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Abstract

We provide a new upper bound for the critical density of Activated Ran-
dom Walk in case of biased distribution of jumps. With finite sleeping rate
the bound is strictly less than one in one dimension for all initial particles
distribution and in higher dimension for some initial particles distributions.
This answers a question and Dickman, Rolla and Sidoravicius (2010) in case
of bias.

Introduction

Interacting particle systems are favourable models to study non-equilibrium
phenomena, as they provide a simple example of phase transitions in systems
maintained far from equilibrium. In the present article we consider Activated
Random Walk (ARW) on the lattice. This is a continuous time interacting
particle system with conserved number of particles, where each particle can
be in one of two states: A (active) or S (inactive, sleeping). Each A particle
performs an independent, continuous time random walk on Zd with jump
rate 1. The jumps have a probability density p(·) on Zd and are identically
and independently distributed. Every A particle has an exponential clock
with rate λ > 0. When the clock rings, if the particle does not share the
site with other particles, the transition A → S occurs, otherwise nothing
happens. Particles in the A-state do not interact among themselves. S
particles do not move and remain sleeping until the instant when an other
particle is present at the same vertex. At such an instant the particle which
is in S-state flips to the A-state, giving the transition A+S → 2A. As we
consider initial configurations with only active particles, from the previous
rules it follows that sleeping particles can be observed only if they occupy
the site alone.

In ARW a phase transition arises from a conflict between the spread of
the activity and a tendency of the activity to die out. The transition point
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separates an active phase from local fixation. We say that ARW exhibits
local fixation if for any finite set V ⊂ Zd, there exists almost surely a finite
time tV such that after this time the set V contains no active particles. In
case there is no local fixation, we say that ARW stays active. A numerical
analysis of ARW in the two regimes has been provided in [1]. In [2] it
has been proved that the system is monotonic under variation of certain
parameters. In particular if the particles density µ increases, it is less likely
for the system to fixate locally. From monotonicity in µ it follows that there
exists a unique critical density µc that separates the two phases, namely for
all µ < µc the model exhibits local fixation and for all µ > µc it stays active.
It is conjectured that the critical density should depend only on λ and it
should not depend on the specific distribution of the initial configuration,
although this has not been proved so far, as far as we know.

In several works an analytical estimation for µc has been provided under
different assumptions. At the current state of the art, as far as we know, it
is known that in one dimension λ

1+λ ≤ µc ≤ 1 [2]. In the more special case
of totally asymmetric jumps on the nearest neighbour, i. e. p( 1 ) = 1, it is
known that µc = λ

1+λ and that at µc the process stays active [4]. For what
concerns the model in d ≥ 2, it is known that µc ≤ 1 for any value of λ
[5, 6]. In the limit λ→∞ the exact value of µc is known in all dimensions.
Namely, ARW shows local fixation a.s. for all µ < 1 and stays active a.s.
for all µ ≥ 1 [4, 5, 6]. The fact that µc ≤ 1 is intuitively obvious, since if
µ > 1 simply there is no space for all particles to stabilize. In the present
article we provide a new upper bound for the critical density µc in case of
biased jumps distribution with arbitrary finite support. In case of finite λ,
our upper bound it is strictly less than 1. In one dimension it does not
depend on the initial particles distribution. In higher dimensions it holds
for a special choice of the initial particles distribution. Our result shows
that, even if there is enough place for all particles to fall asleep, particles
motion prevents the system to locally fixate and this makes the critical
density strictly less than 1. Our main results are stated in Theorems 1.1
and Corollary 1.3.

