj) (34)

is the Hamiltonian of interaction co-solvent-co-solvent;

Vhc(~r) =

{
∞, |~r| ≤ dc

0, |~r| > dc;

is the hard-core potential (dc is a co-solvent molecule diameter). Thus we describe the

co-solvent-co-solvent interaction purely as an excluded volume interaction.

Making the following identity transformation

Z(Rg) =

∫
dΓp(Rg)e

−βHp

∫
dΓce

−βHc−βHpc = Zp(Rg)

∫
dΓce

−βHc
〈
e−βHpc

〉
p
, (35)

where

Zp(Rg) =

∫
dΓ(Rg)e

−wp
2

NR

0

NR

0

ds1ds2δ(~r(s1)−~r(s2))
(36)

is the polymer partition function; the symbol 〈(..)〉p = 1
Zp(Rg)

∫
dΓ(Rg)(..) denotes averag-

ing over polymer microstates with a fixed radius of gyration. Truncating the cumulant

expansion41 at first order we obtain

〈
e−βHpc

〉
p
≈ e−β〈Hpc〉p . (37)

Thus we obtain

β 〈Hpc〉p = wpc

∫
d~xρ̂c(~x) 〈ρp(~x)〉p '

Nwpc
Vg

∫
Vg

d~xρ̂c(~x), (38)

where the approximation

〈ρ̂(~x)〉Rg
'

{ N

Vg
, |~x| ≤ Rg

0, |~x| > Rg.

has been introduced. Therefore, we obtain the following expression for the partition function

of the solution

Z(Rg) = Zp(Rg)Zc(Rg), (39)

14



where Zc(Rg) has a form

Zc(Rg) =

∫
dΓce

−βHc−
wpcN

Vg

R

Vg

d~xρ̂c(~x)

=
1

Nc!

∫
d~r1..

∫
d~rNce

−βHc−
wpcN

Vg

R

Vg

d~xρ̂c(~x)

. (40)

Rewriting the last expression in the form

Zc(Rg) =
1

Nc!

Nc∑
n=0

Nc!

(Nc − n)!n!
e
−wpcNn

Vg Zc(Rg, n), (41)

where

Zc(Rg, n) =

∫
Vg

d~x1..

∫
Vg

d~xn

∫
V−Vg

d~y1..

∫
V−Vg

d~yNc−ne
−βHc ≈ (Vg − nvc)

n(V − Vg)
Nc−n (42)

is the co-solvent partition function with fixed number n of co-solvent molecules in the gy-

ration volume and vc = πd3c
6

is an excluded volume of co-solvent molecules and applying the

mean-field approximation we finally arrive at

Zc(Rg) =
Nc∑
n=0

(Vg − nvc)
n(V − Vg)

Nc−n

(Nc − n)!n!
e
−wpcNn

Vg . (43)

The above equation is based on the same mean-field approximation as the Van-der-Waals

theory. In the thermodynamic limit (Nc →∞) in the sum (43) only the highest order term

giving the main contribution is relevant. This term corresponds to the number n = N1

which can be obtained from the extremum condition

∂

∂n
ln

(
(Vg − nvc)

n(V − Vg)
Nc−n

(Nc − n)!n!
e
−wpcNn

Vg

)
= 0. (44)

Therefore we arrive at the expression which already has been used in the main text

Zc(Rg) ' Zc(Rg, N1) =
(Vg −N1vc)

N1(V − Vg)
Nc−N1

(Nc −N1)!N1!
e
−wpcNN1

Vg . (45)
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Figure 2. Repulsive polymer-co-solvent interaction ( e.g. w̃pc > 0 ). (a) The expansion parameter

α as a function of co-solvent concentration ρ̃1 in the gyration volume. (b) on the cosolvent bulk

concentration ρ̃ at different positive parameter of interaction polymer-cosolvent w̃pc. It is seen

that at increasing of cosolvent concentration the expansion parameter is monotonicaly decrease

and asymptotically close to limit (25) corresponding to globular conformation. It is easy to seen

that at increasing of parameter w̃pc the coil-globule transition becomes sharper. In the region of

coil-globule transition the co-solvent concentration within the gyration volume shows a sufficiently

pronounced maximum. We use w̃p = 0.1, N = 104.
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Figure 3. Attractive polymer-co-solvent interaction ( e.g. w̃pc < 0 ). (a) The expansion parameter

α as a function of the co-solvent bulk concentration ρ̃. (b) The co-solvent concentration in the

gyration volume ρ̃1 as a function of co-solvent concentration in the bulk shown for polymer-co-

solvent interaction parameter w̃pc = −3;−5. The bulk co-solvent concentration at which the chain

collapse occurs coincides with the jump in the co-solvent concentration within the gyration volume.

In this regime the polymer collapse happens as a first - order phase transition. Values are shown

for w̃p = 1, N = 104.
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Figure 4. The expansion parameter α as a function of polymer-co-solvent interaction parameter

w̃pc at different co-solvent bulk concentrations ρ̃. At negative values of w̃pc the colapse of polymer

chain takes place. Increasing w̃pc towards zero a maximum occurs. Further increasing (towards

positive values) w̃pc the expansion parameter again monotonicaly decreases and smoothly approach

the globule regime. Shown here for w̃p = 1, N = 104.
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