We end this introductory section presenting the structure of the article. In
Section 1 we define rigorously the model and we state our results, Theorem
1.1, Theorem 1.2 and Corollary 1.3. In Section 2 we describe the strategy
of the proof in one dimension. In Section 3 we present the Diaconis-Fulton
graphical representation for the dynamics of ARW following [2]. In Section
4 we prove Theorems 1.1 and 1.2.
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1 Definition and result

The state of the ARW at time t ≥ 0 is given by ηt ∈ N0ρ
Zd , where N0ρ =

N0∪{ρ}. For all x ∈ Zd, ηt(x) represents the number of particles at site x at
time t. In particular ηt(x) = ρ if the site x at time t is occupied by only one
passive particle and ηt(x) ∈ N0 represents the number of active particles.
Following [2], we define an order relation for ρ, setting 0 < ρ < 1 < 2 . . ..
We also let |ρ| = 1, so that |ηt(x)| counts the number of particles regardless
of their state. The addition is defined by ρ + 0 = ρ, and ρ + k = k + 1
if k ≥ 1, providing the A + S → 2A transition. The A → S transition is
represented by ρ · k, where ρ · 1 = ρ and ρ · k = k if k ≥ 2. Subtractions
involving ρ are not defined as sleeping particles cannot leave a site without
becoming active first. Finally we define the operator [ · ]∗, which counts the
number of active particles, [ηt(x)]∗ = ηt(x) if ηt(x) ≥ 1 or 0 otherwise.

The dynamics of the model can be viewed as the action of two types of
operators, “move ” and “sleep” at every site, with rate independent one site
from the other one. For each site x, we have the transitions η → τxyη at

rate [ηt(x)]∗p(y − x), where τxyη ∈ NZd
0ρ ,

τxyη(z) =


η(z) + 1 if z = y,

η(z)− 1 if z = x,

η(z) if z 6= x and z 6= y.

(1)

and the transition η → τxρη at rate λ[ηt(x)]∗, where τxρη ∈ NZd
0ρ ,

τxρη(z) =

{
η(z) · ρ if z = x,

η(z) if z 6= x.
(2)

The initial configuration η0 is distributed according to ν and it is the
product of identical measures. We denote by µ the density of particles
at time 0, namely ν(|η0(0)|). We further write νM for the distribution of
the truncated configuration ηM given by ηM (x) = η0(x) for |x| < M and
ηM (x) = 0 otherwise, and PνM = PνM . PνM is well defined and corresponds
to the evolution of a countable-state Markov chain whose configurations
contain only finitely many particles. It follows from a construction due to
Andjel that, if ν is a product measure with density ν(|η(0)|) < ∞ then Pν
is well defined, and, moreover,

Pν(E) = lim
M→∞

PνM (E) (3)

for any event E that depends on a finite space-time window [8].
Our results are Theorem 1.1, Theorem 1.2 and Corollary1.3. Define the

expected jump,

m =
∑
z∈Zd

p(z)z, (4)
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and call x(i) a discrete-time random walk in Zd starting from the origin
and with jumps distributed according to p( · ). For every ε > 0 define the
probability,

K(ε) = P ( ∀ i > 0 |x(i)

i
−m| < ε ), (5)

As a consequence of the law of large numbers this probability is positive for
all ε. If ε = |m| we write simply K := K(|m|). In the specific case of one
dimension, call

δ = P ( ∀ i ≥ 1 |x(i)− x(0)| ≥ 1). (6)

This equals the probability that the walker starting from the origin will be
in position x = − m

|m| at time 1 and that it will never reach the origin again.
As a consequence of the law of large numbers δ is positive if m 6= 0. Call
W = {z ∈ Zd : p(z) > 0}. Recall that we consider initial configurations
with all active particles and that µ = ν(|η0(0)|). The following theorem
presents our estimation for µc in case of one dimension.

Theorem 1.1. Consider ARW in Z with halting rate λ, jumps distributed
according to p( · ) such that W is finite, initial distribution given by i.i.d.
random variables in N0 with expectation µ and variance V < ∞. Then
µc ≤ 1

δ
1+λ

+1
.

The following theorem and corollary present our estimation for µc in case
of dimension greater than 1.

Theorem 1.2. Consider ARW in Zd with halting rate λ, biased jumps dis-
tribution p( · ) with finite support W , initial distribution given by a product
of i.i.d. random variables in N0 with expectation µ, variance V < ∞ and
ν0 = ν(η(0) = 0). If µ > ν0(1+λ)

K , then ARW stays active almost surely.

As a direct consequence of the previous theorem, the best upper bound
for µc is given if one considers the initial particles distribution as in the
following corollary.

Corollary 1.3. Consider ARW in Zd under the same hypothesis of the
previous theorem, with initial configuration distributed as the product of i.i.d.
random variables with distribution ν(η(0) = 1) = µ, ν(η(0) = 0) = 1 − µ
and µ ≤ 1. Then µc ≤ 1

K
1+λ

+1
.

In case of ARW with different initial particles distribution, it follows
from Theorem 1.2 that if ν0(1 + λ) < 1 and the bias is strong enough, then
µc is strictly less than one.
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2 Description of the proof

Our proofs rely on the discrete Diaconis-Fulton representation for the dy-
namics of ARW. As it was proved in [2], local fixation for ARW is related to
the stability properties of this representation, which leaves aside the chrono-
logical order of events.

At every site an infinite sequence of i.i.d. random variables is defined.
Their outcomes are some operators acting on the current configuration of
particles, moving one particle from one site to the other one or trying to
let the particle fall asleep. Depending on the particles configuration, only
some of the instructions are legal, i.e. using an instruction on a site which
is empty or which hosts a sleeping particle is not allowed.

Local fixation for the dynamics of ARW is related to the number of
instructions that must be used in order to stabilize the initial particles con-
figuration. For stabilizing the initial configuration in a set we mean using the
instructions in that set until the configuration contains only sleeping parti-
cles in that set. Denote by BL a compact subset of Zd such that BL ↑ Zd
as L → ∞. For every x ∈ Zd, denote mBL,η(x) the number of instructions
that must be used at x in order to stabilize the configuration η in BL and
ξBL,η the stabilized configuration. A first important property of the rep-
resentation is commutativity, i.e. ξBL,η and mBL,η do not depend on the
order followed in using the instructions, under the restriction that only legal
instructions can be used. The probability distribution of mη,BL is denoted
by Pν , which is the joint probability distribution of the set of instructions
and of ν, the probability distribution of the initial particles configuration. A
second crucial property of the representation is the following. If there exist
one site x ∈ BL and a positive constant K such that for every L ∈ N,

Pν(mBL,η(x) > K L) ≥ K,

then ARW stays active a.s. The strategy of the proof of our theorems
consists in defining a proper procedure of stabilization of the set BL that
allows to see that this fact holds even in case µ < 1.

In order to prepare the reader to the proof we explain the main idea in
one dimension.

Call η(x) the number of particles initially present at x ∈ Z, assuming
they can be only active. Assume for them the following probability distri-
bution, ν(η(x) = 1) = µ and ν(η(x) = 0) = 1 − µ independently for every
x ∈ Z, where µ < 1 is also the expected number of particles per site. As-
sume for simplicity jumps on nearest neighbours and a bias to the right and
consider the interval BL = [−L + 1, 0] ∩ Z. Call NL the total number of
particles in BL and HL = L−NL the total number of empty sites in BL.

We stabilize the configuration in BL doing the following: starting from
the leftmost particle and moving to the right, we move always the same
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particle until it falls asleep in BL or until it leaves BL. This means using
always the first unused instruction on the site where the particle is located,
following its trajectory. When the particle falls asleep in BL or it leaves
the set, we consider the following particle in the order and we do the same.
We call a particle of the initial configuration “good” if it falls asleep on the
right of its initial location or if it leaves BL from the right. As the jumps
distribution is biased to the right, the probability of every particle of being
good is bounded from below by a positive constant, say ϕ(p( · ), λ), which
does not depend on the current particles configuration. This means that
GL, the total number of good particles, can be stochastically dominated
from below by a binomial distribution with parameters ϕ and NL, where
NL is the total number of particles in BL. As consequence of the CLT there
exists K > 0 such that for all L ∈ N,

Pν(NL > Lµ, GL > NL ϕ) ≥ K.

Observe also that if GL > HL, then at least GL −HL particles must leave
BL from the right, because good particles can fall asleep only on sites which
were empty in the initial configuration. Thus if µ > 1

1+ϕ , then for all L ∈ N,
Pν(mBL,η(0) > L [µ(ϕ + 1) − 1] ) ≥ K. This implies that the process stays
active a.s.

The stabilization procedure is composed of two parts. In the first part
we consider a general initial distribution of particles with density µ and we
reduce the initial configuration to a new configuration which has only one
particle per site. This is necessary as the argument we have just presented
gives the best estimation in case the number of empty sites HL is small. A
control on the number of particles leavingBL is needed in order the argument
to work. In the second part we apply the strategy described above. The
proof with all details is presented in Section 4.

The proof of Theorem 1.2, that involves ARW in higher dimension, is
based on the same idea. Namely if the density of good particles is greater
than the density of holes then a number of particles proportional to Ld must
leave the set. Then, using a technique from [6] and choosing the shape of
the BL in a proper way, we show that under the hypothesis of the Theorem
1.2 at least a number of particles growing with L crosses the origin with
positive probability.

3 Diaconis-Fulton representation

In this section we describe the Diaconis-Fulton graphical representation for
the dynamics of ARW. We follow [2].

Let η ∈ N0ρ
Zd denote the configuration of particles. A site x ∈ Zd is

stable in the configuration η if η(x) ∈ {0, ρ} and it is unstable if η(x) ≥ 1.
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Define the set of independent instructions I = (τx,j : x ∈ Zd, j ∈ N),

where τx,j = τxy with probability p(y−x)
1+λ or τx,j = τxρ with probability λ

1+λ .

Let h = (h(x) : x ∈ Zd) count the number of instructions read at each
site. We say that we use an instruction at x when we act on the current
configuration of particles η through the operator Φx, which is defined as,

Φx(η, h) = (τx,h(x)+1 η, h+ δx). (7)

The operation Φx is legal for η if x is unstable in η, i.e. η(x) ≥ 1, otherwise
it is illegal.

Finally we denote by Pν the joint law of η and I, where η has distribution
ν and it is independent from I.

Properties. We now describe the properties of this representation. Later
we discuss how they are related to the stochastic dynamics of ARW. We
follow [2]. For α = (x1, x2, . . . xk), we write Φα = ΦxkΦxk−1

. . .Φx1 and
we say that Φα is legal for η if Φxl is legal for Φ(xl−1,...,x1)(η, h) for all

l ∈ {1, 2, . . . k}. Let mα = (mα(x) : x ∈ Zd) be given by,

mα(x) =
∑
l

1xl=x,

the number of times the site x appears in α. We write mα ≥ mβ if mα(x) ≥
mβ(x) ∀x ∈ Zd. Analogously we write η′ ≥ η if η′(x) ≥ η(x) for all x ∈ Zd.
We also write (η′, h′) ≥ (η, h) if η′ ≥ η and h′ = h. Let η, η′ be two
configurations, x be a site in Zd and Υ ∈ I be a realization of the set of
instructions. For the proof of the following properties we refer to [2].

Property 1 If α and α′ are two legal sequences for η such that mα = mα′ ,
then Φαη = Φα′η.

Property 2 Φαη (x) is non-increasing in mα(x) and non-decreasing in
mα(z), z 6= x.

Property 3 If x is unstable in η and η′(x) ≥ η(x), then x is unstable in
η′.

Property 4 If η′ ≥ η then Φxη
′ ≥ Φxη.

Consequences. Let V be a finite subset of Zd. A configuration η is said to
be stable in V if all the sites x ∈ V are stable. We say that α is contained
in V if all its elements are in V and we say that α stabilizes η in V if every
x ∈ V is stable in Φαη.
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Lemma 1 (Least Action Principle) If α and β are legal sequences for η
such that β is contained in V and α stabilizes η in V , then mβ ≤ mα.

Lemma 2 (Abelian Property) If α and β are both legal sequences for η
that are contained in V and stabilize η in V , then mα = mβ. In particular,
Φαη = Φβη.

By Lemma 2, mV,η = mα and ξV,η = Φαη are well defined.

Lemma 3 (Monotonicity) If V ⊂ V ′ and η ≤ η′, then mV,η ≤ mV ′,η′ .

By monotonicity, the limit mη = lim
Vn↑Zd

mV,η exists and does not depend

on the particular sequence Vn ↑ Zd. A configuration η is said to be stabi-
lizable if mη(x) < ∞ for every x ∈ Zd. The following lemma connects the
dynamics of ARW to the stability property of the representation.

Lemma 4 Let ν be a translation-invariant, ergodic distribution with finite
density ν(η(0)). Then Pν( the system locally fixates ) = Pν(mη(0) <∞) ∈
{0, 1}.

4 Upper bound for critical density

Proof of Theorem 1.1

Without loss of generality we assume m > 0 and we consider then the set
BL = [−L+1, 0] ∩ Z. The case m < 0 can be recovered repeating the same
procedure for the set BL = [0, L− 1] ∩ Z.

First we transform the initial configuration of particles in such a way
that the set contains all active particles isolated, i.e. there are no sites in
BL hosting more than one particle or sleeping particles. After that we use
the argument presented in Section 2.

Step 1 - Preparation of the initial configuration Consider an initial
configuration η, a realization of the set of instructions I and assign an
arbitrary order to particles in η. Following this order, only if the particle
shares the site where it is located with other particles, then we move this
particle until it reaches an empty site or until it leaves BL. This means that,
starting from the initial position of the particle in η, we use the instruction
on the site were the particle is located until the particle moves to a new site
(instructions “sleep” have no effect as the site hosts more than one particle),
and then we continue this procedure until the particle reaches an empty site
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or it leaves the set BL. If the particle does not share the site with other
particles, we don’t do anything. Then we consider the following particle in
the order and we do the same. Call η′ ∈ Σ the final configuration obtained
after this procedure has been applied for all particles. Call η′BL the set of
coordinates of η′ in BL. Clearly η′(x) ∈ {0, 1} for all x ∈ BL.

Claim The configuration η′BL does not depend on the order followed in the
previous procedure.

The claim follows from the Abelian property of the Diaconis-Fulton rep-
resentation and its proof follows the same steps of the proof of Lemma 2.
The following proposition states that with probability bounded from below
by a strictly positive constant independent on L, the number of particles
leaving BL during Step 1 is bounded from above by a positive constant c.

Proposition 1. Call NL =
∑

x∈BL η(x) and, referring to the procedure
described above, call N ′L =

∑
x∈BL η

′(x). Under the hypothesis of Theorem
1.1 there exist two positive constants c and K such that for all L ∈ N,

Pν (NL −N ′L ≤ c ) ≥ K. (8)

We postpone the proof of the proposition and we proceed with the proof
of the theorem.

Step 2: Stabilization procedure We consider the configuration η′ ob-
tained applying the procedure described in the first step and we assign a
new order to particles in BL. The first particle in the order is the leftmost
particle in BL, the second particle in the order is its closest particle to the
right, and so on. The last particle in the order is the rightmost particle in
BL. Following now this order, we move every particle similarly to Step 1,
using always the first non-used instruction on the site where the particle is
located until it falls asleep in BL or until it leaves BL. Once a particle has
fallen asleep or it has left BL, we consider the next particle in the order and
we do the same.

We call a particle in the configuration η′ good if it falls asleep on a
site located on the right of its initial location or if it leaves BL from the
right. By independence of the instructions, the probability of every particle
of being good does not depend on the trajectory of the particles moved
before, but it depends only on their positions in BL. We can bound from
below the probability of every particle of being good by a strictly positive
constant, δ

1+λ , which does not depend on the location of the other particles.
This constant, defined in Section 1, equals the probability that the first
instruction is “go right” and that the particle never returns to its initial
site. Thus call GL the total number of good particles. This random variable
can be stochastically dominated from below by a binomial distribution with
parameters δ

1+λ and N ′L. As a consequence of the Central Limit Theorem,
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there exists a positive constant K1 such that for every N ′L the following is
true,

Pν(GL ≥ N ′L
δ

1 + λ
| N ′L ) ≥ K1. (9)

Again as a consequence of the Central Limit Theorem and of Proposition
1, there exist two positive constants c and K2 such that for every L the
following is true,

Pν(N ′L ≥ µL− c ) ≥ K2. (10)

Call HL := L−N ′L the total number of holes in BL after the first step and
observe that if GL > HL, then at least GL−HL particles leave BL from the
right. Observe also from (9) and (10) that for every positive integer L ∈ N,

Pν(GL −HL ≥ [µ (
δ

1 + λ
+ 1)− 1]L − c) ≥ K1K2. (11)

Call then N z
L the number of particles that leave BL jumping away from

z ∈ ∂BL, where ∂BL := {v ∈ BL s.t. ∃x ∈ Zd/BL s.t. x ∈ v + W} is the
boundary of BL and v +W is the set W translated by a vector v. Call also
simply C := µ ( δ

1+λ + 1)− 1, which is strictly positive under the hypothesis
of the theorem. From (11) it follows that for every L ∈ N,∑

z∈∂BL

Pν(mBL,η(z) >
CL− c
|∂BL|

) ≥

Pν( ∃z ∈ ∂BL s.t. N z
L >

CL− c
|∂BL|

) ≥ K1K2.

(12)

Then for every L ∈ N there exists vL ∈ ∂BL such that,

Pν(mBL,η(vL) >
CL− c
k2

) ≥ K1K2

k2
, (13)

where k2 is a positive constant independent on L which bounds from above
|∂BL| (recall that W is finite). Calling B′L = BL − vL, by translation
invariance and by monotonicity we conclude that for every L ∈ N,

Pν(mη(0) >
CL− c
k2

) ≥ Pν(mB′L,η
(0) >

CL− c
k2

) =

Pν(mBL,η(vL) >
CL− c
k2

) ≥ K1K2

k2
.

(14)

By Lemma 4 almost sure non local-fixation follows.

Proof of Proposition 1 We prove the proposition by contradiction. As-
sume the statement is wrong, i.e. ∀c > 0,

inf
L∈N
{Pν(NL −N ′L ≤ c ) } = 0. (15)
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This means that ∀c > 0 there exists L∗ such that

Pν(NL∗ −N ′L∗ > c ) ≥ 1

2
. (16)

This means that for every c there exists L∗ such that with probability at
least 1

2 at least c particles leave BL∗ after Step 1. Among these particles,
call M z

L the ones that leave BL jumping away from z ∈ ∂BL, where ∂BL
has been defined above. From (16) it follows that,∑
z∈∂BL∗

Pν(mBL∗ ,η(z) >
c

|∂BL∗ |
) ≥ Pν( ∃z ∈ ∂BL∗ s.t. M z

L∗ >
c

|∂BL∗ |
) ≥ 1

2
.

(17)
Then for all c > 0 there exists L∗ and vL∗ ∈ ∂BL∗ such that,

Pν(mBL∗ ,η(vL∗) >
c

k2
) ≥ 1

2k2
, (18)

where, as before, k2 is a positive constant independent on L which bounds
from above |∂BL|. Calling B′L∗ = BL∗ − vL∗ , using again monotonicity and
translation invariance we conclude that for all c > 0,

Pν(mη(0) >
c

k2
) ≥ Pν(mBL∗ ,η(vL∗) >

c

k2
) ≥ 1

2k2
. (19)

As c is arbitrarily larger, from Lemma 4 almost sure non local-fixation for
ARW follows. Now observe that for every L the probability distribution of
the random variables NL, N ′L, and M z

L for all z ∈ ∂BL does not depend
on the value of the parameter λ, as sleeping instructions encountered while
applying the procedure described above have no effect. As (19) holds also
for ARW in the limit λ → ∞ and as we know from [4] that ARW with
λ =∞ locally fixates if µ < 1, then we find a contradiction.

Proof of Theorem 1.2

We present the proof in case of dimension 2. The proof in case of higher
dimension follows the same steps. The set BL is defined in Figure 1, it
depends on a positive integer L and on a positive real number g that will
be defined later. In the figure we assumed for simplicity that m is parallel
to the axis x1. The definition of BL in case of m with different orientation
can be recovered just by a rotation centred in the origin. Consider a ral-
ization η of the initial configuration. We assign an order to particles in BL
according to the following condition. Imagine that every particle of η in BL
is intersected by an hyperplane orthogonal to m. Different sets of particles
will be intersected by the same hyperplane. Then for every pair of particles
belonging to distinct hyperplanes, the particle which belongs to the hyper-
plane closer to the origin must appear later in the order. The order relation
among particles belonging to the same hyperplane is irrelevant.
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-gL

gL

x1

x2

-|m|t

z

2gL

-2gL

BL

-|m|L 0

Figure 1: Representation of BL in two dimensions, in case m is parallel to
x1. BL corresponds to the set inside the red lines and it depends on g, m and
L. Referring to equation (21) in the text, a walk starting from (−|m|t, z)
has a probability P (Gε−t,−z) of being good and of leaving BL from the origin.
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|m|t

-gt

gt

Ft

x1

t

εt

-εt

0

Figure 2: As defined in the text, a good particle is located inside the blue
circle of radius εt and centred in 0 + mt, where 0 is its initial location, for
every t ∈ N. This means that the particle cannot leave the region inside the
red lines. If ε < |m|, then the region delimited by the red lines is a cone and
the good particle cannot return to the origin.

Following this order we repeat the same procedure presented in the sec-
ond step of the proof of Theorem 1.1. Namely, starting from the initial
position of the particle, we use the first unused instruction on the site where
the particle is located until the particle falls asleep in BL or until it leaves
BL and then we do the same for the following particle in the order. Con-
sider then the i-th particle in the order and call ( zi(t) )τit=0 the trajectory of
such particle. Thus zi(0) corresponds to the initial position of the particle
and zi(τi) corresponds to the site in BL where the particle falls asleep or
to the last site in BL visited by the particle before jumping away from the
set. Now fix an arbitrary 0 < ε < |m|. We call the i-th particle good if its
trajectory satisfies the following conditions; (1) the particle leaves its initial
position at the first step and (2) for all 0 < t ≤ τi, |zi(t)−zi(0)−m t| < ε t.
Observe that if ε < |m|, every good particle does not return to its initial
position by definition. Referring to Figure 2, observe also that if the particle
is good, then it remains always inside the infinite cone of radius g(ε, |m|) t,
with t going to infinity, where g(ε, |m|) is a positive real number depending
on ε and on |m|. We choose g in the definition of BL equal to this number.
This ensures that every good particle in BL can leave BL only from the
hyperplane intersecting the origin. By independence of the instructions the
probability of a particle of being good does not depend on the trajectory of
the particles moved previously, but it depends only on their position.

We want to estimate the number of good particles that leave BL jumping
away from the origin. Call this number GL. We use the idea of the ghost
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explorers from [6, 7]. Thus to each particle that leaves its initial position
at the first step we associate a walk that begins together with the particle
but continues indefinitely. Let WL be the number of such walks with a good
trajectory and visiting the origin as last site in BL. Namely, denoting by
(wi(t) )qit=0 the walk associated with the i-th particle in the order and by qi
the first time the walk leaves BL, we say that the walk is good and leaves
BL from the origin if the following two conditions are satisfied; (1) for all
integers 0 < t ≤ qi, |wi(t) − wi(0) −m t| < ε t, and (2) the last site visited
in BL before leaving the set is the origin. Let RL be the number of walks
having a good trajectory and which leave BL jumping away from the origin,
but that leave BL as ghost (i.e. after stopping in the original model). Thus
GL = WL −RL counts the number of good particles that leave BL jumping
outside the set from the origin.

We start with the estimation of the expectation E[WL]. Call then Ft
the hyperplane orthogonal to m, having a distance |m|t from the origin and
pointed by m, as in Figure 2. Assume for simplicity of the exposition that
m is parallel to x1. For a discrete time random walk with the same jumps
distribution of our ARW model, call Gεt,z the event {the walk starting from
the origin is good} ∩ {the first site of Ft visited by the walk is (|m|t, z)}.
Clearly, for all t > 0 such that Ft intersects some site,

bgtc∑
z=−dgte

P (Gεt,z) = K(ε), (20)

as the sum is over the probability of disjoint events. Thus for a fixed initial
configuration η the expectation E[WL | η ] can be bounded by,

∑
t∈(−L,0]

bgtc∑
z=−dgte

η(−t|m|, z)
P (Gε−t,−z)

1 + λ
≤ E[WL | η ]

≤
∑

t∈(−L,0]

bgtc∑
z=−dgte

η(−t|m|, z)P (Gε−t,−z),

(21)

where, given η, WL can be intended as a sum over indicator functions and
the previous corresponds to the expectation of such variable. Observe also
that in the previous expression the first sum is over all t in (−L, 0] such
that |m|t is an integer. The factor 1

1+λ is a lower bound for the probability
that the particle to which the walk is associated can move at least one step
(only under this circumstance the associated walk starts). For non isolated
particles, this probability is 1, as sleeping instructions have no effect, and
this gives the upper bound in the previous expression. See also Figure 1.
Recalling that the initial particles distribution is a product measure and
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using (20) we get,

Lµ|m|K(ε)

1 + λ
≤ E[WL] ≤ Lµ|m|K(ε). (22)

See also Figure 1. The expectation E[RL] is harder to calculate, but note
that each ghost that contributes to RL can be tied up to the unique site
where the particle stops in the original model and the ghost starts. Observe
also that as we are counting only good particles, ghosts can start only from
sites of BL that are empty in η. Thus, by the strong Markov property, if
we start an independent walk from each empty site of BL and we call R̃L
the number of such walks that leave BL jumping away from the origin, we
get that RL is stochastically dominated from above by R̃L. Consider again
Figure 2 and, considering again a discrete time random walk with the same
jumps distribution of our ARW model, call Rεt,z the event {the first site in
Ft visited by a walk starting from the origin is (|m|t, z)}. Clearly for all
t > 0 such that Ft intersects some site,

∞∑
z=−∞

P (Rεt,z ) = 1, (23)

as the walk crosses Ft almost surely and we sum over disjoint events. Thus,
for a fixed configuration η ∈ Σ,

E[ R̃L | η ] ≤
∑

t∈(−L,0]

bwtc∑
z=−dwte

1
e
(−t |m|,z)(η)P (Rε−t,−z ), (24)

where wt := max{w ∈ R : (−|mt|, w) ∈ BL}, 1e(x,y)(η) equals one if and

only if the site (x, y) ∈ Z2 is empty for the configuration η and, as before,
the first sum is over all t ∈ (−L, 0] such that t|m| is an integer. Using (23)
and the fact that the initial particles distribution is a product measure, we
conclude that,

E[R̃L] ≤ L |m|ν0. (25)

Call then C(ε) := |m|(µK(ε)
1+λ − ν0), which is positive for every µ > ν0(1+λ)

K(ε) .

Now we show that the probability of the event {WL − RL < C(ε)
3 L} tends

to 0 as L → ∞. As mBL,η(0) ≥ WL − RL, by Lemma 3 and Lemma 4 this

implies that ARW stays active for all µ > ν0(1+λ)
K(ε) . Thus,

Pν(WL −RL <
C(ε)

3
L) ≤ Pν(WL −RL <

E[WL −RL]

3
) ≤

Pν(E[WL]−WL >
E[WL −RL]

3
) + Pν(RL − E[RL] >

E[WL −RL]

3
),

(26)
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where for the second inequality we used the union bound. Fix now k ∈ N and
observe that there exists L0 such that for all L > L0,

E[WL−RL]
3 ≥ k

√
E[WL]

and E[WL−RL]
3 ≥ k

√
E[R̃L]. Observe also that V ar[WL] ≤ V E[WL] and that

V ar[R̃L] ≤ V E[R̃L]. Thus by the Chebyshev inequality we conclude that
for every L > L0,

Pν(E[WL]−WL >
E[WL −RL]

3
) ≤ Pν(E[WL]−WL > k

√
V ar[WL]

V
) ≤ V

k2
,

(27)
and that,

Pν(RL − E[RL] >
E[WL −RL]

3
) ≤ Pν(R̃L − E[R̃L] > k

√
V ar[R̃L]

V
) ≤ V

k2
.

(28)
Recall now that our construction works for any ε positive, but strictly less
than |m|. We can then choose ε < |m|, but arbitrarily close to |m|. Since k

was arbitrary we conclude that if µ > ν0(1+λ)
K then ARW stays active almost

surely.
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